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Abstract: Cast iron is a very common and useful metal alloy, characterized by its high carbon con-

tent (>4%) in the allotropic state of graphite. The correct shape and distribution of graphite are es-

sential for ensuring that the material has the right properties. The present investigation examines 

the metallurgical and mechanical characterization of a spheroidal (nodular) cast iron, an alloy that 

derives its name and its excellent properties from the presence of graphite as spheroidal nodules. 

Experimental data are detected and considered from a data mining perspective, with the scope to 

extract new and little-known information. Specifically, a machine learning toolkit (i.e., Orange Data 

Mining) is used as a means of permitting supervised learners/classifiers (such as neural networks, 

k-nearest neighbors, and many others) to understand related metallurgical and mechanical features. 

An accuracy rate of over 90% can be considered as representative of the method. Finally, interesting 

considerations emerged regarding the dimensional effect on the variation in the solidification rates, 

microstructure, and properties. 
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1. Introduction 

Data mining traditionally represents the identification of information, not known a 

priori, through targeted extrapolation using single or multiple databases. Techniques and 

strategies applied to data mining operations are largely automated and frequently based 

on machine learning (ML) algorithms. 

To date, prediction methods, such as neural networks, decision trees, clustering, re-

gression and the analysis of associations, are commonly used in material engineering. 

With the capacity to recognize existing patterns undetected by other means of investiga-

tion, they can provide unforeseen information in a way that permits a better understand-

ing of material properties and behaviors. This is exactly what it is presented here, with an 

investigation focused on a nodular cast iron (GJS). 

Also known as spheroidal graphite cast iron (SGI), this is a standardized [1] type of 

cast iron in which graphite is solidified as spheroids (instead of flakes or lamellae), with 

the effect of providing the material with better mechanical properties (e.g., ultimate/yield 

strength, hardness, etc.). They also provide properties that are rarely associated with cast 

irons, such as the ductility, which explains the further denomination of ductile iron [2]. 

The nodules of graphite exert a preventative action against the development of 

cracks, unlike lamellar graphite, which offers a preferential path for their propagation. In 

addition, their spheroidal shape reduces the stress concentration, reducing the damage in 

the matrix structure [3]. 

The intense influence exercised by the graphite shape on the matrix structure pro-

duces significant correlations between the mechanical properties. It is very common, e.g., 
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to have tensile strength (UTS) correlated with elongation at break (ε) in the case of SGI, 

by means of an equation such as: 

UTS2 × ε = Q (1)

where Q is a constant. High values of Q indicate a high strength and/or elongation, denot-

ing a cast iron with advanced properties [4]. 

The proper nucleation of the graphite spheroids AIn be achieved by combining two 

phases: firstly, by reducing the sulfur (S) content below 0.018% through a desulfurization 

treatment, and then, by increasing the magnesium (Mg) content up to 0.3% from its 0.04–

0.05% initial content through the addition of Fe-Si-Mg alloys to the liquid metal ([5]). This 

a delicate part of the process. 

There are equations (e.g., those proposed by CTIF and ESF, France) that can relate 

the weight of Mg-based additives with the expected Mg content. However, these relation-

ships can be inaccurate. For instance, the desulfurization pre-treatment is essential for 

preventing the Mg from reacting, to a large extent, with the sulfur, hindering the complete 

spheroidization of the graphite. However, the local sulfur content can be influenced by 

the casting geometry and characteristic dimensions in a way that causes the microstruc-

tures to be unpredictable. 

From a research perspective, this unpredictability is a perfect way of assessing data 

mining tools and their benefits, provided that we have adequate data for their analyses. 

The distribution and morphology of graphite nodules can be detected using qualita-

tive methods based on metallography. For instance, their shape can be evaluated accord-

ing to ASTM A247, which defines seven basic morphologies and also provides parameters 

for their classification [6], before other standards are used to define specific tests methods. 

The nodularity, which refers to the % of graphite present as type-I or -II nodules, can 

be evaluated by counting the graphite particles of each type [7]. A nodularity greater than 

90% is generally recommended in the case of nodular iron, although a nodularity greater 

than 80% is acceptable. 

