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Featured Application: A new complex geometry cavity is optimized by associating the construc-
tal design (CD) method with the differential evolution (DE) algorithm. Statistical analyses are
performed to indicate the best parameters of the meta-heuristic to be applied during the opti-
mization process. Kruskal–Wallis and Dunn’s statistical tests were applied to investigate the DE
algorithm and its parameters to reproduce the effects of design on the thermal performance of a
cooling cavity inserted into a wall with heat generation. Results demonstrated the best param-
eters of the metaheuristic that improve the algorithm’s performance in the geometric optimiza-
tion process.

Abstract: In the constructal design method, the comprehension of the effect of design on the system
performance is crucial to understanding the contributions of the degrees of freedom or constraints in
the system evolution in direction of optimal configurations. However, problems with many degrees
of freedom are prohibitive of optimization with exhaustive search, requiring meta-heuristic strategies.
Therefore, the investigation of the optimization algorithms is essential. This work investigates the
canonical differential evolution algorithm associated with the constructal design for the geometric
optimization of an isothermal double Y-shaped cooling cavity inserted into a wall with internal heat
generation. The effect of four degrees of freedom over the thermal performance of the system is
investigated using sixteen different combinations of differential evolution algorithms: four variations
of mutation parameter, two values of amplification factor (F) and two values of crossover rate
(CR). The non-parametric statistical methods of Kruskal–Wallis and Dunn test were used to identify
the parameters that improve the meta-heuristic efficiency. Results indicated that the proposed
methodology selected the proper combination of DE algorithm parameters (CR, F, and mutation)
that led to the best effect of degrees of freedom over the thermal performance in all optimization
levels investigated.

Keywords: differential evolution; constructal design; geometric optimization; cooling cavities;
statistical tests
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1. Introduction

The constructal theory is the view that the design of any finite-size flow system is
ruled by a physical principle named the constructal law of design and evolution. This
law states that the geometrical patterns in the flow system result from its evolution in
such a way as to facilitate the access of its internal currents (fluid flow, heat flux, stress
flow, people, goods) [1,2]. The method used for the application of constructal theory is
named constructal design (CD) and it is based on the definition of constraints, degrees
of freedom, and performance indicators [3,4]. Constructal design is not an optimization
method, but a method for geometrical investigation of flow systems seeking to comprehend
the design evolution and effects of degrees of freedom over the performance of the system
and other geometrical parameters. For geometrical optimization, the constructal design is
used to define the search space of investigation and the performance indicator, while an
optimization method is associated to define the sweep of the search space to obtain the
optimal configurations [5,6].

The heat transfer field has been a prolific field for the investigation of the design of
flow systems subjected to streams of high/low resistance, generating patterns similar to
those seen in many natural flow systems, e.g., trees, rivers, and vascular systems. In this
sense, the study of cavities inserted into heat generation walls has been widely investigated
to comprehend the generation of design in this kind of system: I, T, Y, X, H, and ψ-shaped
cavities [7–13]. Most of the investigations performed in the literature used the exhaustive
search method to perform the geometrical optimization. Although the exhaustive search
is a benchmark solution, mainly for the representation of the effect of degrees of freedom
over the performance indicators, for the investigation of geometries with a high level of
complexity, the number of required simulations can become prohibitive. As a consequence,
some meta-heuristic methods have been employed jointly with the constructal design in
the recent literature, such as genetic algorithm (GA), simulated annealing (SA), and Luus–
Jakola (LJ) [6,14–19]. The metaheuristic parameters were also investigated to adequate the
computational intelligence strategy to solve other optimization problems in engineering, as
can be seen in Echevarria et al. [20]. The authors analyzed the parameters of particle swarm
optimization and the ant colony optimization algorithm, and as a result, a new version of
PSO emerges.

Concerning the association between computational intelligence and constructal design,
Lorenzini et al. [14,15] performed the first studies that associate evolutionary computation
with the CD method for geometric optimization of a Y-shaped cavity. The GA was used
to reduce the computational effort during the geometric optimization process, as well
as allow the study of other conditions as different fraction areas of the cavity and the
convection heat transfer coefficient imposed at the cavity’s surfaces, and also its effect
over the design of the cavities. Later, Gonzales et al. [16] investigated different functions
of the cooling schedule (CS) of the simulated annealing (SA) algorithm over the effect
of degrees of freedom on the thermal performance of the Y-shaped cavity previously
studied in Lorenzini et al. [14]. The results revealed a more suitable reproduction of the
geometry effects over the thermal performance of the system for specific conditions of CS
parameters. In Gonzales et al. [17] the SA algorithm was compared with the Luus–Jakola
(LJ) heuristic to optimize a double T-shaped cavity. Results demonstrated that the SA
algorithm showed better performance to reach the optimal geometries with more regularity
than the LJ method. The results of this study were the base for the use of SA associated
with the CD method for the complete optimization and geometric evaluation of the double
T-shaped cavity in Gonzales et al. [6]. A first attempt at the use of differential evolution (DE)
with constructal design (CD) was performed in the work of Gonzales et al. [18], where four
different versions of the DE algorithm for the geometrical evaluation of a double T-shaped
cavity were investigated. This study observed that the mutation operator DE/rand/1/bin
achieved better results than the operator DE/best/2/bin, and the best parameters for
crossover rate and amplification factor were CR = 0.7 and F = 1.5. Recent studies that
analyze the parameters of the meta-heuristics associated with the CD method show that the
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algorithm parameter variations affect the geometrical evaluations and reproduction of the
geometries effect over the thermal performance of the system [6,16–18]. As a consequence,
the investigation of the parameters of the algorithms used for geometric optimization is
extremely important to guarantee the adequate achievement of optimal configurations
and, mainly, for the reproduction of the effect of degrees of freedom over the performance
indicators of the system.

In this work, a rigorous investigation of the parameters of the canonical differential
evolution algorithm when it is associated with constructal design for geometrical optimiza-
tion of a double Y-shaped cavity (not previously studied in the literature) is performed.
It investigated the parameters of crossover rate, amplification factor, and four different
mutation operators. The combination of the algorithm parameters generated 16 versions
of the DE that were analyzed. The DE algorithm versions were executed to obtain the
optimization of four degrees of freedom. The results of the experiments were analyzed by
non-parametric statistical tests of the Kruskal–Wallis and post hoc test of Dunn. Firstly, the
Shapiro–Wilk procedure is applied to verify the population distribution. The statistical tools
applied make possible the identification and discernment of the parameters that improve
the performance of the DE algorithm. In the recent literature, a non-parametric statistical
test was used to validate and compare the algorithm results [21,22]. The parameters recom-
mended in the preliminary work of Gonzales et al. [18] were compared with new values of
F and CR and new mutation operators. The findings contribute to new recommendations
about the DE parameters that enhance the algorithm performance associated with the CD
method for geometrical optimization of the cavity problem. The best parameters found in
this work will be applied to optimize all seven degrees of freedom of the complex double
Y-Shaped cavity in a future study.

