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Abstract: Honokiol is a natural bisphenol neolignan present in the bark of Magnolia officinalis, whose
extracts have been employed in oriental medicine to treat several disorders, showing a variety
of biological properties, including antitumor activity, potentially related to radical scavenging. Six
bisphenol neolignans with structural motifs related to the natural bioactive honokiol were synthesized.
Their chain-breaking antioxidant activity was evaluated in the presence of peroxyl (ROO•) and
hydroperoxyl (HOO•) radicals by both experimental and computational methods. Depending on the
number and position of the hydroxyl and alkyl groups present on the molecules, these derivatives
are more or less effective than the reference natural compound. The rate constant of the reaction
with ROO• radicals for compound 7 is two orders of magnitude greater than that of honokiol.
Moreover, for compounds displaying quinonic oxidized forms, we demonstrate that the addition of
1,4 cyclohexadiene, able to generate HOO• radicals, restores their antioxidant activity, because of
the reducing capability of the HOO• radicals. The antioxidant activity of the oxidized compounds
in combination with 1,4-cyclohexadiene is, in some cases, greater than that found for the starting
compounds towards the peroxyl radicals. This synergy can be applied to maximize the performances
of these new bisphenol neolignans.

Keywords: antioxidant activity; honokiol; neolignans; peroxyl radicals; hydroperoxyl radicals;
quinones’ regeneration; radical reactions; reaction mechanisms; hydrogen atom transfer

1. Introduction

Lignans and neolignans are two groups of dimeric compounds widely distributed
into the plant kingdom and biosynthesized through the shikimic acid pathway (Figure S1).
The feature of these molecules is a peculiar dimeric structure originated by a ß, ß,’-linkage
between two phenyl propane units, C6C3, characterized by different degrees of oxidation
in the side-chain and distinctive substituents occurring in the aromatic rings [1]. Their
biosynthesis is originated from oxidative coupling involving phenyl propanoid units by
enzymes such as laccase, peroxidase, or a cytochrome P450 [2], thus furnishing a wide range
of dimeric compounds with different structures (Figure S1) [3]. For nomenclature purposes,
the C6C3 units are treated as propylbenzene. When the linkage occurs between positions
C-8 and C-8′ of two C6C3 units, the compound is a “lignan”; in a “neolignan”, the dimer is
formed through a linkage involving two C6C3 units in positions different from C-8 and
C-8′ (C-8-C5′, C-5-C-5′, etc.) [4]. In turn, given the high number of possible combinations,
lignans are classified into eight groups according to structural patterns (Figure 1), whereas
neolignans are classified into fifteen subgroups, indicated as NL1 to NL15 (Figure 2) [4].

Lignans and neolignans are polyphenols often studied for their antioxidant behav-
ior [5]. Some non-exhaustive examples are in the following (Figure 3). Pinoresinol is one
of the most representative lignans, found in sesame seeds and extra-virgin olive oil; it is
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considered a high-value-added product with antioxidant activity, useful in chemopreven-
tion [6]. (-)-Arctigenin is one of the main components of Arctium lappa whose extracts have
been employed in Japanese Kampo medicine for antioxidant properties with benefits to
human health [7]. A group of glucosidic dihydrobenzofuran neolignans have been also
studied as antioxidants [8].
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Magnolol and honokiol are neolignans with a diphenyl core (bisphenol neolignans,
Figure 3); their structure is peculiar, and some authors consider the phenolic rings linked
through a C–C bond a privileged structure which allows interaction with a variety of
biological targets [9,10]. These two bisphenolic neolignans are present in the bark of
Magnolia officinalis and other M. spp, whose extracts have been employed in oriental
medicine to treat several disorders such as gastrointestinal disorders, anxiety, stress and
allergic and cardiovascular diseases [11]. In addition to the antioxidant property, the two
bisphenols have shown a number of biological properties, such as neuroprotective [12],
antiviral [13], anti-inflammatory [14] and antitumor activities [15–17].

For this reason, recent works have been dedicated to the synthesis of new analogues
inspired by magnolol and honokiol with the purpose of enhancing their biological activi-
ties [16,18–20].

In this frame, the antioxidant behavior of magnolol and its isomer honokiol (1) has been
deeply studied [21–23]. Interestingly, the two compounds have shown different antioxidant
profiles derived from the position of the OH groups. In organic solvents, magnolol was
more active as a peroxyl (ROO•) radical quencher than honokiol, because of the stabilization
of the phenoxyl radical by an intramolecular H-bond [23]. Indeed, the study of the kinetics
of ROO• and HOO• radical trapping is of great relevance because these radicals are
responsible for the propagation of the oxidative chain during lipid peroxidation [24], and
are implicated in important biochemical processes such as ferroptosis [25].

