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Abstract—Availability of labelled data is the major obstacle to the deployment of deep learning algorithms for computer vision tasks in
new domains. The fact that many frameworks adopted to solve different tasks share the same architecture suggests that there should
be a way of reusing the knowledge learned in a specific setting to solve novel tasks with limited or no additional supervision. In this
work, we first show that such knowledge can be shared across tasks by learning a mapping between task-specific deep features in a
given domain. Then, we show that this mapping function, implemented by a neural network, is able to generalize to novel unseen
domains. Besides, we propose a set of strategies to constrain the learned feature spaces, to ease learning and increase the
generalization capability of the mapping network, thereby considerably improving the final performance of our framework. Our proposal
obtains compelling results in challenging synthetic-to-real adaptation scenarios by transferring knowledge between monocular depth
estimation and semantic segmentation tasks.

Index Terms—Domain Adaptation, Task Transfer, Semantic Segmentation, Depth estimation

F

1 INTRODUCTION

D EEP learning has revolutionized computer vision by
providing an effective solution to address a wide range

of tasks (e.g., classification, depth estimation, semantic seg-
mentation, etc.). The rise of a common framework has
allowed incredible leaps forward for the whole research
community thanks to the ability to reuse architectural and
algorithmic improvements discovered to solve one task
across many others. However, the real knowledge of a neu-
ral network is stored inside its trained parameters and we
still have no simple way of sharing this knowledge across
different tasks and domains (i.e., datasets). As such, the first
step for every practitioner faced with a new problem or do-
main deals with acquisition and labeling of a new training
set, an extremely tedious, expensive and time consuming
operation. We argue that sharing the knowledge acquired
by a neural network to solve a specific task in a specific
domain across other tasks and domains could be a more
straightforward and cost-effective way to tackle them.

Indeed, this is demonstrated by the widespread use
and success of transfer learning. Transfer learning concerns
solving new tasks by initializing a network with pre-trained
weights, thereby providing a basic approach to knowledge
reuse. However, it still requires a new annotated dataset to
fine tune the pretrained network on the the task at hand. A
few works focused on the related task transfer (TT) problem
[1], [2], i.e., on exploiting supervised data to tackle multiple
tasks in a single domain more effectively by leveraging on
the relationships between the learned representations. As
unlabeled domains are not considered in TT problem for-
mulations, the proposed methodologies still rely on transfer

* Equal contribution.

Fig. 1. Our framework transfers knowledge across tasks and domains.
Given two tasks (1 and 2) and two domains (A and B), with supervision
for both tasks in A but only for one task in B, we learn the dependency
between the tasks in A and exploit this in B in order to solve task 2
without the need of supervision.

learning and availability of a small annotated training set
in order to address new datasets. On the other hand, the
unsupervised domain adaptation literature (DA) [3] studies
how the need for annotated data can be removed when
leveraging on knowledge reuse to solve the same task across
different domains, but it does not consider different tasks.

Differently, we propose to merge DA and TT by ex-
plicitly addressing a cross domain and cross task problem
where on one source domain (e.g., synthetic data) we have
supervision for many tasks, while in another target one (e.g.,
real data) annotations are available only for a specific task
while we wish to solve many. A schematic representation
of our problem formulation with two domains and two
tasks is shown in the right part of Figure 1. Following this
schematic representation we will consider a scenario with
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two domains (a source one and a target one, namely A
and B) and two tasks (again a source one and a target one,
namely task 1 and 2), but nothing prevents our method to
be extended to more. In domain A we use the available
supervision to learn two models for the source and target
tasks, while in the target domain B we can do the same
for the source task only. In domain A we use the trained
task-specific models to learn a mapping function (G1→2

in Figure 1) between deep features extracted to solve the
source task and those extracted to solve the target task. This
mapping function is then applied in domain B to solve the
target task by transforming the features extracted to solve
the source task.

The key component of our framework is the mapping
function between the two task-specific deep features. In [4]
we proposed a preliminary formulation of our framework
by modeling the mapping function as a deep convolutional
neural network and optimizing its parameters by standard
supervised learning in the source domain A. In this work,
we expand and improve upon our preliminary formula-
tion by proposing two features alignment strategies aimed
at learning the feature mapping function more effectively.
Firstly, we align feature representations across domains
using a novel norm discrepancy alignment (NDA) loss that
constraints the feature space by penalizing features with
very different norms in a spatially-aware manner. Secondly,
we align feature representations across tasks by using them
as inputs to solve a common auxiliary task. This pretext
problem acts as a bridge between the source and the target
tasks: in fact, if the deep features extracted to solve them in-
dependently can be used to address effectively an additional
common task, we are pushed to believe that those features
present the same semantic content and encode it in a similar
manner.

We test the effectiveness of our proposal in a challenging
autonomous driving scenario where we try to solve the two
related dense prediction tasks of monocular depth estima-
tion and semantic segmentation [5]. We select edge detection
as the auxiliary task since color edges provide oftentimes
detailed key information related to both the semantic as well
as the depth structure of the scene. Many edge detectors
have been proposed during the years, with recent deep
learning based approaches outperforming classical hand-
crafted methods even in the most challenging scenarios [6],
[7], [8]. Interestingly, such deep models present good gener-
alization capabilities, allowing us to use the state-of-the-art
approach [6] to generate proxy supervision for the auxiliary
task without extra labels. Thanks to our formulation, we
can use a fully supervised and completely synthetic domain
(i.e., the Carla simulator [9]) to improve the performance on
a partially labeled real domain (i.e., Cityscapes [10]).

The contributions of this paper can be summarized as
follow:

• We propose for the first time to study a cross domain
and cross task problem where supervision for all
tasks is available in one domain whilst only for a
subset of them in the other. This is done by learning
a mapping between deep representations.

• We demonstrate how constraining explicitly deep
features across domains with a novel norm discrep-

ancy alignment loss improves the learning of the
mapping function.

• We further show how the learning of the mapping
function can be improved by deploying an auxiliary
task.

• Considering the dense prediction tasks of monocular
depth estimation and semantic segmentation, we
achieve results close to the practical upper bound
when transferring knowledge between a synthetic
and a real domain.

