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Planet-Sun Sensor Revisited 

Dario Modenini,1  and Marco Zannoni.2 
University of Bologna, I-47121, Italy 

Since the seminal work of Daniele Mortari published in this journal in 1997, the concept 

of an attitude sensor using images of illuminated celestial bodies has been pushed forward 

through the years. The basic idea consists of extracting two independent directions from the 

image of a celestial body, namely the camera-to-planet and the planet-to-Sun directions. The 

former is estimated from the center of an ellipse fitted to the imaged limb points, the latter 

from the symmetry axis of the illuminated region. These assumptions, however, only hold for 

far-distant spherical targets. In this work, we reformulate the problem in the framework of 

projective camera transformations of quadrics and conics, and present an algorithm 

estimating the line-of-sight to the planet and the illumination direction from the limb and 

terminator ellipses, respectively. The method is applicable to any ellipsoid-like celestial body 

having known orientation. The algorithm is first validated on synthetically generated images 

and then tested using real pictures of Dione and Enceladus satellites gathered from Cassini 

spacecraft. Results show that our sensor concept returns root mean squared errors in the 

order of the angular width of a pixel in computing the nadir direction, and sub-degree 

accuracy in computing the Sun direction. 

Nomenclature 

a,b,c = ellipsoid radii, m 

C = 3x3 homogeneous conic matrix 

D = diagonal matrix 

e = ellipticity 

f = focal length, m 

 
1 Assistant Professor, Department of Industrial Engineering. 
2 Assistant Professor, Department of Industrial Engineering. 



k = dimensionless range 

K = matrix of intrinsic camera parameters 

M = terminator ellipse semi-major axis 

m = terminator ellipse semi-minor axis 

n = terminator plane normal unit vector  

Q = 4x4 quadric matrix 

Q3 = 3x3 quadric matrix 

R = attitude matrix 

S = signature matrix 

s = Sun position vector, m 

T = 3x3 homogeneous terminator matrix 

t = translation vector, m 

V,W = eigenvector matrices 

α = nadir direction error angle 

β = Sun direction error angle 

ℰ = Euclidean transformation matrix 

λ = latitude 

ν = line-of-sight unit vector 

ρ = range, m 

    τ = longitude 

Subscripts 

c  = camera frame 

n  = North-East-Down frame 

t  = terminator frame 

w  = world frame 

Superscripts 

* = adjugate or inverse 

T = transpose 



 

I. Introduction 

HE determination of spacecraft attitude from a set of vector observations is a recurrent problem, that has been 

extensively studied for many decades. Indeed, most attitude sensors consists of determining the body axes components 

of a unit direction vector or line-of-sight (LOS). Common examples are Sun sensors, magnetometers and nadir sensors. 

Since a LOS measurement encodes two scalar information, at least two independent LOS observations are required to 

reconstruct the triaxial attitude of a spacecraft. Most often, one attitude sensor provides a single LOS, so that at least 

two sensors are needed. A well-known remarkable exception is represented by star trackers, which are cameras capable 

of tracking multiple stars’ LOS vectors.  

Camera based attitude sensors can also be employed to track a larger target in the FOV, such as a planet or a moon. 

Then, if the target is only partially illuminated, both the LOS from the camera to the body and the LOS from the body 

to the Sun (i.e. the illumination direction) can be retrieved from the image. Once these are known, the attitude can be 

reconstructed using any classic method available for solving the attitude determination problem from vector 

observations, i.e. the so called Wahba’s problem [1]. This idea, which we may refer to as the planet-Sun sensor, was 

originally proposed by Mortari in [2], and later refined by Park and Mortari in [3]. More recently, the same concept 

was pushed forward by Enright, as a moon-tracking backup mode for star trackers [4], and applied on board of μ-

LabSat spacecraft for triaxial attitude estimation from Earth images [5]. 

In the planet-Sun attitude sensor concept, the attitude solution is provided in two steps. First, the local nadir 

direction is computed from the center of the imaged limb ellipse. Second, it is assumed that the limb and terminator 

curves share a common axis, i.e. a principal and symmetry axis of the illuminated area (see Fig.1a), which is used to 

estimate the direction of illumination.  

In both steps, there are some implicit assumptions which must hold, namely, that the target is a sphere and that its 

size is much smaller than the range from the camera. The latter is needed since the center of an imaged ellipsoid is 

mapped onto the center of the imaged ellipse through a camera projective transformation only if the target is at infinite 

distance; the sphericity is instead required since for a generic triaxial ellipsoid the illuminated region has no symmetry 

axis, nor the direction of illumination is coincident with a principal axis (see Fig. 1). Nevertheless, the above 

assumptions are often justified in practical applications since celestial bodies have very low flattening and the target 

is indeed very far, yet they may introduce errors in the estimate.  

T



Recently, the attitude determination problem has been tackled in the framework of ellipsoid observations, rather 

than from LOS measurements as per the classical Wahba problem. In [6] it was shown that from a single observation 

of an ellipsoidal celestial body, a closed form formulation for the attitude matrix can be obtained by solving a quadric-

to-conic correspondence problem. The theoretical framework was later applied to infrared images of an ellipsoid, to 

develop a triaxial horizon sensor [7]. Unfortunately, celestial bodies feature typically a very small degree of polar or 

equatorial (if any) oblateness, so that, in practice, the orientation about camera boresight can be only loosely 

constrained using such a sensor as a standalone source for the attitude.  