2. Mathematical and Numerical Modeling
2.1. Description of the Cavity Inserted in the Solid Domain Problem

Figure 1 shows the double Y-shaped cavity in a two-dimensional domain. The third
dimension (W) is perpendicular to the plane of Figure 1. The gray region in Figure 1 repre-
sents the solid domain which has a constant and uniform heat generation at the volumetric
rate given by q

′ ′ ′
(W·m−3). Due to the symmetry of the domain about the y-axis, only half

of the computational domain of the solid is solved. The thermal conductivity k is constant
in the solid domain, and its outer boundary surfaces are perfectly insulated (adiabatic
conditions). The double Y-shaped cavity surfaces are kept at a minimum temperature (Tmin).
In this case, the cavity acts by removing the heat generated by the solid domain. The lowest
imposed temperature simulates a condition where a phase change convection heat transfer
flows through the cavity. As a simplifying hypothesis, the heat transfer coefficient on the
cavity wall is assumed high enough in such way the convective resistance can be neglected
compared to the solid conduction resistance. The problem studied here is subjected to the
simplification hypothesis listed below:

1 The problem is considered at the steady-state;
2 The heat generation per unit volume (q

′ ′ ′
) is constant in the solid domain;

3 The thermal conductivity is also constant;
4 The domain is two-dimensional.

Therefore, the problem is modeled by the heat diffusion equation, which after the
imposition of the simplification hypothesis is given by [23]:

∂2T
∂x2 +

∂2T
∂y2 +

q′′′

k
= 0 (1)

where T is the temperature (K), x and y are the spatial coordinates (m), q
′ ′ ′

is the heat
generation per unit volume (W·m−3) and k is the thermal conductivity (W·m−1·K−1).
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The objective of the present study is to determine the optimal geometry (H/L, H0/L0,
H1/L1, H2/L2, S1/H0, α, and β) that minimizes the maximum excess of temperature
(Tmax − Tmin)/(q

′ ′ ′
A). In the present work, four parameters are investigated (α, β, S1/H0,

and H0/L0) while the others are kept constant. According to the CD method, the geometrical
investigation is subjected to two constraints, the total area of the domain and cavity area,
which are given, respectively, by:

A = HL (2)

Ac = H0L0 + 2H1L1 + 2H2L2 (3)

The dimensionless form of the Equations (2) and (3) are represented by the follow-
ing equations:

H̃L̃ = 1 (4)

ϕc =
Ac

A
= H̃0 L̃0 + 2ϕ1 + 2ϕ2 (5)

where:
ϕ1 = H̃1 L̃1 (6)

ϕ2 = H̃2 L̃2 (7)

The temperature fields in the solid domain were determined by solving the heat
diffusion equation given in dimensionless form by:

∂2θ

∂x̃2 +
∂2θ

∂ỹ2 + 1 = 0 (8)

In the dimensionless process of the heat diffusion equation, the term q
′ ′ ′

/k is evidenced
in all terms, given rise to the unity in the third term of Equation (8). The dimensionless
variables can be written as:

θ =
T − Tmin

q′′′ · Ak
(9)
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x̃, ỹ, H̃, H̃0, H̃1, H̃2, L̃, L̃0, L̃1, L̃2, S̃1 =
x, y, H, H0, H1, H2, L, L0, L1, L2, S1

A1/2 (10)

For the sake of brevity, the boundary conditions equations of null flux in the outer
surfaces are not addressed here. More details can be seen in the work of Ref. [16] which
studied a similar problem but with a T-shaped cavity configuration. The boundary condi-
tion of minimal temperature (θ = θmin) is imposed at all cavity surfaces and described in
the following equations:

θ = θmin in 0 ≤ ỹ ≤ S̃1 −
H̃1

2sin(90◦ − α)
and x̃ = − L̃0

2
or x̃ =

L̃0

2
(11)

θ = θmin in S̃1 − H̃1
2sin(90◦−α)

≤ ỹ ≤ L̃1sinα + S̃1 − H̃1
2sin(90◦−α)

and− L̃0
2 − L̃1cosα ≤ x̃ ≤ − L̃0

2 or L̃0
2 ≤ x̃ ≤ L̃0

2 + L̃1cosα
(12)

θ = θmin in x̃ = − L̃0
2 − L̃1cosα or x̃ = L̃0

2 + L̃1cosα

and L̃1sinα + S̃1 − H̃1
2sin(90◦−α)

≤ ỹ ≤ L̃1sinα + S̃1 +
H̃1

2sin(90◦−α)

(13)

θ = θmin in S̃1 +
H̃1

2sin(90◦−α)
≤ ỹ ≤ H̃0 − H̃2

sin(90◦−β)

and x̃ = − L̃0
2 or x̃ = L̃0

2

(14)

θ = θmin in− L̃0
2 − L̃2cosβ ≤ x̃ ≤ − L̃0

2 or L̃0
2 ≤ x̃ ≤ L̃0

2 + L̃2cosβ

and H̃0 − H̃2
sin(90◦−β)

≤ ỹ ≤ H̃0 − H̃2
sin(90◦−β)

+ L̃2sinβ
(15)

θ = θmin in x̃ = − L̃0
2 − L̃2cosβ or x̃ = L̃0

2 + L̃2cosβ

and H̃0 − H̃2
sin(90◦−β)

+ L̃2sinβ ≤ ỹ ≤ H̃0 + L̃2sinβ
(16)

θ = θmin in H̃0 ≤ ỹ ≤ H̃0 + L̃2sinβ

and− L̃0
2 − L̃2cosβ ≤ x̃ ≤ − L̃0

2 or L̃0
2 ≤ x̃ ≤ L̃0

2 + L̃2cosβ
(17)

θ = θmin in ỹ = H̃0 and− L̃0

2
≤ x̃ ≤ L̃0

2
(18)

The objective is to minimize the dimensionless maximum excess of temperature,
given by:

θmax =
Tmax − Tmix

q′′′ · A
k

(19)

In this paper, the notation Nm is used for the dimensionless maximum excess of
temperature N times minimizes and No for geometry N times optimized, e.g., (θmax)2m and
(β)2o represents the dimensionless maximum excess of temperature two times minimized
and the angle β two times optimized. For the determination of the (θmax)7m, the seven
degrees of freedom must be optimized (H/L, H0/L0, H1/L1, H2/L2, S1/H0, α, and β)
considering the cavity area constraints (ϕc, ϕ1, and ϕ2) and the total area of the solid. It is
worth mentioning that one of the main aspects of constructal design is the comprehension
about the influence of the degrees of freedom over the performance indicator and other
degrees of freedom from the second level of investigation onward. Therefore, the reliability
of the optimization algorithm studied here is not only important to find the optimal
configuration, but also for the above-mentioned investigation about the design of the
flow system.
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2.2. Numerical Solution of Heat Transfer in Solid Domain

The temperature field is determined numerically by solving Equation (8) for every
assumed geometry (H/L, H0/L0, H1/L1, H2/L2, S1/H0, α, and β) during the optimization
process. With the temperature field calculated, the θmax is defined by a function given by
Equation (19), which represents the objective function (OF) of the optimization problem.
The numerical solution is obtained in this work with the finite element method (FEM) [24].
The code for numerical solutions is developed in the MATLAB® environment, using the
PDE (partial differential equations) toolbox [25], based on triangular quadratic elements.
The grid is non-uniform in both x̃ and ỹ directions and varied from one geometry to the
next. The appropriate mesh size is defined by successive refinements, multiplying the
number of elements four times from a current mesh size to the next. The used mesh grid
was determined after successive refinements and tests to reach the independent mesh
solution in the computational domain. The criterion employed to find the correct mesh
with the total number of elements is represented by the following equation:∣∣∣∣∣

(
θi

max − θi+1
max
)

θi
max

∣∣∣∣∣ < 2× 10−4 (20)

The appropriated mesh size is found when the Equation (20) is satisfied, θi
max rep-

resenting the max temperature value evaluated with current mesh size, and θi+1
max cor-

responds to the refined mesh value, i.e., approximately four times more elements than
previous mesh. Table 1 shows the test of the solution independent of the mesh, it can be
noted that the independent solution is achieved before three refinements with a total of
20.486 triangular elements. Figure 2a,b shows the coarse and fine mesh with triangular
elements, respectively. Figure 2b also show the one half of the domain numerically solved.
The mesh test was implemented with a follow geometric configuration: ϕc = 0.1; ϕ1 = 0.015;
ϕ2 = 0.015; H/L = 1; H0/L0 = 6; S1/H0 = 0.5; H1/L1 = 0.4; H2/L2 = 0.4; α = β = 0.

Table 1. Results of grid independence test.

