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Universitá Cattolica del Sacro Cuore, Rome, Italy, 8Department of Experimental, Diagnostic, and
Specialty Medicine - DIMES, Alma Mater Studiorum Bologna University, Bologna, Italy
Purpose: Radiation-induced skin toxicity is a common and distressing side

effect of breast radiation therapy (RT). We investigated the use of quantitative

spectrophotometric markers as input parameters in supervised machine

learning models to develop a predictive model for acute radiation toxicity.

Methods and materials: One hundred twenty-nine patients treated for

adjuvant whole-breast radiotherapy were evaluated. Two spectrophotometer

variables, i.e. the melanin (IM) and erythema (IE) indices, were used to

quantitatively assess the skin physical changes. Measurements were

performed at 4-time intervals: before RT, at the end of RT and 1 and 6

months after the end of RT. Together with clinical covariates, melanin and

erythema indices were correlated with skin toxicity, evaluated using the

Radiation Therapy Oncology Group (RTOG) guidelines. Binary group classes

were labeled according to a RTOG cut-off score of ≥ 2. The patient’s dataset

was randomly split into a training and testing set used for model development/

validation and testing (75%/25% split). A 5-times repeated holdout cross-

validation was performed. Three supervised machine learning models,

including support vector machine (SVM), classification and regression tree

analysis (CART) and logistic regression (LR), were employed for modeling and

skin toxicity prediction purposes.

Results: Thirty-four (26.4%) patients presented with adverse skin effects (RTOG

≥2) at the end of treatment. The two spectrophotometric variables at the

beginning of RT (IM,T0 and IE,T0), together with the volumes of breast (PTV2) and
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boost surgical cavity (PTV1), the body mass index (BMI) and the dose

fractionation scheme (FRAC) were found significantly associated with the

RTOG score groups (p<0.05) in univariate analysis. The diagnostic

performances measured by the area-under-curve (AUC) were 0.816, 0.734,

0.714, 0.691 and 0.664 for IM, IE, PTV2, PTV1 and BMI, respectively.

Classification performances reported precision, recall and F1-values greater

than 0.8 for all models. The SVM classifier using the RBF kernel had the best

performance, with accuracy, precision, recall and F-score equal to 89.8%,

88.7%, 98.6% and 93.3%, respectively. CART analysis classified patients with IM,

T0 ≥ 99 to be associated with RTOG ≥ 2 toxicity; subsequently, PTV1 and PTV2

played a significant role in increasing the classification rate. The CART model

provided a very high diagnostic performance of AUC=0.959.

Conclusions: Spectrophotometry is an objective and reliable tool able to assess

radiation induced skin tissue injury. Using a machine learning approach, we

were able to predict grade RTOG ≥2 skin toxicity in patients undergoing breast

RT. This approach may prove useful for treatment management aiming to

improve patient quality of life.
KEYWORDS
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Introduction

The role of post-operative radiotherapy is today considered

crucial in breast cancer (1). Over 70% of breast cancer patients

receive radiation therapy, which decreases local recurrence rates

and improves long-term survival (2). Because survival from

breast cancer continues to improve in the last years (3), the

assessment of quality of life and adverse effects caused by

irradiation has become more and more relevant (4). In

particular, acute toxicity, including breast erythema and

desquamation (skin loss), has a major role in side effects. For

some patients, desquamation can cause significant patient

morbidity, worsening of the cosmetic outcome following

surgery and also the interruption of the treatment course

thereby decreasing the dose and potentially increasing the risk

of local recurrence (5).

The predictive role of clinical and treatment risk factors for

acute breast radiation toxicity has been explored by several

studies (6–10). However, prediction models able to score

individual patient toxicity risk have shown limited success.

Mbah et al. (11) aimed to identify the main causes underlying

the failure of prediction models for radiation therapy toxicity to

replicate in breast cancer patients. The authors reported that the

overfitting and the cohort heterogeneity must be considered the

two main causes of replication failure of prediction models

across cohorts. If cross-validation and bootstrapping may cope

with overfitting, it was highlighted that any reliable predictive
02
model for radiation therapy toxicity requires robust strategies to

deal with cohort heterogeneity.

Recent studies have demonstrated the capability of machine

learning (ML) to develop predictive models for radiation

toxicities in different cancers (12). Nowadays, at the best of

our knowledge only two studies employed In particular, a few

studies tried to implement ML-based models to predict breast

skin toxicity after breast radiotherapy. Saednia et al. (13)

proposed a novel method for detecting the increase in body

surface temperature caused by radiation dermatitis. Thermal

images of the irradiated breast of ninety patients taken during

the treatment course were used to build a ML model. The

thermal markers at the fifth treatment fraction were found

predictive of acute skin toxicity with a prediction accuracy of

0.87. Recently, Aldraimli et al. (14) developed several clinical

prediction models for acute breast desquamation after whole

breast external beam radiation therapy in the prospective

multicenter REQUITE cohort study. After optimization, the

random forest algorithm was found the best model, able to

classify patients with acceptable performance in the validation

cohort (AUC = 0.77). Feng et al. (15) developed a novel

quantitative ML tool for prediction of grade ≥ 2 dermatitis

before radiotherapy by using data encapsulation screening and

multi-region dose-gradient-based radiomics techniques, in

addition to clinical and dosimetric parameters. Using data of

214 patients, a combination of 20 radiomics features and 8

clinical and dosimetric variable achieve an AUC of 0.911 in the
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validation dataset. Lastly, Li et al. (16) were able to develop a ML

framework by integrating multi-region dose gradient correlated-

radiomics features from planning CT and clinical and dosimetric

factors. A random forest model trained with 10 radiomics

features, 3 dosimetric and 6 clinical variables achieved a

performance of AUC equal to 0.946 in predicting severe

radiation dermatitis after radiotherapy.

