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CONVERGENCE AND RATE OPTIMALITY OF
ADAPTIVE MULTILEVEL STOCHASTIC GALERKIN FEM

ALEX BESPALOV, DIRK PRAETORIUS, AND MICHELE RUGGERI

Abstract. We analyze an adaptive algorithm for the numerical solution of parametric
elliptic partial differential equations in two-dimensional physical domains, with coeffi-
cients and the right-hand side functions depending on infinitely many (stochastic) pa-
rameters. The algorithm generates multilevel stochastic Galerkin approximations; these
are represented in terms of a sparse generalized polynomial chaos expansion with coef-
ficients residing in finite element spaces associated with different locally refined meshes.
Adaptivity is driven by a two-level a posteriori error estimator and employs a Dörfler-
type marking on the joint set of spatial and parametric error indicators. We show that,
under an appropriate saturation assumption, the proposed adaptive strategy yields opti-
mal convergence rates with respect to the overall dimension of the underlying multilevel
approximation spaces.

1. Introduction

Adaptive solution algorithms for partial differential equations (PDEs) with paramet-
ric or uncertain inputs is an active and topical research area. Adaptive algorithms are
especially useful in the case of inputs depending on a large or countably infinite num-
ber of uncertain parameters; they provide mechanisms for incorporating a finite set of
parameters into discretizations, enriching this set incrementally, and tuning the resulting
parametric approximations to their spatial counterparts.

In particular, adaptivity is the key to efficient stochastic Galerkin finite element method
(SGFEM), where approximations are typically represented as finite (sparse) generalized
polynomial chaos (gPC) expansions with spatial coefficients residing in finite element
spaces. While in the simplest (so-called single-level) SGFEM all spatial coefficients reside
in the same finite element space, a more flexible multilevel construction allows spatial
gPC-coefficients to reside in different finite element spaces.

Several adaptive algorithms driven by bespoke a posteriori error estimators have been
proposed in the framework of single-level SGFEM (see [EGSZ15, EM16, BS16, BR18,
BPRR19]), with convergence analysis presented in [EGSZ15, BPRR19]. At each iteration
of the adaptive loop, these algorithms incrementally enrich either the finite element space
or the gPC expansion. Note that combined enrichments of spatial and parametric compo-
nents of single-level SGFEM approximations at each iteration of the adaptive algorithm
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are prohibitively expensive due to the multiplicative increase of the total number of de-
grees of freedom. Furthermore, it is evident from the numerical experiments presented in
the above works that, staying within the single-level framework, SGFEM cannot achieve
the convergence rate of the chosen FEM for parameter-free problems.

Multilevel SGFEMs have emerged in the works by Cohen, DeVore and Schwab [CDS10,
CDS11] and Gittelson [Git13]. These works have provided theoretical benchmarks for
convergence analysis of the SGFEM by proving the existence of a sequence of multilevel
approximation spaces such that the errors in the associated Galerkin solutions converge to
zero with the same rate as the errors in the chosen FEM for the corresponding parameter-
free problem. Practical adaptive algorithms generating such sequences of approximation
spaces and Galerkin solutions have been developed in [EGSZ14, CPB19, BPR20]. In par-
ticular, an algorithm with combined enrichment of spatial and parametric components
has been proposed and implemented in [BPR20] (see Algorithm 7 with Marking Crite-
rion C therein). This algorithm is driven by a two-level a posteriori error estimator (that
was also introduced in [BPR20]) and employs a Dörfler-type marking on the joint set
of all spatial and parametric error indicators. In the numerical experiments reported
in [EGSZ14, CPB19, BPR20], the theoretically predicted convergence rates have been ob-
served for adaptive multilevel SGFEM approximations. However, a provable convergence
or optimality result for any of the developed adaptive multilevel algorithms has been an
open problem.

In this paper, we consider the same parametric model problem as in the above cited
works—the steady-state diffusion equation with a spatially varying coefficient that has
affine dependence on infinitely many parameters. We study convergence and rate opti-
mality of multilevel SGFEM approximations generated by the adaptive algorithm with
combined marking/enrichment as proposed in [BPR20]. To the best of our knowledge,
this is the first time when convergence and rate optimality are analyzed for a specific adap-
tive algorithm in the framework of multilevel SGFEM. Assuming appropriate saturation
assumptions, the main result of this work is twofold (see Theorem 5): (i) the adaptive
algorithm with combined marking/enrichment ensures linear convergence of generated
multilevel SGFEM approximations; (ii) the decay of the energy errors in these approxi-
mations is rate optimal with respect to the overall dimension of the underlying multilevel
approximation spaces (here, the rate optimality is understood as the best algebraic rate
that can possibly be achieved for a given approximation class).

There are some interesting by-products of our theoretical analysis. We have intro-
duced a new concept of multilevel structure (a spatio-parametric discrete structure that
underpins a multilevel SGFEM approximation space in the same way as a mesh-degree
combination underpins a finite element space). We have proved (see Lemmas 7 and 8)
that refinements of multilevel structures satisfy the overlay and closure estimates—the
well-known properties of spatial meshes refined by newest vertex bisection. We have also
proved that under an appropriate saturation assumption, the combined Dörfler marking
is optimal, in the sense that it is equivalent to linear error reduction (see Proposition 6).

The rest of the paper is organized as follows. Section 2 introduces the model parametric
problem and its weak formulation. In section 3, we describe spatial and parametric compo-
nents of discrete multilevel structures, the associated finite-dimensional spaces, multilevel
SGFEM discretizations, and a posteriori error estimators. The adaptive algorithm and
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the main result of this work are formulated in section 4. The proofs of linear conver-
gence and rate optimality are given, respectively, in sections 5 and 6. The results of some
numerical experiments are reported in section 7.

2. Problem formulation

Let D ⊂ R2 be a bounded Lipschitz domain with polygonal boundary ∂D and let
Γ :=

∏∞
m=1[−1, 1] denote the infinitely-dimensional hypercube. We will refer to D and Γ

as the physical domain and the parameter domain, respectively. We consider the elliptic
boundary value problem

−∇ · (a∇u) = f in D × Γ,

u = 0 on ∂D × Γ.
(1)

Here, the scalar coefficient a and the right-hand side f (and, hence, the solution u) depend
on a countably infinite number of scalar parameters, i.e., a = a(x,y), f = f(x,y), and
u = u(x,y) with x ∈ D and y ∈ Γ. We assume affine dependence of the coefficient a on
the parameters, i.e.,

a(x,y) = a0(x) +
∞∑
m=1

ymam(x) for all x ∈ D and y = (ym)m∈N ∈ Γ, (2)

and that f ∈L2
π(Γ;H−1(D)), where π= π(y) is a measure on (Γ,B(Γ)) with B(Γ) being

the Borel σ-algebra on Γ. Moreover, we assume that π(y) is the product of symmetric
Borel probability measures πm on [−1, 1], i.e., π(y) =

∏∞
m=1 πm(ym).