Number of Elements θmax |(θi
max − θi+1

max)|/θi
max

1.265 0.16767 1.2 × 10−3

5.132 0.16787 4.579 × 10−4

20.486 0.16795 1.866 × 10−4

82.592 0.16798 7.307 × 10−5

325.431 0.16799 -
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The implemented code accuracy was validated from the comparison of results of other
cooling cavities, investigated in the work of [7,10] for a T-shaped cavity, and the result
of [6], for a double T-shaped cavity. However, an extra area constraint is required, named
here as ψ for the adequate comparison of the numerical model present in this work with
the literature references. This new constraint means the occupied area of solid by the cavity.
Therefore, considering α = β = 0◦, for the double Y-shaped cavity, the ψ is given by the
following equation:

ψ =
H0(2L2 + L0)

HL
(21)

The geometry used to the accuracy test is similar to the second construction in T-
shape [7] and has the following geometric configuration: ψ = 0.5, ϕc = 0.1; ϕ1 = 0.02;
ϕ2 = 0.02; H/L = 1; H0/L0 = 20; S1/H0 =0.45; H1/L1 = 14; H2/L2 = 0.14; α = β = 0◦.
Table 2 shows the comparison between results obtained with numerical method and codes
employed in this work with results in the literature.

Table 2. Validation of the computational method used in present work with references in the literature [6,7,10].

Number of Elements θmax

Present Work 0.0756
Gonzales et al. [6] 0.0756

Lorenzini et al. [10] 0.0762
Biserni et al. [7] 0.0755

2.3. Application of Constructal Design to Design of Double Y-Shaped Cavity

The optimization methodology is oriented by the CD method that defines a hierarchy
path between the degrees of freedom to perform the geometrical evaluation, i.e., the CD
defines the search space and the order of DOFs investigated. The optimization process
starts with the investigation of one degree of freedom while the other is kept at constant
magnitudes. In the present work, it is optimized the degrees of freedom α, β, S1/H0, and
H0/L0, i.e., a four-level optimization. For all optimization levels, the constraints were
defined as ϕc = 0.01, ϕ1 = ϕ2 = 0.015. The degrees of freedom H1/L1 and H2/L2, which
describe the double Y-shaped cavity branches, were kept with minimal values on the search
space, following the recommendations of the best configuration of double T-shaped cavity
studied in [6,17,18]. For the first level of the optimization process, the cavity branch angles
(α and β) were optimized synchronously with the same values, as if they were just one
degree of freedom (α = β). Then, the meta-heuristic is applied to find the optimal geometry
of (α)o and (β)o that returns the (θmax)m. The search space of angles investigated was
α = β ∈ [−80◦, 80◦] with the discrete variation of ∆α = ∆β = 1◦. The values of other ratios
are fixed, H/L = 1.0, H0/L0 = 10, and S1/H0 = 0.5.

The second level of the optimization process searched for the optimal values of α and
β independently (α 6= β) in the same search space as the previous optimization level. The
other geometric parameters and constraints were kept constant during the optimization
process and with the same values used in the previous optimization level. Therefore, the
optimization method seeks the optimal geometries of (α)o and (β)2o that lead to (θmax)2m. For
the third optimization level, the degree of freedom S1/H0 was added to the investigation,
so the optimization algorithms seek for (S1/H0)o, (α)2o, and (β)3o that reaches the three
times minimized dimensionless maximum excess of temperature, (θmax)3m. The other
geometric parameters continued to be kept fixed with the same magnitudes of the previous
optimization process, except for H0/L0 = 16. Finally, the last experiment performs a fourth
optimization level, i.e., taking also into account the ratio H0/L0. Therefore, the three
degrees of freedom α, β, and S1/H0 were optimized for different magnitudes of H0/L0 in
the last investigation.

Considering that the CD method has the main aim to understand the effect of the
degrees of freedom over the optimal geometries and performance indicators, the exper-
iments performed here focus on adapting the meta-heuristic to the problem of interest.
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Supposing the algorithm presents an adequate performance to reach the optimal geome-
tries, it will probably be capable of reproducing the correct effects of geometries over the
system performance for complete optimization and evaluates all seven degrees of freedom
in future studies with a much lower computational effort than that required with the
exhaustive search.

3. Optimization Methodology
3.1. Differential Evolution Algorithm

The differential evolution (DE) algorithm was proposed by Storn and Price [26] as an
efficient meta-heuristic for continuous search spaces of non-linear and/or non-differentiable
functions. Storn and Price [26] tested extensively several types of functions and optimiza-
tion problems, showing the efficiency of the method compared with other well-known
optimization heuristics. The canonical form of the DE method has the following param-
eters: population size (NP), the total number of generations (NG), crossover rate (CR),
mutation operator (M), and amplification factor (F). As a population-based meta-heuristic,
the DE method uses NP vectors of optimization problem dimension size to compose its
population. In the canonical form of the method, the population size does not change
during the algorithm iteration, as well as the total number of generations (NG). The NG
also determines the stopping criterion of the DE method. The initial population must be
generated randomly and uniformly distributed over the search space [25]. The steps of the
DE algorithm are described below:

1. Generate a first population with NP vectors xi,G, and i = 1, 2, 3, ..., NP, being G the
current generation.

2. Apply the mutation operator for each vector in the population as given by:

vi,G+1 = xr1,G + F×
(

xr2,G − xr3,G
)
∀ F > 0 (22)

where the indexes r1, r2, r3 ∈ 1, 2, 3, ..., NP are integers randomly generated and mutu-
ally different. The F controls the amplification of the differential term

(
xr2,G − xr3,G

)
.

3. Create ui,G+1 = (u1i,G+1, u2i,G+1, ..., uDi,G+1) which is a trial vector, being D the length of
the vector (dimension of the problem). The trial vector is a combination between xi,G
and vi,G+1 determined by:

uji,G+1 =

{
vji,G i f rnd(0, 1) ≤ CR or j = jr

xji,G otherwise
(23)

where rnd() is a function that generates a random number between 0 and 1, and CR is
the crossover probability. The jr ∈ [1...D] is randomly generated and assurances that
vji,G differs from xji,G by inserting at least one of the vi,G elements.

4. Select the best solution for the next generation G+1 comparing xi,G with ui,G+1 by a
Greedy criterion:

xi,G+1 =

{
ui,G+1 i f OF(ui,G+1) ≤ OF((xi,G+1)

xji,G otherwise (24)

The steps are repeated while G ≤ NG is true. The mutation operator shown in
Equation (12) is considered the DE/rand/1/bin by notation DE/x/y/z [25]. The x represents
the vector target of the mutation, y is the number of subtractions performed, and z is
the crossover type, which for Equation (12) is binomial. More three mutation operators
are analyzed in this work, called DE/best/1/bin, DE/best/2/bin, and DE/current-to-best/1/bin,
respectively, described by the following equations:

vi,G+1 = xbest,G + F×
(
xr1,G − xr2,G

)
(25)

vi,G+1 = xbest,G + F×
(
xr1,G + xr2,G − xr3,G − xr4,G

)
(26)
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vi,G+1 = xi,G + F× (xbest,G + xi,G) + F×
(
xr1,G − xr2,G

)
(27)

Figure 3 shows the flowchart of the differential evolution algorithm applied to the geo-
metric optimization of the double Y-shaped cavity. The flowcharts represent the algorithm
that integrates the meta-heuristic to the solver of the heat transfer problem. The solution of
the heat diffusion equation, Equation (8), and corresponding boundary conditions are per-
formed by the finite element method (FEM) implemented in the PDE toolbox of MATLAB®

platform [25]. This part of the algorithm solves the heat transfer problem and determines
the thermal fields on the computational domain, returning the value of θmax for each geo-
metric configuration and acting as an Objective Function (OF) in the geometric optimization
problem. All the DE code was made in the MATLAB® platform and the results were saved
in CSV format for posterior statistical analyzes in the Software-R environment [27].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 31 
 

 

Figure 3. Flowchart of the DE algorithm applied to double Y-shaped cavity geometric optimization. 

3.2. Experiments and Statistical Analysis 

This study analyzed various combinations of DE algorithm parameters, which 

resulted in sixteen versions of DE. The different versions of DE were named according to 

the following code DExy, where x represents the variation of mutation parameter and y 

the combination of the F and CR parameters. Table 3 shows the parameters investigated 

in this work, and the versions of the DE algorithm with the DExy encode. According to 

Figure 3. Flowchart of the DE algorithm applied to double Y-shaped cavity geometric optimization.