Spectrophotometry is an alternative quantitative approach

to directly and objectively measure the changes of skin surface

characteristics that may be associated with radiation-induced

skin toxicity. Yoshida et al. (17) investigated the use of

spectrophotometry to study skin discoloration as a marker for

subcutaneous-tissue fibrosis during breast-cancer treatments.

The authors reported significant differences between the

treated and contralateral breasts among all patients, with a

27% and 23% mean increase in melanin and erythema

(p < 0.001), respectively, with all parameters correlated with

t ox i c i t y s c o r e s . S chmee l e t a l . ( 1 8 ) p e r f o rmed

photospectrometric skin readings in 140 patients aiming to

objectively determine frequency and severity of acute

radiation-induced skin reactions during whole breast

irradiation. The photospectrometric measurements reported

both decreased erythema severity (p = 0.008) and

hyperpigmentation (p = 0.002) in the hypofractionation arm,

according to physician-rated observations.

All these quantitative features may then be used as imaging

biomarkers in a ML framework to develop predictive tools for

radiation-induced skin toxicity. Although a few previous studies

have proposed the use of spectrophotometry to monitor skin

changes during radiation therapy, the potential for employing

spectrophotometric features as imaging biomarkers for

prediction of radiation-induced dermatitis using ML strategies

is still unknown and requires additional research.

Based on the aforementioned arguments, the goal of this

paper was to develop a predictive model for acute breast

radiation toxicity using different ML classification models

based on clinical and spectrophotometric variables. We aimed

to measure photo-spectrometric characteristics of the irradiated

skin in patients with breast cancer and we hypothesized that

radiation-induced skin toxicity is associated with a variation of

skin characteristics as melanin and erythema.
Material and methods

Study design

The present study is a sub-analysis of a double-blind

randomized placebo-controlled trial (ATHENA project) that

aimed to investigated the potential beneficial effect of

anthocyanins supplementation on skin toxicity after breast

radiotherapy (19). This study was registered in clinicaltrial.gov

with identifier NCT02195960 and approved by the institutional
Frontiers in Oncology 03
research ethics board. An informed consent form was signed by

participants before enrollment.
Patient selection

A total of 129 patients with breast cancer undergoing

radiation therapy after surgery were enrolled. Inclusion criteria

were the type of tumor (invasive carcinoma of the breast),

surgical treatment (lumpectomy or quadrantectomy) and

axillary staging. Exclusion criteria were: women with suspected

or confirmed residual disease after surgery, non-epithelial breast

malignancies, proven multicentric carcinoma (invasive or ductal

carcinoma in situ) in more than one quadrant or separated by

four or more centimeters, Paget’s disease of the nipple,

synchronous bilateral invasive or non-invasive breast cancer,

breast implants, prior breast or thoracic RT for any condition,

collagen vascular disease, specifically dermatomyositis with a

creatine phosphokinase level above normal or with an active skin

rash, systemic lupus erythematosus, or scleroderma, pregnancy

or lactation at the time of proposed randomization, psychiatric

or addictive disorders or other conditions that, in the opinion of

the investigator, would preclude the patient from meeting the

study requirements.

Demographic and clinical characteristics are presented

in Table 1.
Treatment

All patients were simulated in the supine position with the C-

QualTMBreastboardsystem(CivcoMedical Solutions,Kalona, IA,

USA), with the ipsilateral arm placed above their heads. Computed

tomography imaging was performed with slice thickness

acquisition of 3mm extending from the larynx to the upper

abdomen. Two clinical target volumes (CTVs) were defined,

including the breast (CTV2) and the tumor bed (CTV1), the

latter delineated on the basis of preoperative and operative

reports and including the surgical clips and/or any surgery

induced changes considered to be a part of the lumpectomy

cavity (hematoma or seroma). The corresponding planning target

volumes (PTV2andPTV1)were generatedbyauniformexpansion

of the CTVs by 5mm, restricted 3mm from external body.