In this paper, we revisit the planet-Sun attitude sensor in light of the theory of attitude determination from ellipsoid 

observations, to provide an algorithm which is generally applicable to any ellipsoid-like celestial body without further 

restrictive assumptions. The revisited planet-Sun sensor relies on the theory of perspective transformations of quadrics 

(i.e. the planet) and conics (i.e. the terminator curve on planet’s surface) under the action of a pin-hole camera, both 

of which are well known [8]. In particular, it formulates and solves the attitude determination problem through joint 

quadric-conic and conic-conic correspondences. Despite the quadric-conic correspondence problem alone has been 

already successfully tackled for computing whether the attitude [6, 7], position [9-13] or a combination of both [14, 

15] from ellipsoids limb, to the best of the authors’ knowledge a general framework for estimating the direction of the 

light partially illuminating an ellipsoid has not been tackled yet, neither alone, nor together with the LOS to develop 

a full attitude sensor. 

The resulting sensor concept can be applied for real-time applications onboard a spacecraft, which aims at 

estimating its attitude relative to a planetary target being imaged in partial illumination conditions, and without 

resorting to inertial attitude knowledge from star-tracking, provided that the inertial orientation of the planet is known.  

The manuscript is organized as follows. In Section II, we first recall the mathematical background of pinhole 

projective transformation and its action onto quadric surfaces. Sub-section II.A faces the problem of computing the 

line-of-sight vector from the limb ellipse. Two alternative solutions are discussed for this problem: one, derived from 

previously published results [6, 7], allows computing the LOS as a byproduct of the entire attitude matrix estimate; 

the other, instead, directly computes the line-of-sight only. Sub-section II.B deals with the computation of the 

illumination direction. First, the terminator ellipse is computed as the intersection of a plane and the target ellipsoid; 

then, by the study of the planar homography mapping the terminator conic onto the image plane, an estimate of the 

normal to the terminator plane is sought for, from which the illumination direction can be retrieved. Section III presents 



the algorithm validation against synthetically generated images. In Section IV, the algorithm performance is assessed 

under a representative scenario, making use of Dione and Enceladus images gathered by Cassini spacecraft. Finally, 

a discussion on the main outcomes of this study is found in Section V. 

 
(a) 

 
(b) 

Fig. 1 Synthetic images of illuminated quadric surfaces with direction of illumination (dotted red line) 

and principal axis of illuminated area (solid blue line). (a) sphere (the two directions coincide); (b) triaxial 

ellipsoid. 

II. Theory of attitude determination from illuminated ellipsoids 

 

Fig. 2 Graphical representation of the imaging of an illuminated celestial body with a pinhole camera. 

We will approach the problem of computing the attitude of a spacecraft from an image of an illuminated ellipsoid 

using the framework of projective camera transformations [8], assuming the relative position to be known. The 



scenario is depicted in Figure 2, where a partially illuminated ellipsoid and the image plane are represented. The 

imaged contour of the ellipsoid is the intersection of the cone tangent to the ellipsoid itself and whose vertex is lying 

on the camera center with the image plane; this intersection is the limb conic, whose visible portion is highlighted 

with a full white line in the figure. On the other hand, the terminator ellipse, denoted with a dashed line in the figure, 

is the image of the conic resulting from the intersection of a plane having normal n, whose orientation depends on the 

illumination direction3. The mapping of a quadric surface and a plane ellipse under a projective camera transformation 

are both known and will be briefly recalled in the following. 

Under the Euclidean transformation ℰ = 𝑅[𝐼 𝒕 ], the quadric Q transforms to the conic C on the image plane of 

a pinhole camera, according to [8]: 

𝐾 𝐶∗𝐾 ∝ ℰ𝑄∗ℰ . (1) 

In Eq. (1), Q is the matrix: 

𝑄 =

1 𝑎⁄ 0 0 0

0 1 𝑏⁄ 0 0

0 0 1 𝑐⁄ 0
0 0 0 −1

=
𝑄 𝟎

𝟎 −1
, (2) 

a, b, c, being the ellipsoid semi-axes lengths; R is the orthogonal attitude matrix mapping from the world frame, 

defined by the ellipsoid axes, to the camera frame (the unknown to be estimated); tw is the translation vector from the 

camera center to the origin of the target ellipsoid expressed in world frame (assumed known); C* is the adjugate4 of 

the conic matrix C computed from the coefficients of the ellipse quadratic equation: 

𝐴𝑥 + 𝐵𝑥𝑦 + 𝐷𝑦 + 𝐸𝑥 + 𝐹𝑦 + 𝐺 = 0 ↔ [𝑥 𝑦 1]𝐶
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, 𝐶∗ =
𝐹 − 4𝐷𝐺 2𝐵𝐺 − 𝐸𝐹 2𝐷𝐸 − 𝐵𝐹
2𝐵𝐺 − 𝐸𝐹 𝐸 − 4𝐴𝐺 2𝐴𝐹 − 𝐵𝐸
2𝐷𝐸 − 𝐵𝐹 2𝐴𝐹 − 𝐵𝐸 𝐵 − 4𝐴𝐷

,

 (3) 

and K is the intrinsic camera matrix, representing the projective transformation. For a pinhole camera with optical axis 

coincident with body axis z and the pixel array plane coincident with body x-y plane, 𝐾 =
𝑓 𝑠 𝑝
0 𝑓 𝑝

0 0 1

, where fx ,fy 

 
3 For the special case of a spherical body, n is coincident with the illumination direction. 
 



is the focal vector and px, py are the coordinates of the principal point, and s is the skew-angle (equal zero for orthogonal 

x-y axes). The coordinates of the ellipse center can be computed directly from the elements of C* as in: 