The synthesis of bioinspired natural antioxidants represents a strategy to gain new
molecules showing stronger antioxidant capacity than natural leads. A similar or even
better antioxidant profile has been observed for bioinspired derivatives of magnolol as
measured by the rate constant of the reaction with ROO• radicals [26]. As a continuation
of these investigations, six bisphenol neolignans with structural features resembling the
natural bioactive honokiol (1) were synthesized and evaluated for their antioxidant behavior
(Figure 4). In particular, we have designed honokiol-related compounds 2 and 3 to compare
their antioxidant profiles with that of 1 and to understand a possible role in the oxidative
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processes arising from the presence of the ortho-allyl chain. Furthermore, supposing 2 and
3 will result in promising antioxidants, the presence of the 2-hydroxyethyl chain in para
position to OH could allow the insertion of other functional groups to gain compounds
with different physicochemical properties for future studies. Moreover, in a previous
work, the bisphenol 8 (3,3′,5,5′-tetramethyl-[1,1′-biphenyl]-4,4′-diol) has shown a large
rate constant for reaction with peroxyl radicals, arising from the conjugation of the radical
on both aromatic rings, and from the presence of the methyl groups in the ortho position
that reduce the bond dissociation enthalpy of OH. In addition, this compound showed a
stoichiometric coefficient of 1.9 in the autoxidation of styrene, indicating that it transfers the
second O−H atom to a second peroxyl radical. Based on these findings, we have designed
bisphenols 5 and 6 and thus catechol 7 and its methylated analogue 4. The kinetics of
peroxyl and hydroperoxyl radical trapping was studied using the inhibited autoxidation
method which provides, with respect to other simplified methods based on the decay of
colored radicals, a more solid prediction of efficacy in real conditions [27].
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Figure 4. Antioxidants investigated in this study. Honokiol (1) and other bisphenol neolignans 2 –7.
Compound 8 was previously studied [23]. It is here reported to highlight the structural analogy with
compounds 4–7.

2. Results and Discussion
2.1. Synthesis of Bisphenol Neolignans 2–7

Bisphenol neolignans 2–6 were synthesized following a previously described strat-
egy [28] based on a Suzuki-Miyaura cross-coupling step between a suitable aryl halide and
4-hydroxy-phenyl boronic acid, to build the biphenyl skeleton of compounds 2, 4 and 5.
Subsequently, SN2 reaction in presence of allyl bromide followed by Claisen rearrangement
in mild conditions allowed us to isolate the C-allyl derivatives 3 and 6. The spectroscopic
data of these compounds are in agreement with those previously reported [28] (Scheme 1).
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Scheme 1. Synthesis of bisphenol neolignans inspired by honokiol.

On the contrary, the synthesis of catechol 7 is reported herein for the first time. As
depicted in Scheme 2, the bisphenol 4, obtained by Suzuki coupling, was converted into
the catechol analogue employing hypervalent-iodine chemistry, according to literature
reports on similar substrates [16,26,29]. In particular, 2-iodoxybenzoic acid (IBX) was
prepared following the protocol of Frigerio M. et al. [30]. IBX was employed in slight
excess with respect to 4 (1.2 equiv) and in THF. These represent the optimal conditions to
gain the oxidative demethylation of a guaiacol group, thus achieving the bis-ortho-quinone
intermediate which is converted into the final catechol when a saturated Na2S2O4 solution
is added to the mixture. The compound was isolated after column chromatography with
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a 38% yield. Details and spectroscopic data (NMR and MS data) of the new bisphenol 7
are reported in the Materials and Methods section. Notably, IBX is more environmentally
friendly, if compared with other oxidizing agents based on heavy or toxic metals and/or
requiring strong reaction conditions.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 18 
 

 

 
Scheme 1. Synthesis of bisphenol neolignans inspired by honokiol. 

On the contrary, the synthesis of catechol 7 is reported herein for the first time. As 
depicted in Scheme 2, the bisphenol 4, obtained by Suzuki coupling, was converted into 
the catechol analogue employing hypervalent-iodine chemistry, according to literature 
reports on similar substrates [16,26,29]. In particular, 2-iodoxybenzoic acid (IBX) was 
prepared following the protocol of Frigerio M. et al. [30]. IBX was employed in slight 
excess with respect to 4 (1.2 equiv) and in THF. These represent the optimal conditions to 
gain the oxidative demethylation of a guaiacol group, thus achieving the bis-ortho-
quinone intermediate which is converted into the final catechol when a saturated Na2S2O4 
solution is added to the mixture. The compound was isolated after column 
chromatography with a 38% yield. Details and spectroscopic data (NMR and MS data) of 
the new bisphenol 7 are reported in the Materials and Methods section. Notably, IBX is 
more environmentally friendly, if compared with other oxidizing agents based on heavy 
or toxic metals and/or requiring strong reaction conditions. 