For each m ∈ N0, the scalar functions am ∈ L∞(D) in (2) are required to satisfy the
following inequalities (cf. [SG11, Section 2.3]):

0 < amin
0 ≤ a0(x) ≤ amax

0 <∞ for almost all x ∈ D, (3)

τ :=
1

amin
0

∥∥∥∥ ∞∑
m=1

|am|
∥∥∥∥
L∞(D)

< 1 and
∞∑
m=1

‖am‖L∞(D) <∞. (4)

With X := H1
0 (D), we consider the Bochner space V := L2

π(Γ;X) and define the following
bilinear forms on V:

B0(u,v) :=

∫
Γ

∫
D

a0(x)∇u(x,y) · ∇v(x,y) dx dπ(y), (5)

B(u,v) := B0(u,v) +
∞∑
m=1

∫
Γ

∫
D

ymam(x)∇u(x,y) · ∇v(x,y) dx dπ(y). (6)

It is easy to see that assumptions (2)–(4) imply that the bilinear forms B0(·, ·) and B(·, ·)
are symmetric, continuous, and elliptic on V. Moreover, let ||| · ||| (resp., ||| · |||0) denote
the norm induced by B(·, ·) (resp., B0(·, ·)). Then, there holds

λ |||v |||20 ≤ |||v |||2 ≤ Λ |||v |||20 for all v ∈ V, (7)

where λ := 1− τ and Λ := 1 + τ . Note that 0 < λ < 1 < Λ < 2.
The weak formulation of problem (1) reads as follows: Find u ∈ V such that

B(u,v) = F (v) :=

∫
Γ

∫
D

f(x,y)v(x,y) dx dπ(y) for all v ∈ V. (8)
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The existence and uniqueness of the solution u ∈ V to (8) follow by the Riesz theorem.

3. Multilevel stochastic Galerkin FEM discretization

3.1. Discretization in the physical domain and mesh refinement. Let T• be a
mesh, i.e., a conforming triangulation of D ⊂ R2 into compact non-degenerate triangles
T ∈ T•. Let N• be the set of vertices of T•. For mesh refinement, we employ 2D newest
vertex bisection (NVB); see, e.g., [Ste08, KPP13]. We assume that any mesh T• employed
for the spatial discretization can be obtained by applying NVB refinement(s) to a given
initial (coarse) mesh T0. In particular, we denote by refine(T0) the set of all meshes
obtained from T0 by finitely many steps of refinement.

For a given mesh T•, let T̂• denote its uniform refinement, where all elements of T• are
refined by three bisections. Let N̂• be the set of vertices of T̂•. Let N+

• := (N̂• \N•) \ ∂D
be the set of new interior vertices created by uniform refinement of T•. For a set of marked
vertices M• ⊆ N+

• , let T◦ := refine(T•,M•) be the coarsest mesh such that M• ⊆ N◦,
i.e., all marked vertices are vertices of T◦. Since NVB is a binary refinement rule, this
implies that N◦ ⊆ N̂• and (N◦ \N•) \ ∂D = N+

• ∩N◦. In particular, the choicesM• = ∅
andM• = N+

• lead to the meshes T• = refine(T•, ∅) and T̂• = refine(T•,N+
• ), respectively.

For a given mesh T• ∈ refine(T0), we consider the space of piecewise affine and globally
continuous finite elements

X• := S1
0 (T•) := {v• ∈ X : v•|T is affine for all T ∈ T•} ⊂ X = H1

0 (D).

For z ∈ N•, let ϕ•,z be the associated hat function, i.e., ϕ•,z is piecewise affine, globally
continuous, and satisfies the Kronecker property ϕ•,z(z′) = δzz′ for all z′ ∈ N•. Recall
that {ϕ•,z : z ∈ N• \ ∂D} is the standard basis of X•.

The finite element space associated with T̂• is denoted by X̂• := S1
0 (T̂•) and {ϕ̂•,z :

z ∈ N̂• \ ∂D} is the corresponding basis of hat functions. Later, we shall exploit the
(H1-stable) two-level decomposition X̂• = X• ⊕ span{ϕ̂•,z : z ∈ N+

• }.

3.2. Discretization in the parameter domain and parametric enrichment.
For all m ∈ N, we denote by (Pm

n )n∈N0 the sequence of univariate polynomials which
are orthogonal with respect to πm such that Pm

n is a polynomial of degree n ∈ N0 with
‖Pm

n ‖L2
πm

(−1,1) = 1 and Pm
0 ≡ 1. It is well-known that {Pm

n : n ∈ N0} is an orthonormal
basis of L2

πm(−1, 1). With NN
0 := {ν = (νm)m∈N : νm ∈ N0 for all m ∈ N} and supp(ν) :=

{m ∈ N : νm 6= 0}, let I := {ν ∈ NN
0 : # supp(ν) <∞} be the set of all finitely supported

multi-indices. Note that I is countable. With

Pν(y) :=
∏
m∈N

Pm
νm(ym) =

∏
m∈supp(ν)

Pm
νm(ym) for all ν ∈ I and all y ∈ Γ,

the set {Pν : ν ∈ I} is an orthonormal basis of L2
π(Γ); see [SG11, Theorem 2.12].

The Bochner space V = L2
π(Γ;X) is isometrically isomorphic to X ⊗ L2

π(Γ) and each
function v ∈ V can be represented in the form

v(x,y) =
∑
ν∈I

vν(x)Pν(y) with unique coefficients vν ∈ X. (9)

Parametric discretization is based on a finite index set P• ⊂ I and the associated
subspace span{Pν : ν ∈ P•} ⊂ L2

π(Γ). We denote by supp(P•) :=
⋃
ν∈P• supp(ν) the
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set of active parameters in P•. We assume that any finite index set P• employed for
parametric discretization contains the zero index 0 = (0, 0, . . . ); in particular, we set
P0 := {0} ⊆ P•.

For parametric enrichment, we follow [BS16] and consider the detail index set

Q• := {µ ∈ I \P• : µ = ν ± εm for all ν ∈ P• and all m = 1, . . . ,MP• + 1}, (10)

where MP• := # supp(P•) ∈ N0 is the number of active parameters in the index set P•
and, for any m ∈ N, εm ∈ I denotes the m-th unit sequence, i.e., (εm)i = δmi for all i ∈ N.
Then, a parametric enrichment is obtained by adding some marked indices M• ⊆ Q• to
the current index set P•, i.e., P◦ := P• ∪M•. We note that P• ⊆ P◦ ⊆ P• ∪Q• and at
least one of these inclusions is strict.

3.3. Multilevel approximation and multilevel refinement. Let us consider a
discrete structure PPP• = [P•, (T•ν)ν∈I] that consists of a finite index set P• ⊂ I and a
family of spatial meshes (T•ν)ν∈I, where T•ν ∈ refine(T0) for all ν ∈ P•, while T•ν = T0 for
all ν ∈ I\P•. We will call PPP• a multilevel structure. In particular, let PPP0 := [P0, (T0ν)ν∈I]
with T0ν = T0 for all ν ∈ I, be the initial multilevel structure.

For two multilevel structures PPP• = [P•, (T•ν)ν∈I] and PPP◦ = [P◦, (T◦ν)ν∈I], we write
PPP◦ = REFINEREFINEREFINE(PPP•,MMM•) if PPP◦ is obtained from PPP• using one step of multilevel refinement
defined as follows:

• MMM• = [M•, (M•ν)ν∈P• ] with M• ⊆ Q• andM•ν ⊆ N+
•ν for all ν ∈ P•;

• P◦ = P• ∪M•;
• for all ν ∈ P•, there holds T◦ν = refine(T•ν ,M•ν);
• for all ν ∈ I\P•, there holds T◦ν = T•ν = T0.

In particular, we denote by REFINEREFINEREFINE(PPP0) the set of all multilevel structures obtained from
PPP0 by finitely many steps of multilevel refinement. Throughout the remainder of this
work, we implicitly assume that all occurring multilevel structures belong to REFINEREFINEREFINE(PPP0).

