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Abstract. Self-organisation and collective adaptation are highly de-
sired features for several kinds of large-scale distributed systems in-
cluding robotic swarms, computational ecosystems, wearable collectives,
and Internet-of-Things systems. These kinds of distributed processes, ad-
dressing functional and non-functional aspects of complex socio-technical
systems, can emerge in an engineered/controlled way from (re)active de-
centralised activity and interaction across all physical and logical system
devices. In this work, we study how the Actors programming model can
be adopted to support collective self-organising behaviours. Specifically,
we analyse the features of the Actors model that are instrumental for im-
plementing the adaptive coordination of large-scale systems, and discuss
potential actor-based designs. Then, we discuss an incarnation of the
approach in the aggregate computing paradigm, which stands as a com-
prehensive engineering approach for self-organisation. This is based on
Akka, and can be fully programmed in the Scala programming language
thanks to the ScaFi aggregate computing toolkit.

Keywords: Actors · Collective intelligence · Collective adaptive systems
· Self-organisation · Programming models · Aggregate computing

1 Introduction

In the last decades, two key trends have been taking place in computer sci-
ence and technology. First, more and more heterogeneous computing-enabled
devices are being deployed into our environments, with larger scales and den-
sities expected in the future, eventually creating enormous socio-technical en-
sembles. Secondly, there is an increasing need towards automation, demanding
software systems to be more autonomous [21] (or autonomic [25]), and to exhibit
so-called self-* properties [36] (e.g., self-managing, self-adaptive, self-repairing,
etc.). These two trends together give rise to new potential applications and cor-
responding challenges, addressed through various approaches. In particular, a
prominent nature-inspired [11] technique for the decentralised self-management
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of large ensembles of computing devices is self-organisation, which is studied and
implemented across different sub-fields of computer science [33,23,38,19]. A main
classification of self-organisation engineering [12] is based on the distinction be-
tween automatic (i.e., based on learning and evolution) and manual approaches
(where programmers use languages to express self-organisation programs—cf.
macroprogramming [14]).

In this chapter, we focus on the latter approach and, in particular, we are
interested in how programming abstractions and paradigms may support self-
organisation programming. Specifically, we investigate how the Actor model can
contribute to address the emergence of collective and self-organising behaviour.
Indeed, self-organisation is generally related to peculiar aspects of actor systems,
including reactivity, asynchrony, and locality. To do so, we develop actor-based
solutions of well-known self-organising behaviours (gradients [5,30] and derived
ones), and relate them with corresponding programs expressed in the aggregate
computing paradigm [42] which is, currently and to the best of our knowledge,
the most powerful and researched approach to self-organisation programming.
What we find is that the plain Actor model has a relevant abstraction gap (dis-
tance between the problem and the solution), making it more suitable as a
paradigm for the development of a middleware of a more high-level and declara-
tive approach like aggregate computing, than as a solution for end-to-end design
of self-organising behaviour. Still, research should be carried out to investigate
what kinds of Actor extensions may help in the design and implementation of
self-organisation, or what features of actors may improve aspects of aggregate
computations (e.g., fine-grained scheduling of sub-computations).

The presentation is organised as follows. Section 2 provides background on
self-organisation programming, reference examples of self-organising behaviour,
and the Actor model (also through the Akka implementation [35]). Section 3
discusses actor-based designs of the self-healing gradient. Section 4 presents the
actor-based design of the ScaFi aggregate computing middleware [17]. Finally,
Section 5 provides a discussion and delineates directions for further research.

2 Background

In this section, we recall background information about self-organisation engi-
neering and describe in detail two example self-adaptive algorithms (Section 2.1);
then, we briefly recall the Actors model and its Akka implementation (Sec-
tion 2.2).

2.1 Self-organisation and Collective Adaptive Systems

Self-organisation refers to the process whereby a system autonomously (i.e., with-
out external control) seeks and sustains its order or structures [20]. It is often
meant as a bottom-up decentralised process where macro-level structures and
behaviours emerge from micro-level activities and interactions.
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In modern cyber-physical systems such as the Internet of Things [4] and
swarm robotics [12], self-organisation directly concerns the collective behaviour
of large sets of computing and interacting devices. Engineering such systems
is therefore a challenge of great practical importance, that can be addressed
drawing from research areas such as collective adaptive systems [19], macropro-
gramming [14], multi-agent systems [45], and aggregate computing [42].