2 RELATED WORKS

2.1 Transfer Learning and Task Transfer

Collecting training data is often expensive, time-consuming,
or even unrealistic in many scenarios. Many works have
tackled this problem by exploiting the existence of a rela-
tionship between the weights of CNNs trained for different
tasks [11]. In particular, [12] showed that this strategy, re-
ferred to as transfer learning, can lead to better results than
using random initialization even if applied on quite diverse
tasks. Transfer learning has become a common practice, for
instance, in object detection, where networks are usually
initialized with Imagenet [13] classification weights [14],
[15], [16], [17]. Additional insights on the transferability of
learned representations between different visual tasks were
provided in [1], where the authors present Taskonomy, a
computational approach to represent a taxonomy of rela-
tionships among visual tasks. Along similar lines, [18] pro-
posed to exploit the correlation between known supervised
tasks and novel target tasks, in order to predict the param-
eters of models deployed to solve the target tasks starting
from the parameters of networks trained on the known
tasks. While [1] and [18] study the correlation between tasks
in a given domain and assume either full or no supervision,
we explicitly address a multi-domain scenario assuming full
supervision in one domain and partial supervision in the
target one.

2.2 Domain Adaptation

Domain adaptation techniques aim at reducing the perfor-
mance drop of a model deployed on a domain different from
the one the model was trained on [3]. Throughout the years,
adaptation has been performed at different levels. Early
approaches tried to model a shared feature space relying on
statistical metrics such as MMD [19], [20]. Later, some works
proposed to align domains by adversarial training [21],
[22], [23]. Recently [24] noticed that, for classification tasks,
aligning feature norms to an arbitrarily large value results in
better transferability across domains. Generative adversarial
networks [25] have also been employed to perform image-
to-image translation between different domains [26], [27],
[28], and, in particular, to render cheaply labelled syn-
thetic images similar to real images from a target domain.
However, when dealing with dense tasks such as semantic
segmentation, feature-based domain adaptation approaches
tend to fail as deeply discussed in [29] . Thus, several ap-
proaches to address domain adaptation for dense tasks, such
as semantic segmentation [5], [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38], [39], [40] or depth estimation [41], [42],
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[43] have been proposed recently. Among them, SPIGAN
[44] uses extra supervision coming from synthetic depth
of the source domain to improve the quality of an image-
to-image translation network and consequently achieving
better adaptation performances. Akin to DA methods, we
learn from a labeled source domain to perform well on a
different target domain. However, unlike the classical DA
setting, we assume the existence of an additional task where
supervision is available for both domains.

2.3 Multi-task Learning
The goal of multi-task learning is to solve many tasks si-
multaneously. By pursuing this rather than solving the tasks
independently, a neural network may use more information
to obtain more robust and reliable predictions. Many works
try to tackle several tasks jointly [45], [46], [47], [48]. For
example, [47] showed that by learning to correctly weigh
each task loss, multi-task learning methods can outperform
separate models trained individually. [5], [48] show how
learning multiple perception tasks jointly while enforcing
geometrical consistency across them can lead to better per-
formances for almost all tasks. Recently, [2] proposes a
method to improve the performances of multiple single-
task networks by imposing consistency across them during
training. Finally, Taskonomy [1] investigates the relationship
between the deployed tasks to accomplish multi-task learn-
ing effectively. However, multi-task learning approaches
usually try to achieve the best balance between tasks in
a single-domain scenario. We instead tackle a multi-task
and multi-domain problem. Nevertheless, taking inspiration
from multi-task learning, we show how jointly learning an
auxiliary task while learning the two task networks helps
the alignment of features across tasks.

2.4 Task Transfer and Domain Adaptation
Most existing approaches address independently either task
transfer or domain adaptation. Yet, a few works have pro-
posed to tackle these two problems jointly. [49] was the first
paper to propose a cross-tasks and cross-domains adapta-
tion approach, considering as tasks different image classifi-
cations problems. UM-Adapt [50], instead, learns a cross-
task distillation framework with full supervision on the
source domain and deploys such framework on the target
domain in a fully unsupervised manner, while minimizing
adversarially the discrepancy between the two domains.
Differently, in a preliminary version of this work [4], we in-
troduced AT/DT (Across Tasks and Domains Transfer) and
set forth a novel learning framework, where the relationship
between a set of tasks is learned on the source domain and it
is later deployed to solve a specific task on the target domain
without supervision thanks to the availability of ground-
truth for all the tasks except the target one. In this work we
will expand and improve this methodology.

3 METHOD

We introduce the problem we are trying to solve with a
practical example. Imagine we aim to solve semantic seg-
mentation in a real domain but we only have labels for a
closely related task (e.g., depth estimation). Moreover, let

Fig. 2. AT/DT framework: hereN1 andN2 are trained separately to solve
tasks T1 and T2. While N2 is trained only on images from domain A,
N1 is trained jointly on both domain A and domain B, to enable the
extraction of domain invariant features. Then, encoders from the two
networks are frozen and used to learn the transfer functionG1→2, which
aims at transforming features extracted for T1 in features that are good
for T2. This step is performed only on domain A, since we have no
supervision for T2 on domain B. Finally, at inference time, features are
extracted from E1 starting from images of domain B, transformed with
the G1→2 and fed to D2 to produce the final predictions.

us suppose to have access to a synthetic domain, where
labels can be easily obtained for both tasks. Unsupervised
domain adaptation may be used in this synthetic to real
scenario. However, we wish to go one step further, trying to
answer this question: can we exploit the depth estimation
task to boost the performance of semantic segmentation in
the real domain? The answer is yes, thanks to our novel
framework AT/DT. In AT/DT we first learn a mapping
function in the synthetic domain between deep features of
two networks trained for depth estimation and semantic
segmentation. This mapping function captures the relation-
ship between the two tasks. Once learned, we use the map-
ping on depth features extracted from real samples to solve
semantic segmentation in the real domain without the need
of labels for it, thereby transferring knowledge across tasks
and domains. To further improve performance, we propose
two strategies aimed at increasing the transferability of the
learned features, namely leveraging on a norm discrepancy
alignment loss and an auxiliary task.
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Fig. 3. Features alignment strategies across tasks and domains. We train jointly the networks N1, N2 and a shared auxiliary decoder Daux. We
train N1 to solve T1 on images from domains A and B using a supervised loss LT1

for T1 alongside a novel feature Norm Discrepancy Alignment
loss LNDA which helps better aligning the features computed by N1 across the two domains. We train N2 using a supervised loss LT2

for T2 on
images from B. Daux is trained to solve an auxiliary task Taux using the loss Laux and based on the features computed by E1 on images from A
and B as well as by E2 on images from B.

In the following sub-sections, we first describe the base
AT/DT framework and then delineate its improved formu-
lation which includes the norm discrepancy alignment loss
and auxiliary task.