With each multi-level structure PPP• = [P•, (T•ν)ν∈I], we associate the finite dimensional
subspace

V• :=
⊕
ν∈P•

V•ν ⊂ V with V•ν := X•ν ⊗ span{Pν} = span
{
ϕ•ν,zPν : z ∈ N•ν

}
, (11)

where X•ν = S1
0 (T•ν) for all ν ∈ P•. We note that the sum of the spaces V•ν is orthogonal

(and hence direct) and that each function v• ∈ V• can be represented in the form (cf. (9))

v•(x,y) =
∑
ν∈P•

v•ν(x)Pν(y) with unique coefficients v•ν ∈ X•ν .

The Galerkin discretization of (8) reads as follows: Find u• ∈ V• such that

B(u•,v•) = F (v•) for all v• ∈ V•. (12)

As in the continuous case, the Riesz theorem proves the existence and uniqueness of the
solution u• ∈ V•. Moreover, there holds the Céa lemma

|||u− u• ||| = min
v•∈V•

|||u− v• |||. (13)

We stress that multilevel refinement PPP◦ ∈ REFINEREFINEREFINE(PPP•) implies nestedness of the associated
multilevel spaces V• ⊆ V◦ and hence, in particular, |||u− u◦ ||| ≤ |||u− u• |||.
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3.4. Saturation assumption. For a posteriori error estimation, we follow our ap-
proach in [BPR20]: For a given multilevel structure PPP• and the associated finite-dimensi-
onal subspace V•, we consider the enriched subspace V̂• ⊂ V defined as

V̂• :=
⊕
ν∈P•

[
X̂•ν ⊗ span{Pν}

]
⊕
⊕
ν∈Q•

[
X0 ⊗ span{Pν}

]
, (14)

where we recall that T•ν = T0 for all ν ∈ Q• ⊂ I\P•. Note that V• ⊆ V◦ ⊆ V̂• for
any PPP◦ = REFINEREFINEREFINE(PPP•,MMM•). Moreover, V̂• corresponds to the multilevel structure P̂PP• =
REFINEREFINEREFINE(PPP•,MMM•) with MMM• = [Q•, (N+

•ν)ν∈P• ].
Let û• ∈ V̂• be the unique Galerkin solution to

B(û•, v̂•) = F (v̂•) for all v̂• ∈ V̂•. (15)

Existence and uniqueness of the solution û• ∈ V̂• follow from the Riesz theorem. We
stress, however, that û• ∈ V̂• is only needed for the theoretical analysis and will not be
computed throughout. We suppose that there exists a uniform constant 0 < qsat < 1 such
that the following saturation assumption holds:

|||u− û• ||| ≤ qsat |||u− u• |||. (16)

Remark 1. While the saturation assumption can be verified empirically as soon as approx-
imations exhibit some asymptotic behavior, the existing rigorous proofs in the context of
FEM are tailored to deterministic problems with constant coefficients (see, e.g., [DN02] or
[CGG16]). When required for generic discrete spaces V•, the saturation assumption (16)
is a strong restriction, which may even fail in general (see [BEK96] for a counterexample
in the deterministic setting). In our analysis, however, it will be required only for the
sequence of nested discrete subspaces (V`)`∈N0 generated by Algorithm 3 below.

3.5. A posteriori error estimation. To abbreviate notation, we denote the inner
product on X = H1

0 (D) by 〈w , v〉D :=
∫
D
a0∇w · ∇v dx and the induced energy norm by

‖ · ‖D := ‖a1/2
0 ∇(·)‖L2(D).

The parametric error is estimated by means of hierarchical error indicators

τ•(ν) := ‖e•ν‖D for all ν ∈ Q•, (17a)

where e•ν ∈ X0 is the unique solution of

〈e•ν , v0〉D = F (v0Pν)−B(u•, v0Pν) for all v0 ∈ X0. (17b)

In order to estimate the errors due to spatial discretizations, we employ the two-level error
estimation strategy. Specifically, we define the two-level error indicators

τ•(ν, z) :=
|F (ϕ̂•ν,zPν)−B(u•, ϕ̂•ν,zPν)|

‖ϕ̂•ν,z‖D
for all ν ∈ P• and all z ∈ N+

•ν . (18)

Overall, we thus consider the computable a posteriori error estimate

τ• :=

(∑
ν∈P•

∑
z∈N+

•ν

τ•(ν, z)2 +
∑
ν∈Q•

τ•(ν)2

)1/2

. (19)

We recall the following main result from [BPR20], where we note that the validity of (20)
hinges on 2D newest vertex bisection (since the hat functions satisfy ϕ̂•ν,z = ϕ◦ν,z ∈ X◦ν
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for all ν ∈ P• if T◦ν = refine(T•ν ,M•ν) and z ∈ N+
•ν∩N◦ν); we refer to [BPR20, Theorem 2

and Remark 6].

Theorem 2. Let PPP• ∈ REFINEREFINEREFINE(PPP0) and PPP◦ ∈ REFINEREFINEREFINE(PPP•,MMM•), whereMMM• = [M•, (M•ν)ν∈P• ]

satisfies M• ⊆ Q• andM•ν ⊆ N+
•ν for all ν ∈ P•. Let V• ⊆ V◦ ⊆ V̂• be the corresponding

multilevel spaces with associated Galerkin solutions u• ∈ V• (solving (12)), u◦ ∈ V◦
(solving (12) with V• being replaced by V◦), and û• ∈ V̂• (solving (15)). Then, there
holds

C−1
est |||u◦ − u• ||| ≤

(∑
ν∈P•

∑
z∈N+

•ν∩N◦ν

τ•(ν, z)2 +
∑

ν∈Q•∩P◦

τ•(ν)2

)1/2

≤ Cest |||u◦ − u• |||. (20)

In particular, this also guarantees that

C−1
est ||| û• − u• ||| ≤ τ•

(19)
=

(∑
ν∈P•

∑
z∈N+

•ν

τ•(ν, z)2 +
∑
ν∈Q•

τ•(ν)2

)1/2

≤ Cest ||| û• − u• |||. (21)

Furthermore, let u ∈ V be the solution to problem (8). Then, under the saturation
assumption (16), the estimates (21) are equivalent to

(1− q2
sat)

1/2

Cest

|||u− u• ||| ≤ τ• ≤ Cest |||u− u• |||, (22)

i.e., the proposed error estimator is reliable (under the saturation assumption (16)) and
(always) efficient. The constant Cest ≥ 1 in (20)–(22) is generic and depends only on T0,
the mean field a0, and the constants λ,Λ > 0 from (7).

4. Adaptive algorithm and main result

The main results of this work concern the following algorithm proposed in [BPR20] (see
Algorithm 7.C therein). In this algorithm, the enhancement of the approximation space
V` for each ` ∈ N0 is steered by the Dörfler marking performed on the joint set of all
spatial and parametric error indicators (see step (iv) in the algorithm below).