A main distinction in self-organisation engineering can be made between au-
tomatic approaches, whereby self-organising behaviour is learned (cf. multi-agent
reinforcement learning [13,46]), evolved (cf. evolutionary robotics [39]), or syn-
thesised [37]; and manual approaches [28], which are based on the definition of
programs by programmers, e.g., in terms of control rules or designs involving
patterns of information flow [44]. The manual approaches tend to differ based
on the levels of heterogeneity and scale: small-scale heterogeneous systems can
be programmed using multi-agent programming [10] or choreographic [29] ap-
proaches, whereas large-scale homogeneous systems are generally programmed
using macroprogramming [14] approaches, such as ensemble computing [31], or
aggregate computing [42] approaches. Note that hybrid automatic/manual ap-
proaches also exist—cf. approaches where program sketches are filled with auto-
matically generated/searched behaviours [2].

In this chapter, we focus on manual approaches for programming large ho-
mogeneous systems. In particular, this activity can be supported by suitable
programming abstractions supporting declarative specifications of collective be-
haviours. Examples of abstractions include first-class ensembles [31] or collective
data structures like computational fields [27,42], In the following, we will focus
on the computational field abstraction, offered by Aggregate Computing (AC).

AC systems consist of a (possibly large) number of computational devices,
connected in a network, and all operating at asynchronous rounds of execu-
tion, each round consisting of sense–compute–act steps, where the compute step
involves the evaluation of an aggregate program against the currently sensed
contextual information. An output or state of a whole or part of a distributed
system can then be represented as a field of values computed by all the device
constituting its domain. For instance, the movement of a swarm may be described
by a field of velocity vectors; or, the temperature in a room may be denoted by
the field of temperature readings of all the sensors there. The computational field
is the fundamental abstraction for AC, and programming AC systems roughly
means describing how such fields are manipulated in space-time. The essence of
the programming model is captured by a minimal core language called the field
calculus (FC) [6], which provides a set of functional constructs for handling the
stateful evolution of fields and neighbour-based communications. A device can
only directly communicate (in broadcast) with its neighbours, as defined by an
application-specific logical or physical (ad-hoc) proximity relation. In each de-
vice, a round of computations consists mainly of three steps: (i) creation/update
of the execution context, consisting of previous device state, the most recent
messages received from neighbours, and values sampled from local sensors; (ii)
local execution of the aggregate program, which produces a logically single result
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(output); (iii) broadcast of part of the output to all the neighbours (this part is
called the export), and possible activation of the actuators on the basis of the
provided output.

Reference Example #1: Self-Healing Gradient As a first, simple exam-
ple of a self-organising computation, we consider the gradient, namely the self-
healing field of minimum path distances from any node to a source node. A
simple implementation is based on the distributed Bellman-Ford algorithm, to
be executed by all the devices repeatedly in rounds (where the rounds serve to
integrate and propagate up-to-date information):

D(δ, src) :=

{
0 if src(δ)
min{D(δ′) + d(δ, δ′) : δ′ ∈ N (δ)} otherwise.

(1)

The algorithm estimates the minimum distance of a device from a source
device (i.e., a device where predicate src() is true). We assume that function
d() returns the current distance between two devices, and N () returns the set of
current neighbours of a device. At each round, a device δ which is not a source,
estimates D(δ) by considering the set of distances D(δ′)+d(δ, δ′) that separate it
from the source through each one of its neighbours δ′, and taking the minimum
of those.

Two observations are in order: first of all, it is easy to see that, if the network is
stable (i.e., devices do not crash, do not move, and do not join/leave the network),
the algorithm actually converges to the correct value in each device δ. Secondly,
after any of the above changes happen, if the network stabilises again for enough
time, the values in each device δ are updated with the new correct values. In other
words, the algorithm is self-stabilising [41]. Even if simple, the algorithm is both
collective, i.e., fully distributed among the participating devices, and adaptive,
i.e., resilient to the relevant changes in the system and the environment.

