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Abstract. This paper brings together factor-based models of case-based reason-
ing (CBR) and the logical specification of classifiers. Horty [8] has developed the
factor-based models of precedent into a theory of precedential constraint. In this
paper we combine binary-input classifier logic (BCL) to classifiers and their expla-
nations given by Liu & Lorini [13,14] with Horty’s account of factor-based CBR,
since both a classifier and CBR map sets of features to decisions or classifications.
We reformulate case bases in the language of BCL, and give several representation
results. Furthermore, we show how notions of CBR can be analyzed by notions of
classifier explanation.
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1. Introduction

This paper brings together two lines of research: factor-based models of case-based rea-
soning (CBR) and the logical specification of classifiers.

Logical approaches to classifiers capture the connection between features and out-
comes in classifier systems. They are well-suited for modeling and computing a large va-
riety of explanations of a classifier’s decisions [18,5,12,11,4,13], e.g., prime implicants,
abductive, contrastive and counterfactual explanations. Consequently, they enable detect-
ing biases and discrimination in the classification process. They can thus contribute to
provide controllability and explainability over automated decision-making (as required,
e.g., by Art. 22 GDPR and by Art. 6 ECHR relative to judicial decisions).

Factor-based reasoning [2,1] is a popular approach to precedential reasoning in
AI&law research. The key idea is that a case can be represented as a set of factors, where
a factor is a legally relevant aspect. Factors are assumed to have a direction, i.e., to fa-
vor certain outcomes. Usually both factors and outcomes are assumed to be binary, so
that each factor can be labelled with the outcome it favors (usually denoted as π , the
outcome requested by the plaintiff, and δ , the outcome requested by the defendant). The
party which is interested in a certain outcome in a new case can support her request by
citing a past case that has the same outcome, and shares with the new case some factors
supporting that outcome. The party that is interested in countering that outcome can re-
spond with a distinction, i.e., can argue that some factors which supported that outcome
in the precedent are missing in the new case or that some additional factors against that
outcome are present in the new case. Horty [7,9] has developed the factor-based models
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of precedent into a theory of precedential constraints, i.e., of how a new case must be de-
cided, in order to preserve consistency in the case law. In [8,6], he takes into account the
fact that judges may also provide explicit reasons for their choice of a certain outcome.
This leads to the distinction between the result and the reason model of precedents. In
the first model, the message conveyed by the case is only that all factors supporting the
case-outcome (pro-factors) outweigh all factors against that outcome (con-factors). In
the second, the message is that the factors for the case outcome indicated by the judge
outweigh all factors against that outcome.

In this paper we shall combine Liu & Lorini’s modal logic approach to classifiers and
their explanations [13,14] with Horty’s account of factor-based CBR. The combination
is based on the fact that both a classifier and CBR map sets of features to decisions or
classifications. In this way, our contribution is at least twofold.

First, we explore the relation between two apparently unrelated reasoning systems.
While the connection between CBR and reasoning about classifier systems is of interest
in itself, we believe that, through this relation, new research perspectives can be offered,
since we could in the future investigate CBR by exploiting several techniques and results
from modal logic. We will see that the challenge of this paper is to adapt the formal
representation of a classifier to the bidirectionality of factors in the HYPO model. Once
this is solved, we can provide a logical model and a semantics for factor-based CBR.

Second, we investigate the idea of normative explanation: While the literature on the
concept of explanation is immense, the AI community is now paying attention to it due
to the development of explainable AI (XAI) [15,3]. Our paper, by connecting CBR and
reasoning about classifier systems, explores different notions of explanation in law, such
as abductive and contrastive explanations for the outcome suggested by the case-based
reasoner. Our model allows for building explainable case-based reasoners, which could
also be deployed to reproduce and analyze the functioning of opaque predictors of the
outcome of cases. We import notions such as prime implicant and contrastive explanation
in the domain of XAI for classifiers to showcase how to analyze CBR in the field of XAI.