Algorithm 3. Input: P0 = {0} and T0ν := T0 for all ν ∈ P0 ∪Q0, as well as marking
parameter 0 < θ ≤ 1.
Loop: For all ` = 0, 1, 2, . . . , iterate the following steps:

(i) Compute the discrete solution u` ∈ V` associated with PPP` = [P`, (T`ν)ν∈I].
(ii) Compute parametric error indicators τ`(ν) from (17) for all ν ∈ Q`.
(iii) Compute spatial error indicators τ`(ν, z) from (18) for all ν ∈ P` and all z ∈ N+

`ν .
(iv) Determine the setsM`ν ⊆ N+

`ν for all ν ∈ P` and the set M` ⊆ Q` such that

θ

(∑
ν∈P`

∑
z∈N+

`ν

τ`(ν, z)2 +
∑
ν∈Q`

τ`(ν)2

)
≤
∑
ν∈P`

∑
z∈M`ν

τ`(ν, z)2 +
∑
ν∈M`

τ`(ν)2, (23)

where the overall cardinality #M` +
∑

ν∈P` #M`ν is minimal amongst all tuples
MMM` = [M`, (M`ν)ν∈P` ] satisfying the marking criterion (23).

(v) For all ν ∈ P`, let T`+1,ν := refine(T`ν ,M`ν).
(vi) Define P`+1 := P` ∪M` and T(`+1)ν := T0 for all ν ∈ Q`+1.

7



Output: For all ` ∈ N0, the algorithm returns the multilevel stochastic Galerkin approx-
imation u` ∈ V` as well as the corresponding error estimate τ`.

While linear convergence of the adaptive algorithm will rely only on the above saturation
assumption (16), the proof of optimal convergence rates requires the following strong
saturation assumption [PRS20]: There exist constants 0 < κsat ≤ qsat < 1 such that for
all multilevel structures PPP• ∈ REFINEREFINEREFINE(PPP0) and PPP? ∈ REFINEREFINEREFINE(PPP•), one step of multilevel
refinement PPP◦ := REFINEREFINEREFINE(PPP•,MMM•) with MMM• := [P? ∩ Q•, (N+

•ν ∩ N?ν)ν∈P• ] satisfies the
following implication:

|||u− u? ||| ≤ κsat |||u− u• ||| =⇒ |||u− u◦ ||| ≤ qsat |||u− u• |||. (24)

In explicit terms, the strong saturation assumption (24) states that, if PPP? ∈ REFINEREFINEREFINE(PPP•)
leads to a sufficient improvement of the error, then already one step of multilevel refine-
ment of PPP• towards PPP? provides a uniform improvement of the error.

Remark 4. We note that the strong saturation assumption (24) is, in fact, stronger
than the saturation assumption (16). To see this, let us suppose that (24) is satisfied.
Since convergence of stochastic Galerkin FEM is known, there exists PPP? ∈ REFINEREFINEREFINE(PPP•)
with |||u− u? ||| ≤ κsat |||u− u• |||. Let P̂PP? = REFINEREFINEREFINE(PPP?,MMM?), where MMM? = [Q?, (N+

?ν)ν∈P? ].
According to the Céa lemma (13), there holds

|||u− û? ||| ≤ |||u− u? ||| ≤ κsat |||u− u• |||.

According to (24) (now applied to P̂PP? and PPP•), the multilevel structure P̃PP◦:=REFINEREFINEREFINE(PPP•,MMM•)
with MMM• := [P̂? ∩Q•, (N̂?ν ∩N+

•ν)ν∈P• ] thus satisfies

|||u− ũ◦ ||| ≤ qsat |||u− u• |||.

Since P̂? ∩ Q• = Q• and N̂?ν ∩ N+
•ν = N+

•ν for all ν ∈ P•, we conclude that P̃PP◦ = P̂PP•.
Therefore, the last estimate is precisely (16).

Similarly to Remark 1 for the saturation assumption (16), we point out that the proof
of our main result in Theorem 5 will exploit the strong saturation assumption (24) with
V• = V` for all ` ∈ N0, where (V`)`∈N0 is the sequence of nested discrete subspaces
generated by Algorithm 3.

For a multilevel structure PPP• = [P•, (T•ν)ν∈I], let

###PPP• :=
∑
ν∈P•

[
#T•ν −#T0 + 1

]
. (25)

Note that this definition is motivated by the equivalence

###PPP• =
∑
ν∈P•

[
#T•ν −#T0 + 1

]
'
∑
ν∈P•

#T•ν '
∑
ν∈P•

dimS1
0 (T•ν) = dimV•, (26)

i.e., up to some multiplicative constants (depending only on #T0), ###PPP• is equivalent to
the overall dimension of the corresponding multilevel finite element space V• (in fact, the
last equivalence in (26) holds only for non-pathological meshes T0 that have at least one
interior vertex).

For s > 0, we can now introduce the following notion of approximability:

‖u‖As := sup
N∈N0

(N + 1)s min
PPPopt∈REFINEREFINEREFINE(PPP0)

###PPPopt−###PPP0≤N

min
vopt∈Vopt

|||u− vopt ||| ∈ R≥0 ∪ {∞}. (27)
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Recalling the equivalence (26), the definition of ‖u‖As in (27) is understood as follows:
There holds ‖u‖As < ∞ if and only if there exists a sequence of multilevel structures
(PPP?`)`∈N0 with PPP?0 = PPP0 (but not necessarily nested multilevel spaces V?

`) such that the
corresponding error |||u−u?` ||| = minv`∈V?` |||u−v` ||| decays at least with an algebraic rate
s > 0 with respect to the dimensions of the corresponding multilevel spaces V?

` .
The following theorem is the main result of this work. It shows that Algorithm 3 is

linearly convergent under the saturation assumption (16) and even rate-optimal under
the strong saturation assumption (24), i.e., the energy errors decay with any possible
algebraic rate s > 0.

Theorem 5. Let Cest ≥ 1 be the constant from Theorem 2. Under the saturation assump-
tion (16) and for each 0 < θ ≤ 1, Algorithm 3 leads to linear convergence in the sense
that

|||u− u`+n ||| ≤ qnlin |||u− u` ||| for all `, n ∈ N0, where 0 < q2
lin = 1− 1−q2

sat

C4
est

θ < 1. (28)

Furthermore, under the strong saturation assumption (24), there exists a constant 0 <
θopt < 1 depending only on Cest and qsat such that the following holds whenever 0 < θ ≤
θopt is satisfied: If s > 0 and ‖u‖As <∞, then

sup
`∈N0

(###PPP` −###PPP0 + 1)s|||u− u` ||| ≤ Copt ‖u‖As , (29)

where Copt ≥ 1 depends only on s, T0, κsat, and qlin.

The proof of Theorem 5 is postponed to the next two sections.

5. Proof of linear convergence

The following proposition shows that, under the saturation assumption (16), the com-
bined Dörfler marking (23) (or, (30) with Clin = 1/θ) leads (and is essentially equivalent)
to linear error reduction. In particular, the result emphasizes the fact that the combined
Dörfler marking (23) is the weakest marking criterion which ensures linear convergence.

Proposition 6. Let PPP• := [P•, (T•ν)ν∈I] be a multilevel structure with the associated
Galerkin solution u• ∈ V•.
(i) Suppose that the saturation assumption (16) holds and there exists Clin > 1 as well as
subsets M• ⊆ Q• andM•ν ⊆ N+

•ν for all ν ∈ P• such that

τ 2
• =

∑
ν∈P•

∑
z∈N+

•ν

τ•(ν, z)2 +
∑
ν∈Q•

τ•(ν)2 ≤ Clin

( ∑
ν∈P•

∑
z∈M•ν

τ•(ν, z)2 +
∑
ν∈M•

τ•(ν)2

)
. (30)

Let PPP◦ = REFINEREFINEREFINE(PPP•,MMM•), where MMM• = [M•, (M•ν)ν∈I] and M•ν := ∅ for all ν ∈ I\P•.
Then, there holds linear error reduction

|||u− u◦ ||| ≤ qlin |||u− u• |||, (31)

where 0 < q2
lin = 1 − (1 − q2

sat)/(C
4
estClin) < 1 and u◦ ∈ V◦ is the Galerkin solution

associated with PPP◦.
(ii) Conversely, let PPP◦ ∈ REFINEREFINEREFINE(PPP•,MMM•) be a multilevel structure obtained from PPP• using
one step of multilevel refinement and suppose that the associated Galerkin solution u◦ ∈ V◦
satisfies (31) with arbitrary 0 < qlin < 1. Then, there holds (30) with Clin =

C4
est

1−q2lin
,
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M• = Q• ∩ P◦, and M•ν = N+
•ν ∩ N◦ν for all ν ∈ P• (even without appealing to the

saturation assumption (16)).