3.1 Notation
We consider two tasks, T1 and T2, as well as two domains,
A and B. We denote the images belonging to A and B as
xA and xB, respectively. We have labels for T1 in A and B,
denoted as yA1 and yB1 , respectively. On the other hand, we
have labels for T2 only in A, denoted as yA2 . Our aim is to
solve T2 in B, where we do not have supervision. We assume
T1 and T2 to be both dense tasks, which can therefore be
addressed by an encoder-decoder architecture. We denote as
N1 and N2 two networks that solve T1 and T2, respectively.
Each network Nk, k ∈ {1, 2} consists of an encoder Ek and
a decoder Dk, such that Nk(x) = Dk(Ek(x)), x being the
input image.

3.2 Across Tasks and Domains Transfer
In our AT/DT framework we aim at learning the
relationships between T1 and T2 through a neural network.
This is achieved by 3 steps, each represented as a block in
Figure 2:

Training N1 and N2. We train N1 and N2 to solve
T1 and T2. Since we assume supervision for T1 on both
domains, N1 is trained with images from A and B. This
enables N1 to learn a feature space shared across the two
domains. N2, instead, is trained only on A. Both networks
are trained with a specific supervised task loss LTk for Tk.

Training G1→2. Considering only domain A, where we
have supervision for both tasks, we then train a trans-
fer network G1→2 to map the features computed by N1,

fA1 = E1(x
A), into those computed by N2, fA2 = E2(x

A).
Denoting the transferred features as fA1→2 = G1→2(f

A
1 ), we

train the transfer network by minimizing the L2 loss:

LTr = ||fA1→2 − fA2 ||2 (1)

Inference. Once G1→2 has been trained, we can ad-
dress T2 in B by computing the features to solve T1,
fB1 = E1(x

B), transform them into features amenable to T2,
fB1→2 = G1→2(f

B
1 ), and finally decode these features into

the required dense output by D2:

ŷB2 = D2(f
B
1→2) (2)

After presenting the base AT/DT framework, in the
next sub-sections we will describe two strategies deployed
to boost the feature alignment across domains and tasks.
Figure 3 provides a detailed view of these two strategies
which in our final proposed framework replace the initial
steps of the training protocol (i.e., Training N1 and N2).

3.3 Feature Alignment Across Domains

For the effectiveness of the approach delineated in subsec-
tion 3.2, it is crucial that G1→2 can generalize well to the
target unseen domain B even if trained only with data from
the source domain A.

The DA literature presents us with several ways to
accomplish this. One may operate on the input space [27], on
the feature space [23] or on the output space of the network
[29]. In our setting, though, both input and output space of
G1→2 are high dimensional latent spaces and, as reported
in [29], unsupervised domain adaptation techniques tend to
fail when applied to such spaces while addressing dense
tasks. Yet, we can address the domain shift issue with a
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Fig. 4. Two task transfer scenarios: depth-to-semantic on the left, the opposite on the right. First row: ground-truth depth and semantic segmentation
maps; second row: corresponding edge maps. Red circles highlight information needed in the target task but missing in the source one.

direct approach in the input space of G1→2, i.e., the feature
space of N1, which is already shared between A and B
due to the network being trained supervisedly with images
from both domains. We leverage on the intuition that scene
spatial priors are typically domain invariant in many adap-
tation scenarios. We consider it as a reasonable assumption
for several domain adaptation settings, where we select the
source domain by considering visual similarities with the
target domain. For instance, in autonomous driving scenar-
ios we typically have cameras placed from a car viewpoint,
and scenes are urban scenarios in both synthetic [9], [51]
and real [10], [52], [53] datasets. Thus, if we consider the
task of semantic segmentation in all datasets (synthetic and
real) we typically find road pixels in the bottom part of the
images and instead sky pixels in the top part of the images.
To visualize this property we select a synthetic domain A
CARLA [9] and a real domain B Cityscapes [10]. Then, we
count for each pixel location the number of occurrences of
each class. We show the result of this experiment in Figure 5,
using a viridis colormap to display these occurrency maps
for each class and for both domainsA and B. We can clearly
see that the maps have a structure similar across domains,
e.g., building are concentrated in the top image regions.

Leveraging this property, we propose to align more
closely the features computed by E1 on the images from
both domains, i.e., fA1 and fB1 , by enforcing similarity of
the L2 norms across channels at the same spatial loca-
tion. Starting from features fA1 and fB1 of dimensionality
H × W × C , where H , W and C are the height, width
and number of channels of the feature maps, we calculate
the L2 norm along the C axis and minimize the absolute
difference at each spatial location i, j. Hence, our NDA
(Norm Discrepancy Alignment) Loss is defined as follows:

LNDA =
1

W ×H

H∑
i=1

W∑
j=1

∣∣∣‖fA1i,j‖2 − ‖fB1i,j‖2∣∣∣ (3)

3.4 Feature Alignment Across Tasks
While the NDA loss presented above aims at improving
the generalization across domains of the feature mapping
network G1→2, its effectiveness can be further improved by
aligning features also across tasks. Accordingly, we conjec-
ture that f1 features should capture as much information as
possible on the details of the scene, even though some of
this information may not be necessary to solve T1, because,
when transferred by G1→2, such a richer representation
could help to solve T2 more effectively. For this reason, while
training N1 for T1, we train jointly an additional decoder,
Daux, to solve an auxiliary task, Taux, aimed at enriching
the learnt representation f1 . However, though multi-task
learning of T1 and Taux could help to encode more detailed
information into f1 features, it does not guarantee that
the decoder D2, used at inference time on the features
f1→2 transferred from T1 to T2, may effectively deploy this
additional information if it has been trained only to solve
T2 in isolation. This leads us to reckon that Daux should
be trained jointly with N2 too, such that the additional
information required to solve Taux may be incorporated also
within the features f2 learnt by E2.

Therefore, given auxiliary task labels yAaux and yBaux for
A and B, we train N1 and N2 jointly with a single auxiliary
decoder Daux using an auxiliary loss Laux. Purposely, we
obtain auxiliary predictions from both encoders with the
shared decoder Daux as ŷkaux

= Daux(Ek(x)), k ∈ {1, 2}.
Similarly to the simpler formulation of our framework pre-
sented in subsection 3.2, to compute the auxiliary loss we
feed images of both domains through E1, while we pass
only images from A through E2. We do not pass images
belonging to B through E2 while training Daux since this
would be the only kind of supervision for E2 in B and it
may skew E2 output to be more effective on Taux than on
T2.