The the paper is organised as follows. Section 2 presents Horty’s models of CBR.
Section 3 introduces the notion of classifier model (CM) for the binary-input classifier
logic BCL. Section 4 studies the connection between CBR and classifier models.Section
5 shows that notions for classifier explanation in XAI help study case base. Finally,
Section 6 discusses related work and concludes. Proofs and the axiomatics are in the
appendix.1

2. Horty’s Two Models of Case-Based Reasoning

In this section we account for the two models of case-based reasoning / precedential
constraint proposed by Horty. We simply say result model for “the factor-based result
model of precedential constraint” and reason model for “the factor-based reason model
of precedential constraint”.

Let Atm0 = Plt ∪Dfd, where Plt and Dfd are disjoint sets of factors favoring the
plaintiff and defendant respectively. In addition, let Val = {1,0,?} where elements stand
for plaintiff wins, defendant wins and indeterminacy respectively. Let Dec = {t(x) : x ∈

1The paper with appendix is available here: https://arxiv.org/abs/2210.11217.
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Val} and read t(x) as “the actual decision/outcome (of the judge/classifier) takes value
x”. An outcome t(1) or t(0) means that, the judge is predicted to decide for the plaintiff
or for the defendant (the classifies “forces” one of the two outcomes). The outcome
t(?) means either outcome would be consistent: the judge may develop the law in one
direction or the other. This reflects the incompleteness nature of CBR. We use Atm to
denote Atm0 ∪Dec.

We call s ⊆ Atm0 a fact situation. A set of atoms X is called a reason for an outcome
(decision) x if it a set of factors all favoring the same outcome: X ⊆ Plt is a reason
for 1 and X ⊆ Dfd is a reason for 0. A (defeasible) rule consist of a reason and the
corresponding outcome: X �→ x is rule, if X ⊆ Plt and x = 1, or X ⊆ Dfd and x = 0. For
readability, we make a convention that, for x ∈ {0,1}, let x = 1−x and x = x. Moreover,
let Atmx

0 = Plt if x = 1, and Atmx
0 = Dfd if x = 0.

In the reason model, a precedent case (precedent) is a triple c = (s,X ,x), where
s ⊆ Atm0, X ⊆ Atmx

0,x ∈ {0,1}. In plain words, s∩Atmx
0 contains all pro-factors in s for

x, while s∩Atmx
0 all con-factors in s for x. X is the reason of the case, namely a subset

of the pro-factors which the judge considers sufficient to support that outcome, relative
to all con-factors in the case.

A case base CB (for reason model) is a set of precedential cases. When the reason
contains all pro-factors within the situation (i.e., when c= (s,s∩Atmx

0,x)) all such factors
are considered equally decisive. If a case base only contains cases of this type, we obtain
what Horty calls “the result model”, and note such a case base CBres.2 The class of all
CBs and CBress are noted CB and CBres respectively.

Example 1 (Running example). In the paper we refer to the following running exam-
ple taken from [16]. Let us assume the following six factors, each of which either fa-
vors the outcome ‘misuse of trade secrets’ (‘the plaintiff wins’) or rather favors the
outcome no misuse of trade secrets (‘the defendant wins’): the defendant had obtained
the secret by deceiving the plaintiff (π1) or by bribing an employee of the plaintiff
(π2), the plaintiff had taken security measures to keep the secret (π3) , the information
is obtainable elsewhere (δ1), the product is reverse-engineerable (δ2) and the plaintiff
had voluntarily disclosed the secret to outsiders (δ3). Hence in our running example
Atm = {π1,π2,π3,δ1,δ2,δ3, t(0), t(1), t(?)} Let us consider a case base CBex = {c1,c2)
where c1 = ({π1,π3,δ1,δ3},{π1},1); c2 = ({π2,δ1,δ3},{δ3},0), which means:

• c1 has factors (fact situation) s1 = {π1,π3,δ1,δ3}, reason {π1} and outcome 1;
• c2 has outcome δ , factors s2 = {π2,δ1,δ3}, reason {δ3} and outcome 0

A case base can be inconsistent when two precedents map the same fact situation to
different outcomes. Another scenario is that a consistent case base becomes inconsistent
after update, namely after expanding it with some new case. Hence maintaining consis-
tency is the crucial concern of case-based reasoning. But first of all, one need to define
these notions. The following definitions, except symbolic difference, are based on [8,16].

