Actor-Based Designs for Distributed Self-organisation Programming

This is the submitted version (pre peer-review, preprint) of the following publication:

Published Version:
Actor-Based Designs for Distributed Self-organisation Programming / Roberto Casadei; Ferruccio Damiani; Gianluca Torta; Mirko Viroli. - ELETTRONICO. - 14360:(2024), pp. 37-58. [10.1007/978-3-031-51060-1_2]

This version is available at: https://hdl.handle.net/11585/958108 since: 2024-02-15

Published:
DOI: http://doi.org/10.1007/978-3-031-51060-1_2

Terms of use:
Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)
Actor-based Designs for Distributed Self-organisation Programming

Roberto Casadei¹[0000−0001−9149−949X], Ferruccio Damiani²[0000−0001−8109−1706], Gianluca Torta²[0000−0002−4276−7213], and Mirko Viroli¹[0000−0003−2702−5702]

¹ Alma Mater Studiorum–Università di Bologna, Cesena, Italy {roby.casadei, mirko.viroli}@unibo.it
² Università degli Studi di Torino, Torino, Italy {ferruccio.damiani,gianluca.torta}@unito.it

Abstract. Self-organisation and collective adaptation are highly desired features for several kinds of large-scale distributed systems including robotic swarms, computational ecosystems, wearable collectives, and Internet-of-Things systems. These kinds of distributed processes, addressing functional and non-functional aspects of complex socio-technical systems, can emerge in an engineered/controlled way from (re)active decentralised activity and interaction across all physical and logical system devices. In this work, we study how the Actors programming model can be adopted to support collective self-organising behaviours. Specifically, we analyse the features of the Actors model that are instrumental for implementing the adaptive coordination of large-scale systems, and discuss potential actor-based designs. Then, we discuss an incarnation of the approach in the aggregate computing paradigm, which stands as a comprehensive engineering approach for self-organisation. This is based on Akka, and can be fully programmed in the Scala programming language thanks to the ScaFi aggregate computing toolkit.

Keywords: Actors · Collective intelligence · Collective adaptive systems · Self-organisation · Programming models · Aggregate computing

1 Introduction

In the last decades, two key trends have been taking place in computer science and technology. First, more and more heterogeneous computing-enabled devices are being deployed into our environments, with larger scales and densities expected in the future, eventually creating enormous socio-technical ensembles. Second, there is an increasing need towards automation, demanding software systems to be more *autonomous* [21] (or *autonomic* [25]), and to exhibit so-called *self-* properties [36] (e.g., self-managing, self-adaptive, self-repairing, etc.). These two trends together give rise to new potential applications and corresponding challenges, addressed through various approaches. In particular, a prominent *nature-inspired* [11] technique for the decentralised self-management
of large ensembles of computing devices is *self-organisation*, which is studied and
implemented across different sub-fields of computer science \[33,23,38,19\]. A main
classification of self-organisation engineering \[12\] is based on the distinction be-
tween *automatic* (i.e., based on learning and evolution) and *manual* approaches
(where programmers use languages to express self-organisation programs—cf.
macroprogramming \[14\]).

In this chapter, we focus on the latter approach and, in particular, we are
interested in how *programming abstractions and paradigms* may support
self-organisation programming. Specifically, we investigate how the *Actor model*
can contribute to address the emergence of collective and self-organising behaviour.
Indeed, self-organisation is generally related to peculiar aspects of actor systems,
including reactivity, asynchrony, and locality. To do so, we develop actor-based
solutions of well-known self-organising behaviours (*gradients* \[5,30\] and derived
ones), and relate them with corresponding programs expressed in the *aggregate
computing* paradigm \[12\] which is, currently and to the best of our knowledge,
the most powerful and researched approach to self-organisation programming.
What we find is that the plain Actor model has a relevant *abstraction gap* (dis-
tance between the problem and the solution), making it more suitable as a
paradigm for the development of a middleware of a more high-level and declarative
approach like aggregate computing, than as a solution for end-to-end design
of self-organising behaviour. Still, research should be carried out to investigate
what kinds of Actor extensions may help in the design and implementation of
self-organisation, or what features of actors may improve aspects of aggregate
computations (e.g., fine-grained scheduling of sub-computations).

The presentation is organised as follows. Section 2 provides background on
self-organisation programming, reference examples of self-organising behaviour,
and the Actor model (also through the Akka implementation \[35\]). Section 3
discusses actor-based designs of the self-healing gradient. Section 4 presents the
actor-based design of the ScaFi aggregate computing middleware \[17\]. Finally,
Section 5 provides a discussion and delineates directions for further research.

