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Abstract: Two of the main factors shaping an individual’s opinion are social coordination and
personal preferences, or personal biases. To understand the role of those and that of the topology
of the network of interactions, we study an extension of the voter model proposed by Masuda and
Redner (2011), where the agents are divided into two populations with opposite preferences. We
consider a modular graph with two communities that reflect the bias assignment, modeling the
phenomenon of epistemic bubbles. We analyze the models by approximate analytical methods and
by simulations. Depending on the network and the biases’ strengths, the system can either reach a
consensus or a polarized state, in which the two populations stabilize to different average opinions.
The modular structure generally has the effect of increasing both the degree of polarization and its
range in the space of parameters. When the difference in the bias strengths between the populations
is large, the success of the very committed group in imposing its preferred opinion onto the other one
depends largely on the level of segregation of the latter population, while the dependency on the
topological structure of the former is negligible. We compare the simple mean-field approach with
the pair approximation and test the goodness of the mean-field predictions on a real network.

Keywords: sociophysics; opinion dynamics; agent-based models; networks

1. Introduction

The formation of people’s opinions, choices and decisions is subject to social pressure:
it is a general observation that in society, individuals (agents) take into account the behavior
of others [1]. This aspect is at the root of most agent-based models of opinion dynamics [2–5].
Many such models have been introduced with the aim to understand the effects of different
microscopic mechanisms of the opinion formation process [6,7]. Here, we consider the
voter model [8–10], characterized by a simple imitative mechanism, introducing personal
preferences attached to single individuals [11,12].

Prejudices or personal preferences generally come from the history of the individual
(e.g., ideologies and partisanship [13]) and are assumed to evolve on a much longer
time-scale than that of the opinion influencing interactions; in other words, they can be
considered as fixed (quenched) features of the nodes throughout the dynamicsEven though
this bias is a characteristic of the node, it is fundamentally different from other kinds of
biases, such as the confirmation or algorithmic ones [14–16], because those are dependent
on the node’s current opinion.

In a model with social pressure and quenched preferences, each individual is subjected
to two “forces”: one inducing the individual to minimize conflicts with his neighbors,
and the other exhorting the individual to stick to their own prejudice. A strong social
pressure may lead the agent to adopt a public opinion in dissonance with their prejudices,
a phenomenon which is defined as preference falsification in [17]. Otherwise, if the personal
bias is strong, the individual may reject social coordination, accept conflicts more easily
and stick to his prior view even if he finds himself in disagreement with many of his
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neighbors. The latter mechanism, when conflicting preferences are present among the
individuals, may contribute to the emergence of polarization [18,19].

In this work, we generally consider two groups of interacting individuals with op-
posite preferences of different intensities. We focus in particular on the role of the social
network, considering a modular network with two communities corresponding to the bias
assignment. The network model mimics the realistic setting of two epistemic bubbles, where
the agents with the same ideology share more links among themselves than with the other
oppositely biased community. The result is an unbalanced choice of sources by the agent,
who is systematically more influenced by his own community than by the other. In this
paper, our main focus resides in determining the level of polarization between the two
groups once the system has reached the stationary state, as a function of the preferences’
intensities and of the topological structure of the social network [20,21].

1.1. Literature Review

There is an analogy between the binary opinion dynamics models and the Ising model
of statistical physics, where the personal preference can be achieved by a site-dependent
external magnetic field. Following this analogy, we will characterize the opinion state of
the individuals by a σ ∈ {+1,−1} “spin” variable. We study the so-called partisanship
voter model (PVM), in which the preference toward one of the states modifies the transition
rates of the voter dynamics accordingly and breaks the original symmetry between the two
opinions. This dynamic should be distinguished from that of another biased voter model
that we call the voter model with media interactions (VMMI) [22], where the personal bias
expresses how much an individuum follows a node with a fixed opinion state connected
to everybody (the “medium”). In Table 1, we summarize the transition rates of the Ising
model and the biased voter models for homogeneous populations, where all individuals
have the same personal biases. The same models in the bipopulated versions [23,24] are
defined and explained in Table 2.

Table 1. Binary-state models with homogeneous personal biases (preferences). Ising Glauber: Ising
model with Glauber dynamics, VMMI: voter model with media interaction, PVM: partisanship voter
model. The models are defined through the infection and recovery transition rates Fk,m and Rk,m for
σ : −1 → +1 and σ : +1 → −1, respectively; the considered node has k neighbors, out of which
m are in state +1. The strength of the bias is h, which corresponds to the external field in the Ising
model, with temperature T and pairwise couplings J. For the voter models, h ∈ [0, 1].

Fk,m Rk,m

Ising Glauber 1
1+e−

2
T [h+J(2m−k)]

e−
2
T [h+J(2m−k)]

1+e−
2
T [h+J(2m−k)]

VMMI (1− h)m
k + h (1− h)(1− m

k )
PVM m

k (
1+h

2 ) (1− m
k )(

1−h
2 )

Table 2. Bipopulated binary-state models with personal biases (preferences). Columns two and three
(four and five) are for nodes in population 1 (2). For the VMMI, h1 ∈ [0, 1] and h2 ∈ [−1, 0].

F(1)
k,m R(1)

k,m
F(2)

k,m R(2)
k,m

Ising Glauber 1
1+e−

2
T [h1+J(2m−k)]

e−
2
T [h1+J(2m−k)]

1+e−
2
T [h1+J(2m−k)]

1
1+e−

2
T [h2+J(2m−k)]

e−
2
T [h2+J(2m−k)]

1+e−
2
T [h2+J(2m−k)]

VMMI (1− h1)
m
k + h1 (1− h1)(1− m

k ) (1− |h2|)m
k (1− |h2|)(1− m

k ) + |h2|
PVM m

k (
1+h1

2 ) (1− m
k )(

1−h1
2 ) m

k (
1+h2

2 ) (1− m
k )(

1−h2
2 )

The PVM with homogeneous preferences can be historically individuated as a specific
case of the Abrams–Strogatz model for language death [25] and as an agent-based model
in [26,27]. The generalization to multiple biases was first proposed by Masuda et al. in
2010 [11]. The authors of [28] focused in particular on the finite-size effects for low bias
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intensity. In the successive work [12], the model was generalized for different compositions
of the system and preferences’ intensities. In [29], the same model was considered where
just a fraction of individuals were biased. Let us also point out that the introduction of
zealots [30–32], i.e., agents that never change opinion and just try to convince others, can be
traced back to the analyzed model if we properly tune the bias associated to such agents
(i.e., setting hz = {+1,−1} depending on the type of commitment). The problem of social
pressure and conflicting preferences was also studied in evolutionary game theory [33–35],
with a focus on network effects [36] and supported with various social experiments [37–39].