Definition 1 (Preference relation derived from a case). Let c = (s,X ,x) be a case. Then
the preference relation <c derived from c is s.t. for any two reasons Y , Y ′ favoring x and
x respectively, Y ′ <c Y iff Y ′ ⊆ s∩Atmx

0 and X ⊆ Y .

2So we view result model as a special kind of reason model, as [8, p. 25] also mentioned.
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Definition 2 (Preference relation derived from a case base). Let CB be a case base. Then
the preference relation <CB derived from CB is s.t. for any two reasons Y,Y ′ favoring x
and x respectively, Y ′ <CB Y iff ∃c ∈ CB s.t. Y ′ <c Y .

Definition 3 ((In)consistency). A case base CB is inconsistent, if there are two reasons
Y,Y ′ s.t. Y ′ <CB Y and Y <CB Y ′. CB is consistent if it is not inconsistent.

Definition 4 (Precedential constraint). Let CB be a consistent case base, X is a reason
for x in CB and applicable in a new fact situation s′, i.e. X ⊆ s′. Updating CB with the new
case (s′,X ,x) meets the precedential constraint, iff CB∪{(s′,X ,x)} is still consistent.

There is more than one way to satisfy the precedential constraint, depending on how
the precedents in CB interacts with the new case. The requirement of consistency dictates
the outcome when the “a fortiori” constraint applies: if reason X for x outweighs (i.e.,
is stronger that) reason s∩Atmx̄

0, a fortiori any superset of X outweighs any subset of
s∩Atmx̄

0, so that only by deciding for x rather than for x consistency is maintained.3

Example 2 (Running example). Let us consider two fact situations according to case
base CBex running example.

• In s3 = {π1,π3,δ1}, only a decision for 1 in s3 is consistent with CBex, since
a decision for 0 would entail that {δ1} >CBex {π1}, contrary to the preference
{π1}>CBex {δ1}, which is derivable from c1.

• In s4 = {π2,δ2} both (s4,{π2},1) and (s4,{δ2},0) are consistent with CBex, since
neither {π2}>CBex {δ2} nor {δ2}>CBex {π2}.

3. Classifier Model of Binary-input Classifier Logic

In this section we introduce the language and semantics of binary-input classifier logic
BCL first appeared in [13]. Recall that Atm = Atm0 ∪Dec, where Atm0 = Dfd∪Plt, and
Dec = {t(x) : x ∈ Val = {0,1,?}}. The modal language L (Atm) of BCL is defined as:

ϕ ::= p | t(x) | ¬ϕ | ϕ ∧ϕ | [X ]ϕ,

where p ranges over Atm0, t(x) ranges over Dec, and X is a finite subset of Atm0.4

Operator 〈X〉 is the dual of [X ] and is defined as usual: 〈X〉ϕ =def ¬[X ]¬ϕ . Finally, for
any X ⊆ Y ⊆ Atm0, the following definition syntactically expresses a valuation on Y s.t.
all variables in X are assigned as true, while all the rest in Y are false.

cnX ,Y =def
∧
p∈X

p∧
∧

p∈Y\X

¬p.

The language L (Atm) is interpreted relative to classifier models defined as follows.

3We generalize a fortiori constraint from only acting on result models in [8] to also on reason models in the
same manner as viewing a result models as a special reason model, whose reason contains all pro-factors.

4Atm is finite since the factors in case-based reasoning are supposed to be finite. Notice p ranging over
Dfd∪Plt, i.e. p can be some δ or some π . X can denote a reason (an exclusive set of plaintiff/defendant factors),
or any subset of Atm0, which is clear from the context. Last but not least, p and t(x) have different statuses
regarding negation: ¬p means that the input variable p takes value 0, but ¬t(x) merely means the output does
not take value x: we do not know which value it takes, since the output is trinary.