Appl. Sci. 2023, 13, 1998 10 of 30

3.2. Experiments and Statistical Analysis

This study analyzed various combinations of DE algorithm parameters, which resulted
in sixteen versions of DE. The different versions of DE were named according to the
following code DExy, where x represents the variation of mutation parameter and y the
combination of the F and CR parameters. Table 3 shows the parameters investigated in this
work, and the versions of the DE algorithm with the DExy encode. According to Table 3,
the algorithm version with the name DE14 means that the parameters of this version were:
rand/1/bin, CR = 0.9, and F = 1.0.

Table 3. Parameters combinations and versions of DE algorithm.

DExy Encoded Name Crossover Amplification Factor

DEx1 0.7 1.5
DEx2 0.7 1
DEx3 0.9 1.5
DEx4 0.9 1

Mutation Operator

DE1y rand/1/bin
DE2y best/1/bin
DE3y best/2/bin
DE4y current-to-best/1/bin

The experiments consist of thirty runs of each algorithm to achieve the dimensionless
maximum excess of temperature n times minimized (θmax)nm for each optimization level,
as well as the statistical analysis of results to identify the better versions of the DE. The
statistical analysis starts with the use of the Shapiro–Wilk test to determine the population
distribution, Shapiro and Wilk [28]. If the test validates the free distribution, then the non-
parametric test of Kruskal–Wallis (KW) [29] is performed to identify if exists a significant
difference between the algorithms’ results. The KW test verifies the null hypotheses h0
represented by:

h0 = µ1 = µ2 = . . . = µa
h1 = µi 6= µa

(28)

If the h0 is accepted, there is evidence that the algorithms results come from the same
population. Otherwise, the alternative hypotheses h1 is accepted and there is at least one
algorithm whose results are different from the other.

The KW test helps to find a difference in one of the algorithms evaluated. However,
it is not enough to know which one of the versions are different. For this purpose, the
post hoc test of Dunn is applied to identify differences between the DE algorithm versions.
Dunn test implements multiple comparisons based on rank sums [30]. The significance
level used for all statistical test was αs = 0.05. All tests were performed in the Software-
R environment [27].

The Dunn test uses the following equation to determine the difference between the
analyzed factors (algorithm):

∣∣ R− R′
∣∣ ≥ Zα′

[
N(N + 1)

12

]1/2
×
(

1
n
+

1
n

)1/2
(29)

where R and R′ are the mean of ranks of each factor (algorithm), N is the total number of
observations, n and n′ are the numbers of observations for each of the algorithm version.
The α´ represents αs (a − 1), where αs is the significance level and a is the number of factors
(algorithm versions). Z is the normal distribution. The right term of the equation is the
minimal significance difference between the mean of ranks of the factors for a given αs. If
the absolute difference between R and R′ is greater or equal than the minimal significance
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difference, right-hand term of the Equation (29), then the h0 is rejected, and the compared
factors (algorithms) have statistically significant difference.

4. Results and Discussion
4.1. Optimization Results for One Degree of Freedom

The first experiment consists of the optimization of one degree of freedom of the
double Y-shaped cavity, represented by the angles α and β. For this first level optimization,
all DE versions were configured with NP = 5 and NG = 10. The results of 30 runs obtained
with each of the DE versions for the average (θmax)m and the statistical metrics as variance,
standard deviation, and root mean square error (RMSE) are presented in Table 4. For the
sake of brevity, only the best two groups and the worst two ones are shown in Table 4,
sorted in ascending order. The versions of the DE algorithm which reach the best results
are DE12 and DE14. They conducted the lowest values for the average of (θmax)m, as well
as the lowest magnitudes of standard deviation and RMSE. These algorithms only have in
common the mutation operator (rand/1/bin) and the parameter F = 1.0. The CR parameter
does not have an influence on the results of versions ED12 and ED14. The second group
with satisfactory results is the one having versions DE22 and DE24. These versions have
as mutation operators the parameter best/1/bin and F = 1.0. Again, the difference in CR
parameters does not affect the results of these versions of the DE algorithm. The results
of the Table 4 indicated that the DE versions with F = 1.0 are more efficient to obtain the
lowest mean magnitude of (θmax)m. On the other hand, the last two groups in Table 4
conducted the worst performance. The versions DE31, DE33, DE41, and DE43 achieved
more divergent values from the (θmax)m average, which indicate that the versions obtained
several local minimum magnitudes of (θmax)m. These versions consider the mutation
parameters best/2/bin and current-to-best/1/bin, Equations (16) and (17). For this level of
investigation, the mutation operator best/2/bin led to the worst performance in comparison
with the others.

Table 4. Statistical metrics of the results achieved for (θmax)m.

DE Versions Average
(θmax)m

Variance
(×10−4)

Standard Deviation
(×10−3)

RMSE
(×10−3)

DE12; DE14 0.05232 0.017 1.33 1.61
DE22; DE24 0.05253 0.038 1.96 2.24
DE41; DE43 0.05491 0.728 8.53 9.10
DE31; DE33 0.05770 1.870 13.70 14.9

Shapiro–Wilk (SW) and Kruskal–Wallis (KW) statistical tests were applied to determine
the statistically significant difference between the 16 versions of DE algorithm results, as can
be seen in Table 5. According to the SW test, all algorithm results have a free distribution
that allows non-parametric statistical analysis. The results of the KW test presented in
Table 5 confirm a significant difference between the results of the algorithm for the first-
level optimization of the double Y-shaped cavity, corroborating the findings of Table 4.
The next step in the analysis of the algorithm’s results is to identify which versions of DE
differ from the other. For this purpose, the Dunn test is performed, and the results are
illustrated in Figures 4 and 5. The distribution of each algorithm version is shown through
the BoxPlot graph with the color representing the classification groups generated by the
Dunn test. Figure 4 shows two groups of performance, A and B, which indicates that the
algorithms in the same group have similar statistical performance, while algorithms in
different groups have statistical performance differences. Figure 4 indicates differences
between DE12 and DE31 versions, but it is impossible to distinguish in statistical viewpoint
differences between the algorithms DE12, DE14, DE22, DE24, DE41, and DE43, even with
some differences in the achievement of global point of minimum magnitude of (θmax)m.
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Table 5. Statistical hypotheses test of DE versions for (θmax)m.

Shapiro–Wilk: Normality Test

DE Versions p-Value Distribution

DE12; DE14 2.785 × 10−6 Non-normal
DE22; DE24 3.275 × 10−7 Non-normal
DE31; DE33 1.489 × 10−9 Non-normal
DE41; DE43 1.870 × 10−4 N on-normal

Kruskal–Wallis: Rank Sum Test

DE Versions p-Value αs Differences

DE [12; 14; 22; 24; 31; 33; 41; 43] 1.932 × 10−6 0.05 Significant
All versions 1.109 × 10−7 0.05 Significant
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Figure 5 presents the Dunn test for all versions of DE, given a broader view about the
comparison of all algorithms studied. Results of Dunn test indicate the sensitivity of the
analyzed versions to the F parameter. The predominant parameter of F used in algorithms
of group A is F = 1.0, which indicates this is a good magnitude for this parameter. However,
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the algorithms of type DE4y are an exception. For that, the parameters F and CR do not
have a significant effect on their performance. From Figure 5 it is possible to observe that
the best algorithms to achieve the minimal values of (θmax)m with the highest frequency
of achievement of the optimal solution are those classified in group A, followed by the
intermediate group AB and group B with the worst results. For the latter group, the
variance of (θmax)m in comparison with the best configuration is high and the number of
times of achievement of the best performance is low. It is worth mentioning that group
AB has no statistical differences in comparison with groups A and B in isolated form.
Results from Dunn’s test corroborate the hypothesis that the most influential parameters
are the F and mutation operator. For the present investigated conditions, the crossover rate
magnitudes studied here (CR = 0.7 and 0.9) do not affect the algorithm results.

In general, even the results for the first level of optimization demonstrate that the
statistical analysis of the results reached with the optimization method is important to
improve adequate comprehension of the influence of design over the performance of
the system. On the contrary, the use of algorithms that leads to several local points of
optimum can deviate from the physical analysis of the influence of design over the system
performance, which is critical in the investigation of constructal design.