1.2. Contributions and Article Structure

Despite the advancements in understanding the dynamics of systems evolving with
voter-like processes, the influence of the social network topology in the PVM with conflict-
ing preferences remains unexplored. This paper aims to address this gap by examining
the interplay between fixed individual preferences and homophilic network structures
(epistemic bubbles). Indeed, we expect homophily to play a crucial role in mitigating the
social cohesion induced by imitative dynamics, when conflicting preferences are present,
possibly leading the system to a polarized asymptotic state.

In this work, we consider the model of Masuda and Redner in its most general
version [12], which we refer to as the (bipopulated) voter model with preferences (VMP):
because personal preferences can arise from various factors and partisanship is just one
of them, we propose this renaming to enlarge the applicability of the model as well as to
establish a stronger connection to analogous models in the literature, e.g., to asymmetric
game-theoretical models. We generally consider two classes of agents with opposite
preferences of different intensities. The VMP is defined in Section 2 and solved on the
fully connected network in Section 3.1. In Section 3.2, we study the model on a bi-modular
network and calculate the phase diagram as a function of the model parameters using a
mean-field approach. In Section 3.3, we apply the pair approximation [40,41] to the model
on the modular network and compare its predictions to the mean-field results for sparse
graphs. In the remainder of this article, we study the model on a real network with high
modularity, the Political Blogosphere of 2004 US elections [42], and test the goodness of the
mean-field predictions of the stationary state in the case of equally intense but opposite
personal biases.

2. Model

The VMP, i.e., the generalization of the PVM of Masuda et al. [11,12], is defined
as follows: the system of N agents is divided into two populations, or classes, of sizes
N1 and N2 = N − N1, the agents i = 1, ..., N1 belonging to the first and the remaining
i = N1 + 1, ..., N to the second one, with α = N1

N ∈ (0, 1) the fraction of individuals of the
first population. A bias hi ∈ [−1, 1] is assigned to each agent i, according to his class: in our
bipopulated case, we assign the same h1 to the individuals of the first population, similarly
h2 to all the individuals belonging to the second one. Each node’s opinion is represented as
a binary spin σi = {+1,−1} for i = 1, ..., N. The dynamics obey the following rules:

• One node (agent) i is selected uniformly randomly.
• A neighbor j of node i is selected uniformly randomly.
• If i and j have opposite opinions, i takes the opinion of j with probability 1

2 (1 + σjhi).
Otherwise, nothing happens.

• Repeat the process until consensus or apparent stabilization is reached.

The dynamics are a generalization of the classical voter model—retrieved for
hi = 0, ∀i—where the individual copies his neighbor’s opinion with a probability equal
to 1

2 (in the original voter model this probability is 1, but the factor 1
2 just slows down the

dynamics). The biases modify the transition probabilities, favoring the transition toward
the direction of the bias and disfavoring the opposite one. It is easy to show that if in the
bipopulated case both of the biases point toward the same direction, then an infinite system
will always reach consensus at the preferred state. Thus, in the following, we will consider
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h1 ≥ 0 and h2 ≤ 0 so that the individuals of the first population tend to prefer the +1 state,
while the ones of the second class are ideologically biased toward the −1 opinion.

3. Results
3.1. Fully Connected Network

First, we study the model, for simplicity, on the complete network. This setting
was already investigated in [12]; however, we complete the analysis by calculating the
polarization measure at the stationary state for any choice of the parameters.

We define

ρ1 =
∑N1

i=1
1+σi

2
N

∈ [0, α] ρ2 =
∑N

i=N1+1
1+σi

2

N
∈ [0, 1− α] (1)

as the ratios between the number of first-class spins (respectively, second) in the current
up +1 state and the total number of spins in the system. The system of coupled ordinary
differential equations which describes the evolution of such dynamical variables can be
written generally in terms of the global rates R±1/2:{

ρ̇1 = R+1(ρ1, ρ2)− R−1(ρ1, ρ2)

ρ̇2 = R+2(ρ1, ρ2)− R−2(ρ1, ρ2)
(2)

For example, the global rate R+1 represents the probability per unit time that, when the
system is currently in state ρ1, ρ2, a spin of the first class undergoes the transition −1→ +1,
increasing the density of the up spin of the first class of 1/N, ρ1 → ρ1 +

1
N . Considering a

time unit corresponding to N steps, i.e., δt = N−1, the transition rates for a fully connected
network are 

R+1(ρ1, ρ2) = (α− ρ1)
1+h1

2 (ρ1 + ρ2)

R−1(ρ1, ρ2) = ρ1
1−h1

2 (1− ρ1 − ρ2)

R+2(ρ1, ρ2) = (1− α− ρ2)
1+h2

2 (ρ1 + ρ2)

R−2(ρ1, ρ2) = ρ2
1−h2

2 (1− ρ1 − ρ2)

(3)

For example, in the first rate R+1, the first term α − ρ1 is the probability of choosing
uniformly randomly a spin of the first class currently in the down state, while ρ1 + ρ2 is
the probability of choosing a neighbor in state +1 in the complete network, and eventually
1+h1

2 is the probability of the transition, according to the model dynamics. Thus, we have
the following mean-field equations:

ρ̇1 = 1
2

[
(α− ρ1)(1 + h1)(ρ1 + ρ2)− ρ1(1− h1)(1− (ρ1 + ρ2))

]
ρ̇2 = 1

2

[
(1− α− ρ2)(1 + h2)(ρ1 + ρ2)− ρ2(1− h2)(1− (ρ1 + ρ2))

] (4)

For the complete network in the N → ∞ limit, the mean-field equations represent exactly
the evolution of the system and they can be applied, as an approximation, to other networks.
Not considering structural or dynamical correlations, we expect them to still be accurate
on a sufficiently dense network without specific structural features [15,43], such as an
Erdős–Rényi random graph with a probability of linkage of O(1).

Localizing the fixed points (ρ∗1 , ρ∗2) of the system (4) and characterizing their stability
by the analysis of the corresponding Jacobian matrices reported in Appendix A.1, one
finds [12] the following:

• The positive (α, 1− α) (all up spins) and negative (0, 0) (all down spins) consensus
points are always fixed points, for any combination of the parameters α, h1, h2.

• When the positive (or negative) consensus is stable, it is the only stable fixed point.
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• When both the consensus fixed points are not stable, another fixed point with ρ∗1 , ρ∗2 ∈
(0, 1) appears. Such a fixed point, when it exists, is always stable.