The following code is the implementation of the algorithm in the ScaFi lan-
guage [17], a Scala-based implementation of Field Calculus.

def gradient(source: Boolean): Double =
rep(Double.PositiveInfinity) { dist =>

mux(source){ 0.0 } { minHood(nbr{dist} + nbrRange()) }
}

The rep construct propagates the computed gradient value between rounds
(in this case, the value computed by mux). The nbr construct can be thought of
as returning the neighbouring field with the last values of dist received from the
neighbours. Finally, nbrRange() returns a neighbouring field with the distance
estimates to the neighbours, and minHood() returns the minimum value of a field.
Also, note that the gradient function directly takes a Boolean value indicating
whether the current device δ is a source, and that the δ parameter is not passed
explicitly to gradient (since the program is evaluated locally to each device,
there is always an implicit current device).
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Reference Example #2: Self-Healing Channel Amore complex example of
self-organising computation is the self-healing channel, namely the construction
of a path of devices across the network connecting a source device to a destination
device, where the fact of belonging or not to the channel can be denoted by a
local Boolean output (i.e., the channel consists of all the devices of the network
the output true). Since this can be implemented on top of (a generalisation
of) gradients, it is instrumental to convey the idea of compositionality of self-
organising behaviours.

Taking inspiration from [41], let us generalize theD function to a higher-order
operator G as follows:

G(δ, src, ini, acc,met)

where src is the source of the field to be constructed, ini is the input value
of the field to be considered, acc is the function expressing how to accumulate
values starting from the source outwards (i.e., how to integrate local values ini
to the accumulated value taken from the neighbour minimising the gradient in
the neighbourhood), and met the metric of the distance between two devices.
The self-healing gradient above can then be expressed as:

D(δ, src) := G(δ, src, 0, λx.(x+ d), d)

where we have used the lambda calculus notation for defining the acc function.
We exploit the G operator to define another function, broadcast (B):

B(δ, src, val) := G(δ, src, val, λx.x, d)

Assuming a single source device δSRC for which src(δSRC) is true, this function
broadcasts a value val defined in δSRC unaltered (thanks to using the identity
function for acc) to all the other nodes, at increasing distances.

Let us consider the problem of establishing a robust communication channel
between a source device δSRC and a destination/target device δTRG in a network
with proximity-based communication. Starting from the B and D functions de-
fined above, we can first of all define a function which broadcasts everywhere the
distance between a source and a target, where src and trg are predicates that
are true, respectively in the source and target of the communication channel:

BTW (δ, src, trg) := B(δ, src,D(δ, trg))

Then, we can define a function that, for every device δ, is true iff δ belongs to
the communication channel between the source and target devices:

CH(δ, src, trg, w) := D(δ, src) +D(δ, trg) ≤ BTW (δ, src, trg) + w

Note that a device belongs to the channel iff it falls within an ellipse whose foci
are the source and target devices. The w parameter determines the “stretch”
of the ellipse, which reduces to a linear path in case w = 0. In particular, to
determine which devices are part of the channel between δSRC and δTRG, we
execute in every node:

CH(δ, λx.(x == δSRC), λx.(x == δDST ), w)
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The following code is the implementation of the algorithm in the ScaFi lan-
guage.
def broadcast[V:OB](source: Boolean, init: V): V =

G[V](source, init, x=>x, nbrRange())

def distanceTo(source: Boolean): Double =
G[Double](source, 0, _ + nbrRange(), nbrRange())

def distBetween(source: Boolean, target: Boolean): Double =
broadcast(source, distanceTo(target))

def isSource = sense[Boolean]("source")
def isTarget = sense[Boolean]("target")

def channel(src: Boolean, dest: Boolean, width: Double) =
distanceTo(src) + distanceTo(dest) <=
distBetween(src, dest) + width

channel(isSource, isTarget)

Note that the predicates src and trg are replaced by virtual sensors that return
the appropriate Boolean values.

2.2 The Actors Programming Model

The Actor model [24,1,26] puts actors at the core of the design and implemen-
tation of distributed systems. Actors are reactive agents that communicate with
each other through asynchronous message passing (i.e., no shared memory is
allowed).

It is worth noting that each message is directed to a specific actor through
a target address, and that a mailbox system buffers messages until they are
processed by their target actors. The actors in the distributed system execute in
parallel. In particular, each actor iteratively and asynchronously processes the
messages in its mailbox received from the other actors.