𝑥 = 𝐶∗(1,3)/𝐶∗(3,3) 𝑦 = 𝐶∗(2,3)/𝐶∗(3,3). (4) 

Note that, since Q (C) matrix represents an ellipsoid (ellipse) in homogeneous coordinates, it is invariant to a 

common scaling of all its elements. Scaling invariance thus holds for Eq. (1) as well, which maps between the 

adjugate/inverse quadric matrix, and the adjugate/inverse imaged conic matrix. Moreover, since an ellipsoid (ellipse) 

is a non-degenerate quadric (conic), one can indifferently assign to * the meaning of adjugate or inverse. From a 

geometric point of view, Q* (C*) describes the so-called dual, or envelope, quadric (conic) which defines the planes 

(lines) tangent to Q (C). An equivalent relation between the point quadric Q and the point conic C may also be derived, 

by considering the back-projection of the imaged ellipse as the ellipsoid tangent cone, or by direct inversion of Eq. 

(1), see e.g. [10,11,15].  

By defining matrices: 

𝒞 = 𝐾 𝐶𝐾, 𝐵 = 𝑄∗ − 𝜌 𝝂 𝝂 , (5) 

𝜌 being the range to the target and 𝝂  the unit vector expressed in the target (or world) frame. Eq. (1) can then be 

rewritten as: 

𝒞∗ ∼ 𝑅(𝑄∗ − 𝜌 𝝂 𝝂 )𝑅 = 𝑅𝐵𝑅 . (6) 

Equation (6) is a special case of the hand-eye calibration problem [17], which can be solved after computing the 

spectral decompositions of 𝒞∗ and 𝐵.  

Such an approach was followed in [6,7] for computing the whole attitude matrix from a single ellipsoid 

observation. Nevertheless, those works highlighted that imaging a target with low flattening, as most of the celestial 

bodies, the detectability of the rotation around the boresight is severely degraded. Here, instead, we assume to detect 

a terminator ellipse besides the limb one which allows us to pursue an alternative approach, by combining the 

information of the LOS direction in camera frame, 𝝂 , extracted from the planetary limb, to the direction of 

illumination estimated from the terminator. This is, indeed, the main concept of a planet-Sun sensor. 

A. Computation of the LOS direction from the limb ellipse 

Computing the LOS is the fundamental step also in the original formulation of the planet-Sun attitude sensor [2,3] 

and in similar works [4,5]. In most references it is assumed that the LOS vector from the camera center to the target 

passes through the center of the image outline (whether this last is assumed to be a circle or an ellipse). However, for 



a planet at finite distance, the LOS 𝝂  is not mapped onto the center of the imaged conic, as it must follow the 

transformation prescribed by Eq. (1).  

In the following we will study how the LOS is related to the conic center, first considering the special case of a 

spherical target. To this end, it is convenient to rearrange Eq.(6) as: 

𝒞∗ ∼ 𝑅𝑄∗𝑅 − 𝝂 𝝂 , (7) 

where the quadric matrix 𝑄∗ is rendered dimensionless by defining 𝑄∗ = 𝑄∗/𝜌 . For a sphere, 𝑄∗ = 𝑎 /𝜌 𝐼 = 𝑘 𝐼, 

so that 𝑅𝑄∗𝑅 = 𝑄∗. For ease of notation, we further assume an ideal pinhole-camera matrix having principal point 

coincident to the origin and no skew, for which K=diag([f f 1]). Then, it is easy to verify that under these hypotheses 

the adjugate conic matrix reads: 

𝐶∗ ∼ 𝐾 𝑄∗ − 𝝂 𝝂 𝐾 =

𝑓 (𝑘 − 𝜈 ) −𝑓 𝜈 𝜈 −𝑓𝜈 𝜈

−𝑓 𝜈 𝜈 𝑓 (𝑘 − 𝜈 ) −𝑓𝜈 𝜈

−𝑓𝜈 𝜈 −𝑓𝜈 𝜈 (𝑘 − 𝜈 )

. (8) 

According to Eq. (4), the center of the conic is: 

𝑥 = 𝑓
𝜈 𝜈

𝜈 − 𝑘
, 𝑦 = 𝑓

𝜈 𝜈

𝜈 − 𝑘
, (9) 

or, dividing by the focal length: 

𝑥

𝑓
=

𝒞( , )
∗

𝒞( , )
∗ =

𝜈

𝜈
∙

1

1 − (𝑘/𝜈 )
,

𝑦

𝑓
=

𝒞( , )
∗

𝒞( , )
∗ =

𝜈

𝜈
∙

1

1 − (𝑘/𝜈 )
. (10)

Clearly, the conic center depends on both the LOS vector and the range to the spherical target, and it lies on the LOS 

only for 

1

1 − (𝑘/𝜈 )
= 1, (11)

which is approximately true in the limit 𝑘/𝜈 → 0, i.e. when the sphere is at an infinite distance. Note that the limit of 

𝑘/𝜈  is always defined, provided that 𝜈 ≠ 0, which is in turn true if the camera points towards the target. Furthermore, 

for an ideal pinhole camera, k can be related to the camera field of view (FoV) as:  

𝑘 =
𝑎

𝜌
≅

𝑠

𝑓
≅ 𝑤%tan

FoV

2
, (12)

where s is the size (radius) of the body on the image plane and w% is the percentage width of the imaged conic with 

respect to the image size.  