Defining the total density of up spin ρ = ρ1 + ρ2 and ∆ = ρ1
α −

ρ2
1−α , the polarization

can be expressed as P = |∆|. As a first contribution of this paper, we calculate that at the
impasse or polarized state the average density of up spins and the polarization, respectively,
read

ρ∗ =
1
2

(
h2 − h1

h1h2
α− 1− h1

h1

)
(5)

∆∗ =
1

h1 − h2

(
1 +

α2h2
1 + (1− α)2h2

2 − h2
1h2

2
2α(1− α)h1h2

)
(6)

Moreover, by analyzing the Jacobian, one can localize the critical value of the parameters
at which the transitions from negative consensus to polarization and from polarization to
positive consensus occur: taking h1, h2 fixed and letting α vary, we have that the critical
points of the transitions above are, respectively, at

α−c = (1− h1)
h2

h2 − h1

α+c = (1 + h1)
h2

h2 − h1

The bifurcation diagrams, taking ρ and P as the order parameters and varying the composi-
tion α for various fixed h1, h2, are shown in Figure 1: the bifurcation is of a transcritical type
and the transitions are indeed continuous. The presented numerical simulations confirm
that the analytical solutions work well for systems defined on relatively small, N = 1000
complete graphs as well.

Figure 1. Bifurcation diagrams for the bipopulated voter model with preferences on the complete
network. On the left, the total density of up spin is taken as order parameter; on the right, the po-
larization ∆ is shown. The solid black line indicates the stable fixed point, while the dashed gray
lines indicate the unstable ones, for the choice of the preferences’ intensities h1 = 0.4, h2 = −0.6.
The other solid colored lines locate just the coexistence stable fixed point for other choices of the
intensities, as indicated in the legend. The points and their bars are, respectively, the average and the
confidence interval of the order parameters calculated over 30 independent simulations of a system
with 1000 agents, and they are reported in order to also test the validity of the mean-field treatment
for relatively small system sizes.

The length of the interval associated to the polarized state is α+c − α−c = 2 h1h2
h2−h1

which
reduces to α+c − α−c = h for h1 = −h2 = h. The phase diagram in this case (in the α, h plane)
is shown in Figure 2a, while in the remaining plots of the figure h2 is fixed to different
values, and the phases in the plane α, h1 are shown. To link the bifurcation and the phase
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diagrams, the horizontal lines corresponding to the choices of the biases in Figure 1 are
reported in the latter.

(a) (b)

(c) (d)

Figure 2. Phase diagrams for the complete network. The polarized area is colored in light purple
and indicated with P, and in white are + and − consensus. (a) shows the mean-field phases in
the αh plane, for equal and opposite preferences’ intensities h1 = −h2 = h. The dark purple dot
represents the regime α = 1

2 , h→ 0 in which [28] have investigated finite-size effects. (b–d) report the
phases in the αh1 plane, once fixed h2, respectively, to −0.6,−0.8,−0.9. Each of the colored horizontal
lines present in some of the plots represents the choice of the biases h1, h2 as in Figure 1 (the colors
correspond). They are reported in order to show how the lines intersect the different phases.

Defining the critical mass of a population [44] as the minimum fraction of individuals
of that population necessary to escape from consensus at the unpreferred opinion, we
have that the critical masses of, respectively, the first and second populations are α−c and
1− α+c . For very low biases, the populations over the critical masses rapidly overturn the
outcome of the system, switching the direction of consensus. In this model, the critical
masses depend only on the biases and lay in the whole range (0, 1).

3.2. Modular Networks

To study the effect of the topology reflecting the biased communities of the bipop-
ulated VMP, we analyze the model on a network with two modules of sizes N1 and N2,
generated by a stochastic block model (SBM) [45]. The SBM is defined by the intramod-
ular (p11, p22) and intermodular (p12, p21) connectivities, i.e., the probabilities describing
the corresponding linkings between the agents (for undirected networks p12 = p21). We
assume that the network results from homophilic interactions (epistemic bubbles) such that
all agents within module 1 (2) have bias h1 (h2).
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We start from the mean-field Equation (2) where the global transition rates are now
functions of the connectivities of the block model:

R+1(ρ1, ρ2) =
1

αp11+(1−α)p12
(α− ρ1)

1+h1
2 (p11ρ1 + p12ρ2)

R−1(ρ1, ρ2) =
1

αp11+(1−α)p12
ρ1

1−h1
2 [p11(α− ρ1) + p12(1− α− ρ2)]

R+2(ρ1, ρ2) =
1

αp12+(1−α)p22
(1− α− ρ2)

1+h2
2 (p12ρ1 + p22ρ2)

R−2(ρ1, ρ2) =
1

αp12+(1−α)p22
ρ2

1−h2
2 [p12(α− ρ1) + p22(1− α− ρ2)]

(7)

For example, once a spin in the down state of class 1 is selected, the probability that we
find one of its neighbors in the up state is p11ρ1

αp11+(1−α)p12
+ p12ρ2

αp11+(1−α)p12
(for more details,

see Appendix B).
We end up with the mean-field evolution equations for the densities ρ1, ρ2:

ρ̇1 = C1

[
(α− ρ1)(1 + h1)(p11ρ1 + p12ρ2)− ρ1(1− h1)[p11(α− ρ1) + p12(1− α− ρ2)]

]
ρ̇2 = C2

[
(1− α− ρ2)(1 + h2)(p12ρ1 + p22ρ2)− ρ2(1− h2)[p12(α− ρ1) + p22(1− α− ρ2)]

] (8)

where C1 = 1
2[αp11+(1−α)p12]

, C2 = 1
2[αp12+(1−α)p22]

.
It is easy to see that the consensus states are still fixed points. The numerical study

of the system shows that the qualitative behavior of the fully connected case is preserved,
i.e., the different phases are separated by transcritical bifurcations, but the polarization area
generally widens and the range of the polarized phase increases. Figure 3 compares the
fully connected case and the topology characterized by two cliques (p11 = p22 = 1) and
intercommunity connectivities p12 = p21 = 0.3, with equally strong opposite preferences
h1 = −h2 = h. In general, the symmetric community structure decreases the values of the
critical masses, with respect to the fully connected topology.