The fundamental part of the behaviour of an actor is specified in terms of
how it handles incoming messages. In response to a message, an actor can:
– perform local computations;
– send messages to other actors;
– create new actors;
– choose the behaviour for handling the next message.

Handling of multiple messages is not interleaved or, analogously, handling of a
single message is atomic.

Then, the Actor model can be formalised and implemented in different ways,
possibly bringing in peculiar extensions. An example of implementation is pro-
vided by the Akka toolkit [35], whose user interface is briefly described in the
following.

2.3 The Akka Toolkit: a Short Primer

We briefly illustrate the user Application Program Interface (API) of Akka [35],
focussing on the Akka Typed version, which will be useful to understand the code
provided in Section 3.
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Actor behaviour Actor behaviour is dynamically represented through values
of type Behavior[M], which encapsulate the logic for handling messages of type
M. So, an actor behaviour can be defined by extending AbstractBehavior[M] and
overriding method onMessage (OOP-style), or by functions yielding a Behavior[M]
(functional style). The Akka API provides a factory object Behaviors for spec-
ifying behaviours as functions mapping messages to the next behaviour, e.g.,
using pattern matching. Actors can be addressed through a reference of type
ActorRef[T]: e.g., given a reference r, instruction r ! m denotes the sending of a
message m of type T to the actor denoted by reference r.

Actor systems An actor system is created by instantiating an ActorSystem[T]
with the Behavior[T] of the top-level actor; such a top-level actor would be re-
sponsible for spawning new actors by calling ActorContext[T].spawn(behavior).
Indeed, actor systems consist of a hierarchy of actors (enabling supervision),
where each actor has a position in this hierarchy that can be denoted by a path
of actor names, starting from the top-level actor /user (for user – i.e., non-
system-level – actors): e.g., /user/a/b is the path of actor b which is a child of a
(which is in turn a child of the top-level actor).

3 Actor-based Designs for Aggregate Computations

In this section, we discuss possible actor-based designs for building the paradig-
matic self-organising behaviours covered in Section 2.1. The produced source
code has been made available at a public repository3 with a permissive licence,
equipped with the build infrastructure for simple execution.

3.1 A Naive Actor-based Implementation of the Self-Healing
Gradient Example

Figure 1 shows a possible implementation of the self-healing gradient within
the Akka framework. This version is deliberately naive, and serves mainly as a
baseline that will be refined in the next sections.

The application contains a single type of actor named Device. The actor
defines a behaviour that matches several types of messages. The code executed
to handle a Round serves as the initiation of a round of computation (cf. the
aggregate computing execution model—see Section 2.1). More specifically:

– for each neighbour nbr, it requests the current value of the position
(GetPosition) and of the gradient (QueryGradient)

– a timer is set to expire in one second and send a ComputeGradient message
to the actor itself.

3 https://github.com/metaphori/experiment-actor-design-selforg

https://github.com/metaphori/experiment-actor-design-selforg
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object Device {
def apply(src: Boolean,

g: Double,
nbrs: Map[ActorRef[Msg],Long],
distances: Map[ActorRef[Msg],Double],
nbrGs: Map[ActorRef[Msg],Double],
pos: Point3D = Point3D(0,0,0)): Behavior[Msg] = Behaviors.setup { ctx =>

val getPositionAdapter: ActorRef[NbrPos] =
ctx.messageAdapter(m => SetDistance(m.pos.distance(pos), m.nbr))

val getGradientAdapter: ActorRef[NbrGradient] =
ctx.messageAdapter(m => SetNeighbourGradient(m.g, m.nbr))

Behaviors.withTimers { timers => Behaviors.receive { case (ctx,msg) => msg match {
case SetSource(s) =>

Device(s, 0, nbrs, distances, nbrGs, pos)
case AddNeighbour(nbr) =>

Device(src, g, nbrs + (nbr -> currTime()), distances, nbrGs, pos)
case RemoveNeighbour(nbr) =>