4.2. Optimization Results for Two Degrees of Freedom

For the second level optimization of the double Y-shaped cavity geometry, the algo-
rithms searched for the best angles of (α)o, and (β)2o, independently. Two experiments were
performed, one with NP = 20 and NG = 50, for all sixteen versions of DE, and a second
experiment with NP = 30 and NG = 50. Table 6 shows the statistical metrics for the first
experiment, with NP = 20. The first line of the Table 6 presents the algorithm versions that
reached the optimal geometry of (α)o = −7◦, and (β)2o = 36◦ for all 30 runs. Therefore, the
values of variance, standard deviation, and RMSE are null. The DE versions seem in second
line of Table 6 also have a suitable performance (not good as DE12, DE32, and DE34) with
low magnitudes of variance, standard deviation and RMSE. In general, the best versions
consider the parameter F = 1, except for DE13, that uses F = 1.5. The other algorithms led to
a poorer performance in comparison with those of first two lines of Table 6, especially with
the increase in the magnitudes of variance, standard deviation, and RMSE.

Table 6. Statistical metrics of the results achieved for achievement of (θmax)2m obtained with NP = 20
and NG = 50.

DE Versions Average
(θmax)2m

Variance
(× 10−7)

Standard Deviation
(×10−5)

RMSE
(×10−3)

DE12; DE32; DE34 0.029969 - - -
DE13; DE14 0.029974 0.00344 1.86 1.89
DE24; DE44 0.030169 1.94 44.1 47.7

DE33 0.030410 1.66 40.7 59.6
DE21 0.030322 6.53 80.8 86.9
DE23 0.030472 11.2 106.0 115.3

The impact of the change in population size on the DE algorithm version can be seen
in the statistical metrics of Table 7. In comparison with the experiment where NP = 20, the
population with NP = 30 led to more versions of DE able to reach the optimal geometric
configuration on all runs (100%). The worst results continue to emerge from the same ver-
sions (DE21, DE23, and DE33). Even with a significant reduction in the variance, standard
deviation, and RMSE, the last versions in Table 6 do not reach a similar performance as that
achieved for the best codes. The statistical analysis performed by the SW and KW methods
validate the significant difference between the investigated algorithm versions. The results
of statistical test for both experiments, NP = 20, and NP = 30, are shown in Tables 8 and 9,
respectively. Tables 8 and 9 show the SW and KW tests for all algorithms and the results
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presented a non-normal distribution, except those that reached the same magnitude of
(θmax)2m for all runs.

Table 7. Statistical metrics of the results achieved for achievement of (θmax)2m obtained with NP = 30
and NG = 50.

DE Versions Average
(θmax)2m

Variance
(× 10−8)

Standard Deviation
(×10−4)

RMSE
(×10−4)

DE11; DE12; DE14;
DE24; DE32; DE34;
DE41; DE43; DE44

0.029969 - - -

DE13; DE22; DE42 0.029972 0.0178 0.134 0.134
DE23 0.030014 1.36 1.17 1.23
DE33 0.030236 7.57 2.75 3.80
DE21 0.030051 18.7 4.33 4.33

Table 8. Results of statistical tests for achievement of (θmax)2m for DE versions with NP = 20
and NG = 50.

Shapiro–Wilk: Normality Test

DE Versions p-Value Distribution

DE12; DE32; DE34 - Same results for all runs
DE13; DE14 4.402 × 10−11 Non-normal
DE24; ED44 7.169 × 10−9 Non-normal

ED23 1.479 × 10−8 Non-normal

Kruskal–Wallis: Rank Sum Test

DE Versions p-Value αs Differences

DE12–14; DE23, DE24;
DE34, DE44 1.576 × 10−8 0.05 Significant

All versions 2.2 × 10−16 0.05 Significant

Table 9. Results of statistical tests for achievement of (θmax)2m for DE versions with NP = 30
and NG = 50.

Shapiro–Wilk: Normality Test

DE Versions p-Value Distribution

DE11, DE12, DE14,
DE24, DE32, DE34,
DE41, DE43, DE44

- same results for all runs

DE13, DE22, DE42 7.76 × 10−12 Non-normal
DE33 9.32 × 10−5 Non-normal
ED23 8.97 × 10−12 Non-normal

Kruskal–Wallis: Rank Sum Test

DE Versions p-Value αs Differences

All versions 2.2 × 10−16 0.05 Significant

Figures 6 and 7 show, respectively, the non-parametric multiple comparisons of Dunn
tests for the achievement of (θmax)2m considering NP = 20 and 30. In Figure 6, three
groups were identified by the test of Dunn: A, B and C. Again, group A consists of
the algorithms with the best performance, i.e., those where the minimum magnitude of
(θmax)2m is achieved in almost 100% of the runs, including the algorithms DE12, DE32, and
DE34 which obtained the global optimum in all runs. The DE versions in group A have
heterogeneous parameters with varied combinations of F, CR, and mutation operators.
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The algorithms with intermediate performance are classified in group B. Most of the
DE versions in this group have the mutation parameter best/1/bin (ED2y) and show high
variance. Group C is reserved for the algorithm DE33, which led to the worst performance
in terms of achievement of the global point of optimum and variance of results for different
runs. In general, the results of Figure 6 indicated that, among the DE versions with
rand/1/bin (DE1y), there is no significant difference. For NP = 20 and NG = 50, parameters
F and CR do not have significant influence over the optimization performance. However,
for the DE2y versions (best/1/bin), the algorithm with parameters F = 1 and CR = 0.7 show a
better performance in comparison with others with the same mutation operator.
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In Figure 7, it is possible to notice the emergence of an intermediate group, AB, beyond
the previous groups seen in Figure 6, which can be a result of the increase in population
size from NP = 20 to 30. In Figure 7 it is also notice the predominance of algorithms with
the parameter F = 1.0 classified in group A. More precisely, six of nine algorithms with
F = 1.0 are in this group. Results also indicated that changes in parameter CR do not lead to
significant variations in the performance of different DE versions.

The optimization process performed by the DEx4 versions, groups A and AB, is shown
in Figure 8a,b. The optimization evolution of the degree of freedom β is illustrated in the
Figure 8a, where it is possible to note the concentration of values near to the optimal angle
of (β)2o = 36◦. Figure 8b shows the minimization of the (θmax)2m and the convergence to the
magnitude (θmax)2m = 0.029969. For all versions, it is possible to observe a large spread on the
attempts to find the optimal angleβ for the first 500 iterations in the range of−60◦ ≤ (β)2o ≤ 80◦.



Appl. Sci. 2023, 13, 1998 16 of 30

With the increase in the number of simulations, the algorithms converge to optimal conditions.
For the DE41 version, around 1000 iterations are required for convergence of (β)2o, while D43
is slowly requiring near 1500 iterations for convergence. The fastest algorithms are versions
DE42 and DE44, which converge for almost 700 iterations. A similar behavior is noticed in
Figure 8b for convergence of the minimum magnitude of (θmax)2m. Figure 8 shows that for F = 1,
the mutation operators best/1/bin and current-to-best/1/bin have the same behavior.
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As previously mentioned, constructal design has its main concern with the compre-
hension of the effect of the degrees of freedom over the optimal geometry and thermal
performance of the flow system. In this sense, Figure 9 shows a comparison of the effect
of the degree of freedom α over the once optimized angle β, (β)o, and the once minimized
dimensionless maximum excess of temperature, (θmax)m, reached by the exhaustive search (ES)
method, in comparison with the results of the differential evolution algorithms. The values
registered by meta-heuristics during the search space exploration were ordered according to
angle α and can be seen in the points with colors red and green in Figure 9. The effect of α
generated by the exhaustive search (ES) method is represented by the gray curve in Figure 9.
The blue points in Figure 9 represent the optimal values of (β)o and minimum magnitudes
of (θmax)m reached by the meta-heuristics for each value of α. Results for the DE14 version
in Figure 9a show that it is possible to reproduce in an approximate form the effect of α over
(θmax)mfor α > −40◦. This behavior occurs due to the slow convergence of the DE14 algorithm
version, resulting in scattered data. However, the results of the DE14 in Figure 9b show that
this algorithm cannot reproduce the effect of α over (β)o like the ES method, mainly in the
regions near the inferior and superior extremes of the search space of α.