Figure 3. VMP on modular networks with equally strong opposite preferences, α, h plane. The
mean-field predictions are shown, i.e., the stable fixed point of the system (8), for two choices of
connectivities of the modular network. Upper plots: case p11 = p22 = p12 = p21 = 1, corresponding to
the fully connected topology (subplot (a) in Figure 2). Lower plots: case p11 = p22 = 1, p12 = p21 = 0.3,
i.e., still symmetric probabilities but segregated communities. The polarization increases and the
polarization area widens; nevertheless, the general qualitative behavior is preserved.
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By considering the evolution of the normalized densities ρ′1 = ρ1
α ∈ [0, 1], ρ′2 = ρ2

1−α ∈
[0, 1] and defining the topological parameters

γ1 =
p12(1− α)

p11α + p12(1− α)
γ2 =

p21α

p22(1− α) + p21α
(9)

we have a consistent reduction in the number of parameters in the mean-field system on
the SBM (8), which reads

ρ̇′1 = 1
2

[
(1− ρ′1)(1 + h1)[(1− γ1)ρ

′
1 + γ1ρ′2]− ρ′1(1− h1)[(1− γ1)(1− ρ′1) + γ1(1− ρ′2)]

]
ρ̇′2 = 1

2

[
(1− ρ′2)(1 + h2)[γ2ρ′1 + (1− γ2)ρ

′
2]− ρ′2(1− h2)[γ2(1− ρ′1) + (1− γ2)(1− ρ′2)]

] (10)

The interpretation of γ1, γ2 is straightforward in terms of the average internal and external
degrees z11, z12, z21, z22:

γ1 =
z12

z11 + z12
γ2 =

z21

z22 + z21
(11)

Being the average fractions of external connections over the total number of connections
of the agents in classes 1 and 2, γ1, γ2 can be intended as the average open-mindedness of
the individuals of, respectively, the first and second communities. Because in an epistemic
bubble the agents overrepresent (i.e., are more linked to) their belonging community,
we expect γ1 ∈ (0, 1 − α) and γ2 ∈ (0, α). The more far γ1, γ2 are from these upper
extremes, the more the individuals of the corresponding population have unbalanced
sources of information, i.e., are trapped in the bubble. If the individuals have on average
more connections within their belonging community rather than toward the other, then
γ1, γ2 ∈ (0, 0.5). Figure 4 shows the stationary polarization ∆∗ = ρ′∗1 − ρ′∗2 in the h1h2 plane,
for different choices of the open-mindedness parameters γ1, γ2, by numerically calculating
the fixed points of the mean-field system (10) and determining their stability.

From the linear stability analysis of the consensus fixed points of the system (10),
reported in Appendix A.2, we obtain the condition for the stability of the positive consensus

γ1h2(1− h1) + γ2h1(1− h2) + 2h1h2 ≥ 0 (12)

and for the negative one

−γ1h2(1 + h1)− γ2h1(1 + h2) + 2h1h2 ≥ 0 (13)

First, we fix γ1, γ2 and determine the critical lines in the h1, h2 plane. The line separating
the space when the positive consensus is stable (below the line) and the one for which it is
unstable reads

−hc
2(h1) =

γ2h1

γ1(1− h1) + h1(2− γ2)
(14)

and it is bounded superiorly by −hc+
2 = γ2

2−γ2
, which is reached at h1 = 1 and does not

depend on γ1.
In the same way, the critical line related to the negative consensus fixed point reads

hc
1(h2) =

−γ2h2

γ2(1 + h2)− h2(2− γ1)
(15)

and it is bounded by hc−
1 = γ1

2−γ1
, independent of γ2. The critical lines are drawn for a

choice of the open-mindedness parameters in Figure 5b.
In the γ1, γ2 plane, the critical line for the positive consensus

γc
2(γ1) =

−h2(1− h1)

h1(1− h2)
γ1 −

2h2

(1− h2)
(16)
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is a straight line in the plane, whose coefficient tends to zero (the line flattens) for high h1
and low −h2. When this is the case, the critical points for different topologies of the first
population, i.e., different γ1, happen to be at approximately the same value of γ2, as shown
in Figure 5c,d. Naturally, symmetric considerations hold for the negative consensus.

The results of the linear stability analysis allow us to conclude that if one population is
very committed or the other population’s bias is very low, e.g., when h1 >> −h2, whether
or not such a population manages to impose its preferred opinion depends largely on the
open-mindedness of the other population γ2, while the dependency on the topological
structure of the committed population γ1 is negligible.

Figure 4. VMP on modular networks. Mean-field predictions for the polarization (Equation (10)) in
the h1, h2 plane for two equally open-minded communities (γ1 = γ2, upper line), and for three values
of γ2, varying the open-mindedness of the first population γ1. Notice that the open-mindedness
decreases from left to right, meaning that moving to the right the groups become more and more
segregated. Decreasing the open-mindedness, the consensus areas shrink and the system becomes
more and more polarized.
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(a) (b)

(c) (d)

Figure 5. Simulations and analytical results for the VMP on a modular graph. (a) The average density
of up spin at the stationary state is calculated over 30 runs of the model, with N = 1000 agents and
preferences h1 = 0.7, h2 = −0.2, varying the open-mindedness of the second population and for
3 values of the open-mindedness of the first population, corresponding to different colors. We see
that all three lines approach the positive consensus at approximately the same γ2. (b) Critical lines
for the positive and negative consensus points in the h1,−h2 plane, for γ1 = 0.5, γ2 = 0.3 (black).
In the background, the polarization values calculated numerically as in Figure 4 are reported, to show
the consistency of the results of the linear stability analysis. The red and blue lines are the positive
consensus critical lines for other values of γ1, while γ2 = 0.3 constantly. The figure is the analytical
correspondent of γ1 = 0.1, 0.3, 0.5, γ2 = 0.3 plots in Figure 4. (c) Critical lines in the γ1, γ2 plane for
h2 = −0.2 and different h1. The figure shows that the higher h1, the more the critical line tends to a
horizontal line. (d) Once the biases are fixed to h1 = 0.7, h2 = −0.2, in the γ1γ2 plane the analytical
critical line (16) and the values of γ1 (vertical lines) corresponding to the lines in (a) are reported:
we see that the intersections with the critical line (i.e., the points at which the positive consensus
becomes stable) occur almost at the same γ2, for all three values of γ1.

We test this claim by numerically simulating the VMP on modular networks for a finite
system of N = 1000 agents, fixing h1 = 0.7, h2 = −0.2 and varying the topology through
the open-mindedness parameters γ2 and γ1. The results, shown in Figure 5a, support the
mean-field predictions by showing that the critical value of γ2 separating the polarization
and positive consensus phases is approximately the same for all three lines in the γ2, ρ∗

plane, corresponding to the three chosen values of γ1.

3.3. Pair Approximation

The aim of this section is to investigate how a more refined approximation better
reproduces the model’s behavior on complex networks. We implement the so-called pair
approximation (PA) [40,41], which takes into consideration dynamical correlations at a
pairwise level.