X. Liu et al. / Modelling and Explaining Legal Case-Based Reasoners Through Classifiers86



Definition 5 (Classifier model). A classifier model (CM) is a pair C = (S, f ) where:

• S ⊆ 2Atm0 is a set of states (or fact situations), and
• f : S −→ Val is a decision (or classification) function.

The class of classifier models is noted CM.

A pointed classifier model is a pair (C,s) with C = (S, f ) a classifier model and s∈ S.
Formulas in L (Atm) are interpreted relative to a pointed classifier model, as follows.

Definition 6 (Satisfaction relation). Let (C,s) be a pointed classifier model with C =
(S, f ) and s ∈ S. Then:

(C,s) |= p ⇐⇒ p ∈ s,

(C,s) |= t(x)⇐⇒ f (s) = x,

(C,s) |= ¬ϕ ⇐⇒ (C,s) �|= ϕ,

(C,s) |= ϕ ∧ψ ⇐⇒ (C,s) |= ϕ and (C,s) |= ψ,

(C,s) |= [X ]ϕ ⇐⇒ ∀s′ ∈ S : if (s∩X) = (s′ ∩X) then (C,s′) |= ϕ.

A formula ϕ of L (Atm) is said to be satisfiable relative to the class CM if there exists a
pointed classifier model (C,s) with C ∈ CM such that (C,s) |= ϕ . It is said to be valid if
¬ϕ is not satisfiable relative to CM and noted as |=CM ϕ .

We can think of a pointed model (C,s) as a pair (s,x) in f with f (s) = x. The for-
mula [X ]ϕ is true at a state s if ϕ is true at all states that are modulo-X equivalent to state
s. It has the selectis paribus (SP) (selected things being equal) interpretation “features in
X being equal, necessarily ϕ holds (under possible perturbation on the other features)”.
[Atm0 \X ]ϕ has the standard ceteris paribus (CP) interpretation “features other than X
being equal, necessarily ϕ holds (under possible perturbation of the features in X)”. No-
tice when X = /0, [ /0] is the S5 universal modality since every state is modulo- /0 equivalent
to all states, viz. (C,s) |= [ /0]ϕ ⇐⇒ ∀s′ ∈ S,(C,s′) |= ϕ .

4. Representation between Consistent Case Base and CM

In this section we shall show that the language of case bases can be translated into the
language L (Atm); hence case bases can be studied by classifier models. More precisely,
a case base is consistent iff its translation, together with the following two formulas that
we abbreviate as Compl and 2Mon, is satisfiable in the class CM:

Compl=def
∧

X⊆Atm0

〈 /0〉cnX ,Atm0

2Mon=def
∧

x∈{0,1},X⊆Atmx
0,Y⊆Atmx

0

(
〈 /0〉(cnX∪Y ,Atm0 ∧ t(x))→

∧

Atmx
0⊇X ′⊇X ,Y ′⊆Y

[ /0](cnX ′∪Y ′,Atm0 → t(x))
)
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According to Compl, every possible situation description must be satisfied by the
classifier, where a situation description is a conjunction of factors (those being present
X) and negations of factors (those being absent, Atm0 \X).

2Mon introduces a two-way monotonicity, which is meant to implement the a fortiori
constraint: if the classifier associates a situation s to an outcome x, then it must assign the
same outcome to every situation s′ such that both (a) s′ includes all factors for x that are
in s and (b) s′ does not include factors for x that are outside of s. This formula is meant
to maintain consistency with respect to the preference relation, as Definition 1 indicates:
if a case including reason X for x and factors Y for x, has outcome x, it means that X >Y .
Thus it cannot be that outcome x is assigned to a situation s′ including both a superset
X ′ ⊇ X of factors for x and only a subset Y ′ ⊆Y of factors for x. In fact, if X >Y , then is
must be the case that also X ′ > Y ′, while a decision for x would entail that X ′ < Y ′.