 Eq. (12) indicates that the LOS offset from the ellipse center due to the finite distance of the target falls of rapidly 

for instruments having a narrow FoV, as commonly happens for navigation cameras. Remarkably, this is not always 

the case for cameras employed as Earth sensors, for which the FOV may be on the order of 1 rad. In such a case, the 

left-hand side in (12) may differ from unity of some tens of percent. Furthermore, wide-angle cameras are becoming 

relevant also in deep space missions, see e.g. the JunoCam [18] and JPL’s Advanced Pointing Imaging Camera (APIC) 

concept [19]. 

If we express the LOS as a function of the boresight angle, 𝜃, and the azimuth 𝜑 from the x detector axis, these 

can be computed from the conic coefficients as: 

𝜑 = atan (−𝐶( , )
∗ , −𝐶( , )

∗ ) 𝜃 = acos (𝑘 − 𝐶( , )
∗ ) (13)

Note that, for a spherical target, the value of range 𝜌 needed to compute k needs not to be known in advance by 

independent means, since it can be computed directly from the eigenvalues of 𝒞∗, as shown in [14].  

For a generic triaxial ellipsoids the above analysis would complicate significantly. By considering a spheroid (i.e. 

an ellipsoid of revolution), the counterpart of Eq. (10) is a bit cumbersome, but still manageable (see Appendix), and 

it indicates that the ellipse center departs from the LOS direction by an extent which depends in general on the range, 

the flattening and, most important, on the camera orientation itself. Therefore, it is difficult to state any bound on the 

error performed by estimating the LOS direction from the conic center only.  

These considerations motivate the quest for a LOS solution which is fully consistent with the projective camera 

transformation (1). To this end, one can pursue two paths. 

First, we note that Eq.(7) states that there exists a rank-one, unit norm perturbation to 𝒞∗ matrix which renders it 

orthogonally similar to 𝑄∗, apart from scaling. The scaling ambiguity can be easily removed by taking the trace of 

both side of Eq.(7) and multiplying 𝒞∗by tr 𝑄∗ − 1 /tr(𝒞∗).  

One thus need to write two equations for the two independent 𝝂  components exploiting some matrix invariants 

to orthogonal transformations. For example, two such equations are: 

det(𝒞∗ + 𝝂 𝝂 ) = det 𝑄∗

tr[(𝒞∗ + 𝝂 𝝂 ) ] = tr 𝑄∗
 (14)

Equations (14) can be rearranged into explicit functions of 𝝂  exploiting the matrix determinant lemma and the 

cyclic trace property, to yield: 



𝝂 𝒞𝝂 =
det 𝑄∗

det(𝒞∗)
− 1

2𝝂 𝒞∗𝝂 = tr 𝑄∗ − tr 𝒞∗ − 1

subject to: 𝝂 𝝂 = 1

 (15)

This system of constrained second order polynomial equations can be solved for 𝝂 , provided that the range ρ is 

known, by using an iterative root-finding method such as Newton-Raphson. A suitable initial condition is the one 

obtained from the imaged ellipse center: 

𝝂 , =
1

𝒞( , )
∗ 𝒞( , )

∗ 𝒞( , )
∗ 𝒞( , )

∗ − 𝒞( , )
∗ − 𝒞( , )

∗ . (16)

In Eq. (16) the sign of the third component of 𝝂 ,  is set positive, to ensure that the camera is pointing towards (and 

not away from) the target. Solution to Eq. (15), being evaluated iteratively is not very attractive for onboard 

implementations. Furthermore, our numerical tests revealed that the number of iterations may get high before 

convergence is reached.  

An alternative method to estimate 𝝂  involves reformulating Eq. (6) with respect to a Local-Vertical-Local-

Horizon (LVLH) frame, so that the LOS direction is coincident with one of the columns of the attitude matrix R, 

similar to as done in [14]. For example, by adopting a north–east–down (NED) frame, matrix R can be written as the 

combination of two rotations: 

𝑅 = 𝑅 / 𝑅 / , (17) 

where 𝑅 /  is the rotation matrix from the world to NED frame, function of the vantage direction 𝝂 , while 𝑅 /  is 

the rotation matrix from NED to camera frame, whose third column is indeed 𝝂 . Then, following the method in [7], 

one can show that Eq.(6) can be rearranged having as unknown matrix 𝑅 /  as:  

𝒞∗ ∼ 𝑅 / 𝐵 𝑅 / , (18) 

with 

𝐵 = 𝑅 / 𝑄∗𝑅 / − 𝜌 [0 0 1] [0 0 1], (19) 

𝑄∗ =
∗

= diag 1, ,  and 𝜌 = 𝜌/𝑎  is a dimensionless range which can be computed provided 𝝂  is known, 

see [7] for details. 

 Once 𝐵∗ is available, it is easy to verify that a solution to Eq. (18) can be computed as: 

𝑅 / = 𝑉𝑆𝑊 , (20) 



where V and W the eigenvector matrices respectively of 𝒞∗ and 𝐵 , and S is the 3⨯3 signature matrix. Or, since we 

are interested only in 𝝂 : 

𝝂 = 𝑉𝑆𝐰  (21) 

where 𝐰  denotes the 3rd row of W. Note that Eqs. (20) and (21) leave the sign undetermined. However, of the eight 

possible signs combinations of matrix S, four only lead to a proper rotation matrix having determinant equal to +1. Of 

these four, only the two leading to a positive third component of 𝝂  are admissible. As shown in [6], the residual 

ambiguity corresponds to two undistinguishable attitude configurations having opposite orientations of both x and y 

camera axes, due to the two symmetry planes of an ellipsoid. The correct quadrant in the image plane shall be chosen 

in agreement with the position of the ellipse center in the image. 