3.5 Overall N1 and N2 loss
When training simultaneously N1 and N2, the overall loss
is:
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A B A B A B A B

Road Sidewalk Wall Fence
A B A B A B A B

Person Pole Vegetation Vehicle
A B A B A B

Traffic Signs Building Sky

Fig. 5. Spatial Priors Similarities Across Domains. Considered the semantic segmentation task, we compute the number of occurrences of each
class at each pixel location for both domains. Domain A is CARLA, B is Cityscapes. We visualize the occurrence maps with a viridis colormap.

L = λT1LT1(y
A
1 , ŷ

A
1 ) + λT1LT1(y

B
1 , ŷ

B
1 )

+λT2LT2(y
A
2 , ŷ

A
2 ) + λauxLaux(yA1aux

, ŷA1aux
)+

λauxLaux(yB1aux
, ŷB1aux

) + λauxLaux(yA2aux
, ŷA2aux

)+

λNDALNDA(fA1 , fB1 )

(4)

4 EXPERIMENTAL SETTINGS

Tasks. We fix T1 and T2 to be monocular depth estimation
and semantic segmentation, or vice versa. These two visual
tasks can be addressed using the same encoder-decoder
architecture, with changes needed only in the final layer.
Semantic segmentation is solved by minimizing a pixel-
wise cross entropy loss, monocular depth estimation by
minimizing an L1 loss. We select edge detection as our
Taux since it seems particularly amenable to improve
the effectiveness of our framework in capturing and
transferring important structural information that might
otherwise be lost. Let us consider the case of T1 being depth
estimation and T2 semantic segmentation. The features
f1 needed to compute depth may ignore the boundaries
between semantically distinct regions showing up at the
same distance from the camera: in Figure 4 (left) this is
the case, e.g., of the boundaries between legs or tyres
and ground, as well as between street signs and poles.
Therefore, even if fed to a perfect G1→2, f1 may not
contain all the information needed to restore the semantic
structure of the image. By solving jointly edge detection
on the input image, instead, we force our N1 network to
extract additional information that would not need to be
captured should the learning objective be concerned with
depth estimation only. Similarly, Figure 4 (right) highlights
how depth discontinuities do not necessarily correspond
to semantic boundaries, such that a network N1 trained
in isolation to assign semantic labels to pixels may not
need to learn information relevant to estimate the depth
structure of the image. Besides, it is worth pointing out that
edge detection can be solved using again the same decoder
architecture as T1 and T2. Since the edge proxy-labels that
we adopt are gray-scale images [6], in our experiments we

implement the Laux loss introduced in subsection 3.4 as a
standard L2 loss. In all our experiments we set λaux to 0.5,
λNDA to 0.001, λT1

and λT2
to 1 to balance loss values.

Datasets. We test the effectiveness of our method in
an autonomous driving scenario. We set A and B to be
a synthetic and a real dataset, respectively. The former
consists of a collection of images generated with the Carla
simulator [9], while the latter is the popular Cityscapes
dataset [10]. We generated the Carla dataset mimicking
the camera settings of the real scenes. We render 3500,
500, and 1000 images for training, validation, and testing,
respectively. For each image, we store the associated
depth and semantic labels provided by the simulator. The
Cityscapes dataset is a collection of 2975 and 500 images to
be used for training and validation, respectively. As for our
evaluation, we use the 500 Cityscapes validation images
since test images are not equipped with labels. Moreover,
as in Cityscapes only the semantic labels are provided,
we use depth proxy-labels obtained with the SGM stereo
algorithm [54], by filtering the erroneous predictions in the
generated disparities with a left-right consistency check.
This can be considered as an added value because it shows
the ability to transfer knowledge when learning from noisy
labels. Finally, we use a pre-trained1 state-of-the-art neural
network [6] as an off-the-shelf edge detector to extract
from the images belonging to A and B the edges used as
proxy-labels to train Taux.

Architecture. To solve each task, we use two dilated
ResNet50 [55] as encoder and a stack of bilinear upsample
plus convolutional layers as decoder. The encoder shrinks
both input dimensions with a factor of 1/16, while the
decoder upsamples the feature map until a prediction with
the same spatial resolution as the input image is obtained.
The two networks for T1 and T2 are identical, but for the
final prediction layer, which is task dependent. The two
previously defined encoders are also used to capture good
features for edge detection, which is solved using Daux,
that shares the same architecture as the decoders used in

1. Neither A nor B belong to the training set of this network.
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N1 and N2. G1→2 is a simple CNN made out of 6 pairs of
convolutional and batch normalization layers with kernel
size 3 × 3 which do not perform any downsampling or
upsampling operation.

Training and Evaluation Protocol. During the training
phase of the transfer network G1→2, the model is evaluated
on the validation set of Carla. Of course, it is possible that
optimality on Carla does not translate into optimal per-
formance on Cityscapes. Yet, we cannot use data from the
target domain neither for hyper-parameters tuning nor for
early stopping, because in our setting these data would not
be available in any real scenario. Therefore, the Cityscapes
validation set is only used at test time to measure the final
performances of our framework method.

Fig. 6. From left to right: RGB input image of domain A , depth prediction
from N1, edges from f1, semantic segmentation from N2 and edges
from f2. Task features f1 and f2 encode richer details than strictly
needed to solve either tasks as we can recover all edges from both of
them by Daux.

Metrics. To evaluate the performance on the semantic
segmentation task two metrics are used: pixel accuracy,
shortened Acc. (i.e the percentage of pixels with a cor-
rect predicted label) and Mean Intersection Over Union,
shortened mIoU, as defined in [10]. To render these metrics
comparable among the used datasets, we solve semantic
segmentation on the 10 shared classes (Road, Sidewalk,
Walls, Fence, Person, Poles, Vegetation, Vehicles, Traffic
Signs, Building) plus the Sky category, which is defined as
the set of points with infinite depth. Some of the Cityscapes
classes are collapsed into one class: car and bicycle into
vehicle, traffic signs and traffic light into traffic sign. The
remaining categories of Cityscapes are instead ignored.
When testing the depth estimation task, we report the
standard metrics described in [57]: Absolute Relative Error
(Abs Rel), Square Relative Error (Sq Rel), Root Mean Square
Error (RMSE), logarithmic RMSE and δ1, δ2 and δ3 accuracy
scores. Each δα is obtained by computing, for each pixel
of the input image, the maximum among ratio and inverse
ratio between the predicted value and the ground-truth. δα
represents the percentage of pixels whose such ratio is lower
than 1.25α.