Proof. According to (20) and (22), there holds

|||u◦ − u• |||2
(20)
≥ C−2

est

(∑
ν∈P•

∑
z∈N+

•ν∩N◦ν

τ•(ν, z)2 +
∑

ν∈Q•∩P◦

τ•(ν)2

)

≥ C−2
est

(∑
ν∈P•

∑
z∈M•ν

τ•(ν, z)2 +
∑
ν∈M•

τ•(ν)2

)
(30)
≥ C−2

estC
−1
lin τ

2
•

(22)
≥ 1− q2

sat

C4
estClin

|||u− u• |||2.

With the Galerkin orthogonality for V• ⊆ V◦ ⊂ V, it follows that

|||u− u◦ |||2 = |||u− u• |||2 − |||u◦ − u• |||2 ≤

(
1− 1− q2

sat

C4
estClin

)
|||u− u• |||2.

Overall, we have seen that (30) implies (31) (under the saturation assumption (16)). This
proves part (i).

To see the converse implication in part (ii), note that the estimate

|||u− u• |||2 − |||u◦ − u• |||2 = |||u− u◦ |||2
(31)
≤ q2

lin |||u− u• |||2

yields that

C−2
est τ

2
•

(22)
≤ |||u− u• |||2 ≤

1

1− q2
lin

|||u◦ − u• |||2

(20)
≤ C2

est

1− q2
lin

( ∑
ν∈P•

∑
z∈N+

•ν∩N◦ν

τ•(ν, z)2 +
∑

ν∈Q•∩P◦

τ•(ν)2

)
.

This concludes the proof. �

Proposition 6 yields linear convergence of the iterates of Algorithm 3.

Proof of estimate (28) in Theorem 5. The assumption (30) with Clin = 1/θ coincides with
the combined Dörfler marking in step (iv) of Algorithm 3. Hence, Proposition 6 yields
|||u− u`+1 ||| ≤ qlin |||u− u` |||, and induction on n proves (28). �

6. Proof of optimal convergence rates

6.1. Fine properties of multilevel structures. In this subsection, we show that
the proposed refinement of multilevel structures satisfies the overlay estimate as well as
the closure estimate, both known for spatial meshes refined by NVB.

Lemma 7 (overlay estimate). For any two multilevel structures PPP•,PPP? ∈ REFINEREFINEREFINE(PPP0),
there exists a unique multilevel structure PPP•⊕PPP? ∈ REFINEREFINEREFINE(PPP•)∩REFINEREFINEREFINE(PPP?) ⊆ REFINEREFINEREFINE(PPP0),
the so-called overlay, satisfying

###(PPP• ⊕PPP?) = min
{
###PPP◦ : PPP◦ ∈ REFINEREFINEREFINE(PPP•) ∩ REFINEREFINEREFINE(PPP?)

}
≤###PPP• + ###PPP? −###PPP0. (32)
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Proof. For two meshes T•, T? ∈ refine(T0) and NVB refinement, let T• ⊕ T? ∈ refine(T•) ∩
refine(T?) ⊆ refine(T0) denote the (unique) coarsest common refinement of T• and T?.
Then, there holds the so-called overlay estimate

#(T• ⊕ T?) = min
{

#T◦ : T◦ ∈ refine(T•) ∩ refine(T?)
}
≤ #T• + #T? −#T0; (33)

see [Ste07, CKNS08].
If PPP• = [P•, (T•ν)ν∈I] and PPP? = [P?, (T?ν)ν∈I], define the overlay PPP• ⊕ PPP? := [P• ∪

P?, (T•ν⊕T?ν)ν∈I]. Then, PPP•⊕PPP? ∈ REFINEREFINEREFINE(PPP•)∩REFINEREFINEREFINE(PPP?) and, clearly, ###(PPP•⊕PPP?) ≤###PPP◦
for any PPP◦ ∈ REFINEREFINEREFINE(PPP•) ∩ REFINEREFINEREFINE(PPP?). Moreover, there holds

###(PPP• ⊕PPP?)
(25)
=

∑
ν∈P•∪P?

[
#(T•ν ⊕ T?ν)−#T0 + 1

]
(33)
≤

∑
ν∈P•∪P?

[
(#T•ν −#T0) + (#T?ν −#T0) + 1

]
=
∑
ν∈P•

[
#T•ν −#T0 + 1

]
+
∑
ν∈P?

[
#T?ν −#T0 + 1

]
−

∑
ν∈P•∩P?

1

(25)
≤ ###PPP• + ###PPP? −###PPP0,

since T•ν = T0 for all ν ∈ I\P• (resp., T?ν = T0 for all ν ∈ I\P?). �

Lemma 8 (closure estimate). Suppose that (PPP`)`∈N0 is a sequence of successively refined
multilevel structures, i.e., PPP`+1 = REFINEREFINEREFINE(PPP`,MMM`) with MMM` = [M`, (M`ν)ν∈P` ] for all ` ∈
N0. Then, there exists a constant Ccls ≥ 1 depending only on T0 such that

###PPP` −###PPP0 ≤ Ccls

`−1∑
k=0

(
#Mk +

∑
ν∈Pk

#Mkν

)
for all ` ∈ N0. (34)

Proof. It is known that for any sequence (T`)`∈N0 of successively refined meshes (i.e.,
T`+1 = refine(T`,M`) with appropriate M` ⊆ N+

` for all ` ∈ N0), NVB refinement
guarantees the closure estimate

#T` −#T0 ≤ Ccls

`−1∑
k=0

#Mk for all ` ∈ N0,

where Ccls ≥ 1 depends only on T0; see [BDD04, Ste08, KPP13].
By definition of multilevel refinement, there holds T`+1,ν = refine(T`ν ,M`ν) for all

` ∈ N0 and all ν ∈ I, whereM`ν = ∅ for ν ∈ I \P`. Hence, the above closure estimate
yields that

#T`ν −#T0 ≤ Ccls

`−1∑
k=0

#Mkν for all ν ∈ I. (35)

Moreover, due to the definition of parametric enrichment, there holds

#P` = #P0 +
`−1∑
k=0

#Mk. (36)
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Recall thatMkν = ∅ if ν ∈ I \Pk. Therefore, we are led to

###PPP`
(25)
=
∑
ν∈P`

[
#T`ν −#T0 + 1

]
= #P` +

∑
ν∈P`

[
#T`ν −#T0

]
(35)
≤ #P` + Ccls

∑
ν∈P`

`−1∑
k=0

#Mkν

(36)
= #P0 +

`−1∑
k=0

(
#Mk + Ccls

∑
ν∈Pk

#Mkν

)
.