Device(src, g, nbrs - nbr, distances, nbrGs, pos)
case SetPosition(p) =>

Device(src, g, nbrs, distances, nbrGs, p)
case GetPosition(replyTo) =>

replyTo ! NbrPos(pos, ctx.self)
Behaviors.same

case SetDistance(d, from) =>
Device(src, g, nbrs + (from -> currTime()), distances + (from -> d), nbrGs, pos)

case ComputeGradient =>
val newNbrGradients = nbrGs + (ctx.self -> g)
val disalignedNbrs = nbrs.filter(nbr => currTime() -

nbrs.getOrElse(nbr._1, Long.MinValue) > RETENTION_TIME).keySet
val alignedNbrGradients = newNbrG -- disalignedNbrs
val alignedDistances = distances -- disalignedNbrs
timers.startSingleTimer(Round, 1.second)
if(src){

Device(src, 0, nbrs, distances, newNbrG, pos)
} else {

val updatedG = (alignedNbrGradients - ctx.self).map(n => n -> (n._2 +
alignedDistances.get(n._1).getOrElse(Double.PositiveInfinity))

).values.minOption.getOrElse(Double.PositiveInfinity)
Device(src, updatedG, nbrs, distances, nbrGs + (ctx.self -> updatedG), pos)

}
case QueryGradient(replyTo) =>

replyTo ! NbrGradient(g, ctx.self)
Behaviors.same

case SetNeighbourGradient(d, from) =>
Device(src, g, nbrs + (from -> currTime()), distances, nbrGs + (from -> d), pos)

case Round =>
nbrs.keySet.foreach(nbr => {

nbr ! GetPosition(getPositionAdapter) // query nbr for nbrsensors
nbr ! QueryGradient(getGradientAdapter) // query nbr for app data

})
timers.startSingleTimer(ComputeGradient, 1.seconds)
Behaviors.same

case Stop => Behaviors.stopped
} } } }

}

Fig. 1. A naive Akka implementation where a single actor encapsulates all the concerns.
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The neighbour actors would reply to the GetPosition and QueryGradient re-
quests, and the current actor stores the retrieved information in its state (specif-
ically, in the distances and nbrGs maps). When the QueryGradient is received,
further operations are performed to complete the round of computation:

– neighbours whose latest messages are too old (i.e., expired) are discarded
(e.g., in order to become aware of device failing or quitting the system);

– a timer is set to expire in one second and send a Round message to the actor
itself (i.e., to initiate the next round and possibly detect new information
from the environment);

– if the actor is a src of the gradient computation, it just propagates its be-
haviour with the gradient set to constant g = 0;

– otherwise, the gradient is updated to the new value updatedG computed from
the information retrieved from the neighbours, according to the logic of the
gradient implementation illustrated in Section 2.1.

3.2 An Improved Design

The naive design of the previous section has several issues. The main issue is
that the Device actor is not reusable but rather specific to the computation at
hand: this is witnessed by application-specific messages (e.g., ComputeGradient
and SetNeighbourGradient). Another issue is that the Device encapsulates all the
concerns, including e.g. the scheduling concern (cf. the use of timers to schedule
rounds and computations).

In Figure 2, an improved design is presented. It is also coded with a different
style: the OOP style, instead of the functional style as in Figure 1, which is mainly
a matter of taste, and in this case is more suitable to avoid encoding state into
a large parameter list. In particular, the DeviceActor is an abstract class: to be
implemented, the abstract compute method has to be defined (cf. the Template
Method design pattern [22]). Additionally, the responsibility of scheduling has
been moved outside of the actor: it will compute reactivity upon reception of a
Compute message; it is straightforward to define a scheduler actor that keeps the
references of the device(s) to be scheduled, and implements a basic scheduling
logic (e.g., to let each schedulable compute once per second). Another element
of generality is given by keeping all contextual data into a single data structure
sensors, where the basic idea is that any access to context is mediated by a
sensor.

More in detail, the behaviour of DeviceActor is defined in terms of reactions
to a few message types. The acquisition of contextual information is handled
through a push-style interface based on two main incoming messages: SetSensor
for local sensors (e.g., position sensors or temperature sensors), and SetNbrSensor
for neighbouring sensors (i.e., those associating data to neighbours). Neighbour-
ing sensors are used to access the current set of neighbours, information rel-
ative to neighbours (e.g., the distance to neighbours), and information shared
by neighbours (e.g., their gradient value). Upon these, behaviours associated to
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abstract class DeviceActor[T](c: ActorContext[DeviceProtocol]) extends AbstractBehavior(c) {
var sensors = Map[String, Any]()