Planning was performed using a tangential hybrid IMRT

technique, consisting of a conventional tangential-field plan plus

an inverse-planned IMRT plan (20, 21). The prescription for

conventional planning (80% of total dose) was associated with a

pair of open medial and lateral beams (with heart and lung MLC

blocks). The IMRT prescription (20% of total dose) was

associated with two step-and-shoot beams, optimized by

inverse planning in the Oncentra Masterplan treatment

planning system. A maximum of 5 segments per beam was

allowed to reduce treatment time.
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Patients were treated using two different treatment schedules

according to low (group 1) or moderate-high (group 2) risk of

recurrences. Patients in group 1 were treated using an

hypofractionated daily dose of 2.50 Gy and 2.75 Gy to a total

of 40 Gy and 44 Gy to PTV2 and PTV1 in 16 fractions,

respectively. Patients in group 2 were treated using a

conventional daily dose of 2.0 Gy and 2.4 Gy to a total of 50

Gy and 60 Gy to PTV2 and PTV1 in 25 fractions, respectively

(22). The two groups were not equal, with 49 patients receiving

hypofractionation and 80 receiving conventional fractionation.
Frontiers in Oncology 04
The planning objectives for both PTVs were as follow: 98%

of the PTVs should receive more than 95% of each prescription

dose and no more than 2% of the PTVs should exceed 107% of

prescription doses. The dose limits for the OAR mean doses

were as follows: ipsilateral lung,<8 Gy; contralateral lung,<2 Gy;

heart,<4 Gy; and contralateral breast,<2 Gy. During plans

optimization we also followed the specific QUANTEC

(Quantitative Analyses of Normal Tissue Effects in the Clinic)

suggestions for the heart and lung: the lung volume receiving

more than 20 Gy should not exceed 25% (V20Gy<25%) (23) and

the heart volume receiving more than 25 Gy should not exceed

10% (V25 Gy< 10%) (24).
Spectrophotometry: Melanin and
erythema indexes

Sk i n i n j u r y wa s qu an t ifi e d by na r r ow band

spectrophotometer measurements of melanin and erythema

indices. The used spectrophotometer was the Mexameter MX

(Courage+Khalaza Electronic GmbH, Germany). The

Mexameter probe emits light of three wavelengths: 568 nm

(green light), 660 nm (red light), and 880 nm (infrared light).

The melanin index (IM) is based on the ratio of the intensities of

the infrared (Sinfr) and red (Sred) light reflection and it is

defined as:

IM   =   log10
Sinf r
Sred

� �

Similarly, the erythema index (IE) is based on the ratio of the

intensities of the red (Sred) and green (Sgreen) light reflection and

it is defined as:

IE   =   log10
Sred
Sgreen

 !

These definitions provide a broad-scale values (0-999) for

melanin and erythema, in order to detect even smallest changes

in color (25).

All patient underwent spectrophotometer measurements in

supine position before the beginning of radiation therapy (T0),

at the end of therapy (T1), at 1 month (T2) and 6 months (T3)

from the end of therapy.
Candidate covariates

Additional clinical and demographic variables were gathered

from the electronic medical records, including: age, cancer

diagnosis, clinic-pathologic characteristics of the tumor,

surgery details, RT treatment information, administration of

adjuvant chemotherapy (y/n), type of adjuvant chemotherapy,

local treatment (whole breast only) versus loco-regional
TABLE 1 Patient characteristics.

Categorical variable Patients (%)

Number of patients 29 (100)

Acute Skin Toxicity

No toxicity 49 (38.0)

Grade 1 46 (35.7)

Grade 2 32 (24.8)

Grade 3 2 (1.5)

Fractionation regimen

50-60 Gy/25 fx 80 (62.0)

40-44 Gy/16 fx 49 (38.0)

Chemotherapy

No 69 (53.5)

Yes 60 (46.5)

Hormone therapy

No 118 (91.5)

Yes 11 (8.5)

Laterality

Left 60 (46.5)

Right 69 (53.5)

Quadrant

Upper, outer 57 (44.2)

Upper, inner 23 (17.8)

Lower, outer 12 (9.3)

Lower, inner 23 (17.8)

Central 14 (10.9)

Continuous variable Median (range)

Age (years) 62 (45-89)

BMI 26.4 (19.0-47.1)

PTV2 (cm3) 689 (118-2833)

PTV1 (cm3) 95 (4-499)
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irradiation (involving the regional lymph nodes) and

menopausal status. The variables used for the algorithm

development are reported in Table 1.
Clinical assessment and outcomes

The acute skin toxicity was registered according to the

RTOG scoring system (26) in the following groups: Grade 1:

Follicular, faint or dull erythema/epilation/dry desquamation/

decreased sweating; Grade 2: Tender or bright erythema, patchy

moist desquamation/moderate edema; Grade 3: Confluent,

moist desquamation other than skin folds, pitting edema;

Grade 4: ulceration, hemorrhage, necrosis. The occurrence of

acute toxicity in patients was converted into a binary outcome: 0

for patients who experienced grade ≤ 1 (zero or one) and 1 for

patients who experienced grade ≥ 2 (two or three) acute toxicity.
Machine-learning modeling

The patient’s dataset was randomly divided with the

Holdout method into training and testing sets used for model

development and cross-validation. The training and testing set

included 97 and 32 patients, respectively (i.e. 75%/25% split).