For the sake of simplicity, the pair approximation is applied on an undirected regular
and mij neighbors of the population j currently in state +1.

The mean-field approximation consists of taking those probabilities highly peaked
at the values of

mij
zij

coinciding to the overall normalized densities ρ′1, ρ′2, so having the
shape of delta functions explicitly stated in ((A39)–(A42)). The pair approximation, instead,
considers pairwise dynamical correlations by taking those probabilities as binomial dis-
tributions with single event probability corresponding to the ratio between the number
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of active links departing from the node’s type, intended as its class and state, and the
number of connections from that node’s type. The argument is explained in the Appendix
((A43)–(A58)).

The latter ratios are also dynamical variables of the system derived from the pair
approximation (A59), which indeed consists of six coupled differential equations. The in-
crease in complexity is justified by a gain in accuracy, consistent for low average degrees,
i.e., for sparse graphs. In Figure 6, we compare the mean-field and pair approximation
effectiveness in reproducing the dynamics of the system, on an extremely sparse modular
network. We see that the gain in accuracy is consistent, and the PA is able to predict the
dynamics almost perfectly. On the right plot of the figure, we test multiple initial conditions
in order to check that, as in the mean-field treatment, the stable fixed point is unique.

Figure 6. Pair and mean-field approximations. On the left, dynamics of the MF (dotted line) and
PA (dashed lines) approximations compared with numerical simulations (thin solid lines), averaged
over 30 independent runs. The graph is a sparse modular network of N = 3000 nodes with two
z−regular communities z11 = 4, z12 = 2, z21 = 1, z22 = 3; thus, α = 2

3 and γ1 = 0.4, γ2 = 0.25.
The two communities’ preferences are, respectively, h1 = 0.3, h2 = −0.5. The initial opinions are
chosen uniformly random (ρ′1(0) = ρ′2(0) = 1

2 ). On the right, same setting repeated for various
initial conditions ρ′1(0), ρ′2(0). The results show that even for low connectivities, the stable fixed point
is unique.

3.4. Application to the Network of Blogs

We run the bipopulated VMP on a real social network with a modular structure,
to study how well the mean-field approximation performs on a real network with high
modularity and potentially structural features as well as dynamical correlations. We take
the network of Political Blogs during the 2004 American elections [42], characterized by
the presence of two communities that reflect political bipartisanship. After eliminating the
nodes with a degree less than 4, and transforming for simplicity the original directed net-
work to undirected (such that p12 = p21), we apply a community detection algorithm [46].
It turns out that the two communities, named “reds” and “blues” (shown in the upper
plot of Figure 7), have sizes, respectively, Nr = 413, Nb = 490; average internal degrees
zrr = 34.02, zbb = 32.38; and external degrees zrb = 2.88, zbr = 2.43. We perform numerical
simulations of the model, choosing, for simplicity, opposite and equally strong preferences
(h1 = −h2 = h), for multiple values of h, and compare them to the mean field predictions on
an SBM with the same average degrees. The results are reported in Figure 8: the mean-field
predictions agree well with the empirical simulations, with a small gap emerging for weak
preference intensities. In the lower plot of Figure 7, the average polarization of each node
in the asymptotic state (t = 50) over repeated runs of the model with equal and opposite
biases fixed to h = 0.3 is reported: as one could expect, the most open-minded nodes adopt
their unpreferred opinion more frequently than the ones in the rest of their community.
Despite this effect due to the heterogeneity of the degrees and specifically of the local
open-mindedness, the mean-field predictions remain quite accurate.
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Figure 7. VMP on the 2004 Blogosphere. In the upper plot, the 2004 Political Blogosphere after
community detection: nodes’ colors reflect political partisanship. In the lower plots, each node is
colored according to the average state ρ̄i at time t = 50, for a bipopulated VMP where the populations
are the ones computed by community detection and the preferences are set to hr = −hb = 0.2.
The colorscale goes from blue, corresponding to ρ̄i = 0, to red (ρ̄i = 1). The averages are computed
running 100 independent simulations.
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Figure 8. Mean-field predictions and simulations of the model on the 2004 Blogosphere. We compare
the mean-field predictions (purple line) and the numerical simulations (gray line) of the asymptotic
polarization on the 2004 Political Blogosphere, restricting to equally strong biases hr = −hb = h,
for various h.

4. Discussion and Conclusions

In this work, we have studied a system of individuals whose process of opinion
formation is influenced by three factors: the imitative mechanism at the root of most of the
models of opinion dynamics, the heterogeneous personal preferences of individuals for one
opinion rather than the other and the homophilic phenomenon at the root of the so-called
epistemic bubbles, which implies that each individual is more connected to individuals
with the same preference and leads to the formation of a social network with a modular
structure. We have considered two oppositely biased populations with preferences of
different intensities, interacting through a modular network that reflects the phenomenon
of epistemic bubbles, where two individuals with the same bias are more likely to get
connected. Within the model’s framework, it turns out that in general an increasing
segregation of the two communities of individuals with the same fixed preference induces
and favors polarization. We have derived the system of differential equations governing
the opinion dynamics within the mean-field and pair approximations. In the mean-field
framework, we have analytically determined the conditions under which the individuals of
one population manage to induce the whole system to converge to their preferred opinion.
Moreover, we have shown that the achievement of consensus depends mostly on the
topological structure of the “losing” population rather than on the one of the “winning”
population. This disparity is more evident the greater the bias intensity of the “winning”
group with respect to the “losing” one. In this sense, the model suggests that, in order to
maintain consensus at their preferred opinion, it is convenient for the “winning” population
to keep the level of segregation of the losing population under a certain threshold, also
at the price of becoming slightly less segregated. In other words, it is convenient for
the individuals of the “winning” population to establish a larger number of inter-class
connections. On the other hand, the “losing” population must become more cohesive in
order to escape from the consensus state at its unpreferred opinion.

The appropriateness of the assumptions at the basis of the abstract and minimalistic
voter model with preferences needs to be tested in a real setting through the implementation
of social experiments [5,47]. On the other hand, in perspective of an application of the VMP
on real data, one has to cope with the problem of identifying and quantifying the external
preferences attached to individuals. This is of course an open and difficult problem: a
practical method would be to analyze historical positions of each individual on other topics
(for example, in the context of misinformation [12], the attached bias may correspond to the
frequency at which conspiracy theories has been preferred to mainstream news in the past,
by the individual). Another approach would be to first identify communities in a social
network of interactions and then infer the average preferences of the individuals of the
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communities by analyzing the opinion uploads during internal and external interactions
(similarly to [48]).