The mechanical properties can be evaluated using a consolidated list of standards 

merging experimental procedures for testing metallic materials (e.g., ASTM E8M-16 for 

tensile tests [8]) with other procedures that were explicitly developed for testing cast iron 

(e.g., ASTM A327 for impact tests of cast iron [9]). 

There are numerous experimental works characterizing spheroidal cast irons in the 

literature, including some studies regarding specimens produced in the same foundry us-

ing similar processes and chemical compositions [10–12]. These papers describe SGIs with 

a good carbon content (3.50–3.70%), correct fractions of magnesium (0.055%) and minimal 

residues of sulfur (0.004%), as one should expect. Moreover, their spheroids appear to be 

correctly formed and distributed, while mechanical tests highlight the typical mechanical 

properties of SGI (i.e., tensile strength (UTS) ~500–670 MPa, yield strength (YS) ~320–380 

MPa, Poisson’s ratio~0.24, and elongation at break (ε) ~9–14%). 

Starting from the experimental data, models have been proposed in the past by re-

searchers who were attempting to correlate the microstructural and mechanical infor-

mation. They are usually based on the deployment of empirical relations correlating meas-

urements, followed by remarkable attempts to interpret these relationships on a physical 

basis (e.g., [13–15]). 

However, recent promising studies have introduced the concept of data mining as a 

new method for investigating the complexity behind the experimental data for cast irons. 

In [16], e.g., data mining was used to classify the microstructures (i.e., martensite, 

pearlite and bainite) in the case of two-phases steels. This work offers valuable consider-

ations regarding methods for producing a pertinent dataset for a machine learning (ML) 

approach, starting with the morphological parameters (such as the nodule shape, areas 

and diameters) detected using micrographs (i.e., light-optical and SEM images). The anal-

ysis also provides evidence with respect to the high accuracy of classification that can be 

achieved (i.e., 88.3%) when aspects such as data preprocessing, feature selection and the 
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data split technique are properly handled. In this case, a support vector machine (SVM) 

tool trained using 80% of the available data was used as the classifier, and the other 20% 

of the data were retained for the validation. 

The present investigation is similar in terms of the methods used and precision 

achieved, but significant there are differences in terms of the materials (i.e., cast iron vs. 

steel), training dataset consistency, morphological features, the application of learners, val-

idation approach, etc. 

In [17], the same SVM learner was applied to classify the material phases for SGI, as 

in the present work. However, the analysis was not based on the determination of the 

morphology of spheroids (as was the case, e.g., in [18]). Rather, the authors preferred to 

omit a grayscale (8-bit) transformation and evaluation, opening up the concept of image 

embeddings [19]. 

Clustering and classification algorithms rarely work when using images directly. To 

perform the image analysis, it is necessary to transform (‘encode’) them into vectors of 

numbers. The image embedding is a vector representation of an image, whereby images 

with similar patterns have similar vector profiles. 

Today, many powerful image embedders are easily accessible (e.g., InceptionV3 by 

Google) and applied in several research fields (including materials engineering [20]). They 

are based on deep learning models that are able to calculate a feature vector for the image 

and return the image descriptors. These descriptors, which are altogether capable of pre-

cisely characterizing each image, lose every evident connection with the original image 

content. For researchers, they offer nothing more than thousands of values (many of 

which are useless and will ultimately be eliminated by a PCA), which are devoid of any 

obvious physical meaning. 

The present work prefers to focus its analysis on standardized factors, such as the 

contents of graphite (GR), ferrite (FE) and pearlite (PE), or the grade of nodularity (NO), 

considering their immediate correspondence with the physical meanings. For instance, 

we can observe that: 

 Graphite nodules in a completely ferritic matrix provide the cast iron with a good 

ductility, impact resistance, tensile strength (UTS) and yield strength (YS), making 

the cast iron almost equivalent to a non-alloy steel. 

 An almost completely pearlitic matrix, with small amounts of ferrite around the 

graphite nodules, gives the cast iron a high tensile strength, good wear resistance and 

moderate ductility, with a higher machinability than steel. 