2 Background

In this section, we recall background information about self-organisation engi-
neering and describe in detail two example self-adaptive algorithms (Section 2.1);
then, we briefly recall the Actors model and its Akka implementation (Section 2.2).

2.1 Self-organisation and Collective Adaptive Systems

Self-organisation refers to the process whereby a system autonomously (i.e., with-
out external control) seeks and sustains its order or structures \[20\]. It is often
meant as a bottom-up decentralised process where macro-level structures and
behaviours *emerge* from micro-level activities and interactions.
In modern cyber-physical systems such as the Internet of Things [4] and swarm robotics [12], self-organisation directly concerns the collective behaviour of large sets of computing and interacting devices. Engineering such systems is therefore a challenge of great practical importance, that can be addressed drawing from research areas such as collective adaptive systems [19], macroprogramming [14], multi-agent systems [45], and aggregate computing [42].

A main distinction in self-organisation engineering can be made between automatic approaches, whereby self-organising behaviour is learned (cf. multi-agent reinforcement learning [13,46]), evolved (cf. evolutionary robotics [39]), or synthesised [37]; and manual approaches [28], which are based on the definition of programs by programmers, e.g., in terms of control rules or designs involving patterns of information flow [44]. The manual approaches tend to differ based on the levels of heterogeneity and scale: small-scale heterogeneous systems can be programmed using multi-agent programming [10] or choreographic [29] approaches, whereas large-scale homogeneous systems are generally programmed using macroprogramming [14] approaches, such as ensemble computing [31], or aggregate computing [42] approaches. Note that hybrid automatic/manual approaches also exist—cf. approaches where program sketches are filled with automatically generated/searched behaviours [2].

In this chapter, we focus on manual approaches for programming large homogeneous systems. In particular, this activity can be supported by suitable programming abstractions supporting declarative specifications of collective behaviours. Examples of abstractions include first-class ensembles [31] or collective data structures like computational fields [27,42]. In the following, we will focus on the computational field abstraction, offered by Aggregate Computing (AC).

AC systems consist of a (possibly large) number of computational devices, connected in a network, and all operating at asynchronous rounds of execution, each round consisting of sense–compute–act steps, where the compute step involves the evaluation of an aggregate program against the currently sensed contextual information. An output or state of a whole or part of a distributed system can then be represented as a field of values computed by all the device constituting its domain. For instance, the movement of a swarm may be described by a field of velocity vectors; or, the temperature in a room may be denoted by the field of temperature readings of all the sensors there. The computational field is the fundamental abstraction for AC, and programming AC systems roughly means describing how such fields are manipulated in space-time. The essence of the programming model is captured by a minimal core language called the field calculus (FC) [6], which provides a set of functional constructs for handling the stateful evolution of fields and neighbour-based communications. A device can only directly communicate (in broadcast) with its neighbours, as defined by an application-specific logical or physical (ad-hoc) proximity relation. In each device, a round of computations consists mainly of three steps: (i) creation/update of the execution context, consisting of previous device state, the most recent messages received from neighbours, and values sampled from local sensors; (ii) local execution of the aggregate program, which produces a logically single result
(output); (iii) broadcast of part of the output to all the neighbours (this part is called the export), and possible activation of the actuators on the basis of the provided output.

Reference Example #1: Self-Healing Gradient As a first, simple example of a self-organising computation, we consider the gradient, namely the self-healing field of minimum path distances from any node to a source node. A simple implementation is based on the distributed Bellman-Ford algorithm, to be executed by all the devices repeatedly in rounds (where the rounds serve to integrate and propagate up-to-date information):

\[
D(\delta, \text{src}) := \begin{cases}
0 & \text{if } \text{src}(\delta) \\
\min\{D(\delta') + d(\delta, \delta') : \delta' \in N(\delta)\} & \text{otherwise.}
\end{cases} \tag{1}
\]

The algorithm estimates the minimum distance of a device from a source device (i.e., a device where predicate src() is true). We assume that function \(d()\) returns the current distance between two devices, and \(N()\) returns the set of current neighbours of a device. At each round, a device \(\delta\) which is not a source, estimates \(D(\delta)\) by considering the set of distances \(D(\delta') + d(\delta, \delta')\) that separate it from the source through each one of its neighbours \(\delta'\), and taking the minimum of those.