 As a final remark, it is worth noting that the two alternative solutions presented herein for the LOS, Eq. (15) and 

Eq.(21), require different pieces of information concerning the relative position between the camera and the target: 

the former requires the range, the latter 𝝂  (i.e. the latitude/longitude of observation). 

B. Computation of Sun direction from terminator ellipse 

The terminator curve, which separates the lit and unlit part of the ellipsoid, can be defined as the contour generator 

of a central projection centered at the Sun. As such, it is the set of points on Q at which the light rays are tangent to 

the surface. Since a quadric defines a polarity between a point and a plane [1], the contour generator for a quadric 

surface under a central projection is the polar plane of the Sun position vector 𝐬 with respect to Q, thus having equation: 

[𝐬 1] 𝑄[𝐱 1] = 0, (22)

where x=[x y z]T, s=[sx sy sz]T, and all vectors are intended in world frame, unless otherwise stated. The normal of the 

terminator plane follows as:  

𝐧 =

𝑠 /𝑎

𝑠 /𝑏

𝑠 /𝑐

; (23)

the terminator generator is the intersection of such a plane with the quadric surface, hence an ellipse. 

There are different algorithms in the open literature for computing the intersection of a plane with a quadric. Here 

we will briefly recall the solution from [16]. We denote with T the terminator ellipse matrix and with 𝒯 the image of 

such a conic. We consider a terminator reference frame defined by the triad u-v-n, where n is the unit normal to the 

terminator plane, and u, v are the major and minor ellipse axes directions (see Figure 3). With such a choice:  



𝑇 = diag , , −1 , (24)

with M, m denoting the semi-major and semi-minor axes lengths. 

Following [16], the semi-axes lengths and directions can be computed starting from any triad u-v-n, u-v being 

trial orthogonal unit vectors, by prescribing the relations: 

𝐮 𝑄 𝐯 = 𝐯 𝑄 𝐮 = 0. (25)

In particular, u and v can be computed through the planar rotation: 

𝐮 = cos𝜔𝐮 + sin𝜔𝐯 ; 𝐯 = −sin𝜔𝐮 + cos𝜔𝐯, (26)

where 𝜔 = arctan
𝐮 𝐯

𝐮 𝐮 𝐯 𝐯
. The semi-axes lengths then are computed as: 

𝑀 =
𝐮 𝐮

, 𝑚 =
𝐯 𝐯

. (27)

and T matrix is fully determined in the terminator frame. The transformation matrix from terminator to world frame 

directly follows as: 

𝑅 , = [𝐮 𝐯 𝐧]. (28)

When captured by a projective camera, a conic T is mapped to the image plane onto another ellipse T’ through a 

planar homography H, according to [8]: 

𝑇 ∼ 𝐻 𝑇𝐻 , (29) 

where 𝐻 = 𝐾[𝐫 𝐫 𝜌𝝂 ], ri being columns of 𝑅 , . 

 

Fig. 3 Terminator line resulting from the intersection of a plane with normal n and the planet’s surface. 



Defining matrix 𝒯 = 𝐾 𝑇 𝐾, Eq. (29) can be rearranged as: 

𝒯∗ ∼ 𝑅 , 𝑇⋆𝑅 , − 𝜌 𝝂 𝝂 = 𝑅 , (𝑇⋆ − 𝜌 𝝂 𝝂 )𝑅 , , (30) 

where Rc,t represents the rotation matrix from the terminator to the camera reference frame, 𝝂 = 𝑅 , 𝝂  and 

𝑇⋆ = diag{𝑀 , 𝑚 , 0}. (31) 

Eq. (30) is formally identical to Eq. (7), with the main difference that here 𝑇⋆ is not invertible as Q*. Two options 

are now available for estimating the direction of illumination in camera frame from the terminator ellipse. Both rely 

on finding the components on the terminator plane normal in camera frame, nc, and then invert Eq. (23), while differing 

in the way nc is estimated. First, we can search for a direct estimate of nc exploiting 𝝂  as estimated from the previous 

limb processing step. Indeed, Eqs. (30) and (31) indicate that matrix 𝒯∗ + 𝜌 𝝂 𝝂  must have rank 2. Therefore, nc is 

its null space:  

𝐧 = null(𝒯∗ + 𝜌 𝝂 𝝂 ). (32) 

In practice, being the terminator ellipse fitted from noisy data and 𝝂  affected by error, 𝒯∗ + 𝜌 𝝂 𝝂  will not be rank 

deficient. We can hence estimate nc from the eigenvector associated with the smallest singular value of  𝒯∗ + 𝜌 𝝂 𝝂 , 

i.e. from its rank-2 matrix approximation.  

Alternatively, one can solve for the entire terminator-to-camera rotation matrix, 𝑅 ,  in Eq. (30), exploiting the 

knowledge of 𝝂  and 𝑅 , , thus 𝝂  (the LOS in terminator frame), by setting: 

𝑅 , = 𝑉𝒯𝑆𝑉 , (33) 

where 𝑉  and 𝑉𝒯  are the eigenvector matrices of (𝑇⋆ − 𝜌 𝝂 𝝂 ) and 𝒯∗, respectively. By definition, nc is the third 

column of 𝑅 , . As with Eq. (21), Eq. (33) leaves sign ambiguities. After retaining the signs combinations leading to 

proper orthogonal matrices only, the correct S to be chosen is the one such that the equality: 

𝝂 = 𝑅 , 𝝂 , (34) 

is approximated with the closest matching. 