With #P0 = ###PPP0 and Ccls ≥ 1, this concludes the proof. �

6.2. Comparison lemma and proof of rate optimality. To prove optimal rates,
it remains to compare the multilevel structures (PPP`)`∈N0 generated by Algorithm 3 with
respective optimal choices provided by the definition of the approximation class As in (27).
This is (implicitly) done in the following lemma, which will be exploited in the proof of
estimate (29) of Theorem 5.

Lemma 9 (comparison lemma). Suppose the strong saturation assumption (24). Then,
there exists 0 < θopt ≤ 1 depending only on Cest and qsat such that the following statement
holds: Let s > 0 and ‖u‖As <∞; then, for all PPP• ∈ REFINEREFINEREFINE(PPP0), there exist R• ⊆ Q• and
R•ν ⊆ N+

•ν for all ν ∈ P• such that

#R• +
∑
ν∈P•

#R•ν ≤ 3κ
−1/s
sat ‖u‖

1/s
As |||u− u• |||−1/s (37)

as well as

θopt τ
2
• ≤

( ∑
ν∈P•

∑
z∈R•ν

τ•(ν, z)2 +
∑
ν∈R•

τ•(ν)2

)
. (38)

Proof. If |||u − u• ||| = 0 or ‖u‖As = ∞, we may simply choose R• = Q• and R•ν = N+
•ν

for all ν ∈ P• so that (37)–(38) are trivially satisfied.
Hence, we may suppose that |||u − u• ||| > 0 and ‖u‖As < ∞. With 0 < κsat < 1 from

the strong saturation assumption (24), define

0 < ε := κsat|||u− u• |||
(13)
< |||u− u0 |||

(27)
≤ ‖u‖As <∞. (39)

By construction, it thus holds that ‖u‖1/s
As ε

−1/s > 1. Choose N ∈ N such that

1 ≤ N < ‖u‖1/s
As ε

−1/s ≤ N + 1. (40)

Choose PPPε ∈ REFINEREFINEREFINE(PPP0) such that

###PPPε −###PPP0 ≤ N and |||u− uε ||| = min
PPPopt∈REFINEREFINEREFINE(PPP0)

###PPPopt−###PPP0≤N

|||u− uopt |||. (41)

Define the overlay PPP? := PPPε ⊕PPP•. Then, it follows that

###PPP? −###PPP•
(32)
≤ ###PPPε −###PPP0

(41)
≤ N

(40)
< ‖u‖1/s

As ε
−1/s (39)

= κ
−1/s
sat ‖u‖

1/s
As |||u− u• |||−1/s
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as well as

|||u− u? |||
(13)
≤ |||u− uε |||

(41)
= min

PPPopt∈REFINEREFINEREFINE(PPP0)
###PPPopt−###PPP0≤N

|||u− uopt |||
(27)
≤ (N + 1)−s ‖u‖As

(40)
≤ ε

(39)
= κsat|||u− u• |||.

Define PPP◦ := REFINEREFINEREFINE(PPP•,MMM•) with MMM• := [P? ∩ Q•, (N+
•ν ∩ N?ν)ν∈P• ]. Then, the strong

saturation assumption (24) yields that |||u− u◦ ||| ≤ qsat |||u− u• |||. According to Propo-
sition 6, it thus follows that

τ 2
•

(30)
≤ Clin

( ∑
ν∈P•

∑
z∈N+

•ν∩N◦ν

τ•(ν, z)2 +
∑

ν∈Q•∩P◦

τ•(ν)2

)
with Clin :=

C4
est

1− q2
sat

> 1.

Let 0 < θopt := 1/Clin < 1. Since N◦ν ⊆ N?ν and P◦ ⊆ P?, we obtain that

θopt τ
2
• ≤

( ∑
ν∈P•

∑
z∈N+

•ν∩N?ν

τ•(ν, z)2 +
∑

ν∈Q•∩P?

τ•(ν)2

)
.

Defining R• := Q• ∩ P? and R•ν := N+
•ν ∩ N?ν for all ν ∈ P•, we prove (38). To

establish (37), it only remains to prove that

#R• +
∑
ν∈P•

#R•ν ≤ 3 (###PPP? −###PPP•).

To this end, note that

###PPP? −###PPP• =
∑
ν∈P?

(#T?ν −#T0 + 1)−
∑
ν∈P•

(#T•ν −#T0 + 1)

=
∑
ν∈P•

(#T?ν −#T•ν) +
∑

ν∈P?\P•

(#T?ν −#T0 + 1)

≥
∑
ν∈P•

#(T•ν\T?ν) + #(P?\P•).

First, we note that R• = Q• ∩P? ⊆ P?\P•. Second, each added vertex z ∈ N+
•ν ∩ N?ν

leads to refinement of one edge and hence refinement of (at least) one triangle T ∈ T•ν\T?ν .
Moreover, each refined triangle T ∈ T•ν\T?ν contains at most three added vertices z ∈
N+
•ν ∩ N?ν . This implies that #R•ν = #(N+

•ν ∩ N?ν) ≤ 3 #(T•ν\T?ν) for all ν ∈ P•.
Overall, we thus see that

#R• +
∑
ν∈P•

#R•ν ≤ #(P?\P•) + 3
∑
ν∈P•

#(T•ν \ T?ν) ≤ 3 (###PPP? −###PPP•).

This concludes the proof. �

We are now ready to prove the rate optimality property for Algorithm 3.

Proof of estimate (29) in Theorem 5. Note that

###PPP` −###PPP0

(34)
≤ Ccls

`−1∑
k=0

(
#Mk +

∑
ν∈Pk

#Mkν

)
.
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Recall that by choice of Algorithm 3 (see step (iv) therein), the tupleMMMk = [Mk, (Mkν)ν∈I]
(withMkν = ∅ for ν 6∈ Pk) satisfies the Dörfler marking criterion in (23). On the other
hand, by virtue of Lemma 9, there exists a tuple RRRk = [Rk, (Rkν)ν∈I] (with Rkν = ∅
for ν 6∈ Pk) satisfying (37) and (38). Since 0 < θ ≤ θopt, inequality (38) implies that
the tuple RRRk = [Rk, (Rkν)ν∈I] satisfies the Dörfler marking criterion in (23). Therefore,
according to the minimal cardinality property of MMMk, it follows that

#Mk +
∑
ν∈Pk

#Mkν ≤ #Rk +
∑
ν∈Pk

#Rkν

(37)
≤ 3κ

−1/s
sat ‖u‖

1/s
As |||u− uk |||−1/s for all k ∈ N0.

With linear convergence |||u−u` ||| ≤ q`−klin |||u−uk ||| for all 0 ≤ k < `, the geometric series
proves that

###PPP` −###PPP0 ≤ 3Ccls κ
−1/s
sat ‖u‖

1/s
As

`−1∑
k=0

|||u− uk |||−1/s

≤ 3Ccls κ
−1/s
sat

q
1/s
lin

1− q1/s
lin

‖u‖1/s
As |||u− u` |||−1/s for all ` ∈ N0.

For ` ≥ 1, it follows that

(###PPP` −###PPP0 + 1)s |||u− u` ||| ≤ 2s (###PPP` −###PPP0)s |||u− u` ||| ≤
qlin

κsat

(
6Ccls

1− q1/s
lin

)s
‖u‖As .

For ` = 0, there holds

(###PPP` −###PPP0 + 1)s |||u− u` ||| = |||u− u0 ||| ≤ ‖u‖As .