Additionally, the bipopulated VMP presented in this work serves as a foundation for
more sophisticated and realistic models. For example, preferences can be formulated to
depend on the current opinions of the two groups. Moreover, the assumption of assigning
the same preference to all individuals in a community can be relaxed to explore the impact
of different distributions on the asymptotic state of the system. Furthermore, one can
consider the presence of noise or other biases (e.g., the algorithmic one [15]) or consider
comparable time-scales for personal preferences and opinion uploads.

Finally, the VMP can be compared to other models with similar settings (e.g., [33,49]),
to study the roles of preferences and homophily in the opinion formation process through
multiple perspectives and approaches, as encouraged by the authors of [50,51].
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Appendix A. Linear Stability Analysis

Appendix A.1. Fully Connected Network

Here, we perform the linear stability analysis of the dynamical system (4) derived for
the VMP on the fully connected topology, giving a proof to the considerations in Section 3.1.
As said in the main text, the consensus points (0, 0) and (α, 1− α) are fixed points of the
system for whatever choice of the parameters α, h1, h2, while it is easy to prove that only
for α ∈ (α−c , α+c ) the fixed point corresponding to the polarized states (5) and (6) is in the
rectangle (0, α)× (0, 1− α) and thus has a physical meaning. In the following, we prove
that for conflicting preferences, i.e., h1 ≥ 0, h2 ≤ 0, for α < α−c the negative consensus
fixed point is the only stable fixed point of the system, for α ∈ (α−c , α+c ) both the consensus
points are unstable and the polarized fixed point is stable, while for α > α−c the positive
consensus is the only stable fixed point.

The Jacobian of the dynamical system reads

J(ρ1, ρ2; α, h1, h2) =
1
2

(
α− 1 + h1(1 + α− 4ρ1 − 2ρ2) α + h1(α− 2ρ1)

1− α + h2(1− α− 2ρ2) −α + h2(2− α− 4ρ2 − 2ρ1)

)
(A1)

www-personal.umich.edu/mejn/netdata/
www-personal.umich.edu/mejn/netdata/
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According to the linear stability theory, a fixed point is stable if both the eigenvalues of the
corresponding Jacobian are negative, i.e., if the trace T is negative and the determinant D is
positive.

For the negative consensus fixed point, we have that

T =
1
2

[
α(h1 − h2) + 2h2 + h1 − 1

]
(A2)

D =
1
2

[
h1h2 − h2 − α(h1 − h2)

]
(A3)

so the determinant is positive for α < αD = −h2(1−h1)
h1−h2

, while the trace is negative for

α < αT = 1−2h2−h1
h1−h2

. Thus, the stability condition is satisfied for α < min(αT , αD). It is easy
to see that αD ≤ αT , because for the assumptions on the sign of the preferences it holds that
h1h2 + h1 + h2 ≤ 1, so the negative consensus point is a stable attractive fixed point if and
only if α < αD = α−c .

Analogous considerations apply to the positive consensus fixed points, whose deter-
minant and trace read

T =
1
2

[
− α(h1 − h2)− h1 − 2h2 − 1

]
(A4)

D =
1
2

[
α(h1 − h2) + h1h2 + h2

]
(A5)

and by applying the same arguments as before, we obtain that the stability condition is
fulfilled when α > max(αD, αT) = αD = α+c .

Last, the same considerations about the trace and determinant can be used to prove
that in the range [α−c , α+c ] the fixed point corresponding to the polarized state is stable.

Appendix A.2. Modular Networks

We perform the linear stability analysis of the mean-field system (10) derived from
the VMP on a modular network with two communities and open-mindedness parameters
γ1, γ2. The dynamical variables taken into consideration are now ρ′1, ρ′2 as defined in
Section 3.2, both in the range [0, 1]. The analysis focuses on the stability of the consensus
points, now (0, 0) for the negative and (1, 1) for the positive, which are fixed points of the
system for whatever choice of the parameters.

The Jacobian matrix of the system (10), discarding the uninfluential factor, reads

J(ρ′1, ρ′2) =

(
γ1(4h1ρ1 − 2h1ρ2 − h1 − 1)− 4h1ρ1 + 2h1 γ1[1− h1(2ρ1 − 1)]

γ2[1− h2(2ρ2 − 1)] γ2(4h2ρ2 − 2h2ρ1 − h2 − 1)− 4h2ρ2 + 2h2

)
(A6)

and as before, we compute the traces and the determinant of the Jacobian at the fixed point
in order to obtain the stability conditions.

The traces and determinant for the positive consensus point read

T = −γ1(1− h1)− γ2(1− h2)− 2(h1 + h2) (A7)

D = 2
[
γ1h2(1− h1) + γ2h1(1− h2) + 2h1h2

]
(A8)

and we see that the trace is negative for all h1 ≥ −h2, while the determinant is positive for

γ1h2(1− h1) + γ2h1(1− h2) + 2h1h2 > 0 (A9)
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However, it never happens that T > 0 and D > 0 at the same time, at least in the parameters’
space of interest h1 ≥ 0, h2 ≤ 0, γ1/2 ≥ 0. To prove it, we try to solve the system{

T = −γ1(1− h1)− γ2(1 + |h2|)− 2(h1 − |h2|) > 0
D ∝ −γ1|h2|(1− h1) + γ2h1(1 + |h2|)− 2h1|h2| > 0

(A10)

Arranging the terms, we are left with the series of inequalities

−γ1(1− h1)− 2(h1 − |h2|) > γ2(1 + |h2|) >
1
h1

(
γ1|h2|(1− h1) + 2h1|h2|

)
(A11)

that implies

−γ1(1− h1)− 2(h1 − |h2|) >
1
h1

(
γ1|h2|(1− h1) + 2h1|h2|

)
(A12)

and simplifies in
−γ1h1(1− h1)− 2h2

1 > γ1|h2|(1− h1) (A13)

which is never true, because the terms on the l.h.s. are always negative and the term on the
r.h.s. is positive. Thus, the whole stability region of the positive consensus fixed point is
determined by the condition derived from the determinant (A9), and thus delimited by the
critical curve

γ1h2(1− h1) + γ2h1(1− h2) + 2h1h2 = 0 (A14)

For the negative consensus, we have

T = −γ1(1 + h1)− γ2(1 + h2) + 2(h1 + h2) (A15)

D = 2
[
− γ1h2(1 + h1)− γ2h1(1 + h2) + 2h1h2

]
(A16)

and applying the same arguments of the positive consensus, we can claim that the sta-
bility condition is determined only by the condition on the determinant D > 0; thus, the
corresponding critical curve reads