Despite the two methods are theoretically equivalent, it was found from testing with images that estimating nc 

from 𝑅 ,  leads to better results. The reason is ascribed to the fact that the two ellipses, limb and terminator, are fitted 

independently, so that there is no guarantee that they share a common LOS 𝝂 . Plugging 𝝂  as computed from the 

limb ellipse into Eq.(32) will thus introduce errors. 

C. Attitude estimation from limb and terminator ellipse 



Once two independent unit-vector observations are available, the attitude matrix can be computed from one of the 

many methods available in the literature, starting from e.g. a simple TRIAD algorithm, or any solution algorithm to 

Wahba problem (see e.g. [20]).   

III.  Numerical simulations 

As a first step towards the validation of the revisited planet-Sun attitude determination method, we tested the 

algorithm against a Matlab®-based simulation environment by generating synthetic images of an illuminated object 

using the built-in image generation tool. This tool allows to create synthetic images of ellipsoids and polyhedral as 

imaged by pinhole cameras, with settable camera field of view and pose, illumination conditions, and surface 

properties. 

We consider as example of triaxial ellipsoids the Saturnian moons Dione and Enceladus, which was repeatedly 

imaged by Cassini spacecraft during its long-lasting mission. To check the consistency of the algorithm under ideal 

conditions and to assess its potential maximum accuracy across a wide range of viewpoints and illumination 

conditions, we set up a Monte Carlo-like simulation. To this end, we first generated a set of synthetic images of Dione 

and Enceladus best-fit ellipsoids, as if they were captured by a camera having FoV equal to 30 deg. 

The following angles variations were assumed: 

- latitude of observation, between 0° and 90° with 30° step; 

- longitude of observation, between 0° and 90° with 30° step; 

- solar latitude, between -90° and +90° with 30° step; 

- solar longitude, between -150° and +180° with 30° step; 

All the possible combinations of the above angles for which the phase angle is not exceeding 150° have been 

explored5, leading to a total of 2⨯452 images for the two Saturnian satellites. For each generated image, the attitude 

of the camera is prescribed as a sequence of two rotations: first the yaw angle is selected from a pseudo-random 

uniform distribution in the interval [0 2π]. Then random off-nadir angles were prescribed with a normal distribution 

having zero mean and standard deviation equal to 3% of the camera FoV. The dimensionless range from the target 

was set equal to 5, leading to the ellipsoid occupying about 70% of the camera FOV.  

 
5 When phase angle exceeds 150°, the visible portion of the body is so thin that the limb arc is too short for a reliable 
ellipse fitting. 



Afterwards, we repeated the above Monte Carlo-like simulations, this time generating images using a polyhedral 

shape model of Dione6 [21]. This second step is aimed at addressing the performance degradation to be expected due 

to a target surface departing significantly from the one of an ellipsoid. 

For both the ellipsoid and polyhedral images, illumination was simulated assuming an infinitely far away light 

source, ambient light was set to zero and the target surface was modelled as diffusely reflective with standard Gouraud 

shading. Before being processed for limb and terminator detection, all generated images were corrupted adding blur, 

through a 2-D Gaussian smoothing kernel having size of 3 pixels, plus unbiased gaussian noise afterwards. The 

standard deviation of the smoothing kernel and of gaussian noise were set to match, respectively, the full width at half 

maximum (FWHM) of the point spread function and the pixel signal to noise ratio stated for Cassini spacecraft 

Imaging Science Subsystem Narrow Angle Camera (ISS-NAC) [22], see Section IV. 

The limb pixels were identified using a Canny edge detector with manually tuned thresholds (step a). Since the 

planetary limb is usually by far the strongest edge found in the image, this approach provides adequate results. For the 

terminator detection, a different approach was used, to cope with the fainter edge, as follows.  

The grayscale image is converted to binary (black and white), then the edge detection algorithm is applied. This 

way, the entire outline of the binary image, i.e. the union of limb plus terminator, is detected (step b). Let nl to be the 

number of limb pixels, and no> nl the number of outline pixels, and compute the no×nl pairwise distance matrix of the 

limb pixels from the outline ones. For each outline pixel, the minimum among the distances to each limb pixel is 

recorded (i.e. the minimum element of each row in the pairwise distance matrix, step c). Finally, the outline pixel is 

labelled as belonging to the terminator if this minimum value is greater than a certain threshold.  

The rationale for this criterion is that, if an outline pixel belongs to the limb of the binary image, it is then expected 

that there exists at least one limb pixel from the grayscale image very close to it (or, ideally, superimposed). The 

distance threshold can be related to the apparent size of the target within the image. In our tests, a heuristic threshold 

in the range 2-5% of the limb ellipse semi-major axis was found to be adequate. A step-by-step representation of the 

image processing algorithm described above is depicted in Fig. 4. 

Once the limb and terminator pixel sets are created, they are fitted to ellipses using the method described in [23]. 

Finally, the algorithm presented in Section II is applied to each image to compute the LOS and illumination directions.  

 
6 The same test could not be made for Enceladus as we are not aware of a published polyhedral model.  



Results are provided through the error angles α and β, defined as the angles between the true and the estimated 

directions. No algorithm is run to extract a triaxial attitude parametrization from the two observed directions, which 

would otherwise make the error evaluation process dependent on the specific method chosen.  