def senseOrElse[T](name: String, default: => T): T =
sensors.getOrElse(name, default).asInstanceOf[T]

def nbrValue[T](name: String): Map[Nbr, T] =
senseOrElse[Map[Nbr, T]](name, Map.empty).filter(tp => neighbors.contains(tp._1))

def neighbors: Set[ActorRef[DeviceProtocol]] =
senseOrElse[Map[Nbr, Long]](Sensors.neighbors, Map(context.self -> currentTime()))
.filter(tp => currentTime() - tp._2 < RETENTION_TIME).keySet

def updateNbrTimestamp(nbr: Nbr, t: Long = currentTime()): Unit =
sensors += Sensors.neighbors -> (nbrValue[Long](Sensors.neighbors) + (nbr -> t))

def compute(what: String, d: DeviceActor[T]): T // cf. template method’s abstract method

override def onMessage(msg: DeviceProtocol): Behavior[DeviceProtocol] = msg match {
case SetSensor(sensorName, value) =>

sensors += (sensorName -> value)
this

case SetNbrSensor(name, nbr, value)Behaviors.withTimers { timers =>
=>
val sval = sensors.getOrElse(name, Map.empty).asInstanceOf[Map[Nbr, Any]]
sensors += name -> (sval + (nbr -> value))
updateNbrTimestamp(nbr)
this

case Compute(what) =>
val result = compute(what, this)
neighbors.foreach(_ ! SetNbrSensor(what, context.self, result))
this

case AddNeighbour(nbr) =>
context.self ! SetNbrSensor(Sensors.neighbors, nbr, currentTime())
context.self ! SetNbrSensor(Sensors.nbrRange, nbr, 1.0)

this
case RemoveNeighbour(nbr) =>

context.self ! SetNbrSensor(Sensors.neighbors, nbr, 0)
this

case Stop =>
Behaviors.stopped

}
}

}

// then, a DeviceActor computing a gradient can be launched as follows
val a = ctx.spawn(DeviceActor[Double]((ctx,w,d) => {

val nbrg = d.nbrValue[Double]("gradient")
.map(n => n._2 + d.nbrSense[Double](Sensors.nbrRange)(n._1)

.getOrElse(Double.PositiveInfinity))
.minOption.getOrElse(Double.PositiveInfinity)

if(d.senseOrElse("source", false)) 0.0 else nbrg
}), "device-1")
a ! SetSensor("source", true)
a ! AddNeighbour(...)
a ! Compute("gradient")

Fig. 2. An improved Akka implementation of a reusable device.

specific control messages like AddNeighbour and RemoveNeighbour can be easily
implemented. Then, the Compute(what) message, carrying an indication of what
has to be computed (to enable multiple computations), is handled by calling the
compute abstract method, and then communicating the corresponding result to
the neighbours by sending a SetNbrSensor message. Finally, at the bottom of



Actor-based Designs for Distributed Self-organisation Programming 11

Figure 2 it is shown how the gradient computation can be specified, and how an
actor computing the gradient can be configured.

4 The ScaFi Akka-based Distributed Middleware

In this section, we present an implementation of a general self-organisation pro-
gramming system, based on the aggregate computing paradigm [42] and inte-
grated into the ScaFi toolkit [17], whose runtime (also called a middleware) is
based on actors, along the lines of the improved design presented in Section 3.2.
Interestingly, the design is organised in order to support distributed execution of
aggregate systems, also according to multiple architectural styles (cf. [16,15])—
which is important to fully exploit modern infrastructures like the heterogeneous
multi-scale computing continua of which the edge-cloud continuum is a promi-
nent example [9].

4.1 System Design

A simplified view of the elements participating in an actor-based aggregate com-
puting application is provided by Figure 3.

Fig. 3. Structure diagram of the main entities of an aggregate computing system.

Essentially, the key types of elements are:
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– AggregateApplication – It represents, in any subsystem, a particular ag-
gregate application, as specified by some Settings. Also, it works as a su-
pervisor for all the other application-specific actors. This notion is required
to properly handle the management of multiple aggregate computations on
the same infrastructure.

– Scheduler – Optionally, a scheduler may be used to centralise system exe-
cution at a system- or subsystem-level.

– ComputationDevice – It is a device which is able to carry out some local
computation. It communicates with other devices and interacts with Sensors
and Actuators (which may be actors as well or not).

