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Short communication: Characterization of Molasses chemical composition 1 

Palmonari, A. et al. 2 

 3 

INTERPRETATIVE SUMMARY 4 

Molasses are widely used in ruminant nutrition. Despite their utilization in dairy cows’ rations, their 5 

characterization is not complete, and in literature they are partially described, reporting few 6 

parameters (i.e., dry matter, total sugars, protein, and ash). Our aim was to properly characterize 7 

cane and beet molasses, and to evaluate variability among different molasses. The results showed 8 

that more detailed analyses of individual molasses sources could improve their use in ration 9 

formulation. 10 

 11 

RUNNING HEAD: Short communication: Chemical composition of cane and beet molasses 12 
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 28 

ABSTRACT 29 

Beet and cane molasses are produced worldwide, as a by–product of sugar extraction, and widely 30 

used in animal nutrition. Due to their composition, they are fed to ruminants as an energy source. 31 

However, molasses have not been properly characterized in the literature. Their description has often 32 

been limited to the type (sugarcane or beet), or the sole amount of dry matter (DM), total or water 33 

soluble sugars, crude protein (CP), and ash. Our objective was to better characterize cane and beet 34 

molasses composition, examine possible differences, and obtain a proper definition of such feeds. For 35 

this purpose, 16 cane and 16 beet molasses were sourced worldwide and analyzed for chemical 36 

composition. The chemical analysis used in this trial was able to characterize 97.4% and 98.3% of 37 

the compounds in the DM of cane and beet molasses, respectively. Cane molasses contained less DM 38 

amount compared to beet molasses (76.8±1.02 vs 78.3±1.61%), as well as CP content (6.7±1.8 vs 39 

13.5±1.4% of DM), with a minimum value of 2.2% of DM in cane to a maximum of 15.6% of DM 40 

in beet molasses. The amount of sucrose differed among beet and cane molasses (60.9±4.4 vs 41 

48.8±6.4% of DM), but with high variability even within cane molasses (67.3 max to 39.2 min, % of 42 

DM) and beet. Glucose and fructose were detected in cane molasses (5.3±2.7 and 8.1±2.8% of DM, 43 

respectively), showing high variability. Organic acid composition differed as well. Lactic acid was 44 

more concentrated in cane compared to beet (6.1±2.8 vs 4.5±1.8% of DM), varying from 12.8% 45 

maximum to 1.6% of DM minimum within cane molasses. Dietary cation-anion difference showed 46 
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numerical differences among cane and beet molasses (7±53 vs 66±45 meq/100g of DM, on average). 47 

Within the cane group, it varied from +155 to -76 meq/100g of DM, while in beet from +162 to +0 48 

meq/100g of DM. Data obtained in this study detailed source differences in molasses composition, 49 

and suggested that a more complete characterization of them could improve their use in ration 50 

formulation. 51 

Key words: molasses, chemical composition, variability 52 

 53 

SHORT COMMUNICATION 54 

Beet and cane molasses are produced worldwide, as a by–product of sugar extraction, and 55 

they are widely used in animal nutrition. Due to their composition, they are fed to ruminants as an 56 

energy source, and the interest in their utilization is still current (Martel et al., 2011; Siverson et al., 57 

2014). Previous studies showed positive effects of molasses addition on milk fat, FCM, ruminal 58 

ammonia, MUN, and fiber digestibility (Broderick and Radloff, 2004; Brito et al., 2015; de Ondarza 59 

et al., 2017). Moreover, they could be associated to nonnutritive and dietetic benefits: animals prefer 60 

sweetened diets (Murphy et al., 1997), thus molasses generally stimulate DMI. Related to this, field 61 

observations suggest that molasses, or molasses-based liquid feeds could impact animal sorting 62 

behavior, with a positive impact on the consumption of longer particles in total mixed rations 63 

(DeVries and Gill, 2012). A frequently used alternative is to add water whenever the diet is considered 64 

too dry (i.e., where hay instead of silages represents the main forage source). During the warmer 65 

months, however, water addition could lead to spoilage phenomena, decreasing the palatability of the 66 

diet, and causing health problems to the animal. In such conditions, molasses would act positively, 67 

since not associated with spoilage or molds. From a composition stand point, sugars represent the 68 

main component of molasses. Sugars are rapidly fermented in the rumen, but the end products differ 69 

from those obtained by starch fermentation (Penner and Oba, 2009). Previous studies indicate that 70 

replacing starch with molasses or molasses-based liquid feeds would result in positive effects on 71 



rumen pH (Broderick and Radloff, 2004; Oelker et al., 2009; Brito et al., 2017). However, molasses 72 

are in general not properly characterized in literature, and their description is related to the type 73 