 A mixed matrix consisting of ferrite and pearlite, the most frequent form of SGI as it 

appears in a foundry, gives the cast iron intermediate properties between the ferritic 

and pearlitic ones, with a good machinability and low production costs. 

Returning to data mining applications for SGI, in [21], the k-nearest neighbors (kNN) 

learner, another supervised classifier, was used to predict defects in a foundry by relating 

historical process data (about the mold sand, pouring process, chemical composition, etc.) 

to the percentage of defective castings. This is a valid example regarding the use of ML 

for monitoring the quality of the casting process in the case of SGI, but it required a large 

amount of data in order to define the time series from which one can recognize the time-

depending patterns. Thus, the present work is very different in terms of its data con-

sistency and scope. 

In [22], machine learning and pattern recognition were used to investigate an im-

portant aspect of the casting process: the cooling and solidification of the metal. In general, 

this aspect is also relevant in the present case, but the two investigations are based on 

different databases (i.e., mechanical properties vs. thermal analysis cooling curves). 

Nevertheless, the use of artificial intelligence (AI) and data mining to investigate the 

materials’ behavior is a topic of great interest in current research. This is why a great num-

ber of articles deals with this theme. Limiting the discussion to the most recent contribu-

tions, in [23,24], ML methods were used to relate material defects (such as porosity), which 
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emerged after solidification, with mechanical properties (such as fatigue strength). In 

other research papers, the use of ML tools was implemented in the earlier stages of the 

production process, with the aim of predicting impurities [25] or tracing the evolution of 

other chemical elements [26] inside the blast furnace hot metal. The general aim was to 

improve the level of control over the whole metal melting production process [27], which 

is characterized by a strong intrinsic variability. There are also interesting cases where an 

ML approach permitted the improvement of specifical material characteristics (such as 

the required impact strength in the case of [28]) or even the development of a substantially 

new and different cast alloy ([29])). 

All these works, together with many similar studies (such as [30,31]), are mainly 

based on the validated assumption that ML can be conveniently applied for the recogni-

tion of the metal alloy microstructures, constituents, and morphological characteristics. 

Nevertheless, even more relevant studies are those related to the prediction of me-

chanical properties in the case of cast irons, starting with their metallurgy characteristics. 

Firstly, it is interesting to mention [32], where ML algorithms properly classified nodular 

cast irons, while this ability was used to predict (by regression) the stress–strain [33], Pois-

son’s ratio [34] and hardness [35], even when comparing different ductile cast alloys [36]. 

However, unlike other studies, here an additional target is involved in the assess-

ment of the proposed methods and tools with respect to a real industrial production en-

vironment. 

With such a scope, this research was designed to be implemented within a traditional 

sand cast iron foundry during its daily operation and without significant alterations to the 

process scheduling. Precise limits emerged from this work in terms of: 

 Production (e.g., alloys, geometries, process factors and specimen numbers); 

 Experiments (e.g., mechanical and microstructural tests); 

 Data mining (e.g., platforms, algorithms and data representation). 

Finally, the research was intentionally based on methods that have already been ap-

plied in past, which, here, are largely reconsidered with the aim of providing additional 

outcomes. 

Specifically, the abovementioned [10–12] offer similar experimental characterizations 

(tensile, flexural and fracture properties, respectively) of different cast irons, including 

SGI, produced using relatively analogous process conditions (i.e., open-cast conditions in 

green sand). Their measurements are very useful and, here, are used for the purposes of 

comparison and discussion. 

At the same time, these past investigations differ in the (smaller) number of speci-

mens used and the means by which these specimens were produced. Here, for the first 

time, specimens were extracted from castings with the detection of their geometry, dimen-

sions and processes, which are fully in line with those representing the daily production. 

These differences are important. For instance, while the characteristic dimension was de-

fined as 26 mm in all the previous works, here, it varies from 75 to 220 mm, permitting a 

better investigation of the cooling phenomena. 

Regarding methods, [35,37] offer a valid overview of the data mining techniques, 

which have been validated in the past and are used again here. Nevertheless, here, several 

important methodological improvements were combined so as to provide a fruitful anal-

ysis, including the following: 

 The dataset was enlarged by two additional features, including hardness and resili-

ence. 