Several ML models were developed for binary classification

of acute toxicity. ML modeling included two phases. In the first

phase, we prevented model overfitting using a multistage feature

selection method. First, we assessed the pairwise feature

interdependencies using the Spearman rank correlation

coefficient, with the goal to identify the functional

dependencies between features. The association between each

covariate and skin acute toxicity was evaluated with a univariate

analysis using the Mann-Whitney U-test, able to evaluate the

difference between two independent group populations. A

stepwise backward elimination approach was subsequently

used for the remaining features, i.e. each variable was

considered for subtraction from the set of explanatory

variables based on the Akaike information criterion (AIC)

(27). AIC is a model selection criterion used to penalize the

models for which adding new explanatory variables does not

supply sufficient information to the model. The aim is to

minimize the AIC, defined as:

AIC = 2logL Mð Þ + 2K

where logL(M) is the maximized log likelihood for the fitted

model, M is the sample size and K is the number of covariates

including an intercept.

The surviving variables were finally used to build the models

for binary classification of acute toxicity, including logistic

regression (LR), support vector machine (SVM), and

classification and regression tree analysis (CART).
Frontiers in Oncology 05
LR is a classical algorithm that is usually used for binary

classification tasks (28). Briefly, this model calculates the class

membership probability for one of the two categories in the

dataset (0 or 1) using a logistic equation:

pi  =  
e(b0+b ·xi)

1 + e(b0+b ·xi)

where xi is the input value and b are the regression

coefficients. In order to provide a probability that should vary

from 0 to 1, the equation can be linearized by the logit

transformation

logitðpiÞ  ¼  ln
pi

1 − pi

� �
  =  b0 + b · xi

where the logistic unit (logit) is on the left-hand side.

Since the logistic regression predicts probabilities, the

likelihood function can be used. Therefore, for each training

data point x, the predicted class is y. Probability of y is either p if

y=1 or 1-p if y=0. The likelihood can be written as:

Lðb0, bÞ  ¼  P
N

1
p(xi)

yi (1 − p(xi)
1−yi

that can be transformed as:

lnðLÞ  ¼  o
N

1
lnð1-piÞ+yi

pi
1 − pi

� �� �

or, rewritten in term of the “logistic loss” function Llog:

Llog  =   ln (L)  = −No
N

1
½− ln (1 + e(b0+b ·xi))� + yi(b0 + b · xi)

A penalty component called the L2 norm was then added to

the logistic loss function in order to prevent overfitting. This

factor effectively shrinks the estimates of the coefficients toward

zero. The new loss function is:

Llog + lo
p

1
b2
j

where j is the number of coefficients in the model and L is a

regularization parameter to be manually tuned. This penalized

loss function is also called “Ridge regression”. A 5-fold cross-

validation in the training set was performed to determine the

optimal value of the lparameter. The goodness of the LR model

fit was evaluated by the Hosmer–Lemeshow test, calculating the

agreement between the the observed and expected event rates in

population subgroups.

SVM-based classification models are one of the most

popular supervised classification algorithms. For a given set of

data from two groups of patients, the SVM algorithm tries to

find the maximum hyperplane between the two classes in order

to maximize its distance to the nearest data points on each side

(the so-called support vectors. If the two samples are not linearly

separable, various kernel functions can be used to transfer them
frontiersin.org
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to a higher-dimensional space where they can be separated more

easily. In our analysis, we used four different kernel types in this

study: linear, power, sigmoid, and radial basis function (RBF)

kernels. After a tuning phase to acquire the best classification

results, the cost C, an internal training process parameter, was

set to 1 to increase the margin distance between the hyperplane

and the closest samples in both classes.

Lastly, we built a classification and regression tree analysis

(CART) to visually stratify patients into the toxicity risk groups.

The CARTmodel is represented as a binary tree, where each root

node stands for a single input variable and a split point on that

feature. A prediction-making output variable is contained in the

tree’s leaf nodes. The Gini impurity (GI) index was used to

determine the best splits:

GI  ¼  1 −o
n

i=1
p2i

where pi is the fraction of items in the class i.

The models were cross-validated using 5-fold cross-

validation five repeated holdout evaluations, each time with a

different random partition of the data, with the goal to reduce

both the variance of the cross-validation results and the unlikely

possibility of getting too optimistic results in only one run. This

resampling technique maintains a balanced distribution of both

classes in each fold by randomly dividing each feature dataset

into five subsets of samples of equal size. Then, five models were

trained and tested; each of the five folds was tested once, and the

model was trained using the other four folds. The procedure was

performed five times with the goal to reduce both the variance of

the cross-validation results and the unlikely possibility of getting

too optimistic results in only one run.
Frontiers in Oncology 06
The performance of the models was assessed using class-

specific accuracy, precision, recall and F-measure evaluation

metrics. The accuracy is defined as the proportion of correct

predictions (both true positives and true negatives) among the

total number of cases examined. The precision is defined as the

number of true positive results divided by the number of all

positive results, including those not identified correctly (i.e. it is

the positive predictive value). A low precision indicates a large

number of false positives. The recall is defined as the number of

true positive results divided by the number of all samples that

should have been identified as positive (i.e. it is the sensitivity in

binary classification or true positive rate). A low recall indicates

many False Negatives. The F-score is the harmonic mean of the

precision and recall. These indexes range from 0 to 1, with

higher values indicating better classification performance.