Two observations are in order: first of all, it is easy to see that, if the network is stable (i.e., devices do not crash, do not move, and do not join/leave the network), the algorithm actually converges to the correct value in each device \(\delta\). Secondly, after any of the above changes happen, if the network stabilises again for enough time, the values in each device \(\delta\) are updated with the new correct values. In other words, the algorithm is self-stabilising [41]. Even if simple, the algorithm is both collective, i.e., fully distributed among the participating devices, and adaptive, i.e., resilient to the relevant changes in the system and the environment.

The following code is the implementation of the algorithm in the ScaFi language [17], a Scala-based implementation of Field Calculus.

```scala
def gradient(source: Boolean): Double = rep(Double.PositiveInfinity) { dist =>
mux(source){ 0.0 } { minHood(nbr(dist) + nbrRange()) }
}
```

The `rep` construct propagates the computed gradient value between rounds (in this case, the value computed by `mux`). The `nbr` construct can be thought of as returning the neighbouring field with the last values of `dist` received from the neighbours. Finally, `nbrRange()` returns a neighbouring field with the distance estimates to the neighbours, and `minHood()` returns the minimum value of a field. Also, note that the `gradient` function directly takes a Boolean value indicating whether the current device \(\delta\) is a source, and that the \(\delta\) parameter is not passed explicitly to `gradient` (since the program is evaluated locally to each device, there is always an implicit current device).
Reference Example #2: Self-Healing Channel

A more complex example of self-organising computation is the self-healing channel, namely the construction of a path of devices across the network connecting a source device to a destination device, where the fact of belonging or not to the channel can be denoted by a local Boolean output (i.e., the channel consists of all the devices of the network the output true). Since this can be implemented on top of (a generalisation of) gradients, it is instrumental to convey the idea of compositionality of self-organising behaviours.

Taking inspiration from [41], let us generalise the D function to a higher-order operator G as follows:

$$G(\delta, src, ini, acc, met)$$

where src is the source of the field to be constructed, ini is the input value of the field to be considered, acc is the function expressing how to accumulate values starting from the source outwards (i.e., how to integrate local values ini to the accumulated value taken from the neighbour minimising the gradient in the neighbourhood), and met the metric of the distance between two devices.

The self-healing gradient above can then be expressed as:

$$D(\delta, src) := G(\delta, src, 0, \lambda x.(x + d), d)$$

where we have used the lambda calculus notation for defining the acc function. We exploit the G operator to define another function, broadcast (B):

$$B(\delta, src, val) := G(\delta, src, val, \lambda x.x, d)$$

Assuming a single source device δ_{SRC} for which $src(\delta_{SRC})$ is true, this function broadcasts a value val defined in δ_{SRC} unaltered (thanks to using the identity function for acc) to all the other nodes, at increasing distances.

Let us consider the problem of establishing a robust communication channel between a source device δ_{SRC} and a destination/target device δ_{TRG} in a network with proximity-based communication. Starting from the B and D functions defined above, we can first of all define a function which broadcasts everywhere the distance between a source and a target, where src and trg are predicates that are true, respectively in the source and target of the communication channel:

$$BTW(\delta, src, trg) := B(\delta, src, D(\delta, trg))$$

Then, we can define a function that, for every device δ, is true iff δ belongs to the communication channel between the source and target devices:

$$CH(\delta, src, trg, w) := D(\delta, src) + D(\delta, trg) \leq BTW(\delta, src, trg) + w$$

Note that a device belongs to the channel iff it falls within an ellipse whose foci are the source and target devices. The w parameter determines the “stretch” of the ellipse, which reduces to a linear path in case $w = 0$. In particular, to determine which devices are part of the channel between δ_{SRC} and δ_{TRG}, we execute in every node:

$$CH(\delta, \lambda x.(x == \delta_{SRC}), \lambda x.(x == \delta_{DST}), w)$$
The following code is the implementation of the algorithm in the ScaFi language.

```scala
def broadcast[V:OB](source: Boolean, init: V): V =
  G[V](source, init, x=>x, nbrRange())
def distanceTo(source: Boolean): Double =
  G[Double](source, 0, _ + nbrRange(), nbrRange())
def distBetween(source: Boolean, target: Boolean): Double =
  broadcast(source, distanceTo(target))
def isSource = sense[Boolean]("source")
def isTarget = sense[Boolean]("target")
def channel(src: Boolean, dest: Boolean, width: Double) =
  distanceTo(src) + distanceTo(dest) <=
  distBetween(src, dest) + width
channel(isSource, isTarget)
```

Note that the predicates `src` and `trg` are replaced by virtual sensors that return the appropriate Boolean values.