5 EXPERIMENTAL RESULTS

We provide results for two different settings: transferring
features from depth estimation to semantic segmentation
(subsection 5.1) as well as from semantic segmentation to
depth estimation (subsection 5.2).

In both scenarios, as already mentioned, we used edge
detection as auxiliary task, motivated by the idea that either
semantic segmentation and depth estimation can benefit

from edge information. Figure 6 shows that with our multi-
task learning protocol we are able to restore all the details
of the scene from both f1 and f2, proving that N1 and
N2 have indeed learned to encode into their features richer
information than that strictly needed to solve T1 and T2.

5.1 Depth to Semantics

In this setup, denoted as Dep → Sem, the goal of our
framework is to transform depth features into semantic
segmentation features. This mapping is learned using Carla
as domain A and Cityscapes as domain B. We report results
in Table 1: the first row shows results obtained with no
adaptation (i.e., training N2 on Carla and testing it directly
on Cityscapes), while from the second row we can see that
our final framework yields 51.28% mIoU and 87.57% Acc
with an improvement of +12.48% and +8.99% wrt to the
baseline.

Even though AT/DT is the first work to address the
across tasks and domains scenario, we compare it against
a related work, ZDDA [56], which also leverage auxiliary
data from a different tasks to perform domain adaptation.
We apply it in our setup using as the ”Source” and ”Target”
domains Carla and Cityscapes respectively. We address
the Dep → Sem scenario using depth maps as ”task-
irrelevant” data. We skip the last sensor fusion step (Step
3) because it was not applicable in our scenario since we
do not have task-irrelevant data at test time, and thus we
stop training after the adaptation step (Step 2). We report
results of this alternative approach in the second row of
Table 1. As we can notice, ZDDA is effective in our scenario
and achieves better performance compared to the baseline.
However, AT/DT obtains much better results, surpassing
ZDDA in all metrics. This is not surprising since ZDDA
focus on extracting features only from task-irrelevant data,
which can be sub-optimal for the relevant task as these
data do not provide the same amount of information as the
task-relevant data, e.g., features extracted only from depth
images would not contain several useful information for
semantic segmentation such as colors or textures.

Furthermore, as we are transferring features from an-
other task, it is worth trying to investigate on the upper
bound in performance due to the inherent transferability
of the features between the two tasks. Purposely, we train
G1→2 using only Cityscapes to learn a mapping function in
a supervised fashion as explained in subsection 3.4 on B and
test on the validation set of B. These results are shown in the
third row of the table (denoted as Transfer Oracle): given a
transfer architecture, there seems to be an upper bound in
performance due to the nature of the two tasks, which in
the considered setting amounts to a 58.5% mIoU. Thus, our
proposal exhibit a gap wrt the Transfer Oracle that is only
about -7.2% mIoU. We also report the performance of N2

trained on B and tested on B, i.e., the absolute upper bound
in performance (last row of the table, denoted as Oracle).

Some qualitative results dealing with the Dep → Sem
scenario are depicted in Figure 7. It is possible to appreciate
the overall improvement of our method wrt the baseline,
either in flat areas (e.g., roads, sidelwalks and walls), objects
shapes (e.g., cars and persons) and fine-grained details (e.g.,
poles and traffic signs).
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TABLE 1
Experimental results of Dep→ Sem scenario. Baseline stands for N2 trained on A and tested on B, Transfer Oracle represents G1→2 trained

only on B, Oracle refers to N2 trained and tested on B. Best results highlighted in bold.
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Carla CS Baseline 78.99 38.81 1.34 5.80 24.02 24.47 71.98 52.23 5.57 65.17 59.10 38.86 78.58
Carla CS ZDDA [56] 85.93 41.28 4.62 8.63 38.80 25.94 72.78 58.37 18.44 73.74 78.16 46.06 82.82
Carla CS AT/DT 90.57 48.46 7.37 12.27 41.16 31.90 81.96 72.77 23.44 77.85 76.33 51.28 87.57

CS CS Transfer Oracle 89.69 48.05 11.46 29.58 59.68 35.84 85.83 85.57 34.03 78.17 85.54 58.50 88.84
- CS Oracle 96.74 78.28 29.26 40.78 72.39 51.28 90.69 91.94 58.92 86.33 89.23 71.44 93.90

Fig. 7. Qualitative results of the Dep→ Sem scenario. From left to right: RGB image, ground-truth, baseline trained only on domain A, ours.

5.2 Semantics to Depth
In this setup, which we define as Sem → Dep, the goal
of our framework is to transform semantic features into
depth features. This mapping is learned using Carla as
domain A and Cityscapes as domain B, as done for the
Dep → Sem scenario. Results are reported in Table 2.
Similarly to the Dep → Sem scenario, in the first row
we show results with no adaptation (i.e., our baseline),
while the third row presents the ones obtained with our
framework. Also for this setup we report performances of
ZDDA [56] (second row), in which we use semantic maps as
task-irrelevant data. We can see that ZDDA achieves slight
better performance of the baseline in 5 metrics out of 7, but
still inferior to our approach. Moreover, we report results
from the Transfer Oracle and the Oracle, implemented as
described for the Dep → Sem scenario. It is possible to
appreciate that our framework outperforms the baseline on
6 out of 7 metrics, closing remarkably the gap with the
practical upper bound of the Transfer Oracle. In Figure 8, we
show some qualitative results of the Sem → Dep scenario.
While predictions look quite noisy in the background, we
can see a good improvement in the foreground area thanks
to our method. Shapes are recovered almost perfectly, both
for big and small objects, even with difficult subjects like
the crowd in the bottom row. It is also worth pointing out
that the depth predictions yielded by our method turn out
much smoother than the ones produced by the baseline and
generally less noisy than the ground-truth that, as explained

in section 4, consists of proxy-labels computed with SGM
[54].

6 ABLATION STUDIES

In the following sections, we study the effectiveness of the
key design choices behind our proposal.

6.1 Contribution of Taux and NDA Loss
We start by studying the effect of introducing in our
framework the auxiliary task and the NDA loss, analyzing
their contribution when used separately as well as when
combined together. The second and third row of Table 3
report the results obtained in the Dep → Sem setting by
integrating in our method either the auxiliary task (i.e., edge
detection) or the NDA loss, respectively. We can see that
both design choices bring in an improvement of about +2%
in terms of mIoU with respect to the base AT/DT framework
(first row). Moreover, the last row of the table shows that
the auxiliary edge detection task and the NDA loss turn out
complementary because, when combined together, they can
provide an overall improvement of +3.34% mIoU.