Let CMprec = {C = (S, f ) ∈ CM : ∀s ∈ S,(C,s) |= Compl∧2Mon}, where CMprec

means the class of CMs for precedent theory. Satisfiability and validity relative to CMprec

are defined in an analogous way as CM.
To translate a result-model case-base CBres into a classifier model (C, f ), we need

to ensure that all precedents in the case-base are satisfied by the classifier, with regard to
both their factors and their outcome.

Definition 7 (Translation of case base for result model). The translation function tr1
maps each case from a case base CBres to a corresponding formula in the language
L (Atm). It is defined as follows:

tr1(s,s∩Atmx
0,x) =def 〈 /0〉(cns,Atm0 ∧ t(x)).

We generalize it to the entire case base CBres as follows:

tr1(CBres) =def
∧

(s,s∩Atmx
0,x)∈CB

tr(s,s∩Atmx
0,x).

Therefore, in the result model a precedent (s,s∩Atmx
0,x) is viewed as a situation s

being classified by f as x.

Example 3 (Running example). The case ({π1,π2,δ1},{π1,π2},1}) is translated as
〈 /0〉(π1 ∧π2 ∧δ1 ∧¬π3 ∧¬δ2 ∧¬δ3 ∧ t(1)), which means that f (π1,π2,δ1) = 1

In translations for the reason model we need to capture the role of reasons. This is
obtained by ensuring that for every case (s,X ,x), not the fact situation s directly, but the
one consisting only of reason X and all x-factors in s (i.e. s∩Atmx

0) is classified as x. It
reflects that the precedent finds x-factors in s outside of X dispensable for the outcome.

Definition 8 (Translation of case base for reason model). The translation function tr2
maps each case from a case base CB to a corresponding formula in the language
L (Atm). It is defined as follows:

tr2(s,X ,x) =def 〈 /0〉(cnX∪(s∩Atmx
0),Atm0

∧ t(x)).

We generalize it to the entire case base CB as follows:
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tr2(CB) =def
∧

(s,s∩Atmx
0,x)∈CB

tr2(s,s∩Atmx
0,x).

Notice that the function tr1 for the result model is a special case of the function tr2
for the reason model, since ((s∩Atmx

0)∪ (s∩Atmx
0) = s.

Fact 1. tr1(s,s∩Atmx
0,x) = tr2(s,s∩Atmx

0,x).

The formulas 2Mon and Compl require that the outcome x supported by reason X in
a precedent is assigned to all possible cases including X that do not contain additional
factors against x. If both formulas are satisfiable then the case base is consistent, as stated
by the following theorem.

Theorem 1. Let CB∈CB be a case base. Then, CB is consistent iff tr2(CB) is satisfiable
in CMprec.

In light of the theorem and the fact above, the representation of a case base for result
model turns to be a corollary.

Corollary 1. Let CBres ∈ CBres be a case base for the result model. Then, CBres is
consistent iff tr1(CBres) is satisfiable in CMprec.

Similarly, the precedential constraint can also be represented as a corollary.

Corollary 2. Let CB ∈ CB be a consistent case base and (s′,X ,x) a case. Updating CB
with (s′,X ,x) meets the precedential constraint, iff tr2(CB)∧ tr2(s′,X ,x) is satisfiable in
CMprec.

Example 4 (Running example). Case c3 = ({π1,π2,δ2},{δ2},0) is incompatible with
the CBex. According to tr2(CBex ∪{c3}), 2Mon and Compl, the fact situation {π1,π2,δ1}
should be classified both as 1, based on CBex, and 0, based on c3.

5. Explanations

The representation results above pave the way to providing explanations for the out-
comes of cases. For this purpose it is necessary to introduce the following notations. Let
λ denote a conjunction of finitely many literals, where a literal is an atom p (positive
literal) or its negation ¬p (negative literal). We write λ ⊆ λ ′, call λ a part (subset) of
λ ′, if all literals in λ also occur in λ ′; and λ ⊂ λ ′ if λ ⊆ λ ′ but not λ ′ ⊆ λ . We write
Lit(λ ),Lit+(λ ),Lit−(λ ) to mean all literals, all positive literals and all negative literals
in λ respectively. By convention � is a term of zero conjuncts. In the glossary of Boolean
classifier (function), λ is called a term or property (of the instance s). The set of terms
is noted Term. A key role in our analysis is played by the notion of a (prime) implicant,
i.e., a (subset-minimal) term which makes a classification necessarily true.