2.2 The Actors Programming Model

The Actor model puts actors at the core of the design and implementation of distributed systems. Actors are reactive agents that communicate with each other through asynchronous message passing (i.e., no shared memory is allowed).

It is worth noting that each message is directed to a specific actor through a target address, and that a mailbox system buffers messages until they are processed by their target actors. The actors in the distributed system execute in parallel. In particular, each actor iteratively and asynchronously processes the messages in its mailbox received from the other actors.

The fundamental part of the behaviour of an actor is specified in terms of how it handles incoming messages. In response to a message, an actor can:

- perform local computations;
- send messages to other actors;
- create new actors;
- choose the behaviour for handling the next message.

Handling of multiple messages is not interleaved or, analogously, handling of a single message is atomic.

Then, the Actor model can be formalised and implemented in different ways, possibly bringing in peculiar extensions. An example of implementation is provided by the Akka toolkit, whose user interface is briefly described in the following.

2.3 The Akka Toolkit: a Short Primer

We briefly illustrate the user Application Program Interface (API) of Akka, focussing on the Akka Typed version, which will be useful to understand the code provided in Section.
Actor behaviour Actor behaviour is dynamically represented through values of type \texttt{Behavior[M]}, which encapsulate the logic for handling messages of type \texttt{M}. So, an actor behaviour can be defined by extending \texttt{AbstractBehavior[M]} and overriding method \texttt{onMessage (OOP-style)}, or by functions yielding a \texttt{Behavior[M]} (\textit{functional style}). The Akka API provides a factory object \texttt{Behaviors} for specifying behaviours as functions mapping messages to the next behaviour, e.g., using pattern matching. Actors can be addressed through a reference of type \texttt{ActorRef[T]}: e.g., given a reference \texttt{r}, instruction \texttt{r ! m} denotes the sending of a message \texttt{m} of type \texttt{T} to the actor denoted by reference \texttt{r}.

Actor systems An actor system is created by instantiating an \texttt{ActorSystem[T]} with the \texttt{Behavior[T]} of the top-level actor; such a top-level actor would be responsible for spawning new actors by calling \texttt{ActorContext[T].spawn(behavior)}. Indeed, actor systems consist of a hierarchy of actors (enabling supervision), where each actor has a position in this hierarchy that can be denoted by a path of actor names, starting from the top-level actor /user (for user – i.e., non-system-level – actors): e.g., /user/a/b is the path of actor \texttt{b} which is a child of \texttt{a} (which is in turn a child of the top-level actor).

3 Actor-based Designs for Aggregate Computations

In this section, we discuss possible actor-based designs for building the paradigmatic self-organising behaviours covered in Section 2.1. The produced source code has been made available at a public repository\footnote{https://github.com/metaphori/experiment-actor-design-selforg} with a permissive licence, equipped with the build infrastructure for simple execution.

3.1 A Naive Actor-based Implementation of the Self-Healing Gradient Example

Figure 1 shows a possible implementation of the self-healing gradient within the Akka framework. This version is deliberately naive, and serves mainly as a baseline that will be refined in the next sections.

The application contains a single type of actor named \texttt{Device}. The actor defines a behaviour that matches several types of messages. The code executed to handle a \texttt{Round} serves as the initiation of a round of computation (cf. the aggregate computing execution model—see Section 2.1). More specifically:

– for each neighbour \texttt{nbr}, it requests the current value of the position (\texttt{GetPosition}) and of the gradient (\texttt{QueryGradient})
– a timer is set to expire in one second and send a \texttt{ComputeGradient} message to the actor itself.
object Device {
 def apply(src: Boolean,
 g: Double,
 nbrs: Map[ActorRef[Msg],Long],
 distances: Map[ActorRef[Msg],Double],
 nbrGs: Map[ActorRef[Msg],Double],
 pos: Point3D = Point3D(0,0,0)): Behavior[Msg] = Behaviors.setup { ctx =>
 val getPositionAdapter: ActorRef[NbrPos] =
 ctx.messageAdapter(m => SetDistance(m.pos.distance(pos), m.nbr))
 val getGradientAdapter: ActorRef[NbrGradient] =
 ctx.messageAdapter(n => SetNeighbourGradient(n.g, n.nbr))
 Behaviors.withTimers { timers => Behaviors.receive { case (ctx,msg) => msg match {
 case SetSource(s) =>
 Device(s, 0, nbrs, distances, nbrGs, pos)
 case AddNeighbour(nbr) =>
 Device(src, g, nbrs + (nbr -> currTime()), distances, nbrGs, pos)
 case RemoveNeighbour(nbr) =>
 Device(src, g, nbrs - nbr, distances, nbrGs, pos)
 case SetPosition(p) =>
 Device(src, g, nbrs, distances, nbrGs, p)
 case GetPosition(replyTo) =>
 replyTo ! NbrPos(pos, ctx.self)
 Behaviors.same
 case SetDistance(d, from) =>
 Device(src, g, nbrs + (from -> currTime()), distances + (from -> d), nbrGs, pos)
 case ComputeGradient =>
 val newNbrGradients = nbrGs + (ctx.self -> g)
 val disalignedNbrs = nbrs.filter(nbr => currTime() -
 nbrs.getOrElse(nbr._1, Long.MinValue) > RETENTION_TIME).keySet
 val alignedNbrGradients = newNbrG -- disalignedNbrs
 val alignedDistances = distances -- disalignedNbrs
 timers.startSingleTimer(Round, 1.second)
 if(src){
 Device(src, 0, nbrs, distances, newNbrG, pos)
 } else {
 val updatedG = (alignedNbrGradients + ctx.self).map(n => n -> (n._2 +
 alignedDistances.get(n._1).getOrElse(Double.PositiveInfinity))
).values.minOption.getOrElse(Double.PositiveInfinity)
 Device(src, updatedG, nbrs, distances, nbrGs + (ctx.self -> updatedG), pos)
 }
 case QueryGradient(replyTo) =>
 replyTo ! NbrGradient(g, ctx.self)
 Behaviors.same
 case SetNeighbourGradient(d, from) =>
 Device(src, g, nbrs + (from -> currTime()), distances, nbrGs + (from -> d), pos)
 case Round =>
 nbrs.keySet.foreach(nbr =>
 nbr ! GetPosition(getPositionAdapter) // query nbr for nbrsensors
 nbr ! QueryGradient(getGradientAdapter) // query nbr for app data
)
 timers.startSingleTimer(ComputeGradient, 1.seconds)
 Behaviors.same
 case Stop => Behaviors.stopped
 } } } }

Fig. 1. A naive Akka implementation where a single actor encapsulates all the concerns.
The neighbour actors would reply to the GetPosition and QueryGradient requests, and the current actor stores the retrieved information in its state (specifically, in the distances and nbrGs maps). When the QueryGradient is received, further operations are performed to complete the round of computation:

- neighbours whose latest messages are too old (i.e., expired) are discarded (e.g., in order to become aware of device failing or quitting the system);
- a timer is set to expire in one second and send a Round message to the actor itself (i.e., to initiate the next round and possibly detect new information from the environment);
- if the actor is a src of the gradient computation, it just propagates its behaviour with the gradient set to constant $g = 0$;
- otherwise, the gradient is updated to the new value updatedG computed from the information retrieved from the neighbours, according to the logic of the gradient implementation illustrated in Section 2.1.

3.2 An Improved Design

The naive design of the previous section has several issues. The main issue is that the Device actor is not reusable but rather specific to the computation at hand: this is witnessed by application-specific messages (e.g., ComputeGradient and SetNeighbourGradient). Another issue is that the Device encapsulates all the concerns, including e.g. the scheduling concern (cf. the use of timers to schedule rounds and computations).

In Figure 2, an improved design is presented. It is also coded with a different style: the OOP style, instead of the functional style as in Figure 1, which is mainly a matter of taste, and in this case is more suitable to avoid encoding state into a large parameter list. In particular, the DeviceActor is an abstract class: to be implemented, the abstract compute method has to be defined (cf. the Template Method design pattern [22]). Additionally, the responsibility of scheduling has been moved outside of the actor: it will compute reactivity upon reception of a Compute message; it is straightforward to define a scheduler actor that keeps the references of the device(s) to be scheduled, and implements a basic scheduling logic (e.g., to let each schedulable compute once per second). Another element of generality is given by keeping all contextual data into a single data structure sensors, where the basic idea is that any access to context is mediated by a sensor.