Before discussing the error trends, it is worth to inspect the impact of the finite distance on the computation of the 

LOS direction, which has been qualitatively addressed in Section II.A for a sphere. To this end, Fig. 5 displays the 

distance in pixels between the projection of the ellipsoid center on the image plane and the center of the projected 

ellipse across the Monte Carlo test samples. The magnitude of such shift reaches values up to ≈6 pixels, an amount 

which would introduce a significant bias in the LOS when incorrectly adopting the imaged ellipse center as the LOS 

measure. 

 

 

Fig. 4 Schematic overview of the image processing steps. 

 



Fig. 5 Pixel difference between the imaged ellipse center and the projected ellipsoid center across Monte 

Carlo simulations. 

Table 1 Error statistics for the LOS and illumination directions errors from images of Dione and 

Enceladus best-fit ellipsoids. 

α [° (px)] 𝛽 [°] 

rms 68% 95% rms 68% 95% 

0.008 (0.28) 0.007 (0.23) 0.018 (0.61) 0.15 0.15 0.31 

 

Inspection of Table 1 suggests that the proposed method can effectively estimate the LOS direction under varying 

illumination conditions, keeping the error smaller than one pixel in most cases. On the other hand, β error angle lies 

mostly in the range 0.1-0.2 degree, indicating that, as for other kinds of optical based attitude sensors, the planet-Sun 

attitude determination is more accurate in computing the LOS direction than the rotation about it. 

 

Table 2 Error statistics for the LOS and illumination directions errors from images of Dione polyhedral 

shape model. 

α [° (px)] 𝛽 [°] 

rms 68% 95% rms 68% 95% 

0.066 (2.25) 0.048 (1.65) 0.156 (5.32) 1.01 0.97 2.03 

 

When switching to the polyhedral shape model, see Table 2, the estimation accuracy drops significantly, as could 

have been expected. Both error angles increase by almost an order of magnitude: the nadir direction is now determined 

with a root mean squared accuracy of ≈ 2 pixels, while the rms for illumination direction raises to ≈1°. This is deemed, 

nevertheless, a good result given that the close-up views of Dione polyhedral surface feature extremely irregular 

terminator curves, as it is apparent from Fig. 6. 

It is finally worth noting that, by varying the phase angle, different limb arc widths are made available in the image, 

going as low as 90° for phase angles of 150°. In our simulations, we found that the accuracy degrades significantly 

when the arc length falls below about 90° for the ideal ellipsoid, and about 120° for the polyhedral shape model. A 

few instances occurred for the shortest polyhedron arc lengths, where the ellipse fitting was essentially unsuccessful: 



these were labelled as outliers, thus not considered for the statistics in Table 2. The number of outliers amounted to 

16 out of 452 images. 

   

Fig. 6 Sample synthetic image of Dione shape model (left panel), and its outline (right panel), highlighting 

the irregular terminator curve. 

IV. Validation against Cassini ISS-NAC images 

 To check the applicability of the method in real-word scenario such as a deep space mission, where the imaged 

target is only approximated by an ellipsoid, we tested the algorithm against a set of six images of Dione and Enceladus 

taken by Cassini ISS-NAC, and retrieved from the Planetary Data System7, Fig. 7. The NAC 1024×1024 field of view 

(FOV) is approximately 0.53 deg wide (IFOV = 1.245 arcsec/px), with focal length 2003.4 mm; the experimental 

FWHM of the point spread function is 1.3 pixel, while the typical pixel SNR is 260 [22].  

The satellites’ semi-axes lengths, orientation with respect to the Sun direction, and relative position to Cassini have 

been retrieved from publicly available SPICE kernels [24]. The ground truth NAC attitude is computed from the stars 

found in each image. To this end, the database of stellar-based reconstructed attitude developed by Tajeddine et al. 

has been employed [25,26], which is greatly acknowledged. Relevant ground truth data for each image are collected 

in Table 3. Error angles α and β obtained after processing the images for limb and terminator detection and running 

the quadric-conic attitude algorithm, are collected in Table 4. 

Results compare well with those obtained during the numerical validation phase, leading to α < 1.5 pixels and β < 

1.2°. 

 

 
7 https://pds.nasa.gov/. 



Table 3. Cassini images used for test showing the following: image name, date and time of the image 

(UTC), target name, range, unit vector to target in camera frame, unit vector from target to the Sun 

in camera frame. 

# Target image label time range [km] 𝝂  𝐬  

1 Enceladus N1569849851_1 
2007-273 

12:48:59.395 
1.076406⨯108 

[0.000018 

  -0.000258 

  0.999999] 

[0.255752 

  -0.933246 

  -0.252274] 

2 Enceladus N1584034757_2 
2008-072 

17:02:25.623 
1.051542⨯108 

[0.001487 

0.000533 
0.999998] 

[-0.902485 

  -0.000346 

   0.430719] 

3 Enceladus N1484519663_1 
2005-015 

22:08:16.377 
3.6455124⨯108 

[-0.000081 

  -0.000009   
0.999999] 

[0.866464 

  -0.415808 

  -0.276304] 

4 Dione N1569853047_1 
2007-273 

13:42:06.512 
  1.9829637⨯108 

[0.000112 

  -0.000172 

  0.999999] 

[0.792647 

  -0.582190 

  -0.181009] 

5 Dione N1584873547_1 
2008-082 

10:02:09.813 
  6.6638044⨯108 

[-0.000389 

  -0.000383 

  0.999999] 

[0.066704 

  -0.985256 

  0.157546] 

6 Dione N1489254498_1 
2005-070 

17:21:40.580 
1.1548502⨯109 

[-0.000222 

  -0.000115 

  0.999999] 

[-0.877625 

  -0.380385 

  0.291686] 

 

 
N1569849851_1 

 
N1584034757_2 

 
N1484519663_1 



 
N1569853047_1 

 
N1584873547_1 

 
N1489254498_1 

Fig. 7 Cassini ISS-NAC images used for checking the algorithm in a representative deep-space mission 
scenario: Enceladus (top panel), Dione (bottom panel). 