Combining the last two estimates, we prove (29) with Copt = max

{
1,

qlin

κsat

(
6Ccls

1− q1/s
lin

)s}
.

This concludes the proof. �

7. Numerical results

In this section, we present a collection of numerical results that illustrate the per-
formance of Algorithm 3. All computations have been performed using the MATLAB
toolbox Stochastic T-IFISS [BR19] (see [BRS20] for a recent review).

The details of the implementation of the proposed adaptive multilevel stochastic Galer-
kin FEM are presented in our recent work [BPR20] (see section 6 therein). In particular,
exploiting the binary tree structure of the NVB refinement, we have shown that it is
possible to compute all entries of the resulting linear system exactly (up to quadrature),
even though for two multi-indices µ, ν ∈ P` (µ 6= ν), the associated meshes T`µ, T`ν are,
in general, different. The key observation is that T`µ, T`ν are NVB refinements of the
same initial mesh T0, and, therefore, for any T ∈ T`µ and T ′ ∈ T`ν , there holds one of the
following four cases:

• T ∩ T ′ is a set of measure zero,
• T $ T ′,
• T ′ $ T ,
• T = T ′.
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One can easily determine which of these four cases occurs by keeping a record of the
number of bisections needed to generate the triangles T, T ′ and using the coordinates of
their centers of mass (see [BPR20, Algorithm 9]).

7.1. Benchmark problem. Our first example is the parametric model problem in-
troduced in [EGSZ14, section 11] and used for numerical experiments in, e.g., [EGSZ15,
EM16, BR18, BPRR19, BPR20].

For f ≡ 1, we consider the boundary value problem (1) on the L-shaped domain
D = (−1, 1)2 \ (−1, 0]2. For all x = (x1, x2) ∈ D, the coefficients in the expansion (2) of
the diffusion coefficient are given by

a0(x) = 1, am(x) = Am−2 cos(2πβ1(m)x1) cos(2πβ2(m)x2) for m ∈ N.

Here, A = 0.9/ζ(2) ≈ 0.547 (with ζ(·) being the Riemann zeta function), β1(m) =

m− k(m)[k(m) + 1]/2, β2(m) = k(m)− β1(m), and k(m) = b−1/2 +
√

1/2 + 2mc. With
this choice, the diffusion coefficient a(x,y) trivially satisfies (3) (with amin

0 = amax
0 = 1),

and both inequalities in (4) hold. The exact solution u to this problem exhibits a geometric
singularity at the reentrant corner.

We run Algorithm 3 with different values of the Dörfler marking parameter θ =
0.1, . . . , 0.9. For all runs, we use the same initial mesh T0 (a uniform mesh of 384 right-
angled triangles) and we stop the computation when τ` ≤ tol := 2 · 10−3.

In Figure 1, we plot the total error estimates τ` (left) and the reference energy errors
|||uref − u` ||| (right) as functions of the total number of degrees of freedom (DOFs) N` =
dimV` =

∑
ν∈P` dimX`ν . Here, the reference error is computed using a reference solution

uref obtained by running Algorithm 3 with θ = 0.5 and a smaller tolerance (we set tol
= 8 · 10−4). We observe that the adaptive algorithm converges regardless of the value of
the marking parameter. Moreover, the computations confirm the result of Theorem 5:
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Figure 1. Experiments in section 7.1: Total error estimates τ` (left) and reference
energy errors |||uref − u` ||| (right) versus the total number of DOFs N` = dimV` for
θ = 0.1, . . . , 0.9.
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Figure 2. Experiments in section 7.1: Effectivity indices ζ` for the error estimates τ` for
the SGFEM approximations generated by Algorithm 3 with θ = 0.1, . . . , 0.9.

for sufficiently small values of θ, the error estimates and the reference errors decay with
the optimal rate O(N

−1/2
` ), which is the convergence rate of linear (P1) FEM for the

corresponding parameter-free problem. For larger values of θ (in particular, for θ =
0.8, 0.9), the convergence of the error estimates and the reference errors appears to be
slightly suboptimal.

The suboptimality of the convergence rate for θ = 0.8, 0.9 observed in Figure 1 is more
evident for the reference error (right plot) than for the error estimate (left plot). To
investigate this further we compute the effectivity index

ζ` :=
τ`

|||uref − u` |||
=

τ`(
|||uref |||2 − |||u` |||2

)1/2

at each iteration of the adaptive loop. In Figure 2, we plot the effectivity indices ζ`
versus the total number of degrees of freedom N` in computed SGFEM approximations
for θ = 0.1, . . . , 0.9. For all θ ∈ {0.1, . . . , 0.7}, the effectivity indices exhibit similar
behavior and vary in a range between 0.7 and 0.8 throughout all iterations. However, for
θ ∈ {0.8, 0.9} and for large N`, the effectivity indices are becoming smaller. In particular,
for θ = 0.9, we even observe a deterioration of ζ`.

In Figure 3, we plot the cardinality of the index sets P` versus the total number
of degrees of freedom N` for different values of θ. We see that the slope of the curve
decreases as θ increases. Furthermore, while the curves for θ = 0.1, . . . , 0.7 (the values
for which we observe optimal convergence rates in Figure 1) are relatively close to each
other, those for θ = 0.8, 0.9 exhibit a slower increase in the cardinality of the index set.
This plot suggests that the lack of rate optimality observed for θ = 0.8, 0.9 is associated
with insufficient enrichments of the index set.

In Table 1, we show the following outputs for each run: the total number of iterations
L needed to reach the prescribed tolerance, the dimension of the final approximation
space, NL = dimVL, the final value of the total error estimate τL, the cardinality of the
final index set PL, the (total) degree degPL := maxν∈PL

∑
j≥1 νj of polynomials in the

associated polynomial space, and the number of active parameters MPL in PL.
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Figure 3. Experiments in section 7.1: Cardinality of the index set P` versus the total
number of DOFs, N` = dimV`, for θ = 0.1, . . . , 0.9.

θ L NL τL #PL degPL MPL

0.1 95 384 241 1.961 225 · 10−3 287 7 35

0.2 47 411 524 1.906 145 · 10−3 284 7 31

0.3 31 417 773 1.908 122 · 10−3 270 7 24

0.4 23 475 628 1.809 402 · 10−3 284 8 20

0.5 18 483 559 1.817 273 · 10−3 269 8 18

0.6 15 711 989 1.558 647 · 10−3 300 8 15

0.7 12 505 518 1.860 177 · 10−3 227 8 12

0.8 10 644 724 1.809 412 · 10−3 227 8 10

0.9 9 1 365 625 1.395 409 · 10−3 267 8 9

Table 1. Experiments in section 7.1: Final outputs of Algorithm 3 as τL≤ tol := 2 · 10−3.

Looking in detail at the results in Figure 3 and Table 1, we see how the value of the
Dörfler marking parameter θ influences the convergence behavior of Algorithm 3. Clearly,
the larger the value of θ, the smaller the total number of iterations L. Excluding the
results for θ = 0.6, 0.9 (for which the tolerance is met with a significantly smaller value of
the error estimate), we observe a clear trend: the number of degrees of freedom necessary
to achieve the same accuracy increases with θ (see, e.g., the results for θ = 0.4, 0.8, for
which the values of τL are nearly the same, whereas the value of NL is significantly smaller
for θ = 0.4 than for θ = 0.8). On the other hand, the results show that smaller values
of θ yield larger index sets as well as a larger number of active parameters. From this,
we infer that different values of θ induce different allocations of the degrees of freedom
in adaptively refined SGFEM approximations. Specifically, smaller values of θ lead to
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Figure 4. Experiments in section 7.2: Computational domain, where the subdomains
of equal ‘importance’ are highlighted with the same color (left); the expectation of the
reference SGFEM solution (right).

larger index sets and larger number of active parameters (which both yield more accurate
parametric discretizations), whereas larger values of θ seem to generate finer meshes over
the physical domain (hence, more accurate spatial discretizations).