Figure 9 presents some zoomed-in qualitative results: we
can see that, even if the base version of AT/DT already
produces satisfactory results at a coarse level, the complete
version of our framework can produce much more accurate
predictions, especially regarding small details, such as poles,
traffic signs and car outlines.
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TABLE 2
Experimental results of Sem→ Dep scenario. Baseline stands for N2 trained on A and tested on B, Transfer Oracle represents G1→2 trained

only on B, Oracle refers to N2 trained and tested on B. Best results highlighted in bold.

Lower is better Higher is better
A B Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Carla CS Baseline 0.7398 15.169 14.774 0.641 0.406 0.650 0.781
Carla CS ZDDA [56] 0.5206 7.5491 13.347 0.633 0.345 0.638 0.858
Carla CS AT/DT 0.3928 4.9094 12.363 0.444 0.372 0.757 0.923

CS CS Transfer Oracle 0.2210 2.2962 9.032 0.275 0.669 0.914 0.972
- CS Oracle 0.1372 1.6214 8.566 0.244 0.816 0.938 0.976

Fig. 8. Qualitative result of the Sem→ Dep scenario. From left to right: RGB image, ground-truth, baseline network trained only on domain A, ours.

TABLE 3
Ablation study in the Dep→ Sem scenario. Best results highlighted in bold. Aux refers to the framework trained with the auxiliary task. NDA refers

to the framework trained with our NDA loss.
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mIoU Acc

Carla CS 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Carla CS X 90.12 48.90 4.18 11.63 37.40 31.98 82.34 71.50 15.11 78.04 80.61 50.16 87.21
Carla CS X 91.21 50.16 5.14 13.78 36.99 32.10 77.72 73.38 23.47 76.67 72.67 50.30 86.77
Carla CS X X 90.57 48.46 7.37 12.27 41.16 31.90 81.96 72.77 23.44 77.85 76.33 51.28 87.57

Fig. 9. Zoomed results in a Dep → Sem scenario. From left to right: base AT/DT without edge and NDA, our proposed method, ground-truth. We
notice how, unlike base AT/DT, our method is able to recover the fine-grained details of the scene.
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6.2 Effectiveness of edge detection as auxiliary task

In this section, we show empirically that in our framework
the choice of the proper auxiliary task is key to performance.

In both the Dep→ Sem and the Sem→ Dep scenarios,
we propose to use edge detection as auxiliary task because
it captures information about the shapes of the objects in the
input images and allows for straightforward computation of
proxy-labels. To validate this design choice, we tested our
framework in the Dep→ Sem setting, using Daux to recon-
struct the input images both from f1 and f2, i.e., the classical
autoencoder setting (results in Table 4). Interestingly, using
image reconstruction as auxiliary task results in an mIoU
score almost identical to the base AT/DT. We consider that
the autoencoder task is guided by a reconstruction loss
which makes no distinction between the pixels of the input
image: such supervision cannot guide effectively f1 and f2
to encapsulate the high-frequency components of the image
that are needed to predict the fine-grained details of the
scene, which is instead obtained by adopting edge detection
as auxiliary task.

6.3 Auxiliary tasks as source tasks

The main difference between a source and an auxiliary
task is that the auxiliary task alone cannot provide enough
information to solve T2, but it is useful to enrich T1 features
and align feature content across tasks. To better support
our claims, we investigated AT/DT behaviour when using
auxiliary tasks Taux as source tasks T1 and semantic seg-
mentation as target task T2. The results of these experiments
are reported in Table 5. All rows of the table show results of
the base AT/DT i.e., trained without Laux and LNDA losses.
As we can notice, using as source task T1 a standard image-
reconstruction (row 1, autoencoder) or an edge detection
(row 2) lead to much worse results than using depth esti-
mation (row 3). We argue that features extracted by N1 for
these tasks do not contain enough information to perform
semantic segmentation, which are yet contained in features
for depth estimation. Similar finding were also made by
Taskonomy [1], in which they show that edge detection and
image reconstruction (aka autoencoder) are less correlated
to semantic segmentation than depth estimation. On the
contrary, we have shown that Edge Detection can be a
good auxiliary task in the Dep → Sem scenario since it
can enrich depth features with missing edges useful for
semantic segmentation and it can increase transferability
aligning depth and semantic features.

6.4 Importance of simultaneous training of N1, N2 and
Daux

In our experiments we use edge detection as auxiliary task
and train a shared decoder Daux to reconstruct the edges of
the input image from the features extracted by both E1 and
E2. In fact, we argue that this procedure should force E1 to
encode into the extracted features also edge information that
may be not necessary to solve T1 but that may be relevant for
T2. Besides, we believe that simultaneous training of N1, N2

and Daux is crucial to encourage features coming from E1

and E2 to represent edge information in a similar manner,
making it easier to learn G1→2.

In Table 6 we report the results concerning the ablation
study conducted to validate these intuitions. We consider
the Dep→ Sem scenario using the Carla dataset as domain
A and Cityscapes as domain B. The four rows of the table
deal with the following training schemes:

1) The base AT/DT (i.e., without Taux and NDA loss)
as baseline.

2) We first train N1 and Daux on both A and B. Then,
we trainN2 onA. Finally, we trainG1→2 on features
extracted by E1 and E2 on domain A.

3) We trainN1 and a firstD1
aux on bothA and B. Then,

we train N2 and a second D2
aux on A. Finally, we

train G1→2 on features extracted by E1 and E2 on
domain A

4) Our proposed method, which trains N1, N2 and a
shared Daux simultaneously.

The introduction of edge detection as auxiliary task helps
in every scenario. In fact, if we use Daux only while training
N1 (second row), we already see an increase of 0.6% in
the overall mIoU. We believe that this is explained by the
presence of edge details (not strictly necessary to solve
T1 but relevant for T2) in the features extracted by E1.
However, G1→2 may experience difficulties in adapting f1
into f2 if edge information is not explicitly present in f2.
This is confirmed by the results in the third row of the table,
where an additional increase of 1.3% in the overall mIoU is
attained by using two different Daux (one during training of
N1 and one during training of N2). Finally, the best results
in terms of mIoU and Acc are achieved by our method, i.e.,
when training N1, N2 and a shared Daux simultaneously.
This vouches for the benefit of encoding in a similar manner
the edge information in f1 and f2 in order to enforce feature
alignment across tasks.