 

Table 4. Errors for the LOS and illumination directions errors after processing of Cassini 

images. 

# Target image label 
α 

𝛽 [°] 
[°] [px] 

1 Enceladus N1569849851_1 5.622⨯10-4 1.62 0.318 

2 Enceladus N1584034757_2 0.742⨯10-4 0.22 0.415 

3 Enceladus N1484519663_1 3.462⨯10-4 1.00 0.036 

4 Dione N1569853047_1 4.933⨯10-4 1.44 0.636 

5 Dione N1584873547_1 3.250⨯10-4 0.95 0.871 

6 Dione N1489254498_1 0.974⨯10-4 0.28 1.10 

 

V.Conclusions 

A framework for the attitude determination from an illuminated ellipsoid was presented here to revisit the so-called 

planet-Sun attitude sensor concept, leading to a generalized quadric-conic sensor. The measurement process makes 

use of images of illuminated celestial bodies to compute the line-of-sight and Sun directions. These can then be 

combined using any algorithm for attitude determination from vector observations to compute the triaxial orientation 

of the imaging camera. The main assumption required to run the algorithms is that the target surface can be well 

approximated by the one of an ellipsoid whose orientation is known with respect to the illumination direction.   



The attitude determination algorithm is first checked against synthetically generated images of triaxial ellipsoids 

resembling Saturn’s moons Dione and Enceladus. Sensitivity of the algorithm accuracy under varying vantage points 

is then assessed through numerical simulations. Obtained results lead to rms error for the estimated LOS ranging of a 

fraction of a pixel. Applying the algorithm to an irregular surface, represented by a polyhedron, the LOS rms error 

increases to ≈2 pixels. Similarly, the rms error for the illumination direction spans from about 0.15° (ellipsoid) to ≈1° 

(polyhedron), suggesting that the accuracy for this angle is strongly affected by the irregular terminator shape 

generated by the craters-like features populating the surface. These results are in line with the ones reported for the 

moon tracking algorithm developed in [4] which, however, can be applied only to celestial bodies of spherical shape.  

As a by-product, an analytical evaluation of the error committed in assuming the LOS coincident with the center 

of the imaged ellipse is also performed, showing that its magnitude is related to the range-to-planet size ratio, thus 

becoming increasingly significant for wide angle cameras.     

The capability of the sensor concept to handle real-life scenarios is then assessed using some images of Dione and 

Enceladus gathered by Cassini Spacecraft and retrieved from NASA Planetary Data System. This test revealed an 

accuracy which is consistent with the predictions from the numerical validation, thus supporting the practical 

applicability of the quadric-conic attitude determination algorithm. 

Our future efforts will be mainly devoted to a more extensive numerical testing, encompassing different celestial 

bodies. 

Appendix 

Consider an ellipsoid of revolution having known ellipticity 𝑒 = 1 − 𝑐 /𝑎 . In such a case, the first term of the 

right-hand side of Eq. (7) can be made explicit as: 

𝑅𝑄∗𝑅 = 𝑅diag(𝑘 [1 1 1 − 𝑒 ])𝑅 = 𝑘

1 − 𝑒 𝑟 −𝑒 𝑟 𝑟 −𝑒 𝑟 𝑟

−𝑒 𝑟 𝑟 1 − 𝑒 𝑟 −𝑒 𝑟 𝑟

−𝑒 𝑟 𝑟 −𝑒 𝑟 𝑟 1 − 𝑒 𝑟

, (35)

where rij denotes the elements of R. As a result, the adjugate of 𝒞 matrix reads: 

𝒞∗~

𝑘 (1 − 𝑒 𝑟 ) − 𝜈 −(𝑒 𝑘 𝑟 𝑟 + 𝜈 𝜈 ) −(𝑒 𝑘 𝑟 𝑟 + 𝜈 𝜈 )

−(𝑒 𝑘 𝑟 𝑟 + 𝜈 𝜈 ) 𝑘 (1 − 𝑒 𝑟 ) − 𝜈 −(𝑒 𝑘 𝑟 𝑟 + 𝜈 𝜈 )

−(𝑒 𝑘 𝑟 𝑟 + 𝜈 𝜈 ) −(𝑒 𝑘 𝑟 𝑟 + 𝜈 𝜈 ) 𝑘 (1 − 𝑒 𝑟 ) − 𝜈

. (36)

Or, in terms of dimensionless conic center coordinates:  



𝒞( , )
∗

𝒞( , )
∗ =

𝜈

𝜈
∙

1 +
𝑟 𝑟
𝜈 𝜈

𝑒 𝑘

1 − 𝑘 /𝜈 (1 − 𝑒 𝑟 )
  𝑖 = 1,2 (37)

which is the counterpart of Eq. (10), derived in II.A for a sphere, relating the LOS components 𝜈  to the center of the 

imaged ellipse. 
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