 The SVM was included in the ML procedure in light of the consistent results that 

other researchers achieved using this learner for their predictions. 

 Learners were optimized through changes to their constitutive parameters (vs. the 

default values used in the past), in accordance with their specific meanings. 

 The validation was performed on a different basis, improving the accuracy. 
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2. Materials and Methods 

2.1. Casting Process 

Specimens were manufactured using a traditional process of green sand molding in 

a hot-blast long-campaign cupola furnace [38]. Above the iron melting temperature (i.e., 

~1250 °C in this case), the solid pieces of metal, alternated with hot coke in the furnace, 

were transformed into molten iron. Then, the molten metal was poured into an interme-

diate furnace, where the temperature, chemical composition and Mg contents (added by 

Fe-Si-Mg inoculation) were strictly controlled with the aim of establishing the suitable en-

vironment for the production of SGI. Then, the molten metal was transported using a ladle 

to the place of pouring and poured into sand molds, in which the iron was allowed to cool 

and solidify. A thermocouple was used to record representative cooling and solidification 

curves, without highlighting criticalities. Finally, the castings were shaped through tool 

machining to extract specimens with a (‘dog-bone’) geometry in accordance with the 

abovementioned standards. 

Figure 1a offers a visual perspective of the foundry environment during the casting 

phases, showing the molten metal descending under the influence of gravity along the 

casting channels from the cupola (not visible, on the back) towards the secondary furnace, 

and from there falling into the ladle, while the operator activates the casting controls. Figure 

1b highlights the phase of manual pouring of the fluid into the chemical analysis device. 

  
(a) (b) 

Figure 1. Foundry during the production phases: (a) the cast iron descends from the cupola furnace 

(not visible) through the sprues to the secondary furnace, and then into the ladle (in the foreground); 

(b) chemical composition tests conducted by measuring the cooling curves (performed by an oper-

ator taking the melt directly from the ladle and pouring it into the instrument). 

The chemical composition (as the % of the weight) of the cast iron is reported in Table 

1. It is representative of a conventional SGI (i.e., C, 3.3 ÷ 3.8%; Si, 1.8 ÷ 2.8%; Mn, ≤0.6%; P, 

≤0.1%; S, ≤0.03%; Mg 0.04 ÷ 0.08%), apart from its slightly higher content of desferoidizers 

(e.g., Pb). 

Table 1. Chemical composition of SGI (as % of the weight). 

C Si Mn P S Ni Cr Cu Mo Mg Sn Ti Pb Al Zn 

3.694 2.102 0.218 0.021 0.003 0.072 0.065 0.067 0.004 0.045 0.011 0.034 0.014 0.012 0.002 

The mentioned processing phases represent a traditional casting process and similar 

experiments (e.g., [35,37]) but also include an important difference: the process was in-

tended to offer the scope for analyzing different cooling conditions. 

Within this scope, a single large sand mold was designed with several cubic cham-

bers of different sizes, connected together as a “cluster of cubes” (Figure 2a). This expedi-

ent allowed all chambers to be poured almost simultaneously in a single casting stage, 

ensuring the same physicochemical characteristics of the melt. In Figure 2b, the various 

cubes (i.e., 50, 75, 100, 120, 150, 180, 210 mm) formed by ProCAST (ESI Group, Paris, 
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France) are visible when separated, with indications of the subsequent cuts to be per-

formed in order to obtain the “slices” from which the specimens can finally be extracted. 

  
(a) (b) 

Figure 2. Casting details: (a) “cluster of cubes”, geometry of the sand mold with cubes of different 

sizes (i.e., 50, 75, 100, 120, 150, 180, 210 mm) formed by Procast; (b) solidified metal cubes, separated 

and with indications of the cutting directions. 

2.2. Mechanical Properties 

A total of 36 specimens were extracted from the cubes and used to perform the tensile 

tests (an additional 36 and 14 specimens were produced for, respectively, the impact and 

fatigue tests, but these are not considered here). Depending on the cubes’ size (side) and 

local porosity, they were extracted from 1 to 3 specimens from each “slice”. In Figure 3a, 

for instance, we can observe the division of a 120 × 120 mm slice into 4 specimens and the 

selection of 3 of them. 