More in detail, the behaviour of DeviceActor is defined in terms of reactions to a few message types. The acquisition of contextual information is handled through a push-style interface based on two main incoming messages: SetSensor for local sensors (e.g., position sensors or temperature sensors), and SetNbrSensor for neighbouring sensors (i.e., those associating data to neighbours). Neighbouring sensors are used to access the current set of neighbours, information relative to neighbours (e.g., the distance to neighbours), and information shared by neighbours (e.g., their gradient value). Upon these, behaviours associated to
abstract class DeviceActor[T](c: ActorContext[DeviceProtocol]) extends AbstractBehavior(c) {
 var sensors = Map[String, Any]()

 def senseOrElse[T](name: String, default: => T): T =
 sensors.getOrElse(name, default).asInstanceOf[T]

 def nbrValue[T](name: String): Map[Nbr, T] =
 senseOrElse[Map[Nbr, T]](name, Map.empty).filter(tp => neighbors.contains(tp._1))

 def neighbors: Set[ActorRef[DeviceProtocol]] =
 senseOrElse[Map[Nbr, Long]](Sensors.neighbors, Map(context.self -> currentTime()))
 .filter(tp => currentTime() - tp._2 < RETENTION_TIME).keySet

 def updateNbrTimestamp(nbr: Nbr, t: Long = currentTime()): Unit =
 sensors += Sensors.neighbors -> (nbrValue[Long](Sensors.neighbors) + (nbr -> t))

 def compute(what: String, d: DeviceActor[T]): T // cf. template method's abstract method
 case SetSensor(sensorName, value) =>
 sensors += (sensorName -> value)
 this
 case SetNbrSensor(name, nbr, value) =>
 val sval = sensors.getOrElse(name, Map.empty).asInstanceOf[Map[Nbr, Any]]
 sensors += name -> (sval + (nbr -> value))
 updateNbrTimestamp(nbr)
 this
 case Compute(what) =>
 val result = compute(what, this)
 neighbors.foreach(_ ! SetNbrSensor(what, context.self, result))
 this
 case AddNeighbour(nbr) =>
 context.self ! SetNbrSensor(Sensors.neighbors, nbr, currentTime())
 context.self ! SetNbrSensor(Sensors.nbrRange, nbr, 1.0)
 this
 case RemoveNeighbour(nbr) =>
 context.self ! SetNbrSensor(Sensors.neighbors, nbr, 0)
 this
 case Stop =>
 Behaviors.stopped
 }

// then, a DeviceActor computing a gradient can be launched as follows
val a = ctx.spawn(DeviceActor[Double]((ctx, w, d) => {
 val nbrg = d.nbrValue[Double]("gradient")
 .map(n => n._2 + d.nbrSense[Double](Sensors.nbrRange)(n._1)
 .getOrElse(Double.PositiveInfinity))
 .minOption.getOrElse(Double.PositiveInfinity)
 if(d.senseOrElse("source", false)) 0.0 else nbrg
}), "device-1")

a ! SetSensor("source", true)
a ! AddNeighbour(...)
a ! Compute("gradient")

Fig. 2. An improved Akka implementation of a reusable device.
Figure 2: It is shown how the gradient computation can be specified, and how an actor computing the gradient can be configured.

4 The ScaFi Akka-based Distributed Middleware

In this section, we present an implementation of a general self-organisation programming system, based on the aggregate computing paradigm [42] and integrated into the ScaFi toolkit [17], whose runtime (also called a middleware) is based on actors, along the lines of the improved design presented in Section 3.2. Interestingly, the design is organised in order to support distributed execution of aggregate systems, also according to multiple architectural styles (cf. [16,15])—which is important to fully exploit modern infrastructures like the heterogeneous multi-scale computing continua of which the edge-cloud continuum is a prominent example [9].

4.1 System Design

A simplified view of the elements participating in an actor-based aggregate computing application is provided by Figure 3.

![Fig. 3. Structure diagram of the main entities of an aggregate computing system.](image)

Essentially, the key types of elements are:
– **AggregateApplication** – It represents, in any subsystem, a particular aggregate application, as specified by some **Settings**. Also, it works as a supervisor for all the other application-specific actors. This notion is required to properly handle the management of multiple aggregate computations on the same infrastructure.

– **Scheduler** – Optionally, a scheduler may be used to centralise system execution at a system- or subsystem-level.