Also, note how all these entities are specific to a particular platform incar-
nation, i.e., a concrete set of implementations for the defined types (see also the
notion of “incarnation” as an instantiated “family of types” in ScaFi [17]).

Devices Figure 4 shows how devices are modelled. A first key distinction is
between actors and actor behaviours. In fact, one design goal is to split a big,
articulated behaviour into many small, reusable, composable behaviours. The
convention in the diagram is to express message-based interfaces by means of
incoming and outcoming messages which are represented as arrows with a filled
arrowhead.

By a conceptual point of view, a device must, at minimum, manage its sensors
and actuators. Then, in the context of aggregate computing, a device must also
interact with its neighbours (BaseNbrManagementBehavior); such interaction
has not been detailed yet, as it may be somehow different in the peer-to-peer
and server-based cases. Also, a computation device executes some program with
a certain frequency (here represented by a tick message called GoOn, externally
or self-sent).

4.2 Server-based Actor Platform

The server-based platform, following the client/server architectural style, is de-
picted in Figure 5. The devices are clients of a central server that owns the
information about the topology of the aggregate system and is responsible for
the propagation of the exports of the devices.

Figure 5 statically describes the message interfaces of device and server:

– Each device registers itself with the server at startup (Registration).
– After a computation, a device communicates its newly computed state to

the server (Export).
– Each device asks the server (GetNeighbourhoodExports) for the most recent

states of its neighbours (NeighbourhoodExports), with some frequency.
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Fig. 4. Structure and interface of device actors.

4.3 Peer-to-peer Actor Platform

The peer-to-peer platform, following an ad-hoc architectural style, is shown in
Figure 6. Each device, at the end of each computation, propagates its newly
computed state (MsgExport) directly to all its neighbour actors. Here, the critical
point concerns how a device gets acquainted with its neighbours, i.e., by receiving
information about a neighbour (NbrInfo).

4.4 Actors and Reactive Behaviour

The ScaFi actor platform was implemented using Akka Classic frame-
work [35]. In Akka Classic, actors are defined by extending the
akka.actor.Actor trait and implementing the receive method, of type
Receive=PartialFunction[Any,Unit], that associates reactions to incoming
messages.

An interesting implication of having (reactive) behaviours expressed by
PartialFunctions is that they compose. This composability feature has been
extensively used to promote separation of concerns. For example, the device be-
haviour related to the management of sensors can be kept separated from the
behaviour aimed at handling actuators:

def SensorManagementBehavior: Receive = {
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Fig. 5. Key elements and relationships in a server-based actor platform.

Fig. 6. Key elements and relationships in a peer-to-peer actor platform.
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case MsgAddPushSensor(ref) => { ref ! MsgAddObserver(self); ref ! GoOn }
case MsgAddSensor(name, provider) => setLocalSensor(name, provider)

}

def ActuatorManagementBehavior: Receive = {
case MsgAddActuator(name, consumer) => setActuator(name, consumer)

}

def CompositeBehavior: Receive =
SensorManagementBehavior
.orElse(ActuatorManagementBehavior)

Moreover, it is also possible to leverage on trait stacking to automatically
extend some behaviour by mixing in behaviour traits:
trait BasicActorBehavior { selfActor: Actor =>

def receive: Receive =
workingBehavior

.orElse(inputManagementBehavior)

.orElse(queryManagementBehavior)

.orElse(commandManagementBehavior)

def inputManagementBehavior: Receive = Map.empty
def queryManagementBehavior: Receive = Map.empty
def commandManagementBehavior: Receive = Map.empty
def workingBehavior: Receive = Map.empty

}

trait SensorManagementBehavior extends BasicActorBehavior { selfActor: Actor =>
def SensorManagementBehavior: Receive = { ... }

override def inputManagementBehavior: Receive =
super.inputManagementBehavior.orElse(SensorManagementBehavior)

// ...
}

trait ActuatorManagementBehavior extends BasicActorBehavior { selfActor: Actor =>
def ActuatorManagementBehavior: Receive = { ... }

override def inputManagementBehavior: Receive =
super.inputManagementBehavior.orElse(ActuatorManagementBehavior)

// ...
}

class DeviceActor extends Actor
with SensorManagementBehavior
with ActuatorManagementBehavior { ... }

Finally, ScaFi provides an object-oriented façade API for setting up, launch-
ing, and managing a running system upon the described actor-based middleware.
Please refer to the ScaFi repository4 and website5 for further details.