According to Figure 9b, it is possible to obtain an approximation of the effect of α over
(β)o near the optimal region of (α)o = −7◦. For values of α > 0◦, the problem has more than
one solution when different values of β led to similar values of (θmax)m, as can be seen in
Figure 9a,c. This behavior happened due to the significant sensitivity of the angle α. For
version DE24, the reproduction of the effect of α over (β)o and (θmax)m is more inaccurate
due to the fast convergence of the algorithm and the concentration of the exploration in the
optimal region of (α)o, as seen in Figure 9c,d.
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Results indicated that different versions of DE were suitable for the prediction of the
once minimized magnitude of (θmax)m and the corresponding optimal angle β, (β)o, near
the global optimal angle of α. This behavior is indicative that the DE version can be used for
the prediction of optimal shapes. Despite that, the reproduction of the effect of one degree
of freedom over the performance indicator and corresponding other optimal degrees of
freedom is restricted to the global optimum point or limited region of the independent
DOF investigated. This aspect should be taken into account in the association between the
constructal design and the optimization methods based on computational intelligence.

4.3. Optimization Results for Three Degrees of Freedom

Here, it is investigated the optimization of three degrees of freedom, more precisely
the ratio S1/H0, and the angles α and β. In this investigation, 30 runs are also performed
for each version of the DE algorithm. For the height of the inferior branch of the double
Y-shaped cavity, represented by rate S1/H0, a discrete search space was investigated,
S1/H0 ∈ [0.1; 0.9] with ∆S1/H0 = 0.1. The search space of degrees of freedom α and β was
the same as in the previous section. The versions of the DE algorithm used at this level are
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the ones with better performance in the two degrees of freedom geometric optimization.
The amplification factor (F) and crossover rate (CR) parameters are applied with F = 1 and
CR = 0.9. The mutation operators investigated are the functions represented by Equations
(12), (15) and (16). Therefore, the DE versions are named here as DE1, DE2, and DE3,
respectively, according to the mutation operators rand/1/bin, best/1/bin, and best/2/bin. The
population size (NP) and the total number of generation (NG) parameters were defined as
NP = 30 and NG = 100.

Table 10 shows statistical metrics obtained for different versions of DE algorithms to
obtain the three times minimized (θmax)3m. More precisely, it presented versions DE1 and
DE3 that conducted to the best performance and the version DE2 that conducted to the
worst performance. The algorithms DE1 and DE3 also led to the same optimal magnitudes
of (S1/H0)o, (α)2o, and (β)3o. It is worth mentioning that, even the worst version (DE2)
conducted to a similar configuration was found with the best versions of DE.

Table 10. Statistical metrics for achievement of (θmax)3m for DE versions with NP = 30 and NG = 100.

DE Versions Average
(θmax)3m

Variance Standard
Deviation

Standard
Error

RMSE
(×10−3)

DE1; DE3 0.020797 0 0 0 0
DE2 0.021520 1.91 × 10−6 1.38 × 10−3 2.52 × 10−4 1.54 × 10−3

Table 11 shows the statistical tests of Shapiro–Wilk (SW) and Kruskal–Wallis (KW) for
the investigated DE versions. Results seen in Table 11 were calculated from the registry of
(θmax)3m in the 30 runs of each algorithm. Results of the SW test show that the data do not
come from a normal distribution. KW test indicates a significant difference between the
DE versions analyzed since the calculated p-value is much smaller than the significance
level αs. Dunn test results were shown in Figure 10, being possible to classify the algorithm
versions in groups according to the multiple comparisons, as well as the KW test.

Table 11. Results of statistical tests for DE versions with NP= 30 and NG =100.

Shapiro–Wilk: Normality Test

DE Versions p-Value Distribution

DE1; DE3 - Same values
DE2 2.018 × 10−8 Non-normal

Kruskal–Wallis: Rank Sum Test

DE Versions p-Value αs Differences

DE1. DE2. DE3 4.42 × 10−6 0.05 Significant

Figure 10 shows the classification of Dunn’s test for the data of exploration of the
search space, Figure 10a, and the classification for the convergence to the three times
minimized dimensionless maximum excess of temperature, (θmax)3m, obtained for the
30 runs of each algorithm, Figure 10b. Points in Figure 10a represent the values of (θmax)3m
reached by each algorithm during the optimization process of one run. The classification
of Dunn’s test indicates that the DE versions have different behaviors in exploring the
search space. According to the boxplot and points in Figure 10a, version DE2 has a more
concentrated exploration of the search space than other versions, similar to the previous
analysis performed in Section 4.2. The concentrated exploration conducted DE2 version to
be retained at a local point of minimum. This behavior classifies the DE2 version in group
B as different from the other versions, as seen in Figure 10b.
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Figure 10. Results of the Dunn’s test for minimization of (θmax)3m optimization of tree degrees of
freedom: (a) search space exploration of DE versions for one run; (b) results for thirty runs of each
algorithm version.

Figure 11 shows the evolution of the optimization process, considering one run for
each algorithm, to obtain the three times minimized dimensionless maximum excess of tem-
perature, (θmax)3m, and the corresponding optimal geometry, i.e., (S1/H0)o, (α)2o, and (β)3o.
Figure 11a shows the optimization of (S1/H0)o, being possible to observe that, in general,
the DE2 version reached an optimal ratio of (S1/H0)o = 0.9 after almost 1000 simulations. In
contrast, other versions of the DE algorithm alternated more, seeking the best configuration,
and converged to a value only after 2000 simulations. The convergence velocity of the DE2
version is also observed in Figure 11b–d during the optimization process of (β)3o, (α)2o and
search for (θmax)3m. DE1 algorithm version presents a significant concentration of β values
near the optimal value before 1000 simulations but only converged after 2000 simulations,
as shown in Figure 11b. DE3 version is the algorithm with more scattered data for the
explorations of the β search space with the advancement of simulations. According to the
data of Figure 11b, the DE3 version concentrated the results near the optimal configuration
of β near the 2000 simulations, converging after this point. For the angle α, Figure 11c
shows that the DE2 version reaches the optimal value of (α)2o = −53◦ with approximately
750 simulations, i.e., 25 generations. It is also important to observe that, versions DE1 and
DE3 did not converge to the optimal (θmax)3m for all population individuals. However,
these versions have reached the minimum value of (θmax)3m for some individuals in the last
generations. Slow convergence of these DE versions helps them to escape from the local
minimum, explaining the results shown in Table 8 with null variance for all runs of the
algorithms. On the other hand, the fast convergence of the DE2 version takes this algorithm
to reach some local minimum, as shown in Figure 10b.
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4.4. Optimization Results for Four Degrees of Freedom

In this section, the idea is to reproduce the effect of the ratio H0/L0 over the three times
minimized maximum excess of temperature, (θmax)3m, and the mean square errors (MSE)
for (θmax)3m and the corresponding optimal configurations, (S1/H0)o, (α)2o, and (β)3o, for
different versions of DE algorithm. The remaining degrees of freedom and constraints are
kept constant, i.e., H/L = 1.0, ϕc = 0.01, and ϕ1 = ϕ2 =0.015. For geometric optimization it
is assumed a discrete search space with α = β ∈ [−80◦; 80◦] and interval of ∆α = ∆β = 1◦

and S1/H0 ∈ [0.1; 0.9] with an interval of ∆S1/H0 = 0.1. Based on the previous results, only
DE1, DE2, and DE3 with F = 1.0 and CR = 0.0 are used here. An investigation performed
here consists of the analysis of the influence of different combinations of the parameters
NP and NG over the effect of the ratio H0/L0 over the thermal performance and optimal
configurations. It executed 30 runs of each algorithm version for the following discrete
search space of H0/L0:

H0/L0 = [ 2.25; 4.72; 7.19; 9.66; 12.14; 14.61; 17.08; 19.55; 22.03; 24.5] (30)
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Table 12 shows the statistical metrics calculated from the results of DE algorithm
versions. The first column shows some H0/L0 search space values, and the second column
shows the combinations of NP × NG investigated. The other columns show the statistical
metrics of the average and standard deviation of (θmax)3m obtained with DE1, DE2, and
DE3 versions. The first combination of NP = 10 and NG = 50 led to the worst results with
high magnitudes of standard deviation and overall (θmax)3m for all cases of H0/L0. These
results indicated the achievement of local points of optimum and dispersed magnitudes
of thermal performance. In the second experiment, the magnitudes of NP and NG were
increased two times (NP = 20 and NG = 100).