6.5 Alignment strategies for N1

An alternative approach to align N1 features between do-
mains to ease the transfer process and favor the generaliza-
tion of G1→2 consists in leveraging on the widely adopted
adversarial training in feature space. In our setting, this
can be obtained by adding a critic that must discriminate
whether the features produced by E1 come from A or B.
Thus, the encoder E1 not only has to learn a good feature
space for its task, but it is also asked to fool the critic. After-
wards, we can proceed to learn a mapping function G1→2

among tasks as usual. In Table 7 we compare this standard
DA methodology to our NDA loss. Adversarial training
(second row) does not introduce significant improvements
with respect to not performing DA for T1 (i.e., base AT/DT,
first row), while constraining the features extracted by E1

in a norm aligned space (third row) significantly increases
both performance metrics with respect to the baseline. Our
intuition is that, although adversarial training can be useful
for domain alignment, it alters the learned feature space
with the goal of fooling the critic and this training objective
can lead to worse performances on the current task. Our
NDA loss, on the other hand, acts as a regularizer that
favors the learning of an homogeneous latent space across
the domains involved in our experiments, improving the
generalization capability of the transfer network without
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TABLE 4
Comparison between autoencoder and edge detection as auxiliary tasks in the Dep→ Sem scenario. Best results highlighted in bold.
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None 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Autoencoder 90.68 50.12 7.45 9.08 31.40 29.43 78.72 68.51 12.95 74.67 75.68 48.07 86.31
Edge detection 90.12 48.90 4.18 11.63 37.40 31.98 82.34 71.50 15.11 78.04 80.61 50.16 87.21

TABLE 5
Auxiliary tasks as source tasks in the Dep→ Sem scenario. Best results highlighted in bold.
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Autoencoder 60.24 19.33 1.67 1.67 4.12 8.00 33.15 10.49 0.69 17.89 62.66 19.99 52.91
Edge Detection 63.82 16.60 0.67 1.37 6.55 10.26 47.62 4.42 0.11 33.90 38.87 20.38 58.33

Depth 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90

TABLE 6
Ablation study on the importance of simultaneous training of the T1, T2, and the auxiliary task. Best results highlighted in bold. See text for a

detailed explanation of the training protocol used in each row.
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base AT/DT 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Separate (N1 + edge), N2 87.24 43.30 3.08 10.17 41.77 29.04 81.81 72.35 16.58 77.10 73.10 48.69 85.89
Separate (N1 + edge), (N2 + edge) 88.83 47.31 7.10 8.59 44.53 30.99 83.24 73.54 18.05 78.10 69.66 49.99 86.72
Simultaneous (N1 + N2 + edge) 90.12 48.90 4.18 11.63 37.40 31.98 82.34 71.50 15.11 78.04 80.61 50.16 87.21

degrading the performances in the single tasks. Then, from
the third to the fifth row, we compare our NDA loss with
another strategy, LargerNorm [24], that also align features
across domains operating on the feature norms. They show
that features are more transferable across domains if we
constrain feature norms to be equal to an arbitrary large
number. We notice that the method is very sensible to the
norm value, and it could be hard to select without using
target labels. When using an appropriate norm value (25,
fourth row), the method achieves a slight improvement over
the baseline without alignment. However, since it just force
all features globally to be a large number, it is not well-
suited for tasks in which we have a spatial dimensions
such as semantic segmentation. Moreover, in the sixth row,
we experiment also with a more recent adversarial loss
formulation, Asymmetric Adv. [58], which preserve discrim-
inability while performing domain alignment by chang-
ing only target features instead of both source and target
ones. However, we notice that this method is achieving
the worst results among feature alignment strategies, even
worse than the baseline. Our motivation is that aligning
feature distribution in such a high dimensional feature space
with a spatial structure might be too difficult to achieve by
only changing target features. Finally, we notice that NDA
achieves the best performance probably because it only align

features norm rather than the whole marginal distribution,
which is an easier goal that can be achieved also in high-
dimensional space. Moreover, NDA operates at each spatial
location independently rather than globally, exploiting the
spatial priors similarity across domains, reaching better
performances.

6.6 Aligning N2 features

We tried to perform feature alignment across domains also
on the features f2 extracted by E2, either by deploying
adversarial training or imposing our NDA loss. The idea
is to favor the generalization of G1→2 by making more
homogeneous not only its input space (i.e., the features
produced by E1, aligned with our NDA loss), but also its
output space, i.e., the features produced by E2. However,
the setting is not completely symmetric: when learning E2,
we do not have supervision available for B, and the only
loss shaping the feature space for its images would be the
alignment loss. We report results of this ablation study in
Table 8 and discuss them below.

In the first row, we report the results provided by the
base AT/DT (without LNDA and Laux). In the following
two rows, we show results obtained by an adversarial (row
2) and an asymmetric adversarial [58] (row 3) training
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TABLE 7
Comparison between NDA loss and other strategies to align E1 features. Best results highlighted in bold.
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None 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Adv. 89.89 46.01 4.22 11.89 38.20 30.65 77.00 63.68 12.99 74.35 81.16 48.19 85.42
LargerNorm [24] (1) 38.37 24.17 0.56 3.66 10.50 23.04 52.61 9.41 3.42 52.64 10.54 20.81 51.49
LargerNorm [24] (25) 86.82 42.23 1.94 9.00 34.92 29.02 76.39 70.97 23.38 74.97 80.00 48.15 84.62
LargerNorm [24] (500) 78.94 31.25 2.53 6.00 22.08 20.55 68.18 26.21 4.35 62.28 63.53 35.08 76.53
Asymmetric Adv. [58] 86.69 38.57 5.92 5.72 27.43 22.91 70.81 70.71 7.86 72.15 75.18 44.00 83.38
NDA 91.21 50.16 5.14 13.78 36.99 32.10 77.72 73.38 23.47 76.67 72.67 50.30 86.77

TABLE 8
Results of aligning output space of E2 in a Dep→ Sem scenario. Best results highlighted in bold.
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None 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Adv. 89.36 46.03 5.59 8.22 36.45 25.44 75.15 72.29 12.69 74.12 75.79 47.38 85.31
Asymmetric Adversarial [58] 87.90 42.81 7.64 8.44 26.02 29.11 72.54 69.01 24.01 71.71 70.42 46.33 83.61
NDA 44.94 23.82 3.81 2.09 30.74 24.21 42.08 68.84 11.69 35.67 11.10 27.18 56.17

TABLE 9
Results of aligning output space of D2 in a Dep→ Sem scenario. Best results highlighted in bold.
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None 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Adv. 87.48 45.73 0.63 2.12 26.22 26.39 61.40 66.92 12.97 66.39 74.77 42.82 81.87