5 Discussion and Future Work

The development of actor-based designs and implementations of self-organising
behaviours like the gradient, as well as the experience in research and devel-
4 https://github.com/scafi/scafi
5 https://scafi.github.io/

https://github.com/scafi/scafi
https://scafi.github.io/
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opment of aggregate computing systems, provided some general insights about
self-organisation programming. These suggest some general principles (as also
indicated by modern software engineering practice) or desiderata for implemen-
tations. In particular, we emphasise the following.

Declarativity. The program logic expressing how self-organisation is carried out
should be as declarative as possible. This means that the program should ab-
stract from a number of details, e.g. including the following: (i) scheduling of
context retrieval and update, (ii) scheduling of computation, (iii) neighbourhood
management, (iv) details of message passing (cf. the naive actor design vs. the
improved design vs. the ScaFi program), and (iv) application partitioning and
deployment (cf. [16]). Aggregate programming in general and ScaFi in partic-
ular do support a programming model where such details are abstracted away:
this provides great operational flexibility [15].

Composability of behaviour. Another benefit of aggregate programming is com-
positionality, namely the ability of connecting basic self-organising behaviours
(e.g., gradients—cf. Section 2.1) in order to build more complex self-organising
behaviours (e.g., channels—cf. Section 2.1). The problem with the actor-based
design proposed in Section 3 is that explicitly managing the relationships be-
tween computations in terms of message-passing is cumbersome and error-
prone6.

Separation of Concerns. Separating different concerns is a well-known design
principle in software engineering, fostering modular design. It is also related to
the Single Responsibility Principle (SRP), which suggests that a module (e.g.,
a class or an actor) should handle a single piece of functionality. As we have
seen, it is good to separate certain concerns: e.g., the scheduling concern may be
encapsulated into a scheduler (actor)—cf. Section 3.2. However, there is the risk
of too much separation, possibly leading to over-complication and inefficiency.
In the provided repository, for instance, a “fully destructured” device actor is
provided, encapsulating the different concerns (sensor management, neighbour-
hood management, scheduling management, context management, communica-
tion management, and computation) into separate child actors; however, this
design turns out to be very complex, due to the need of properly managing the
interaction among those inter-related sub-actors.

Propensity to openness and reconfiguration. The kinds of systems we are con-
sidering in this chapter, i.e., large homogeneous systems (e.g., swarms, IoT sys-
tems, etc.), are generally open systems, where devices may easily enter or exit
the system (also due to failure, user decisions, and environmental dynamics).
Additionally, the execution of such systems may need to be reconfigured [18]

6 A sketch of an actor-based implementation of the channel is given in the provided
repository
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into different architectural styles (cf. Section 4) in order to optimise for or op-
portunistically exploit available infrastructure by re-deployment [3,15]. Recon-
figuration is typically based on component models [32,8,16], but also actors have
shown their suitability for dynamically reconfigurable open systems [40]. In [43],
the prelude of the pulverisation model of aggregate computing systems [16], it
was proposed to split the behaviour of a device into sub-actors (handling sen-
sors, actuators, communication, and computation), to be potentially deployable
(and relocatable) across different architectures. Different approaches may lever-
age other kinds of components, e.g., based on microservices or containers [18],
hence possibly leveraging actors at the level of their implementation.

Fine-grained execution model. Aggregate computing systems typically work in
a round-based fashion, where devices repeatedly execute asynchronous rounds
atomically performing sense–compute–act steps. Actors, instead, promote the
construction of asynchronous reactive dataflow graphs, that may in principle
support a finer-grained definition of the execution model where, e.g., the only
computations that are re-evaluated are those whose inputs have changed. A
first reactive extension to aggregate computing, based on reactive policies and
explicit program graphs, has been proposed in [34]. A different approach may
exploit the functional reactive programming paradigm [7]. A comparison between
these approaches and potential actor-based design may be an interesting future
work, to determine more efficient and finely controllable execution strategies,
and to possibly also provide general insights about the relationship between
self-organisation and reactivity.
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