Figure 1 shows the flow diagram for the model development.
Statistical analysis

All statistical analyses were performed using the XLSTAT

statistical packages (Addinsoft, New York, USA).
Results

Patient characteristics

Of the 129 patients enrolled in this study (median age 62,

range 45-89), 34 (26.4%) presented RTOG ≥ 2 acute toxicity at

the end of their treatment.
FIGURE 1

Schematic workflow and methodology of the study.
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Spectrophotometry measurements

Figure 2 shows the values of melanin (green) and erythema

(orange) indexes before (T0) and after different times (T1, T2 and

T3) after radiotherapy. Data are reported as box-and-whisker

plots. Melanin significantly increased from T0 to T1 and to T2 by

about 14% and 60%, respectively, and decreased in the following

observation times towards values similar to T0 at one year (T3).

Similarly, the erythema index significantly increased from T0 to

T1 by about 60%, and decreased in the fol lowing

observation times.
Variables selection

In univariate analysis (Mann-Whitney U-test), the two

spectrophotometric variables at time T0 (IM,T0 and IE,T0),

together with the BMI, PTV1, PTV2 and the dose

fractionation scheme (FRAC) were found to be significantly

associated with the two RTOG groups (p<0.05).

Detailed diagnostic accuracy statistics for the five

quantitative covariates significantly associated with the toxicity

score is reported in Table 2.

The box-and-whisker plots for IM,T0, IE,T0 and the three

continuous variables associated with RTOG toxicity

classification are shown in Figure 3; the diagnostic

performance measured by AUCs were 0.816, 0.734, 0.714,

0.691 and 0.664 for IM, IE, PTV2, PTV1 and BMI, respectively.
Frontiers in Oncology 07
Machine learning modeling and
performance

The classification performances of LR, SVM and CART

models are reported in Table 3.

Classification performances reported precision, recall and

F1-values greater than 80% for all models. The SVM classifier

using the RBF kernel had the best performance, with accuracy,

precision, recall and F-score equal to 89.8%, 88.7%, 98.6% and

93.3%, respectively.

Figure 4 shows the receiver operating characteristics (ROC)

curves of the different models for the testing set.

The CART classification tree for the most informative

variables is displayed in Figure 5. Each node reports the

following information: (a) the total number of objects, (b) the

corresponding percentage, (c) the improvement corresponding

to the number of observations in the node times, (d) the purity,

which shows what percentage of objects at this node fall into the

category that dominates the dependent variable, (e) the split

variable, and (f) the value or intervals of the latter.

Node 1 illustrates the initial patient distribution prior to the

application of any criteria. Nodes 2 and 3 show the results of

adding the IM,T0 variable as the initial criterion for decisions. The

IM,T0< 99 cutoff value relocates most of the patients to node 2

with a purity index of 94.2%, e.g., almost all patients do not

present RTOG ≥ 2 grade acute toxicity. The remaining patients

(having IM,T0 ≥ 99 value) are equally associated with or without

RTOG ≥ 2 grade toxicity in node 3, and are additionally

separated based on a second criterion., e.g., the PTV2 volume.

At this second decision level, PTV2 values greater than 790 cm3

relocate patients to the RTOG ≥ 2 grade with 87.5% purity, and

so on. Figure 5 illustrates how the rules obtained by the

algorithm can be expressed in natural language.: “At the

beginning of treatment, if the melanin index IM,T0< 99 then

patients will not experience RTOG ≥ 2 grade acute toxicity in

94.2% of cases. Furthermore, for these patients, if PTV1<217

cm3 then the probability increases to 96.8%”. Similarly, at node 3

and 7, “if IM,T0 ≥ 99 and PTV2 > 790 cm3 then patients will

belong to the RTOG ≥ 2 grade group in 87.5% of cases”.
Discussion

The knowledgeof patient and treatment factors contributing to

acute toxicities after whole-breast radiotherapy is a crucial point to

guide treatment decisions, target supportive care and inform

patients. If patients who are inherently most sensitive to radiation

could be identified prior to treatment, early-intervention

personalized therapeutics pathway becomes possible.

A recent systematic review and meta-analysis of 38 studies

composed of 15,623 breast cancer patients reported considerable

heterogeneity in the evaluation of acute radiation dermatitis and

in patient- and treatment related risk factors (29). The
FIGURE 2

Measured values of melanin (green) and erythema (orange)
indexes before (T0) and after different times (T1, T2 and T3) after
radiotherapy. Data are reported as box-and-whisker plots.
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proportion of patients with acute radiation dermatitis of grade 2

or higher after radiotherapy ranged from 10% to 76%, with an

average of 34.3% and a median of 28.4%. Hypo-fractionated RT

was shown to cause the same or less skin toxicity than

conventional fractionation and has been adopted by many

cancer centers. IMRT also demonstrated consistently better

dose homogeneity and decreased skin toxicity relative to

wedge-based treatments, and is now standard protocol in

centers with the appropriate resources. Four factors were

significantly associated with acute radiation dermatitis: body

mass index (BMI) ≥25 kg/m2, large breast volume, smoking

habits and diabetes. Borm et al. (30) evaluated skin toxicity

during modern 3D-CRT radiotherapy in a 255-patient cohort.