 
Scheme 2. Synthesis of catechol neolignan 7. 

2.2. Kinetics and Stoichiometry of the Reaction with Peroxyl Radicals 
The antioxidant activity of honokiol (1) and six inspired bisphenol neolignans 2–7 

(AH) was evaluated by measuring the rate constant (kinh) for the reaction with peroxyl 
radicals (ROO•) that are responsible for oxidative chain propagation in many natural 
materials [31]. 

Initiator → R• (1) 

R• + O2 → ROO• (2) 

ROO• + RH → ROOH + R• (3) 

Scheme 2. Synthesis of catechol neolignan 7.

2.2. Kinetics and Stoichiometry of the Reaction with Peroxyl Radicals

The antioxidant activity of honokiol (1) and six inspired bisphenol neolignans 2–7 (AH)
was evaluated by measuring the rate constant (kinh) for the reaction with peroxyl radicals
(ROO•) that are responsible for oxidative chain propagation in many natural materials [31].

Initiator→ R• (1)

R• + O2 → ROO• (2)

ROO• + RH→ ROOH + R• (3)

ROO• + ROO• → Non-radical products (4)

ROO• + AH→ ROOH + A• (5)

ROO• + A• → Non-radical products (6)

where, Ri is the rate of initiation (reaction 1). Equations (1)–(4) represent the autoxidation
of substrate RH in the absence of antioxidants, while Equations (5) and (6) represent
chain-breaking inhibition by antioxidant AH.

The inhibition rate constants (kinh) of antioxidants 1–7 (i.e., the rate constant of reaction
5), were determined by studying the inhibition of the thermally initiated autoxidation of
cumene or styrene (RH) under controlled conditions using chlorobenzene or acetonitrile as
the solvent [32].

All reactions were performed at 303 K using 2,2′-azobis(isobutyronitrile) (AIBN) as
initiator and were followed by monitoring the oxygen consumption in an oxygen uptake
apparatus based on a differential pressure transducer [27,32].

For the very first step, the rate of radical initiation produced by AIBN (Ri) was de-
termined in matched preliminary experiments using the inhibitor method, according to
Equation (7)

Ri = n [AH]/τ (7)

where τ is the length of the inhibition time. Tocopherol’s mimic 2,2,5,7,8-pentamethyl-6-
chromanol (PMHC) was used as reference antioxidant, with n = 2.

In the presence of effective antioxidants, substrate oxidation and oxygen consumption
are much slower and a clear inhibition period is observed, as shown in Figure 5.

The rate constant for the reaction between ROO• radicals and 1–7 could be obtained
from the rate of O2 consumption (the slope of the oxygen consumption) during the inhibited
period from the known constants kp and 2kt for cumene (and styrene) chain propagation
and termination, respectively, using Equation (8) where Rox0 and Rox represent the O2
consumption rate in the absence and in the presence of the antioxidant, respectively (see
Experimental Section and ref [32–36] for more explanations).

Rox0

Rox
− Rox

Rox0
=

nkinh[AH]0√
2ktRi

(8)
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initiated by AIBN (0.05 M) in PhCl at 30 ◦C without inhibitors (black) or in the presence of antioxidant
(0.7 × 10−5 M) 7 (red) and (1.4 × 10−5 M) 5 (blue), 1 (grey), 4 (green).

The stoichiometric coefficient n, which represents the number of ROO• radicals
trapped by each antioxidant molecule, is instead determined from the duration of the
antioxidant effect. The values of kinh and n, determined in chlorobenzene and acetonitrile,
are reported in Table 1.

Table 1. Rate constants for the reaction with peroxyl radicals in chlorobenzene or acetonitrile at 303
K, and number of trapped radicals (n) 1,2.

Sample Chlorobenzene Acetonitrile
KSE 3

kinh /M−1s−1 n kinh /M−1s−1 n

1 (1.2 ± 0.2) × 104 2.3 ± 0.2 (8.2 ± 0.3) × 103 4 3.5 ± 0.5 1.5
2 (6.7 ± 0.3) × 103 1.9 ± 0.1 (3.2 ± 0.2) × 103 2.4 ± 0.4 2.1
3 (6.1 ± 0.4) × 103 1.9 ± 0.1 (4.0 ± 0.4) × 103 2.1 ± 0.2 1.5

4 (1.1 ± 0.2) × 104 first OH
(2.3 ± 0.4) × 103 s OH

3.8 ± 0.3 (5.6 ± 0.3) × 103 2.6 ± 0.4 2.0

5 (2.5 ± 0.2) × 104 2.0 ± 0.1 (7.6 ± 0.3) × 103 2.1 ± 0.1 3.3
6 (1.5 ± 0.2) × 104 1.8 ± 0.2 (1.0 ± 0.3) × 104 2.1 ± 0.1 1.5