Definition 9 (Implicant (Imp) and prime implicant (PImp)). We write Imp(λ ,x) to mean
that λ is an implicant for x and define it as Imp(λ ,x) =def [ /0](λ → t(x)). We write
PImp(λ ,x) to mean that λ is a prime implicant for x and define it as

PImp(λ ,x) =def [ /0]
(

λ → (
t(x)∧

∧

p∈Atm(λ )
〈Atm(λ )\{p}〉¬t(x))

)
.
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According to the definition, λ being an implicant for x means that any state s ver-
ifying λ is necessarily classified as x (necessity); and λ being a prime implicant for x
means that any proper subset of λ is not an implicant for x (minimality).5 Implicants
explain the classifier in the sense that to know an implicant satisfied at a state is to know
the classification of the state.

Intuitively, for a case base containing precedent (s,X ,x) to be consistent, s must be
incompatible with every prime implicant λ for x. To guarantee that, either λ must have
some literal ¬p, where p is in X and hence is true at s; or λ must have some literal p,
where p /∈ s∩Atmx

0 and hence is false at s.

Proposition 1. Let CB be a consistent case base and (s,X ,x) ∈ CB, and C ∈
CMprec s.t. (C,s) |= tr2(CB). Then, ∀λ ∈ Term,, if (C,s) |= PImp(λ ,x), then either
X ∩Atm(Lit−(λ )) �= /0 or s∩Atmx

0 � Atm(Lit+(λ )).

Example 5. Let C = (S, f ) ∈ CMprec and tr2(CBex) is satisfiable in C. Obviously π1
cannot be PImp for 0, otherwise f (s1) = 0, contrary to c1. Also ¬δ2∧π2 cannot be PImp
for 1, otherwise f ({π2,δ1,δ3}) = 1, contrary to c2.

In XAI, people [18,5,12] also focus on “local” (prime) implicants, namely (prime)
implicants true at a given state. We adopt the definitions of abductive explanations in
[12,10], and express these notions in L (Atm) as follows:

Definition 10 (Abductive explanation (AXp) and weak abductive explanation (wAXp) ).
We write AXp(λ ,x) to mean that λ abductively explains the decision x and define it as
AXp(λ ,x) =def λ ∧ PImp(λ ,x). We write wAXp (λ ,x) to mean that λ weak-abductively
explains the decision x and define it as wAXp (λ ,x) =def λ ∧Imp(λ ,x).

The proposition below states that to be the reason (of a fact situation) is to be the pos-
itive part of some weak AXp of that situation. Notice a reason is not always the positive
part of some AXp, since reasons in precedent do not in general respect minimality.

Proposition 2. Let CB be a consistent case base, (s,X ,x) ∈ CB, and C ∈ CMprec s.t.
(C,s) |= tr2(CB). Then ∃λ ∈ Term s.t. Atm(Lit+(λ )) = X and (C,s) |= wAXp (λ ,x).

In fact, we always know one weak AXp for a precedent (s,X ,x) in a consistent case
base, i.e., the conjunction of all factors in X and negations of all x-factors that are in s.

Proposition 3. Let CB be a consistent case base, (s,X ,x) ∈ CB, and C ∈ CMprec s.t.
(C,s) |= tr2(CB). Then we have (C,s) |= wAXp (cnX ,X∪(s∩Atmx

0)
,x).

Example 6. Let C ∈CMprec be a model of tr2(CBex). Then we have (C,s1) |= wAXp (π1∧
¬δ2,1) and (C,s2) |= wAXp (δ2 ∧¬π1 ∧¬π2,0). Notice that (C,s2) |= ¬wAXp (δ2,0),
because e.g. (C,s1) |= δ2 ∧¬t(0).