−γ1h2(1 + h1)− γ2h1(1 + h2) + 2h1h2 = 0 (A17)

Appendix B. Mean-Field Transition Rates for Modular Networks

As in the fully connected case, each of the global mean-field transition rates (7) for the
modular network is the product of three factors: the probability to randomly select an agent
of class i and current state σ, the probability of selecting one neighbor of such an agent’s
type currently in the opposite state −σ and the probability of transition (imitation). With
respect to the fully connected case, the first and the third factor are obviously unchanged
and in the case of R+1 correspond, respectively, to α− ρ1 and 1+h1

2 . To determine the second
factor, we have to take carefully into account the modular structure and distinguish the
two classes. For R+1, once a spin of the first class is selected, the probability of randomly
selecting a neighboring agent of the first class is αp11

αp11+(1−α)p12
, multiplied by the probability

that such a neighbor is in the up state ρ1
α . Analogously, the probability of randomly

selecting a neighbor of the second class is (1−α)p12
αp11+(1−α)p12

, multiplied by the probability that

such a neighbor is in the up state ρ2
1−α . The result is the factor p11ρ1

αp11+(1−α)p12
+ p12ρ2

αp11+(1−α)p12
.

Analogous considerations apply for the other transition rates R1−, R2+ and R2−.
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Appendix C. Derivation of the Pair Approximation System of ODEs

For the sake of simplicity, we apply the pair approximation on a z-regular undirected
modular graph with two communities, but the treatment can be easily extended to a
directed modular network with heterogeneous degrees.

Each node of class 1 has z11 internal neighbors and z12 external (of different class)
ones. The same applies for class 2. Moreover, N1z12 = N2z21. The following quantities are
defined: the density of up spins in the first and second class are, respectively, ρ′1 and ρ′2,
as in the paragraph before, while b

σi σj
lm represents the fraction of active links connecting a

spin in state σi spin of class l with a spin in state σj spin of class m, normalized by the total
number of connections of the class l toward the class m, considering the adjacency matrix
A associated to the network:

ρ′1 =
1

N1

N1

∑
i=1

1 + σi
2

(A18)

ρ′2 =
1

N2

N

∑
i=N1+1

1 + σi
2

(A19)

b+−11 =
1

N1z11

N1

∑
i=1

N1

∑
j=1

Aij
1− σi + σj − σiσj

4
(A20)

b+−22 =
1

N2z22

N

∑
i=N1+1

N

∑
j=N1+1

Aij
1− σi + σj − σiσj

4
(A21)

b−+12 =
1

N1z12

N1

∑
i=1

N

∑
j=N1+1

Aij
1− σi + σj − σiσj

4
(A22)

b+−12 =
1

N1z12

N1

∑
i=1

N

∑
j=N1+1

Aij
1 + σi − σj − σiσj

4
(A23)

Due to the undirectedness of the network, the other quantities of interest can be expressed
as functions of the ones defined above, specifically b−+11 = b+−11 , b−+22 = b+−22 , b+−21 = b−+12 ,
b−+21 = b+−12 .

The first of the global rates of the possible processes W1−→+
z11,m11,z12,m12

, i.e., the probability
that in a unit time (recall δt = 1

N ) a spin of the first class in current state − and with m11 out
of z11 internal neighbors and m12 out of z12 external ones currently in + state flips, reads

W1−→+
z11,m11,z12,m12

= N1(1− ρ′1)P11−
z11,m11

P12−
z12,m12

F1
z11+z12,m11+m12

(A24)

where P11−
z11,m11

is the probability that a node in the first population currently in state −1 has
z11 degree (trivial, explicitly stated only for the generalization) and m11 neighbors of the
first population currently in state +1. The other rates read similarly:

W2−→+
z22,m22,z21,m21

= N2(1− ρ′2)P22−
z22,m22

P21−
z21,m21

F2
z22+z21,m22+m21

(A25)

W1+→−
z11,m11,z12,m12

= N1ρ′1P11+
z11,m11

P12+
z12,m12

R1
z11+z12,m11+m12

(A26)

W2+→−
z22,m22,z21,m21

= N2ρ′2P22+
z22,m22

P21+
z21,m21

R2
z22+z21,m22+m21

(A27)

The transition rates (infection −1→ +1 and recovery +1→ −1) in the expressions of the
global rates, for this specific multi-class binary-state stochastic process, are

F1/2
z,m =

m
z

1 + h1/2

2
(A28)

R1/2
z,m =

(
1− m

z

)
1− h1/2

2
(A29)
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The two global rates of the first class W1∓→±
z11,m11,z12,m12

change the variables, respectively,

ρ′1 → ρ′1 ±
1

N1
(A30)

b+−11 → b11 ±
(z11 − 2m11)

N1z11
(A31)

b−+12 → b−+12 ∓
m12

N1z12
(A32)

b+−12 → b+−12 ±
z12 −m12

N1z12
(A33)

and correspondingly the ones in the second class rates W2∓→±
z22,m22,z21,m21

change the variables

ρ′2 → ρ′2 ±
1

N2
(A34)

b+−22 → b22 ±
(z22 − 2m22)

N2z22
(A35)

b−+12 → b−+12 ±
z21 −m21

N2z21
(A36)

b+−12 → b+−12 ∓
m21

N2z21
(A37)

Thus, the dynamical system consists of six coupled evolution equations:

ρ̇′1 = 1
N1

z11
∑

m11=0

z12
∑

m12=0
[W1+

z11,m11,z12,m12
−W1−

z11,m11,z12,m12
]

ρ̇′2 = 1
N2

z22
∑

m22=0

z21
∑

m21=0
[W2+

z22,m22,z21,m21
−W2−

z22,m22,z21,m21
]

˙b+−11 = 1
N1z11

z11
∑

m11=0

z12
∑

m12=0
(z11 − 2m11)[W1+

z11,m11,z12,m12
−W1−

z11,m11,z12,m12
]

˙b+−22 = 1
N2z22

z22
∑

m22=0

z21
∑

m21=0
(z22 − 2m22)[W2+

z22,m22,z21,m21
−W2−

z22,m22,z21,m21
]

˙b−+12 = 1
N1z12

z11
∑

m11=0

z12
∑

m12=0
(−m12)[W1+

z11,m11,z12,m12
−W1−

z11,m11,z12,m12
] +

+ 1
N2z21

z22
∑

m22=0

z21
∑

m21=0
(z21 −m21)[W2+

z22,m22,z21,m21
−W2−

z22,m22,z21,m21
]

˙b+−12 = 1
N1z12

z11
∑

m11=0

z12
∑

m12=0
(z12 −m12)[W1+

z11,m11,z12,m12
−W1−

z11,m11,z12,m12
] +

+ 1
N2z21

z22
∑

m22=0

z21
∑

m21=0
(−m21)[W2+

z22,m22,z21,m21
−W2−

z22,m22,z21,m21
]

(A38)

We still have to define the probabilities, e.g., P11−
z11,m11

, whose definition would close the
system of ordinary differential equations above.