7 5 (1.2 ± 0.1) × 106 2.0 ± 0.1 (2.5 ± 0.2) × 104 2.0 ± 0.1 48
1 From cumene autoxidation studies unless otherwise noted. 2 All values are average from at least 3 independent
measurements. Errors for n and kinh represent ± SD. 3 Kinetic Solvent Effect, defined as KSE = kinh(PhCl) / kinh
(MeCN). 4 Relatives for the first reactive OH group. 5 Measured in styrene.

To fully solubilize the samples, 0.2% (v/v) methanol was added to all chlorobenzene
and in acetonitrile solutions. For this reason, it was also necessary to re-evaluate, even if
already reported in the literature [23], the rate constants of honokiol 1, since it was used
as a reference compound for all the other investigated molecules. Despite being present
in a very small amount, methanol strongly affects the inhibition constant of honokiol 1 in
chlorobenzene by decreasing it about three times (see Table 1 vs. ref [23]). Conversely, in
acetonitrile, this effect is limited, since such solvent already forms hydrogen bonds with
the OH groups of the antioxidant molecules. Additionally, in this series of experiments, the
number of radicals trapped by honokiol 1 in chlorobenzene is equal to 2, while it nearly
doubles in acetonitrile.

In PhCl, as previously demonstrated, the phenoxyl radical from honokiol 1 reacts
with a second ROO• radical by formal H-atom transfer from an OH group, leading to the
formation of the corresponding dienone 1ox (Scheme 3). In MeCN, on the other hand, the
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second OH group in the phenoxyl radical from honokiol 1 is H-bonded to the solvent,
and therefore it is less available to be transferred to a second ROO• radical, as shown in
Scheme 3. As a consequence, the phenoxyl radical decays preferably through the addition
of a second ROO• radical to the aromatic ring. The intact second phenolic ring is then
available to trap two additional peroxyl radicals, similarly to monophenolic compounds
but with a lower kinh than the first OH, presumably because of the unfavourable electronic
effect of the oxidized ring.
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metric coefficient = 2) and for the antioxidant synergy between 1,4 cyclohexadiene and polyphenolic
antioxidants (Top); proposed change in the stoichiometric coefficient (n = 4) in acetonitrile due to the
H-bonding between the intermediate phenoxyl radical of 1 and the solvent (Bottom).

Antioxidants 2 and 3 are comparable to 1. The inhibition constant is about half that
of honokiol both in a non-polar solvent, such as PhCl, and in a polar solvent, such as
MeCN. In compound 2, the absence of alkyl groups lowers the stability of the phenoxyl
radical intermediate, while electronegative O-atom in the hydroxyethyl chain has a small
negative impact on the inhibition constant. In compound 3, the allyl substituent present in
an ortho position with respect to the -OH groups limits the H-atoms abstraction because of a
OH—π interaction, as previously reported [23].

The number of radicals trapped by these last two compounds is the same as for
the reference compound 1. In MeCN, for the second phenolic ring, the stoichiometric
coefficient could not be measured because the kinh value is too low. For this reason, we only
found n = 2.

Compound 4 has a different structure than honokiol. Due to the different position
of a phenolic group in one of the two rings, it is not possible to obtain the corresponding
quinonic form and therefore the two phenolic rings can be considered independent. Each
ring traps 2 radicals with the addition of the peroxyl radical (Scheme 4). The inhibition
constant of the more reactive -OH group is completely comparable to that of compound
1, while the second constant is about 10 times lower. For this reason, only the first can be
observed and measured in MeCN.
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Bisphenols 5 and 6 display relatively large kinh values compared to honokiol, with
the kinh of 5 being about twice that of 6. As already demonstrated for compound 3, the
presence of allyl substituents reduces the antioxidant activity of these compounds, due to
hydrogen bonding between allylic and hydroxyl groups; such an effect is less noticeable in
a polar solvent such as MeCN [23]. Since both 5 and 6 have a stoichiometric coefficient of
about 2 in the inhibited autoxidation of cumene, it is expected that the phenoxyl radicals
from both 5 and 6 transfer the second O−H atom to another peroxyl radical, as shown in
Scheme 5.
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Scheme 5. Mechanism for the trapping of peroxyl radicals by compounds 5 in chlorobenzene
(stoichiometric coefficient = 2) and for the antioxidant synergy between 1,4 cyclohexadiene and
polyphenolic antioxidants.