7.2. Cookie problem. Our second example of parametric problem (1)–(2) is a ver-
sion of the so-called cookie problem; cf. [BG15, ENSW19, BPR20]. Here, we adopt the
setting of [BPR20, section 7.2] and consider the square domain D = (0, 1)2 that contains
nine circular inclusions Dm ⊂ D (m = 1, . . . , 9). For all i, j ∈ {1, 2, 3}, the subdomain
Di+3(j−1) is the disk with center at the point ((2i− 1)/6, (2j − 1)/6) and radius r = 1/8;
see Figure 4(left). We set f ≡ 1 in (1) and choose the expansion coefficients in (2) as
follows:

a0(x) = 1, am(x) = km χDm(x) for m = 1, . . . , 9, am(x) = 0 for m > 9 (x ∈ D),

where χDm denotes the characteristic function of the subdomain Dm and

km =


0.5 if m = 1, 3, 7, 9,

0.7 if m = 2, 4, 6, 8,

0.9 if m = 5.

(42)

Thus, the diffusion coefficient a(x,y) in this example depends on finitely many param-
eters y1, . . . , y9 ∈ [−1, 1], and the amplitudes of the corresponding coefficients in the
expansion (2) induce a hierarchy of these parameters, whereby y5 is more ‘important’
than y2, y4, y6, and y8, which in turn are more ‘important’ than y1, y3, y7, and y9. With
these choices, assumptions (3)–(4) are satisfied with amin

0 = amax
0 = 1 and τ = 0.9. The

expectation of an SGFEM solution to this problem is plotted in Figure 4(right).
We run Algorithm 3 with the same initial mesh T0 (a uniform mesh of 512 right-

angled triangles) and different values of the Dörfler marking parameter θ = 0.1, . . . , 0.9.
Each computation is terminated when the error estimate τ` falls below the tolerance
tol := 10−3. Following [BPR20, section 7.2], we change the definition of the detail index
set (10) to

Q• := {µ ∈ N9
0 \P• : µ = ν ± εm for all ν ∈ P• and all m = 1, . . . , 9},
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so that all relevant parameters are available for activation starting from the first iteration
and the computations exhibit a shorter preasymptotic phase. We emphasize that the
results of Theorem 2 and Theorem 5 remain valid in this case.
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Figure 5. Experiments in section 7.2: Total error estimates τ` (left) and reference
energy errors |||uref − u` ||| (right) versus the total number of DOFs N` = dimV` for
θ = 0.1, . . . , 0.9.

In Figure 5, we plot the total error estimates τ` (left) and the reference energy errors
|||uref −u` ||| (right) versus the total number of degrees of freedom N`. Here, the reference
solution uref is computed by running Algorithm 3 with θ = 0.5 to a smaller tolerance (we
set tol = 4 · 10−4). For all considered values of θ, the convergence rate of both the error
estimates and the reference errors is O(N

−1/2
` ), i.e., the optimal rate for the SGFEM based

on P1-FEM approximation in the physical domain. In contrast to what we observed for
the test problem in section 7.1, the rate appears to be optimal also for θ = 0.8, 0.9.

In Figure 6, we plot the effectivity indices ζ` versus the total number of degrees of
freedom N` in computed SGFEM approximations for θ = 0.1, . . . , 0.9. In contrast to the
test problem in section 7.1 (see Figure 2), Figure 6 shows essentially the same behavior of
ζ` for all values of θ ∈ {0.1, . . . , 0.9}. Furthermore, the effectivity indices vary in a range
between 0.6 and 0.82 throughout all iterations, which shows that the underestimation
of the reference error in this example is more pronounced than for the test problem in
section 7.1.

In Figure 7, we plot the cardinality of the index sets P` versus the total number of
degrees of freedom N` for θ = 0.1, . . . , 0.9. We observe that the relative position of the
curves is the inverse of the one in the corresponding plot for the experiment in section 7.1
(cf. Figure 3), with the curve for θ = 0.9 exhibiting the fastest increase. Moreover,
all curves are now positioned close to each other, which is consistent with the results
presented in Figure 5, where the optimal convergence rate is observed for all values of θ.

The final outputs of Algorithm 3 are collected in Table 2. We can see that for all values
of θ, Algorithm 3 identifies and activates all nine relevant parameters. For smaller values
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Figure 6. Experiments in section 7.2: Effectivity indices ζ` for the error estimates τ` for
the SGFEM approximations generated by Algorithm 3 with θ = 0.1, . . . , 0.9.
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Figure 7. Experiments in section 7.2: Cardinality of the index set P` versus the total
number of DOFs, N` = dimV`, for θ = 0.1, . . . , 0.9.

of θ, the algorithm generates final Galerkin approximations with significantly less degrees
of freedom but requires significantly more iterations in order to reach the prescribed tol-
erance. This is in agreement with the results of section 7.1 (cf. Table 1 and the associated
discussion). However, in this example, the cardinality of the final index set tends to in-
crease and the total polynomial degree tends to decrease as θ increases, which is different
from the behavior observed for the benchmark problem in section 7.1 (cf. Table 1). This
difference in behavior is due to the diffusion coefficient in this example depending on
finitely many parameters and the expansion coefficients in (2) having local supports.

Finally, in Table 3, for all θ = 0.1, . . . , 0.9, we show the maximum polynomial degree
activated for each parameter ym (m = 1, . . . , 9). We can see that Algorithm 3 is effective in
capturing the ‘importance’ of parameters. Indeed, the highest polynomial degree is always
used for the parameter y5 associated with the largest expansion coefficient; cf. (42). On
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θ L NL τL #PL degPL MPL

0.1 100 416 841 9.948 64 · 10−4 392 15 9

0.2 50 448 722 9.586 15 · 10−4 409 16 9

0.3 33 467 023 9.419 73 · 10−4 433 16 9

0.4 24 469 294 9.462 78 · 10−4 441 16 9

0.5 19 469 862 9.578 95 · 10−4 457 15 9

0.6 16 587 344 8.794 47 · 10−4 510 15 9

0.7 13 524 901 9.763 64 · 10−4 501 12 9

0.8 11 611 416 9.814 06 · 10−4 558 11 9

0.9 10 1 143 257 8.507 08 · 10−4 810 10 9

Table 2. Experiments in section 7.2: Final outputs of Algorithm 3 as τL ≤ tol := 10−3.

m = 1, 3, 7, 9 m = 2, 4, 6, 8 m = 5

θ = 0.1 5 8 15

θ = 0.2, 0.3, 0.4 6 8 16

θ = 0.5, 0.6 6 9 15

θ = 0.7 6 9 12

θ = 0.8 6 9 11

θ = 0.9 7 10 10

Table 3. Experiments in section 7.2: Maximum polynomial degree maxν∈PL νm in the
final index set PL generated by Algorithm 3 for m = 1, . . . , 9 and for θ = 0.1,. . . , 0.9.

the other hand, the range of maximum polynomial degrees for different sets of parameters
(or, subdomains) shrinks as θ increases.
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