42.4% of the patients developed grade I, 55.7% grade II and 2%

grade III skin toxicities. On univariate analysis breast size

correlated significantly with the incidence of skin toxicity.

Ciammella et al. (10) evaluated the toxicity and cosmetic

outcome in breast cancer patients treated with adjuvant hypo-

fractionated radiotherapy in a 212-patient cohort. 16% of

patients experienced no acute toxicity, according to the RTOG

criteria, while 68% and 15% developed grade 1 and grade 2 acute
Frontiers in Oncology 08
skin toxicity, respectively. Parekh et al. (31) evaluated the rate of

grade ≥2 dermatitis in patients with a high BMI who were

treated to the breast or chest wall to understand the role of

radiation target, fractionation regimen, and BMI. Grade ≥2

dermatitis was 31.4% among the entire cohort, with significant

differences between chest wall and whole breast treatments (48%

vs 27.8%; p = .007). In the present study, 49 (38.0%) patients

experienced no acute skin toxicity. 46 (35.7%), 32 (24.8%) and 2

(1.5%) patients experienced grade 1, grade 2 and grade 3 acute

skin toxicities, respectively. These findings are similar to those

obtained by Parekh et al. (31).

So far, acute toxicity grade was obtained by qualitative

evaluations with visual inspection or palpation. If this

approach may be sufficient in clinical routine, the lack of

reliable and quantitative assessment was shown to be prone to

significant biases due to intra and inter-evaluator differences

(32). Consequently, reliable and quantitative measurements are

needed, particularly in the context of new therapeutic strategies,

in which even minimal differences in dermatitis are of interest

(33). A potential technical quantitative approach to assess acute

toxicity is spectrophotometry. Back between 1972 and 1985,
FIGURE 3

Box-and-whisker plots for IM,T0, IE,T0 and the three continuous variables (BMI, PTV1 and PTV2) associated with RTOG toxicity classification at
univariate analysis.
TABLE 2 Detailed diagnostic accuracy statistics for the five quantitative covariates significantly associated with the toxicity score.

Area Under Curve (AUC)
(CI95%) Sensitivity Specificity

Positive predictive
value (PPV)

Negative predictive
value (NPV) Accuracy

Spectrophotometry

IM 0.816 (0.738-0.891) 0.882 0.684 0.500 0.942 0.736

IE 0.734 (0.637-0.831) 0.765 0.705 0.481 0.893 0.721

Clinical

PTV1 0.691 (0.583-0.799) 0.676 0.684 0.434 0.855 0.682

PTV2 0.714 (0.611-0.817) 0.676 0.726 0.469 0.863 0.713

BMI 0.664 (0.560-0.767) 0.853 0.467 0.377 0.894 0.573
fr
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Turesson et al. (34) already aimed to identify risk factors for RID

associated with breast electron irradiation using reflectance

spectrophotometry. Spectrophotometry was then applied to

objectify skin-color alterations and radiation dermatitis in

breast radiotherapy in two recent investigations (17, 18).
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Following the aforementioned suggestions, we investigated

the potential of spectrophotometry-based ML methods as a

reliable tool to quantify skin-color alterations in conventional

and hypofractionated breast cancer treatments. To our

knowledge, our study is the first to assess breast acute toxicity
TABLE 3 Performances of the LR, SVM and CART classifier for the training and validation datasets.

Machine learning models

LR SVM CART
Linear Sigmoid Power RBF

Training set

Accuracy 0.831 (0.807-0.855) 0.845 (0.835-0.855) 0.742 (0.732-0.752) 0.874 (0.865-0.883) 0.898 (0.889-0.906) 0.866 (0.851-0.881)

Precision 0.845 (0.824-0.865) 0.856 (0.844-0.868) 0.776 (0.764-0.788) 0.860 (0.850-0.870) 0.886 (0.877-0.895) 0.869 (0.849-0.889)

Recall 0.937 (0.926-0.948) 0.937 (0.929-0.945) 0.801 (0.793-0.809) 0.968 (0.961-0.975) 0.986 (0.980-0.992) 0.962 (0.943-0.981)

F1 score 0.889 (0.873-0.904) 0.895 (0.888-0.902) 0.788 (0.781-0.795) 0.911 (0.905-0.917) 0.933 (0.928-0.939) 0.913 (0.902-0.923)

Testing set

Accuracy 0.801 (0.752-0.851) 0.805 (0.761-0.849) 0.722 (0.678-0.766) 0.825 (0.788-0.862) 0.843 (0.808-0.878) 0.829 (0.761-0.897)

Precision 0.867 (0.838-0.895) 0.841 (0.798-0.884) 0.732 (0.689-0.775) 0.822 (0.785-0.859) 0.841 (0.807-0.876) 0.855 (0.793-0.917)

Recall 0.875 (0.829-0.921) 0.882 (0.863-0.901) 0.791 (0.772-0.810) 0.961 (0.945-0.977) 0.981 (0.966-0.996) 0.931 (0.855-1.000)

F1 score 0.871 (0.838-0.901) 0.861 (0.835-0.887) 0.760 (0.734-0.786) 0.886 (0.864-0.908) 0.906 (0.885-0.925) 0.891 (0.836-0.946)
D