The inhibition shown by compound 7 is the highest of all the investigated compounds,
as expected from the presence of a second OH group in ortho-position (catechol moiety)
(Scheme 6). In this case, the experiments were performed in styrene. Styrene is typically
employed for studying strong antioxidants (i.e., with kinh > 1×105 M−1s−1), whereas
cumene, thanks to its low kp and 2kt values, is suitable for weaker inhibitors [32]. The kinh
of 7 is two orders of magnitude greater than compounds 1–6, but it corresponds to the
trapping of only two ROO• radicals.

This behaviour is reminiscent of that observed in ortho-bisphenol derivatives [37,38]. It
can be explained by considering that, after the trapping of the first two ROO• radicals, one
of the two phenolic rings is converted into the corresponding ortho-benzoquinone, which
has an unfavourable effect on the second phenolic ring, reducing its reactivity, possibly
because of electron-withdrawing effect. In our case, the ortho-quinonic form 7oxA is also in
equilibrium with the dienonic form 7oxB.
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Scheme 6. Mechanism for the trapping of peroxyl radicals by catechol derivative 7 in chlorobenzene
(stoichiometric coefficient = 2) and for the antioxidant synergy between 1,4 cyclohexadiene and
polyphenolic antioxidants. Theoretical calculations predict that tautomer 7oxA is more stable than
7oxB by 7.1 kcal/mol.

As shown in Table 1, the kinh values decrease for all phenols when the polarity of the
solvent is increased (i.e., in acetonitrile); this is known as the kinetic solvent effect (KSE),
which occurs in case of H-atom abstraction from polar X−H bonds [39]. The decrease
is more evident for 7, as the KSE is 48, while it ranges from 1 to 3 for compounds 1–6.
Notably, this phenomenon has already been studied for other compounds having a catechol
ring [40,41]. The solvent engages in H-bonds with phenolic OH groups, and decreases
their reactivity towards the peroxyl radicals by preventing the formation of the H-atom
transfer pre-reaction complex. As for the other compounds, the lowest values (about 1.5)
are observed in molecules equipped with allyl groups. Indeed, such groups, already form
H-bonds with hydroxyl groups, so the effect in MeCN is less evident. Accordingly, slightly
higher values (about 2 or 3), are found for compounds having unsubstituted phenolic rings.

2.3. Hydrogen Atom Transfer from HOO• to Quinones

As described above, with the exception of compound 4, the honokiol-inspired bisphe-
nol neolignans, upon reaction with the peroxyl radicals in chlorobenzene, oxidize to the
corresponding quinone forms 1ox, 5ox and 7ox (see Schemes 3–6).

Autoxidation of 1,4 cyclohexadiene (CHD) to benzene is a well-known chain process,
in which HOO• acts as a propagating radical (Equation (10)) [42,43].

CHD + XOO• → CHD−H• + XOOH (X = H or R) (9)

CHD−H• + O2 → benzene + HOO• (10)

XOO• + HOO• → XOOH + O2 (X = H or R) (11)

Q + HOO• → QH• + O2 (12)

QH• + HOO• → QH2 + O2 (13)

QH2 + HOO• → QH• + H2O2 (14)

2 QH• → Q + QH2 (15)
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Equations (12)–(15) explain the key reactions of the antioxidant activity of quinones,
(Q = 1ox, 5ox and 7ox), in the presence of 1,4-cyclohexadiene.

The addition of CHD in the peroxidation of oxidizable substrates (RH) partially
changes the propagation chain-carrier from ROO• to HOO• (hydroperoxyl radical) since
CHD itself is rapidly attacked by ROO• and releases HOO•. Such hydroperoxyl radicals
can both propagate the oxidation reaction or be quenched by another HOO• or by a ROO•
radical (self-termination or cross-termination).

To achieve a better understanding of the regeneration mechanism of phenolic antiox-
idants by CHD, experiments were conducted by injecting CHD 26 mM into the styrene
autoxidation system after the phenolic antioxidant was consumed at the time that the
substrate starts to oxidize again and approximately the whole compound is in the form of
an oxidized product.

As shown in Figure 6D, the injection of CHD into the reaction, when sample 4 has
been completely oxidized, provides only a very small increase in the inhibition (Figure 6D
and Table 2).
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Figure 6. Oxygen consumption during the autoxidation of styrene (4.3 M) initiated by AIBN (0.05 M)
in PhCl at 30 ◦C; without inhibitors (grey) or in the presence of 1,4 cyclohexadiene 26 mM (blue) or in
the presence of (panel A) antioxidant 7 10 µM; (panel B) antioxidant 5 13 µM; (panel C) antioxidant
1 13 µM; (panel D) antioxidant 4 13 µM (black) and the subsequent injection of 1,4 cyclohexadiene
26 mM (red).