Table 12. Results of statistical metrics of (θmax)3m for some values of H0/L0 and different combinations
of NP × NG.

DE1 DE2 DE3

H0/L0 NP × NG
Average
(θmax)3m
(×10−3)

Standard
Deviation
(×10−4)

Average
(θmax)3m
(×10−3)

Standard
Deviation
(×10−4)

Average
(θmax)3m
(×10−3)

Standard
Deviation
(×10−4)

2.25

10 × 50 32.05 44.37 33.25 48.44 31.32 40.51
20 × 100 28.30 3.99 30.09 34.23 29.42 31.38
30 × 66

28.39 12.86 29.75 33.39 28.30 6.2030 × 100
40 × 75

28.16 0 28.16 0 28.26 5.8140 × 112

12.14

10 × 50 27.08 22.07 28.42 14.84 26.71 9.24
20 × 100 25.55 1.09 26.23 8.34 25.62 4.43
30 × 66

25.54 0
26.01 7.04

25.72 3.79
30 × 100 25.55 1.07
40 × 75

26.16 6.44
25.57 1.23

40 × 112 25.54 0

24.50

10 × 50 21.22 27.83 23.96 50.06 20.57 25.65
20 × 100 18.36 2.93 20.75 46.49 18.37 6.45
30 × 66 18.45 9.00

19.20 17.84
18.51 5.44

30 × 100 18.42 8.93 18.26 0
40 × 75

18.26 0 19.05 17.11
18.30 1.53

40 × 112 18.26 0

Table 12 data indicates a significant improvement in the results, especially in the
magnitude of the standard deviation and the decrease in overall (θmax)3m close to the global
point of (θmax)3m. The following experiment tests the population size of 30 individuals
and 2 total numbers of generations, 66 and 100. In this case, the results of DE2 and DE3
show some progress. On the other hand, the performance of DE1 for H0/L0 = [2.25, 24.5]
has a slight decrease. The increase in NG from 66 to 100 does not significantly influence
the results, except for the DE3 version in H0/L0 = [12.14; 24.5]. For the final experiments
with NP = 40 and NG = [75, 112], the DE1 algorithm version showed better results with
null values for standard deviation, which means that the algorithm reached the optimal
solution in all execution and for all values of rate H0/L0. The impact of the increase in
NP was expected, but compared to other methods, the DE1 version shows better results
even for NP = 20 and NG = 100. The DE2 version also achieved the optimal solution in all
executions for H0/L0 = 2.25. However, for other values of H0/L0, the DE2 version does not
reach the optimal solution in all runs. For the DE3 version, the parameters NP = 40 and
NG = [75, 112] improved the algorithm results, mainly for NG = 112, with null standard
deviation values. Nevertheless, for H0/L0 = 2.25, the results slightly decrease compared
to NP = 30.

Figure 12 compares the mean square error of α (MSE α) for different combinations of
NP × NG and different versions of DE investigated. As expected, in general, the MSE α
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decreased with the increase in NP and NG parameters. Despite that, in some conditions,
the growth of NP and NG parameters does not influence the MSE α, e.g., for the interval 9.7
≤ H0/L0 ≤ 12.1 with the DE2 version, a significant decrease in MSE α is not observed, as
can be noticed in Figure 12a–d.
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NG = 112.

For H0/L0 ≥ 14.6, the decrease in MSE α is more accentuated for DE1 and DE3
versions, mainly for DE1 with NP = 20 and NG = 100. These two algorithm versions
had more difficulty obtaining the optimal value of α for H0/L0 = 9.7, Figure 12a–c. This
behavior indicates that, for this ratio of H0/L0, there are more points of local minimal for
the prediction of (α)2o. For NP = 40 and NG = 112, Figure 12d, the algorithms DE1 and
DE3 led to MSE α tending to zero, except for H0/L0 = 17.1, when DE2 and DE3 have a
similar performance.

The mean square error for β (MSE β) for each algorithm version in different NP and
NG combinations is shown in Figure 13. For the first combination of NP and NG with
NP = 10 and NG = 50, the three algorithm versions analyzed presents several errors for
all values of H0/L0, Figure 13a. With the increase of the NP and NG parameters, a strong
reduction in the magnitude of MSE β was efficiently obtained, as can be seen in Figure 13b–
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d, mainly for versions DE1 and DE3, which obtained MSE β almost null in all ranges of
H0/L0 investigated.
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It is worth mentioning that, for NP = 20 and NG = 100, Figure 13b, the DE1 version
still shows almost zero errors for all ratios of H0/L0. Results of Figure 13 show that the
DE2 version was not efficient in completely reducing the MSE β for different magnitudes
of H0/L0. Despite that, the performance was enormously superior to that noticed for the
reduction of MSE α, which can be associated with the sensitivity of the ratio H0/L0 over
(α)2o and (β)o.

Figure 14 shows the mean square error for S1/H0 (MSE S1/H0) as a function of the
ratio H0/L0 for different versions of DE and magnitudes of NP and NG. The increase in
NP and NG led to a decrease in MSE S1/H0 in a similar form that happened for MSE α,
Figure 12. In other words, the MSE S1/H0 had a strong decrease with NP and NG for the
versions DE1 and DE3, Figure 14b–d, with more difficulties to reduce the MSE S1/H0 for
H0/L0 < 14.6. The performance of DE2 was not strongly influenced by variation of NP and
NG, leading to poor performance, regardless of the magnitude of NP and NG used. It is
worth mentioning that the DE1 version shows zero error for all ratios of H0/L0 investigated,
i.e., the algorithm reaches the optimal values of S1/H0 in all runs.
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The error to achieve the three times minimized dimensionless maximum excess of
temperature, (θmax)3m, generated by each DE algorithm version for different ratios of H0/L0
and magnitudes of NP and NG is shown in Figure 15. In Figure 15a, the MSE of (θmax)3m for
NP = 10 and NG = 50 can be seen, showing the highest magnitude errors for the performance
indicator, regardless of the DE version used. For the next population size, NP = 20, and total
generation of NG = 100, Figure 15b, DE1 version conducted to the minimum error for all
ratios of H0/L0, which is a strong indicator that this algorithm is able to reproduce the effect
of H0/L0 over (θmax)3m and corresponding optimal configurations, (S1/H0)o, (α)2o, and
(β)3o, since the search is performed for fixed magnitudes of H0/L0 (the curve it is desired to
reproduce). For the DE3 version, a similar prediction can be found, but more computational
effort is required, since the lowest magnitudes of MSE (θmax)3m were obtained with higher
values of NP and NG in comparison with DE1. For the DE2 version, the increase in the
NP × NG parameters implies a significant reduction in MSE (θmax)3m, but still presents the
highest errors among the analyzed algorithm, which is an indicative of the prediction of
local points of minimum and local optimal configurations.
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Figure 16 shows the effect of the ratio H0/L0 over (θmax)3m considering the overall
magnitude, represented by the point, and the inferior and superior limits established by
the standard deviation, represented by the bars. The effects of H0/L0 on the thermal
performance reproduced by different versions of DE and combinations of NP and NG
parameters are analyzed. The first experiment with NP = 10 and NG = 50, shown in
Figure 16a, presents the highest average and standard deviation values of (θmax)3m for all
DE algorithm versions and ratios of H0/L0. These NP and NG parameters are insufficient to
reproduce the effect of H0/L0 over (θmax)3m for any version of the DE algorithm analyzed.
For the next experiment, Figure 16b, with NP = 20 and NP = 100, it is possible to note an
improvement in the reproduction of the effect of H0/L0 over (θmax)3m, mainly for DE1 where
low magnitudes of standard deviation are noticed. The DE3 version also has adequate
performance, but some magnitudes for overall (θmax)3m and standard deviations are higher
than those reached with DE1. The performance of the DE versions was improved with
the increase in NP and NG up to the configuration with NP = 40 and NG = 112, where
the standard deviation for DE1 was null and the global optimal configuration is found for
each magnitude of H0/L0, reproducing in a most adequate form the effect of H0/L0 over
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(θmax)3m. For the present study of the physical problem, the algorithm DE1 with NP = 40 and
NG = 112 is highly adequate for the reproduction of the effect of degrees of freedom over
the thermal performance and corresponding optimal configurations. As a consequence,
it will be used in future studies associated with constructal design for optimization of a
complex system with 6 or 7 degrees of freedom, significantly reducing the computational
effort in comparison with exhaustive search (benchmark solution).
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Figure 17 shows the evolution of the optimal configuration for some values of H0/L0,
demonstrating the adaptation of the design for different heights of the main stem of a
double Y-shaped cavity. Figure 17a–c shows that the optimal values of the (S1/H0)o,
(α)2o, and (β)3o changed to assume the configurations that led to three times minimized
dimensionless maximum excess of temperature (θmax)3m in the solid domain for each value
of H0/L0. In Figure 17c it is possible to notice the configuration that led to the dimensionless
maximum excess of temperature four times minimized, (θmax)4m, when (H0/L0)o = 24.5. For
lower magnitudes of the height of the main stem of the double Y-shaped cavity, Figure 17a,
the optimal angles are positive to improve the thermal distribution in the upper region of
the solid domain. As the stem height increases, Figure 17b,c, the angles of the branches
and the position of the inferior branch are reallocated to redistribute the heat in the center
and inferior areas of the solid domain, minimizing the thermal resistance in the solid
domain. Figure 17 also demonstrates that the number of hot regions in the solid domain
changed from five to six from cases of Figure 17a,b to case Figure 17c, showing that the
most homogeneous distribution of temperature leads to the best thermal performance.
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This behavior is in agreement with the constructal principle of “optimal distribution
of imperfections”.
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Figure 17. Optimal geometries for different values of H0/L0: (a) H0/L0 = 2.25, (S1/H0)o = 0.1, (α)2o