The mean-field approximation corresponds to taking the probabilities

P11+
z11,m11

= P11−
z11,m11

= δ(
m11

z11
− ρ′1) (A39)

P22+
z22,m22

= P22−
z22,m22

= δ(
m22

z22
− ρ′2) (A40)

P12+
z12,m12

= P12−
z12,m12

= δ(
m12

z12
− ρ′2) (A41)

P21+
z21,m21

= P21−
z21,m21

= δ(
m21

z21
− ρ′1) (A42)
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and thus decoupling the evolution of the densities of the up spin from the rest of the
system; indeed, by inserting those probabilities we would recover the mean-field evolution
Equation (10) for ρ′1, ρ′2 .

The pair approximation, instead, consists of assuming that those probabilities are
binomial distributions Bz,m(x) = ( z

m)xm(1− x)z−m

P11−
z11,m11

= Bz11,m11(p11−) (A43)

P11+
z11,m11

= Bz11,z11−m11(p11+) (A44)

P22−
z22,m22

= Bz22,m22(p22−) (A45)

P22+
z22,m22

= Bz22,z22−m22(p22+) (A46)

P12−
z12,m12

= Bz12,m12(p12−) (A47)

P12+
z12,m12

= Bz12,z12−m12(p12+) (A48)

P21−
z21,m21

= Bz21,m21(p21−) (A49)

P21+
z21,m21

= Bz21,z21−m21(p21+) (A50)

with single event probabilities

p11− =
b−+11

1− ρ′1
=

b+−11
1− ρ′1

(A51)

p11+ =
b+−11
ρ′1

(A52)

p22− =
b−+22

1− ρ′2
=

b+−22
1− ρ′2

(A53)

p22+ =
b+−22
ρ′2

(A54)

p12− =
b−+12

1− ρ′1
(A55)

p12+ =
b+−12
ρ′1

(A56)

p21− =
b+−21

1− ρ′2
=

b−+12
1− ρ′2

(A57)

p21+ =
b+−21
ρ′2

=
b−+12
ρ′2

(A58)

The criterion is to consider as a single probability, e.g., to express p11−, the fraction of −+
links of the first communities (in number b−+11 N1z11) over the total of the edges starting
from − within the first community (in number (1− ρ′1)N1z11).
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Eventuallym we can write the final system of the ODE within the pair approximation

ρ̇′1 = (1− ρ′1)
z11
∑

m11=0
Bz11,m11(p11−)

z12
∑

m12=0
Bz12,m12(p12−)F1

z11+z12,m11+m12
+

−ρ′1
z11
∑

m11=0
Bz11,z11−m11(p11+)

z12
∑

m12=0
Bz12,z12−m12(p12+)R1

z11+z12,m11+m12

ρ̇′2 = (1− ρ′2)
z22
∑

m22=0
Bz22,m22(p22−)

z21
∑

m21=0
Bz21,m21(p21−)F2

z22+z21,m22+m21
+

−ρ′2
z22
∑

m22=0
Bz22,z22−m22(p22+)

z21
∑

m21=0
Bz21,z21−m21(p21+)R2

z22+z21,m22+m21

˙b+−11 =
1−ρ′1

z11

z11
∑

m11=0

z12
∑

m12=0
(z11 − 2m11)Bz11,m11(p11−)Bz12,m12(p12−)F1

z11+z12,m11+m12
+

− ρ′1
z11

z11
∑

m11=0

z12
∑

m12=0
(z11 − 2m11)Bz11,z11−m11(p11+)Bz12,z12−m12(p12+)R1

z11+z12,m11+m12

˙b+−22 =
1−ρ′2

z22

z22
∑

m22=0

z21
∑

m21=0
(z22 − 2m22)Bz22,m22(p22−)Bz21,m21(p21−)F2

z22+z21,m22+m21
+

− ρ′2
z22

z22
∑

m22=0

z21
∑

m21=0
(z22 − 2m22)Bz22,z22−m22(p22+)Bz21,z21−m21(p21+)R2

z22+z21,m22+m21

˙b−+12 =
1−ρ′1

z12

z11
∑

m11=0

z12
∑

m12=0
(−m12)Bz11,m11(p11−)Bz12,m12(p12−)F1

z11+z12,m11+m12
+

− ρ′1
z12

z11
∑

m11=0

z12
∑

m12=0
(−m12)Bz11,z11−m11(p11+)Bz12,z12−m12(p12+)R1

z11+z12,m11+m12
+

+
1−ρ′2

z21

z22
∑

m22=0

z21
∑

m21=0
(z21 −m21)Bz22,m22(p22−)Bz21,m21(p21−)F2

z22+z21,m22+m21
+

− ρ′2
z21

z22
∑

m22=0

z21
∑

m21=0
(z21 −m21)Bz22,z22−m22(p22+)Bz21,z21−m21(p21+)R2

z22+z21,m22+m21

˙b+−12 =
1−ρ′1

z12

z11
∑

m11=0

z12
∑

m12=0
(z12 −m12)Bz11,m11(p11−)Bz12,m12(p12−)F1

z11+z12,m11+m12
+

− ρ′1
z12

z11
∑

m11=0

z12
∑

m12=0
(z12 −m12)Bz11,z11−m11(p11+)Bz12,z12−m12(p12+)R1

z11+z12,m11+m12
+

+
1−ρ′2

z21

z22
∑

m22=0

z21
∑

m21=0
(−m21)Bz22,m22(p22−)Bz21,m21(p21−)F2

z22+z21,m22+m21
+

− ρ′2
z21

z22
∑

m22=0

z21
∑

m21=0
(−m21)Bz22,z22−m22(p22+)Bz21,z21−m21(p21+)R2

z22+z21,m22+m21

(A59)

to be solved numerically with standard methods.
From the initial conditions ρ′1(0), ρ′2(0), the other initial conditions are determined as

follows:

b+−11 (0) = ρ′1(0)(1− ρ′1(0)) (A60)

b+−22 (0) = ρ′2(0)(1− ρ′2(0)) (A61)

b−+12 (0) = ρ′1(0)(1− ρ′2(0)) (A62)

b+−12 (0) = ρ′2(0)(1− ρ′1(0)) (A63)
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