On the other hand, in the presence of fully exhausted honokiol 1 or compounds 5 or
7, the addition of CHD triggers a new inhibition period (Figure 6A–C and Table 2). We
explain this effect by considering that the quinones formed as the final oxidized products
(Q = 1ox, 5ox and 7ox) can be reduced back to the starting antioxidant, confirming the
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mechanism suggested in Schemes 3–6. When catechols behave as antioxidants, quinones
are easily formed upon oxidation and they are generally expected to be their final oxidized
products. Although such a mechanism is less obvious for other polyphenolic compounds,
we were able to demonstrate the formation of the corresponding quinones also for honokiol
and the bisphenol 5. Comparing the kinetic traces in Figure 6, we should notice that the rate
of O2 uptake during the inhibition period is smaller for 7 than for 1 and 5, demonstrating
the superior antioxidant activity of the ortho-isomer (Table 2).

Table 2. Regeneration effect of CHD on quinones and reactivation of their antioxidant activity.

Sample

Slope A 1

without Inhibitors
+ 26 mM CHD

d[O2]/dt (µMs−1)

Slope B
Oxidized Form
+ 26 mM CHD

d[O2]/dt (µMs−1)

Slope Reduction
A/B

7

2.0 ± 0.2

0.123 16.3
5 0.227 8.8
1 0.271 7.4
4 0.657 3.0

1 Rate of oxygen consumption during the autoxidation of styrene (4.3 M) initiated by AIBN (0.05 M) in PhCl at 30 ◦C.

The reduction of all quinones is attributed to the release of HOO• during the autoxi-
dation of CHD which acts as the reducing agent. This uncommon reducing behavior might
be counterintuitive for a reputedly oxidizing radical, but it is supported by previous solid
evidence [44–46].

From the slopes shown in Figure 6 (red lines vs. black lines), it is clear that the
antioxidant effect of 1, 5 and 7 is visibly lower than that of oxidized products 1ox, 5ox and
7ox with CHD, except for compound 7 and its product, which are both high. Additionally,
the inhibition length is clearly higher when HOO• radicals produced by the co-oxidation
of CHD with styrene are present in the reaction environment.

Therefore, quinones formed by oxidation of 1, 5 and 7 are effectively regenerated by
HOO• radicals; this synergic antioxidant chemistry, exploiting CHD in combination with
polyphenolic compounds, is more effective than traditional antioxidant systems.

2.4. Theoretical Calculation of Bond Dissociation Enthaplies

To rationalize the kinetic results, the preferred conformations and the dissociation
enthalpies of the O–H bonds (BDE(OH)) were computed by DFT methods at the B3LYP-
D3/6-31+G(d,p) level [47–50], using the SMD [51] implicit solvation model, as implemented
in the Gaussian 09 [52]. The BDE(OH) values in chlorobenzene were obtained by using an
isodesmic approach that consists of calculating the BDE difference between the investigated
compounds and phenol (∆BDE(OH)), and by adding this value to the known experimental
BDE(OH) of phenol in benzene (86.7 kcal/mol) (Equation (16)).

BDE(OH) = 86.7 + ∆BDE(OH) (16)

The results of BDE(OH) calculations for both the hydroxyl groups present in com-
pounds 1–7 are shown in Table 3. From these calculations, it is possible to recognize which
phenolic ring is intrinsically more reactive towards peroxyl radicals, allowing us to know
the structure of the corresponding semiquinone that is generated. While BDE(OH) alone is
not a complete descriptor of kinh, nevertheless, for phenols having similar steric crowding
around the reactive OH, a Evans-Polanji-type relationship between Log(kinh) and BDE(OH)
can be observed.

In the case of compounds 1–7, the fairly linear relationship (Figure 7) indicates that
theoretical calculations account with reasonable accuracy the reactivity of ROO• radicals in
non-polar media and confirms the previous structure–activity relationship discussion for
the compounds studied in this manuscript.
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Table 3. O-H bond dissociation enthalpies for the investigated phenols.

Compound BDE(OH)/kcal/mol

1-OH 2-OH

1
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The bond dissociation enthalpy of the O−H bond of semiquinones 1ox, 5ox and
7ox was also calculated by DFT methods to confirm their reactivity towards hydroper-
oxyl radicals as observed in previous experiments, in the presence of CHD. The reaction
of semiquinones with HOO• depends on the BDE of the phenolic O−H bond in the
semiquinone. If the BDE is high, the quinone will react more easily with hydroperoxyl
radicals and there will be an overall antioxidant effect on the system.