= 43◦, (β)3o = 72◦, (θmax)3m = 0.0281; (b) H0/L0 = 12.14, (S1/H0)o = 0.9, (α)2o = −45◦, (β)3o = 27◦,
(θmax)3m = 0.0255; (c) (H0/L0)o = 24.5, (S1/H0)2o = 0.9, (α)3o = −62◦, (β)4o = −29◦, (θmax)4m = 0.0186.

5. Conclusions

The present work analyzed the association between the canonical form of differential
evolution (DE) algorithm and the constructal design (CD) for geometrical optimization
of a double Y-Shaped cavity inserted in a solid domain with constant heat generation per
unit volume. Several parameters of the DE algorithm were investigated to rationalize the
search for the global point of optimum design, and mainly for the reproduction of the
effect of degrees of freedom over the thermal performance and corresponding optimal
configurations, which is essential for the physical analysis of the design. The parameters of
the DE algorithm analyzed were the differential amplification factor (F), crossover rate (CR),
and four mutation operators (rand/1/bin, best/1/bin, best/2/bin, and current-to-best/1/bin). The
combinations of the investigated parameter values generated 16 different versions of the DE
algorithm. For statistical analysis of each algorithm at each level of optimization, 30 runs
for each version were performed. Results were analyzed with the statistical methods
of Shapiro–Wilk, Kruskal–Wallis, and the Dunn test for multiple comparisons for non-
parametric samples. With these statistical tools, the work identifies the best and worst sets
of DE algorithm parameters when applied to the problem of interest.

In most cases observed, the DE algorithm versions with mutation operator rand/1/bin
achieved the best performance, at all different optimization levels. On the other hand, the
worst mutation operator was the best/2/bin for the conditions investigated in this study.
For constant values of NP and NG, the parameter F significantly influenced the search for
the best geometrical configuration. For the present conditions, the CR parameter did not
show an important influence. For the first level of optimization, the best parameters to be
applied, according to the results of this study, were a combination of parameters F = 1 with
CR = 0.9 and the mutations operators rand/1/bin and best/1/bin. Results of the second level
of optimization show that for correct reproduction of the effect of a determined degree of
freedom over the other geometric parameters and thermal performance, is recommendable
an association of the meta-heuristic with the exhaustive search method. In other words, the
exhaustive search should be used at the level where the effect of degree of freedom over
thermal performance and corresponding optimal shapes is investigated. It was also noticed
that versions DE1 and DE3 have similar performance but different behavior to explore
the search space. The DE2 version presented more errors and was classified as a different
group from other methods. Despite the DE2 version error, it can be seen through the results
that this algorithm has a fast convergence to the optimal region. Consequently, in most
cases, this version reaches local optimal values. The last experiment carried out here was
the optimization process to reproduce the effect of the ratio H0/L0 over the three times
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minimized maximum excess of temperature, (θmax)3m, and the mean square errors (MSE)
for (θmax)3m and the corresponding optimal configurations, (S1/H0)o, (α)2o, and (β)3o, for
different versions of DE algorithm and parameters NP and NG. Results showed that the
increase in parameters NP and NG generally improve the algorithm results, except for some
cases of the DE2 version for degrees of freedom α and S1/H0. The DE3 version presents
a significant reduction of standard deviation with the increase in NP and NG parameters
reaching an intermediate performance. The performance of the DE1 version was the best
in comparison with the other investigated methods. Even for NP = 20 and NG = 100, the
method has obtained very close values to the optimal solutions and almost zero standard
deviation. The DE1 method required lower computational effort than the DE2 and DE3
methods to sufficiently reproduce the effect of H0/L0 over (θmax)3m and the corresponding
optimal geometries. In general, results indicated that the use of the DE algorithm can be
associated with constructal design for prediction on the effect of the influence of different
degrees of freedom over the thermal performance and corresponding optimal shapes with
a computational effort significantly reduced in comparison with the exhaustive search.
Therefore, for future studies, a complete optimization (with 6 or 7 degrees of freedom) of
the double Y-shaped cavity will be performed.
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Nomenclature

A Area, m2

CR Crossover rate of differential evolution algorithm
F Amplification factor of mutation function of the differential evolution algorithm
G Current generation of the differential evolution algorithm
H Height of the solid with internal heat generation, m
H0 Height of the cavity stem, m
H1 Thickness of the superior bifurcated branches of the cavity, m
H2 Thickness of the inferior bifurcated branches of the cavity, m
k Thermal conductivity of the solid with heat generation, W m−1 K−1

L Length of the solid wall with internal heat generation, m
L0 Thickness of the cavity stem, m
L1 Length of the superior bifurcated branches of the cavity, m
L2 Length of the inferior bifurcated branches of the cavity, m
NP Total number of solutions (population size) in the differential evolution algorithm
NG Total number of generations (total iterations of the differential evolution algorithm)
OF Objective function, solver of the heat diffusion equation
q Heat transfer rate, W
T Temperature, K
u Solution of the next generation of differential evolution algorithm
W Width, m
v Trial vector, i.e., candidate solution of differential evolution algorithm
x, y Cartesian coordinates, m
Greek symbol
∆E Difference between objective function cost for the new and best solution.
θ Dimensionless temperature
ϕ Fraction area of the cavity
α Angle of inferior branch of the cavity
β Angle of superior branch of the cavity
Superscripts
(~) Dimensionless variables.
Subscripts
c Cavity
min Minimum
max Maximum
m Once minimized
nm n times minimized
no n times optimized
r Random index for operations with population solutions in mutation function
0, 1, 2 Variable indexes of height and length for stem, inferior and superior branches
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