(sugarcane or beet), or the sole amount of DM, total or water soluble sugars, CP and ash (Broderick 74 

and Radloff, 2004; Brito et al., 2015). Other authors made a better description of molasses, but the 75 

final results still lack in several parameters, such as organic acids or DCAD (Olbrich, 2006; Bortolussi 76 

and O’Neill, 2006). Consequently, by adding every single component cited in the characterization, a 77 

representative part of the DM of molasses remains unknown, since sugars, CP and ash are barely 78 

sufficient to reach 80% DM on average.  79 

Objective of this study was to better characterize cane and beet molasses composition, 80 

underline possible differences, and obtain a proper definition of such feeds.  81 

For this purpose, 16 cane and 16 beet molasses were sourced worldwide and analyzed for 82 

chemical composition. In particular, 7 cane molasses were sampled in Central / North America, 5 83 

from Asia, 2 from Africa, and 1 in both Europe and Australia. Beet molasses were sampled in Europe 84 

(12), North America (2), and Africa (2). Dry matter was determined according to AOAC 934.01 85 

official method (AOAC International, 1990), except for dried quartz sand which was added to each 86 

vessel. Ash content was calculated as reported in AOAC 900.02 method for this specific feed (AOAC 87 

International, 1990). Crude Protein determination was carried out following the AOAC 990.03 88 

method (AOAC International, 1990), while starch and other carbohydrates, such as dextran, levan 89 

and araban, with polarimetric procedure (IS0 10520: 1997E). For sugar determination, samples were 90 

clarified using a commercial kit based on Carrez reagents (Sigma-Aldrich S.r.l, Milan, Italy). After 91 

this procedure, glucose, fructose, sucrose, galactose, raffinose, arabinose and xylose were extracted 92 

and quantified using an enzymatic method, according to manufacturer manual (Megazyme 93 

International Ltd., Bray, Ireland). Ash was recovered to quantify Ca, Mg, Na and K by ICP, while 94 

organic acids (lactic, acetic, butyric, propionic, citric, malic, formic, aconitic, glycolic and oxalic) 95 

and other components (sulphates, phosphates, chlorides and nitrates) were measured using ionic 96 



HPLC (Metrohm Italiana Srl, Origgio, Italy), according to the methods UNI EN ISO 10304-1 and 97 

14911-2001.  98 

Statistical analysis was performed using the software JMP (version 12.0 pro, Statistical 99 

Analysis Systems Institute Inc., Cary, NC). Then, a principal component analysis was carried out 100 

using the FACTOR procedure of SAS (version 9.13, SAS Institute Inc., Cary, NC), as described by 101 

Gallo et al (2015). The analysis was conducted to evaluate variability among and across cane or beet 102 

molasses.  103 

Overall, determinations of the different components were able to characterize, on average, 104 

97.4% and 98.3% of the DM in cane and beet molasses, respectively. Analytical results are reported 105 

in Tables 1 and 2. Within the cane molasses group, DM ranged from 79.56% to 75.72%, with an 106 

average of 76.8%. An average 78.3% DM was observed in beet molasses, with a maximum of 78.9% 107 

and a minimum of 74.1%. Ash was numerically higher in cane (13.1% of DM) than beet (11.7% of 108 

DM) molasses, with a maximum value of 18.5% of DM and a minimum value of 6.5% of DM in beet 109 

molasses. The CP concentration differed among and within group, being 6.7 ± 1.8% and 13.5 ± 1.4% 110 

of DM in cane and beet molasses, respectively, and ranged from a minimum value of 2.2% of DM in 111 

cane to a maximum of 15.6% of DM in beet. This difference could be related to specific molecules 112 

occurring in sugar beet, such as betaine.  Betaine is a nitrogen compound, widely used in the cosmetic, 113 

health and pharmaceutical industry as well as animal nutrition (Fernandez-Figares et al., 2002; 114 

Escudero and Ruiz, 2011), being able to promote growth and modulate lipid accumulation.  115 

Sugar profile differed among samples. Sucrose resulted as the most represented in both cane 116 

and beet molasses, although its concentration varied even within group. In cane molasses, an average 117 

of 48.8% of DM was observed, ranging from 67.3% to 39.2%. Beet molasses showed a numerically 118 

higher sucrose concentration, 60.9% of DM on average, with 66.1% max and 46.5% min. Glucose 119 

and fructose resulted in an average concentration of 8.1% for and 5.3% of DM, respectively, in cane 120 

molasses, while barely detectable in beet molasses (0.3% of DM on average, for both). The ranges 121 



for cane molasses were wide, with maximum values of 14.3% and 12.1% DM and minimum values 122 

of 2.3% and 1.3% of DM for fructose and glucose, respectively. Other analyzed sugars (galactose, 123 