Molecules 2023, 28, 735 13 of 17

Molecules 2023, 28, x FOR PEER REVIEW 13 of 18 
 

 

3 

 

83.2 85.8 

4 

 

82.8 84.2 

5 

 

81.5 82.5 

6 

 

81.9 83.0 

7 

 

77.0 84.3 

In the case of compounds 1–7, the fairly linear relationship (Figure 7) indicates that 
theoretical calculations account with reasonable accuracy the reactivity of ROO• radicals 
in non-polar media and confirms the previous structure–activity relationship discussion 
for the compounds studied in this manuscript. 

 
Figure 7. Relationship between experimental inhibition constant and theoretical BDE(OH). Figure 7. Relationship between experimental inhibition constant and theoretical BDE(OH).

It is known that the semiquinone obtained from the reaction of 2,5-di-tert-butylhydr-
oquinone with peroxyl radicals is able to react with molecular oxygen, dissolved in air-
equilibrated solutions [53]. For this reason, the BDE(OH) of 1,4-semiquinone was calculated
and used as a reference (65.3 kcal/mol). The semiquinones of compounds 1ox, 5ox and
7ox have BDE(OH) values of 79.2, 75.2 and 73.6 kcal/mol, respectively. Since these values
are greater than the BDE of 1,4-semiquinone, the quinones 1ox, 5ox and 7ox are expected
to have a fast reaction with HOO• radicals, while having a slow reverse reaction of the
corresponding semiquinone with oxygen. The BDE(OH) order would predict that HOO•
trapping decreases in the order 1ox < 5ox < 7ox << 1,4-benzoquinone. However, these
BDE values, obtained by DFT methods, are only a theoretical prediction of the synergistic
effect between CHD and the oxidized products; this does not take into account kinetic
aspects, such as the stability in solution of these quinones, and the formation of a non-
regenerable products obtained by adding peroxyl radicals to the phenolic rings, which
have the effect of reducing the concentration of quinone available for the reaction with
HOO•. Nevertheless, the comparison between the data obtained with DFT methods and
those obtained in the above experiments fully rationalize the obtained results and confirm
the proposed reaction mechanisms.

3. Materials and Methods
3.1. Materials

All chemicals were of reagent grade and were used without further purification.
Where necessary, starting materials, namely aryl halides [28] IBX were freshly prepared as
previously described [30]. Solvents were of the highest grade commercially available and
were used as received. Commercially available honokiol 1 was purchased from TCI Europe
(Milan, Italy), PMHC (2,2,5,7,8-Pentamethyl-6-chromanol) and AIBN were purchased from
Sigma-Aldrich (Milan, Italy). Cumene, styrene and 1,4 cyclohexadiene were purified by
double percolation through silica and activated alumina columns before use. AIBN was
recrystallized from methanol and stored at −18 ◦C.

NMR spectra were acquired on a Varian Unity Inova spectrometer (Italy, Milan)
operating at 499.86 (1H) and 125.70 MHz (13C). 1D and 2D NMR experiments (gHSQC,
and gHMBC) were performed at 300 K. A high-resolution MS spectrum of 7 was run on
a Q Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany)
equipped with an ESI ion source operating in negative ion mode. Compound 7 was directly
infused in the spectrometer, and a survey scan was performed from m/z 150 to 1000 at
140 k resolution.
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3.2. Synthesis of Bisphenol Neolignans

Compounds 2–6, used in the present investigation, were synthesized as described
previously and as depicted in Scheme 1 [28].

Compound 7 was synthesized for the first time as reported in the following. The
purity of these compounds was verified by 1H NMR analysis.

The bisphenol 4 (62.6 mg, 0.24 mmol) was solubilized in THF (4 mL) and IBX (80.2 mg,
1.2 equiv.) was added under stirring to the solution. The mixture was stirred at rt for 3 h.
Then, a saturated Na2S2O4 solution (4 mL) was added and the mixture was stirred at rt
for 10 min. The crude of reaction was concentrated under vacuum to remove THF and the
residue was diluted with EtOAc (20 mL) and partitioned with saturated NaHCO3 solution
(3 × 10 mL). The organic layer was washed with brine solution and dried over Na2SO4.
After filtration, the solvent was evaporated under vacuum. The pure product 7 was
obtained after column chromatography on Diol silica gel (100→ 80:20 n-hexane/acetone)
with 38% yield (22.3 mg). 1H-NMR (500 MHz, CDCl3): 7.12 (d, J = 8.2 Hz, 2 H, H-2B/H-6B),
6.83 (d, J = 8.2 Hz, 2 H, H-3B/H-5B), 6.77 (s, 1 H, H-5A), 6.69 (s, 1 H, H-2A), 5.15 (bs, 2
H, 3A-OH/4A-OH), 4.86 (bs, 1 H, 4B-OH), 2.41 (m, 2 H, CH2-7A), 1.44 (m, 2 H, CH2-8A),
0.79 (t, J = 7.3 Hz, 3 H, CH3-9A) ppm. 13C-NMR (125 MHz, CDCl3): 154.2 (C, C-4B),
142.5 (C, C-4A), 140.8 (C, C-3A), 134.2 (C, C-1B), 134.1 (C, C-1A), 133.3 (C, C-6A), 130.6
(CH, C-2B/C-6B), 117.1 (CH, C-2A), 116.0 (CH, C-5A), 114.8 (CH, C-3B/C-5B), 34.5 (CH2,
C-7A), 24.6 (CH2, C-8A), 13.1 (CH3, C-9A) ppm. HRESIMS m/z 243.1049 [M-H]- (calcd for
C15H12O3, 243.2857).