A B

E F

C

FIGURE 4

Receiver operating characteristic (ROC) curve for the different machine learning models: (A) Logistic Regression, (B) Support Vector Machine
with linear kernel, (C) Support Vector Machine with power kernel, (D) Support Vector Machine with RBF kernel, (E) Support Vector Machine with
sigmoid kernel and (F) Classification and Regression Tree.
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using spectrophotometric metrics as inputs variables of

supervised ML models. A major finding of the present study is

the demonstration that the pre-treatment values of melanin and

erythema indexes may serve as predictive biomarkers for

radiation-induced acute skin toxicity. Both indexes are

markers of skin discoloration. Melanin is a pigment produced

by membrane-bound melanosomes in the epidermis’ basal layer.

Erythema refers to skin redness caused by capillary dilatation

and may indicate the onset of telangiectasias. Our results report

that patients presenting RTOG ≥ 2 exhibited higher melanin and

erythema indexes values before the beginning of treatment

compared with those with RTOG ≤ 1 score. This is a quite

unexpected finding, based on the wrong assumption that

patients with light skin pigmentation will be associated to

more severe skin toxicity than patients with darker skin

pigmentation. Indeed, a few researchers already highlighted a

dependence of radiation-induced skin toxicity severity on skin

pigmentation. Wright et al. (35) demonstrated that ethnicity is a

risk factor for radiation-induced skin toxicity. In particular, the

authors reported that at RT completion, moist desquamation

was more common in black patients (73.1% vs 47.6%,

respectively, p=.023) and on multivariate analysis, the effects

of black race (odds ratio [OR] = 7.46, p=.031) remained a

significant risk factor for moist desquamation. The reason for

these behaviors is still unclear. A few published data (36)

reported that genetic mutations associated with the

development of acute toxicity are more commonly found in

black patients. In particular, the authors reported that the

sequence variants located in the ATM gene, having a

significantly greater incidence in African women, may predict

for adverse radiation responses in breast cancer patients.

Another suggestion is based on the action of free radicals

generated by radiation on melanin (37). It has been reported
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that the melanocytes, the cells that produce melanin, are more

vulnerable to oxidative stress than skin cells types, such as

keratinocyts and fibroblasts (37). The exposure to UV or

ionizing radiation can impair the syntheses of melanin and

cause skin damage. Although melanin can prevent oxidative

DNA damage in melanocytes and keratinocytes, in vitro studies

demonstrated that reactive oxygen species involved in melanin

synthesis can exacerbate DNA damage (38). As a result of the

increased rate of melanin, darker skin may be more sensitive to

DNA damage from radiat ion compared to l ight ly

pigmented skin.

Other findings indicated that hypofractionation and the

breast and boost cavity volumes were the predictive clinical

variables for acute toxicity in our cohort. With respect to

hypofractionation, our results are in strong agreement with the

recent literature. A recent randomized, non-inferiority, phase III

trial reported that hypofractionation (43.5 Gy over 15 fractions)

was equally effective in terms of locoregional recurrence, overall

survival, and disease-free survival of standard fractionation (50

Gy over 25 fractions) but with a significant reduction of grade 3

acute skin toxicity (3% vs. 8%, p< 0.001) (39). Similarly, a large

multicenter study on 2309 patients reported significantly higher

skin reaction (moist desquamation, 28.5% vs 6.6%, p<0.001;

grade ≥2 dermatitis, 62.6% vs 27.4%, p<0.001) in patients treated

with conventional fractionation with respect to those treated

with hypofractionation (40). Our results are consistent with

these studies, suggesting that an hypofractionation regimen

could reduce the risk of radiation dermatitis compared with

that in conventional regimen. We also found the breast and

boost volumes are positive predictors of more severe toxicity,

with a significantly increased risk in larger breasts and boost

volumes. Again, this is an expected result because breast volume

has been demonstrated to be a predictor of dermatitis in two
FIGURE 5

Classification and Regression tree analysis (CART) for the most significant variables.
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randomized clinical trials (8, 41). The association between the

risk of dermatitis and breast volume is most likely caused by an

increase of dose inhomogeneity within the breast, the abrasive

effect of friction within skin folds and the bolus effect in the

inframammary, skin folds, and axillary regions.

Using these two spectrophotometric and three clinical top

ranked features, we trained machine learning models using LR,

SVM and CART analysis methods. The best performance was

attained by the SVM classifier using the RBF kernel, which was

also successful in producing the hyperplane and maximizing the

space between the support vectors. SVM reported the higher

accuracy and F-score values, able to correctly classify 70 out 71

grade 0-1 patients and 21 out 26 grade 2-3 patients in the

training dataset. In addition, given of its well-known

interpretability in terms of variable thresholds, we developed a

CART model as a knowledge-discovery tool. We decided to

model our CART with just three depth levels in order to produce

a straightforward and compact decision tree. Patients selected

for CART analysis to be related with RTOG 2 acute toxicity had

melanin indices greater than 99. The treatment fractionation,

breast cavity volume, and surgical cavity volume all contributed

significantly to further increase the classification rate among the

patients. The CART model provided an excellent diagnostic

performance of AUC=0.959. Because of this high classification

accuracy, we think this method could be a valuable adjunct tool

fo r rad io -onco log i s t s when pre sc r ib ing e ff e c t i ve

treatment options.