raffinose, arabinose and xylose) were almost undetectable, and even the sum of maximum values 124 

resulted lower than 1% of DM in cane molasses. The only exception was raffinose in beet molasses, 125 

which resulted 0.6% of DM on average, but with a maximum value of 2.2% of DM. This finding is 126 

in line to what observed by Olbrich (2006), who identified sucrose and raffinose as the two major 127 

sugars in German beet molasses. Reasons for these differences could be related to the extraction 128 

process applied, as well as the origin of the molasses. Sucrose is a disaccharide, composed by glucose 129 

and fructose. Uptakes of these two sugars are usually associated, and both represent a major substrate 130 

for microbial fermentations. However, glucose and fructose could undergo different fermentation 131 

pathways (Luick et al., 1957). Thus, considering the variability observed within group (cane or beet), 132 

these data suggest that a more accurate analysis is required to properly characterize the molasses. 133 

Differences were observed also in organic acids. Lactic acid was more concentrated in cane 134 

compared to beet (6.1% and 4.5% of DM), varying from 12.8% max. to 1.6% min. of DM among 135 

cane molasses. Aconitic acid was found only in cane molasses (1.4% of DM on average), while 136 

glycolic acid in beet (0.25% of DM on average). Other analyzed acids (acetic, butyric, propionic, 137 

citric, malic, formic, glycolic and oxalic) were poorly represented in both cane and beet molasses. 138 

The total sum of acids ranged from 2.4% to 18.7% of DM in cane, while it was 4.1% as minimum 139 

and 11.9% maximum of DM in beet molasses. Organic acids are not so frequently quantified when 140 

molasses are added to a diet. However, considering their variability, it should be recommended to 141 

determine such fraction, since organic acids could impact rumen metabolism, leading to different 142 

consequences in terms of animal health and performances, as underlined by other authors in respect 143 

to silages (Kung et al., 2018).  144 

Starch, dextran, levan and araban were 2.2% of DM on average in cane molasses, while their 145 

content was <1% of DM in beet molasses. Due to the low concentration, also the variability range 146 



was narrow. Sulfates, phosphates, and chlorides had a higher concentration in cane molasses, which 147 

showed a numerically lower DCAD compared to beet (7±53 vs 66±45 meq/100g of DM). Within the 148 

cane group, DCAD varied from +155 to -76 meq/100g of DM, while in beet from +162 to 0 meq/100g 149 

of DM. The observed DCAD variability across samples underlines the importance of this 150 

determination when molasses are added to the diet. Even with a similar amount of total sugars, 151 

different molasses could have a completely different anion – cation ratio, with possible effects on 152 

animal health and performance. For example, given a ration for close-up cows (270dd pregnancy) 153 

formulated with corn silage, grass hay, corn meal, soybean meal and min. vit. supplement, such ration 154 

would result in a DCAD = ~39 meq/100g. Substituting corn meal with the molasses at opposite values 155 

(+155 and -76 meq/100g), final DCAD would result as +38 and +48 meq/100g. As reported in 156 

literature, a proper balance is required to avoid the occurrence of health disease in different stage of 157 

lactation (Block, 1984; Goff and Horst, 1997; Hu and Murphy, 2004) or in animals under stressful 158 

environmental conditions (West et al., 1991 and 1992; Sanchez et al., 1994).  159 

Samples distribution resulted from the principal component analysis, is reported in Figure 1. 160 

Range of variability is wide among samples, and even within the same group, especially in cane 161 

molasses. In conclusion the obtained results demonstrate that the differences in composition could 162 

occur among molasses.  163 

Defining a molasses as “cane” or “beet” is important, but not sufficient to properly evaluate 164 

their potential nutritional role. As reported in several studies in which molasses are added to the diets, 165 

determination of ash, CP, total sugars and few other components represents a partial identification, 166 

and does not seem appropriate to characterize such feeds. Molasses are a good source of fermentable 167 

sugars, but other components are present as well, with potential impacts on animal health status or 168 

production performances. Moreover, from a scientific stand point, utilization of molasses which can 169 

be similar in terms of amount of total sugars or protein, but different in organic acids or in minerals 170 

could lead to different results across studies, as observed by other authors (Firkins, 2008; Baurhoo 171 



and Mustafa, 2014; Ghedini et al., 2018). Thus, this study underlines that a more accurate description 172 

and characterization of molasses is possible, and strictly required, especially if its use in animal feed 173 

has to be fully optimized. 174 
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Table 1. Descriptive statistic of the chemical composition of cane molasses. Values are expressed 290 