The idea of contrastive explanation is dual with abductive explanation, since it points
to a minimal part of a situation whose change would falsify the current decision, and

5Notice that we have not fully used the expressive power of [X ]ϕ and 〈X〉ϕ until now for minimality. The
intuitive meaning of 〈Atm(λ ) \ {p}〉¬t(x) in the formula is that even if we just perturb one variable p in λ
from its actual value, the classification will possibly no longer be x.
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the duality between their weak versions is similar [10]. A conjunction of literals λ is
a contrastive explanation for outcome x in situation s, if the following conditions are
satisfied: (a) λ is true at s, and s has outcome x, (b) if all literals in λ were false then the
outcome would be different, (c) λ is the subset-minimal literals satisfiying (a) and (b). A
weak contrastive explanation is only based on conditions (a) and (b).

Definition 11 (Contrastive explanation (CXp) and weak contrastive explanation (wCXp)).
We write CXp(λ ,x) to mean that λ constrastively explains the decision x and define it as

CXp(λ ,x) =def λ ∧〈Atm0 \Atm(λ )〉¬t(x)∧
∧

p∈Atm(λ )
[(Atm0 \Atm(λ ))∪{p}]t(x).

We write wCXp (λ ,x) to mean that λ weak-contrastively explains the decision x and
define it as wCXp (λ ,x) =def λ ∧ t(x)∧〈Atm0 \Atm(λ )〉¬t(x).

Intuitively speaking, we can test whether λ is a wCXp of situation s having outcome
x by “flipping” its positive literals to negative, and negative to positive, and observe if the
resulting state is classified differently from x. CXp is the subset-minimal wCXp.

Weak CXps can be used to study the preferences between reasons in a case base.
The next proposition indicates that given a precedent (s,X ,x), if the absence of Y at s, by
itself alone can weakly contrastively explain x, then Y is “no weaker than” X in CB.

Proposition 4. Let CB be a consistent case base and (s,X ,x) ∈ CB, and C ∈ CMprec s.t.
(C,s) |= tr2(CB). If (C,s) |= wCXp (cn /0,Y ,x), then it is not the case that Y <CB X.

Example 7. Let C ∈ CMprec be a model of tr2(CBex). Since {δ3} <CBex {π1}, we have
(C,s2) |= wCXp (cn /0,{π1},0). Indeed f (π1,δ1,δ3) = 0 by 2Mon according to s1.

6. Related Work and Conclusion

In this paper, we have shown that through the concept of classifier a novel logical model
of factor-based case-based reasoning can be provided, which allows for a rigorous anal-
ysis of case bases and of the inferences they support.

As noted in the introduction, our work is based upon the case-based reasoning mod-
els of HYPO and CATO [2,1] and upon the analysis of precedential constraint by Jeff
Horty [8,9]. Further approaches exist that make use of logic in reasoning with cases.
For instance, [17] provided a factor-based model based on formal defeasible argumenta-
tion. More recently [19,20] represent precedents as propositional formulas and compare
precedents by (propositional) logical entailment.

However, this propositional representation does not fully use the power of logic, in
the sense that it does not provide a proof theory (axiomatics) for reasoning with prece-
dents. By contrast, besides the semantic framework presented here, we can make syntac-
tic derivations of properties of CBR using the axiomatics of BCL (see in Appendix).

Moreover, our representation results allow for exploring different notions of expla-
nation, such as abductive and contrastive explanations. We can accordingly explain why
a case-based reasoning suggests a particular outcome (rather then a different one) in
a new case. Thus, out model could be used to build explainable case-based reasoners,
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which could also be deployed to reproduce and analyze the functioning of opaque pre-
dictors of the outcome of cases. Thus, by bringing CBR into the broader context of clas-
sifier systems, we connect three lines of research: legal case-based reasoning, AI&Law
approaches on to explanation [3], techniques and results developed in the context of XAI.

In future work we will examine more deeply the relation between classifiers, ex-
planations, and reasoning with legal precedents. Interesting developments pertain to ad-
dressing analogical reasoning beyond the a fortiori constraint considered here and to de-
ploying ideas of explanation to extract knowledge out of cases (e.g., to determine the
direction of factors and the way in which they interact).
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