– **ComputationDevice** – It is a device which is able to carry out some local computation. It communicates with other devices and interacts with **Sensors** and **Actuators** (which may be actors as well or not).

Also, note how all these entities are specific to a particular **platform incarnation**, i.e., a concrete set of implementations for the defined types (see also the notion of “incarnation” as an instantiated “family of types” in ScaFi [17]).

Devices Figure 4 shows how devices are modelled. A first key distinction is between actors and actor behaviours. In fact, one design goal is to split a big, articulated behaviour into many small, reusable, composable behaviours. The convention in the diagram is to express message-based interfaces by means of incoming and outcoming messages which are represented as arrows with a filled arrowhead.

By a conceptual point of view, a device must, at minimum, manage its sensors and actuators. Then, in the context of aggregate computing, a device must also interact with its neighbours (**BaseNbrManagementBehavior**); such interaction has not been detailed yet, as it may be somehow different in the peer-to-peer and server-based cases. Also, a computation device executes some program with a certain frequency (here represented by a tick message called **GoOn**, externally or self-sent).

4.2 Server-based Actor Platform

The **server-based platform**, following the client/server architectural style, is depicted in Figure 5. The devices are clients of a central server that owns the information about the topology of the aggregate system and is responsible for the propagation of the exports of the devices.

Figure 5 statically describes the message interfaces of device and server:

– Each device registers itself with the server at startup (**Registration**).
– After a computation, a device communicates its newly computed state to the server (**Export**).
– Each device asks the server (**GetNeighbourhoodExports**) for the most recent states of its neighbours (**NeighbourhoodExports**), with some frequency.
4.3 Peer-to-peer Actor Platform

The *peer-to-peer platform*, following an ad-hoc architectural style, is shown in Figure 6. Each device, at the end of each computation, propagates its newly computed state (MsgExport) directly to all its neighbour actors. Here, the critical point concerns how a device gets acquainted with its neighbours, i.e., by receiving information about a neighbour (NbrInfo).

4.4 Actors and Reactive Behaviour

The ScaFi actor platform was implemented using *Akka Classic* framework [35]. In Akka Classic, actors are defined by extending the akka.actor.Actor trait and implementing the receive method, of type Receive=PartialFunction[Any,Unit], that associates reactions to incoming messages.

An interesting implication of having (reactive) behaviours expressed by *PartialFunctions* is that they *compose*. This composability feature has been extensively used to promote separation of concerns. For example, the device behaviour related to the management of sensors can be kept separated from the behaviour aimed at handling actuators:

```scala
def SensorManagementBehavior: Receive = {
  // behaviour code
```
Fig. 5. Key elements and relationships in a server-based actor platform.