as % D.M. 291 

  Cane Molasses 

Measure, % D.M. Avg. Std. Dev. Min. value Max. value 

DM 76.8 1.0 75.7 79.6 

CP 6.65 1.79 2.22 9.31 

Total Sugars 62.3 4.7 57.0 71.0 

Sucrose 48.8 6.4 39.2 67.3 

Glucose 5.29 2.69 1.30 12.07 

Fructose 8.07 2.83 2.30 14.28 

Raffinose 0.03 0.00 0.02 0.03 

Galactose 0.04 0.00 0.04 0.04 

Arabinose 0.01 0.02 0.00 0.04 

Xylose ND ND ND ND 

Starch 0.33 0.25 0.06 1.07 

Levans 0.86 0.26 0.26 1.21 

Dextrans 0.79 0.42 0.27 1.63 

Arabans 0.20 0.05 0.06 0.28 

Aconitic Acid 1.42 0.85 0.24 3.78 

Lactic Acid 6.10 2.82 1.62 12.75 

Malic Acid 0.10 0.05 0.03 0.21 

Citric Acid 0.13 0.04 0.08 0.22 

Pyrocarbonic Acid 0.34 0.13 0.18 0.62 

Oxalic Acid 0.06 0.02 0.04 0.09 

Glycolic Acid 0.00 0.00 0.00 0.00 

Acetic Acid 0.44 0.28 0.16 1.04 

Ash 13.1 1.5 10.2 16.3 

Ca 1.39 0.55 0.82 3.13 

Mg 0.43 0.14 0.19 0.63 

Na 0.08 0.10 0.01 0.42 

K 1.82 1.91 0.31 7.99 

Sulphates 2.09 0.88 0.81 4.09 

Sulfur2 0.69 0.29 0.27 1.36 

Phosphates 2.03 0.77 0.70 2.97 

Nitrates, mg/kg 464 337 17 999 

Chlorides, mg/kg 60 86 1 340 

DCAD1, meq/100g 7 53 -76 155 
1 = Dietary cation-anion difference, calculated as: DCAD, meq/100g = (K, % DM / 0.039 + Na, % DM / 0.023) – (Cl, 292 
% DM / 0.0355 + S, % DM / 0.016). 293 
2 = Sulfur obtained from sulphates considering their respective molecular weights. 294 



Table 2. Descriptive statistic of the chemical composition of beet molasses. Values are expressed 295 

as % D.M. 296 

  Beet Molasses 

Measure, % D.M. Avg. Std. Dev. Min. value Max. value 

DM 77.6 3.2 67.0 80.9 

CP 13.5 1.4 10.7 15.6 

Total Sugars 62.1 3.9 50.6 68.4 

Sucrose 60.9 4.4 46.5 66.1 

Glucose 0.28 0.48 0.02 1.96 

Fructose 0.29 0.30 0.01 0.87 

Raffinose 0.60 0.56 0.12 2.18 

Galactose 0.03 0.00 0.02 0.03 

Arabinose 0.01 0.01 0.00 0.05 

Xylose 0.01 0.00 0.00 0.01 

Starch 0.08 0.04 0.02 0.17 

Levans 0.47 0.16 0.15 0.71 

Dextrans 0.09 0.04 0.02 0.19 

Arabans 0.06 0.02 0.03 0.10 

Aconitic Acid ND ND ND ND 

Lactic Acid 4.51 1.83 1.77 7.13 

Malic Acid 0.08 0.04 0.02 0.13 

Citric Ac. 0.30 0.12 0.11 0.50 

Pyrocarbonic Acid 2.77 0.52 1.74 3.76 

Oxalic Acid 0.03 0.01 0.02 0.05 

Glycolic Acid 0.25 0.04 0.18 0.32 

Acetic Acid 0.42 0.12 0.20 0.60 

Ash 11.7 2.5 6.5 18.5 

Ca 0.30 0.35 0.02 1.24 

Mg 0.02 0.02 0.00 0.09 

Na 0.62 0.43 0.05 1.45 

K 2.44 1.33 0.65 5.54 

Sulphates 0.61 0.41 0.17 1.84 

Sulfur2 0.20 0.14 0.06 0.61 

Phosphates 0.76 0.38 0.31 1.65 

Nitrates, mg/kg 55 29 16 116 

Chlorides, mg/kg 3974 2236 411 8056 

DCAD1, meq/100g 66 45 0 162 
1 = Dietary cation-anion difference, calculated as: DCAD, meq/100g =  (K, % DM / 0.039 + Na, % DM / 0.023) – (Cl, 297 
% DM / 0.0355 + S, % DM / 0.016).  298 
2 = Sulfur obtained from sulphates considering their respective molecular weights. 299 



Figure 1. Samples distribution. PCA results for molasses variability. Distance between dots is 300 

inversely proportional to similarity among samples.  301 
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