   
(a) (b) (c) 

Figure 3. Different phases of the production and testing of the standardized specimens: (a) splitting 

of the cube into specimens; (b) machine tool processing of the ‘dog bone’ shapes; (c) specimens after 

failure. 

In total, 9 specimens were derived from cubes of 210 and 180 mm, 6 from those of 150 

and 120 mm and, finally, 3 from cubes of 100 and 75 mm. No specimen was extracted from 

the cube of 50 mm, as the dimensions would not have allowed for its proper analysis. These 

specimens, machined in the form of a ‘dog bone’ (Figure 3b), as defined by the standards, 

had variable diameters of 8, 11 and 13.5 mm depending on the cubes’ size (Figure 3c). 

Tensile tests, according to ASTM E8/E8M-16, were carried out, providing the ulti-

mate tensile strength (UTS in MPa), yield strength (YS in MPa) and ultimate strain/duc-

tility (ε in %). The failure of all the specimens near the centerline confirmed the correct 

alignment and functionality of the gripping system (Figure 3c). 

Resilience tests, according to ASTM A327M, were carried out, and the specimens 

used for these tests were extracted from an area close to the extraction area of the tensile 

specimens. Thus, their number was the same, being equal to 36. A micrograph was pre-

liminarily created for the specimens to verify their status. Then, tests were carried out 

using the instrumented Charpy pendulum. 
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The Brinell hardness, according to ASTM E10-08, was also quantified. Measurements 

were directly performed on the tensile specimens to yield the average hardness detected 

in ≥6 different spots per specimen with a 2.5 mm diameter sphere and 62.5 kg load. 

2.3. Metallographic Analysis 

Other specimens were obtained with the aim of implementing a metallographic anal-

ysis. Special attention was given to ensuring the good condition of the surfaces. Brazing 

papers (with a grain size between 200 and 1000 grit), soft cloths and a lapping machine 

(Struers LaboPol_5®, Ballerup, Denmark, with a 10–15 N load and 150 rpm rotation speed) 

were used for the smoothing and polishing. These specimens were also subjected to a 

chemical attack (with “Nital2” reagent for 10 s) with the aim of highlighting the micro-

structure of the matrix. For each specimen, 9 micrographs were acquired both before and 

after the chemical attack, with a total analyzed area of 40 mm2, being well distributed over 

the overall surface. In this way, it was possible to identify the micrograph values by char-

acterizing the whole specimen. 

Two micrographs are visible in Figure 4. A 58× magnitude shows an intense nodular 

area identified on a cube with a side length of 120 mm (Figure 4a), and a 2000× enlarge-

ment highlights the details of a spheroidal nodule of the graphite (Figure 4b). 

  
(a) (b) 

Figure 4. Micrograph details: (a) a completely nodular area (58×); (b) the spherical morphology of 

the graphite nodules (2000×). 

The micrographs were processed using image analysis software (Image-Pro® by Me-

dia Cybernetics, Rockville, MD, USA), thus providing the average values of the graphitic 

(GR), ferritic (FE) and pearlitic (PE) fraction, the number and size of the graphite nodules, 

and, finally, the nodularity (NO) for each specimen. 

3. Results 

3.1. Experimental Measurements 

Figure 5 shows the content of ferrite, pearlite and graphite in each specimen. Figure 6 

displays the values of the tensile strength (UTS), yield strength (YS), elongation at break 

(ε), hardness (HB) and resilience (R) for each specimen. 



Metals 2022, 12, 1493 8 of 27 
 

 

 

Figure 5. Ferrite, pearlite and graphite contents with respect to each specimen. 

 

Figure 6. Mechanical properties of the UTS (MPa), YS (MPa), HB, ε (%) and R (J) for each speci-

men. 

These values are also reported in Table A1 of Appendix A, together their means (μ), 

standard deviations (σ) and relative standard deviations (σ%). 

At first glance, it is evident that: 

 The cast iron has a pearlitic-ferritic matrix with an average presence of about 65% 

pearlite and with an average nodularity that is also of the order of 65%. 