3.3. Inhibited Autoxidation Studies

Autoxidation experiments were performed in a two-channel oxygen uptake apparatus,
based on a Validyne DP 15 differential pressure transducer built in our laboratory [32].
The chain-breaking antioxidant activity of the title compounds was evaluated by study-
ing the inhibition of the thermally initiated autoxidation of cumene (3.6 M) or styrene
(4.3 M) in chlorobenzene and acetonitrile. In a typical experiment, an air-saturated mix-
ture of the oxidizable substrate and the solvent, 1:1 (v/v) containing AIBN (0.05 M) as
initiator was equilibrated with an identical reference solution containing an excess of
PMHC so as to block any radical chain in the reference and avoid significant consump-
tion of the antioxidant therein during the experiment. After equilibration, and when a
constant O2 consumption was reached, a concentrated solution of the antioxidant (final
concentration = 5–20 µM) was injected in the sample flask. The oxygen consumption in
the sample was measured after calibration of the apparatus from the differential pressure
recorded with time between the two channels. Initiation rates, Ri, were determined for
each condition in preliminary experiments by the inhibitor method using PMHC as a
reference antioxidant: Ri = 2[PMHC]/τ, where τ is the length of the induction period.
PhCl/Cumene Ri = 5.9× 10−9 Ms−1; MeCN/Cumene Ri = 8.2× 10−9 Ms−1; PhCl /Styrene
Ri = 6.2 × 10−9 Ms−1. From the slope of oxygen consumption in the absence of antioxidant
(−d[O2]/dt)0 = Rox0) and during the inhibited period (−d[O2]/dt) = Rox), kinh values
were obtained by using Equation (8). The 2kt values of styrene and cumene at 303 K are
4.2 × 107 and 4.6 × 104 M−1s−1, respectively [54,55].

3.4. Theoretical Calculations

Geometry optimizations and frequencies calculations were carried out at the B3LYP-
D3/6-31+G(d,p) with implicit solvent chlorobenzene (SDM) using Gaussian 09 [52]. Sta-
tionary points and transition states were confirmed by checking the absence of imaginary
frequencies. The BDE(OH) values were determined by the isodesmic approach, from the
total energy in solution computed by single point calculations, and by applying thermal
correction to enthalpy.
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3.5. Statistical Analysis

Each value was taken from at least three independent measurements, and results are
expressed as an average. Errors for n and kinh represent ± SD (SD = standard deviation).

4. Conclusions

In this work, the rate constants of the reaction of peroxyl radicals ROO• with honokiol
1, its two derivatives 2 and 3, and the other four bisphenol neolignans 4–7 were determined
in apolar and polar solvents. The different hydroxyl and alkyl substitutions on the phenolic
skeleton of the synthesized compounds affects their antioxidant activity, compared to that
of the natural derivative honokiol 1. The presence of alkyl groups in the ortho-position
with respect to the -OH groups decreases the kinh as well as the presence of 2-hydroxyethyl
substituents. 4,4′-dihydroxybiphenylic structures increase the overall inhibition constant
compared with honokiol, but lead to a decrease in the number of trapped radicals (n = 2 vs.
n = 4). Compounds showing quinone-like oxidized forms (e.g., 1ox, 5ox and 7ox) can be
regenerated by exploiting the reducing effect of hydroperoxyl radicals generated by the
addition of 1,4-cyclohexadiene to the reaction environment. This synergy occurs due to
a catalytic cycle in which CHD acts as the sacrificial reductant, releasing HOO• radicals
during the autoxidation and the consequent chain–transfer processes. For such quinones,
the obtained antioxidant effect is enhanced if combined with HOO• radicals, rather than
that of the starting compounds. The superior radical trapping activity of catechol derivative
7 and its ability to be regenerated by HOO• renders it an interesting molecule for further
bioactivity studies.

Hopefully, the data presented herein will aid future investigation in the area, in-
cluding the rational design of novel bioactive structures and possibly pharmacologically
active lignans.

Supplementary Materials: The following supporting information can be downloaded at:
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