Other non-invasive approaches have been employed to

study radiation-induced skin toxicity. Laser Doppler

flowmetry, for example, has been used to quantify skin toxicity

by monitoring microscopic changes in blood flow associated

with skin reactions (42). Thermal imaging can detect variations

in body surface temperature caused by physiological changes

associated to radiation-induced dermatitis. Quantitative thermal

imaging markers obtained in the first treatment fractions were

used in supervised ML to develop a predictive model for

radiation dermatitis (13). Although both Laser Doppler

flowmetry and thermal imaging are interesting methodologies,

spectrophotometry constitutes a more practical and cost-

effective imaging method, because of its practical and intuitive

use and the easy explainability of the obtained information’s

about the skin changes during the radiation course.
Strengths and limitations

Deep learning techniques, in particular neural networks,

have a relatively high model capacity compared to the

machine learning techniques used in this study but clinicians

may hesitate to apply prediction models based on black box

algorithms difficult to understand. On the contrary, advantages

in using machine learning algorithms as LR, SVM or CART are

their explainability and interpretability, i.e. their ability to
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associate a cause to an effect and to justify the results. In

particular, we showed how CART analysis was able to identify

and construct a binary decision tree for which the correct

classification of patient’s toxicity is known. Each path through

the tree was defined by a series of dichotomous splits, specifying

the values of covariates that lead to a most probable toxicity

class. This way, the tree might be viewed as a series of rules that

can be used for unknown observations to predict the toxicity

class membership. This ability to be easily interpretable makes

i t s imp l emen t a t i o n i n t o t h e c l i n i c a l wo r kflow

particularly simple.

A potential limitation of the present study is the number of

patients that may affects the power of the prediction model and/

or may lead to an over fitted prediction model. To solve this

issue, a 5-times repeated holdout technique was performed to

provide an internal validation and reduce sample bias. In any

case, the created model needs to be externally validated using a

distinct dataset in order to assess the prediction model’s

consistency and generalizability to new and different patients.
Conclusions

Spectrophotometry is a simple and accessible technology

able to support clinical decisions before a radiotherapy course

for breast cancer. Pre-treatment quantitative assessments of skin

melanin and erythema could support early clinical management

of treatment-related cutaneous adverse effects. CART analysis

classified patients with melanin index ≥ 99 and larger breast

volume to be associated with RTOG ≥ 2 toxicity with a

diagnostic performance of AUC=0.959. On the basis of this

study, the radiation oncologist can predict the occurring of acute

skin toxicity in selected patients and adjust the treatment

pathway by considering alternative treatment options such as a

change of f r ac t ionat ion schedu le . In the fu ture ,

spectrophotometric markers may could be beneficial also in

other cancer sites, such as head-and-neck where grade 3 toxicity

is not uncommon. The knowledge of these potential predictors

could improve the management strategies at the beginning of

treatment course, thus helping tailoring therapies to

reduce toxicities.
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skin toxicity in breast radiotherapy with a new quantitative approach. Radiother
Oncol (2017) 122:54–9. doi: 10.1016/j.radonc.2016.09.019
frontiersin.org

https://doi.org/10.1111/j.0909-752X.2006.00187.x
https://doi.org/10.1111/j.0909-752X.2006.00187.x
https://doi.org/10.1016/0360-3016(95)00060-C
https://doi.org/10.1016/0360-3016(95)00060-C
https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.3389/fonc.2021.738851
https://doi.org/10.3389/fonc.2021.738851
https://doi.org/10.1186/s13014-018-1160-5
https://doi.org/10.1016/j.adro.2017.10.007
https://doi.org/10.1038/s41598-018-30710-4
https://doi.org/10.1097/MD.0000000000014917
https://doi.org/10.1097/MD.0000000000014917
https://doi.org/10.1016/S0360-3016(96)00426-9
https://doi.org/10.1016/j.ijrobp.2014.06.042
https://doi.org/10.1016/j.ijrobp.2007.04.012
https://doi.org/10.1016/j.yexcr.2003.11.007
https://doi.org/10.1016/j.jphotobiol.2005.11.008
https://doi.org/10.1016/s1470-2045(18)30813-1
https://doi.org/10.1001/jamaoncol.2015.2590
https://doi.org/10.1200/JCO.2007.15.2488
https://doi.org/10.1016/j.radonc.2016.09.019
https://doi.org/10.3389/fonc.2022.1044358
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Machine-learning prediction model for acute skin toxicity after breast radiation therapy using spectrophotometry
	Introduction
	Material and methods
	Study design
	Patient selection
	Treatment
	Spectrophotometry: Melanin and erythema indexes
	Candidate covariates
	Clinical assessment and outcomes
	Machine-learning modeling
	Statistical analysis

	Results
	Patient characteristics
	Spectrophotometry measurements
	Variables selection
	Machine learning modeling and performance

	Discussion
	Strengths and limitations

	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