Fig. 6. Key elements and relationships in a peer-to-peer actor platform.
Moreover, it is also possible to leverage on *trait stacking* to automatically extend some behaviour by mixing in behaviour traits:

```scala
trait BasicActorBehavior { selfActor: Actor =>
  def receive: Receive =
    workingBehavior
  .orElse(inputManagementBehavior)
  .orElse(queryManagementBehavior)
  .orElse(commandManagementBehavior)

  def inputManagementBehavior: Receive = Map.empty
  def queryManagementBehavior: Receive = Map.empty
  def commandManagementBehavior: Receive = Map.empty
  def workingBehavior: Receive = Map.empty
}

trait SensorManagementBehavior extends BasicActorBehavior { selfActor: Actor =>
  def SensorManagementBehavior: Receive = { ... }
  override def inputManagementBehavior: Receive =
    super.inputManagementBehavior.orElse(SensorManagementBehavior)
  // ...
}

trait ActuatorManagementBehavior extends BasicActorBehavior { selfActor: Actor =>
  def ActuatorManagementBehavior: Receive = { ... }
  override def inputManagementBehavior: Receive =
    super.inputManagementBehavior.orElse(ActuatorManagementBehavior)
  // ...
}

case MsgAddPushSensor(ref) => { ref ! MsgAddObserver(self); ref ! GoOn }
case MsgAddSensor(name, provider) => setLocalSensor(name, provider)
}

def ActuatorManagementBehavior: Receive = {
  case MsgAddActuator(name, consumer) => setActuator(name, consumer)
}

def CompositeBehavior: Receive =
  SensorManagementBehavior
  .orElse(ActuatorManagementBehavior)

Finally, ScaFi provides an object-oriented façade API for setting up, launching, and managing a running system upon the described actor-based middleware. Please refer to the ScaFi repository[^4] and website[^5] for further details.

### 5 Discussion and Future Work

The development of actor-based designs and implementations of self-organising behaviours like the gradient, as well as the experience in research and develop-

[^4]: https://github.com/scafi/scafi
[^5]: https://scafi.github.io/
opment of aggregate computing systems, provided some general insights about self-organisation programming. These suggest some general principles (as also indicated by modern software engineering practice) or desiderata for implementations. In particular, we emphasise the following.

**Declarativity.** The program logic expressing how self-organisation is carried out should be as declarative as possible. This means that the program should abstract from a number of details, e.g. including the following: (i) scheduling of context retrieval and update, (ii) scheduling of computation, (iii) neighbourhood management, (iv) details of message passing (cf. the naive actor design vs. the improved design vs. the ScaFi program), and (iv) application partitioning and deployment (cf. [16]). Aggregate programming in general and ScaFi in particular do support a programming model where such details are abstracted away: this provides great operational flexibility [15].

**Composability of behaviour.** Another benefit of aggregate programming is composability, namely the ability of connecting basic self-organising behaviours (e.g., gradients—cf. Section 2.1) in order to build more complex self-organising behaviours (e.g., channels—cf. Section 2.1). The problem with the actor-based design proposed in Section 3 is that explicitly managing the relationships between computations in terms of message-passing is cumbersome and error-prone.\(^6\)

**Separation of Concerns.** Separating different concerns is a well-known design principle in software engineering, fostering modular design. It is also related to the Single Responsibility Principle (SRP), which suggests that a module (e.g., a class or an actor) should handle a single piece of functionality. As we have seen, it is good to separate certain concerns: e.g., the scheduling concern may be encapsulated into a scheduler (actor)—cf. Section 3.2. However, there is the risk of too much separation, possibly leading to over-complication and inefficiency. In the provided repository, for instance, a “fully destructured” device actor is provided, encapsulating the different concerns (sensor management, neighbourhood management, scheduling management, context management, communication management, and computation) into separate child actors; however, this design turns out to be very complex, due to the need of properly managing the interaction among those inter-related sub-actors.

**Propensity to openness and reconfiguration.** The kinds of systems we are considering in this chapter, i.e., large homogeneous systems (e.g., swarms, IoT systems, etc.), are generally open systems, where devices may easily enter or exit the system (also due to failure, user decisions, and environmental dynamics). Additionally, the execution of such systems may need to be reconfigured [18].

\(^6\) A sketch of an actor-based implementation of the channel is given in the provided repository
into different architectural styles (cf. Section [4]) in order to optimise for or opportunistically exploit available infrastructure by re-deployment \([3,15]\). Reconfiguration is typically based on component models \([32,8,16]\), but also actors have shown their suitability for dynamically reconfigurable open systems \([10]\). In \([43]\), the prelude of the pulverisation model of aggregate computing systems \([16]\), it was proposed to split the behaviour of a device into sub-actors (handling sensors, actuators, communication, and computation), to be potentially deployable (and relocatable) across different architectures. Different approaches may leverage other kinds of components, e.g., based on microservices or containers \([18]\), hence possibly leveraging actors at the level of their implementation.

**Fine-grained execution model.** Aggregate computing systems typically work in a round-based fashion, where devices repeatedly execute asynchronous rounds atomically performing **sense–compute–act** steps. Actors, instead, promote the construction of asynchronous reactive dataflow graphs, that may in principle support a finer-grained definition of the execution model where, e.g., the only computations that are re-evaluated are those whose inputs have changed. A first reactive extension to aggregate computing, based on reactive policies and explicit program graphs, has been proposed in \([34]\). A different approach may exploit the functional reactive programming paradigm \([7]\). A comparison between these approaches and potential actor-based design may be an interesting future work, to determine more efficient and finely controllable execution strategies, and to possibly also provide general insights about the relationship between self-organisation and reactivity.

**Acknowledgements**

This work has been partially supported by the MUR PRIN 2020 Project “COMMON-WEARS” (2020HCWWLP) and the EU/MUR FSE REACT-EU PON R&I 2014-2020. This study was carried out within the Agritech National Research Center and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/2022, CN00000022). This publication is also part of the project NODES which has received funding from the MUR – M4C2 1.5 of PNRR with grant agreement no. ECS00000036. This manuscript reflects only the authors’ views and opinions, neither the European Union nor the European Commission can be considered responsible for them.

**References**