TABLE 10
Results of aligning input and/or output space of G1→2 in a Dep→ Sem scenario. Best results highlighted in bold.
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- NDA 42.97 19.60 2.31 1.36 4.21 15.74 18.42 11.77 7.19 36.72 38.99 18.12 43.63
- Adv 90.80 48.91 6.16 11.84 35.32 30.29 78.78 71.17 18.51 75.66 75.03 49.32 86.43

Asymmetric Adv. [58] 85.49 40.70 4.94 10.49 34.02 30.26 76.31 70.30 17.07 74.30 72.94 46.99 83.86
- NDA + Adv 91.03 48.93 6.14 12.24 35.91 31.05 77.93 70.28 16.65 75.50 74.47 49.10 86.28
- Adv D2 90.20 47.54 5.92 11.76 37.03 29.52 77.98 72.42 19.28 75.82 77.03 49.50 86.28
NDA Adv 90.67 49.49 5.54 12.29 36.73 28.49 78.28 70.19 22.05 76.47 76.35 49.69 86.73
NDA - 91.21 50.16 5.14 13.78 36.99 32.10 77.72 73.38 23.47 76.67 72.67 50.30 86.77

on the features f2, using the same procedures described
in the previous sub-section for f1. We can observe that,
not only both adversarial trainings does not improve (like
adversarial training applied to E1), but they even decrease
the overall mIoU compared to the baseline. Finally, in the
fourth row, we report the results obtained by our NDA loss
on f2: the NDA loss destroys the feature space of T2 when
applied in this context, as vouched by the drop of 20% in
the overall mIoU wrt to base AT/DT.

During AT/DT inference, we use also D2 to yield the
final task predictions. Nevertheless, D2 has been trained

only on A, thus its performance may be harmed when
using B images. Thus, we ran an additional test reported in
Table 9. Following [29] we train N2 (i.e., E2 and D2) using
an adversarial loss on the D2 output space, thus making
D2 aware of B. Then, we train G1→2 to map features of
E1 into features of E2, and during inference we employ the
previously trained decoder D2 to produce the final outputs
reporting the results in row Adv.. We notice a clear drop
in performance w.r.t. base AT/DT (row None), i.e. AT/DT
trained without LNDA and Laux.

We formulate the following hypothesis to explain the
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above results: all adversarial trainings and NDA loss try
to align fA2 and fB2 . While fA2 are shaped also by the su-
pervision of T2, fB2 evolve only according to the additional
loss we impose, as we do not have supervision for T2 on
B. However, E2 is shared across domains, and therefore
may be pushed to produce worse representations for both
domains while it tries to accomplish the adversarial objec-
tives or the NDA loss minimization for B. If this happens,
mappings learned by G1→2 from fA1 to fA2 will hallucinate
worse features for T2 on B. To understand why adversarial
trainings leads to small decreases in performances com-
pared to the use of NDA loss, we ought to consider that
adversarial training implies a discriminator that cannot be
easily fooled by totally degenerated features, while, without
any additional constrain from task supervision, the NDA
loss may yield totally collapsed representation.

6.7 Aligning G1→2 features

Although feature alignment does not turn out beneficial
when training N2, one may still expect to obtain better
hallucinated features if the representations obtained when
transferring fA1 and fB1 are aligned. We empirically found
out that even though output space aligning strategies de-
ployed when training G1→2 can lead to improvements in
performance, input space alignment using our NDA loss
deployed when training N1 is more effective. Moreover,
combining input and output space alignment techniques
does not lead to further improvements. We performed this
ablation study in the Dep → Sem scenario using Carla as
A and Cityscapes as B. The results of these experiments are
reported in Table 10.

First, we applied our NDA loss to the output-space of
G1→2. Similarly to what discussed in the previous section,
we notice that, without supervision on B, the representa-
tions transformed from G1→2 while minimizing the NDA
loss yield a drastic drop in the framework performance
(row 1). We also tried to align the output space features by
training G1→2 alongside a discriminator in an adversarial
fashion. We wanted to fool the discriminator in order to
generate indistinguishable features from A or B. We notice
that this strategy allows us to reach good overall perfor-
mances with a 49.32 mIoU on Cityscapes (second row).
Moreover, we thought that, as adversarial training provides
a supervision on B, using the NDA loss in combination with
the adversarial loss could avoid producing degenerated
features for B while reaching a better overall alignment
between A and B. However, we notice that the combination
of the two losses leads us to slightly worse results than
adversarial training alone (rows 2 vs 3). Furthermore, since
using an adversarial loss on the output space of G1→2 lead
us to good overall performances, we tested it in combination
with the best input space alignment from Table 7, i.e. NDA
loss applied when training N1. However, the combination
of these two methods achieves worse performance than
using only the NDA loss on input space (rows 6 vs 7).
Finally, we also experimented a different alignment strategy
for the G1→2 output space. Instead of directly applying
adversarial loss in E2 feature space, we apply adversarial
loss in D2 output space while training G1→2. As discussed
in [29], output space is easier to align than feature space for

several reasons: i) the scene semantic structure is typically
similar across domains ii) the feature space encode many
information such as color, light, textures iii) the feature
space has higher dimensions. By aligning D2 output space
we indirectly influence also E2 features making them more
domain aligned. During training, we keep D2 frozen and
we update only G1→2 weights. Also in this case, if compare
this methodology with simply using LNDA alone (row 6 vs
row 7), it achieves worse results.

7 CONCLUDING REMARKS

We have introduced a framework to transfer knowledge
between different tasks by learning an explicit mapping
function between deep features. This mapping function can
be parametrized by a neural network and show interesting
generalization capabilities across domains. To further ame-
liorate performance we have proposed two novel feature
alignment strategies. At a domain level, we showed that
the transfer function presented in our framework can be
boosted by making its input space more homogeneous
across domains with our simple yet effective NDA loss.
At a task level, instead, we reported how deep features
extracted for different tasks can be enriched and aligned
with the introduction of a shared auxiliary task, which
we implemented as edge detection in our experiments. We
reported good results in the challenging synthetic to real
scenario while transferring knowledge between the seman-
tic segmentation and monocular depth estimation tasks.

Our proposal is complementary to the whole domain
adaptation literature and might be integrated with it. While
DA directly applied to the learned feature space does not
seems effective (see Table 8) more modern techniques either
try to align the prediction in the final label space [29] or
rely on self-ensembling for pseudo labeling [59]. We plan to
incorporate these promising direction into our framework
as part of future developments.
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