 The cast iron, also due to its predominantly pearlitic matrix, has a rather low resili-

ence (at room temperature). 

 The extreme variability in the microstructure, with differences of up to 34% (in terms 

of σ%) in the main parameters, suggests significant variations in the mechanical prop-

erties. 

The same data can also be grouped according to the representative size of the casting 

from which the specimens were extracted (cube side), as in Figures 7 and 8, and/or investi-

gated in terms of the relationships between the material characteristics (both mechanical 

and microstructural), as in Figures 9–11. Considering these trends, some aspects seem to 

be evident, and others less so. For instance, the increase in the ferrite and the decrease in 

perlite as the size of the cube increases can easily be associated with the increase in the 

cooling time required. At this point, however, the trend reversal after 150 mm becomes 

less clear, indicating that the phenomena under investigation may lose linearity over the 

range of interest. 
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Figure 7. Ferrite, pearlite and graphite average contents of specimens from the same cube side. 

 

Figure 8. Average mechanical properties of specimens from the same cube side. 



Metals 2022, 12, 1493 10 of 27 
 

 

 
(a) (b) 

Figure 9. Microstructural information about the graphite nodules (such as the density, dimension 

and nodularity) in the case of: (a) a single specimen, (b) average values of specimens from the same 

cube side. 
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Figure 10. Mechanical properties (i.e., hardness (HB), yield strength (YS), tensile strength (UTS) and 

elongation (ε)) as a function of the microstructure (i.e., ferrite, pearlite and graphite contents). 

 

Figure 11. Tensile strength (UTS), yield strength (YS) and elongation (ε) as a function of the hard-

ness (with red dots potential outliers). 

3.2. Trend Analysis 

Considering the data trends (as shown in diagrams), it was possible to observe that: 

 The ferrite content decreases with the increasing cube side, with a peak in corre-

spondence with the cube side at around 150 mm, then starts to increase more slowly 

(Figure 7). 

 The pearlite content behaves in the opposite manner (with respect to the ferrite), in-

creasing with the cube side, with a peak in correspondence with cube side at around 

150 mm, again, before starting to decrease more slowly (Figure 7). 

 The graphite content shows no significant trends, remaining approximately constant 

as the size of the cube varies (Figure 7). 
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 There is an incremental trend in the number of nodules as the cube side decreases, 

without, however, a corresponding variation in the size of the nodules (Figure 9). 

 At high solidification/cooling rates (i.e., small cubes), many graphite nuclei are pre-

sent, but a very limited time is required for the diffusion of the carbon from the aus-

tenite to the nodules and, therefore, there is an increase in their size. This corresponds 

to the high presence of pearlite (Figure 9). 

 For large cubes, on the other hand, the low solidification/cooling rates lead to the for-

mation of a reduced number of graphite nuclei, which are more distant from each other 

and, therefore, despite the greater time available for the carbon diffusion, these cannot 

grow beyond certain dimensions. This situation also favors the formation of pearlite (Fig-

ure 9). 

 With respect to cubes of intermediate sizes, it seems that they correspond conditions 

that favor the formation of ferrite. 

 As the cube side decreases, the number of nodules observed per unit of surface area 

increases. The nodularity also increases with the decreasing size, while a monoto-

nous trend could not be observed as regards the size of the nuclei (Figure 9). 

 With the increase in the UTS, YS and HB, a decrease in R and ε is observed (Figure 

8). It is certainly not by chance that these variations follow a non-linear trend similar 

to that observed for the structural constituents of the matrices (Figure 10). 

 In accordance with the literature, the increase (decrease) in the ferritic phase in favor 

of the pearlitic one is accompanied by a decrease (increase) in the tensile properties 

and hardness and an increase (decrease) in the ductility and toughness (Figure 10). 

 The graphitic fraction does not appear to be systematically linked to any of the prop-

erties. However, it appears that its increase corresponds to a non-marginal tendency 

towards a decrease in the hardness, tensile strength and yield strength (Figure 10). 

 It can generally be confirmed that there is a remarkable correlation between the mi-

crostructure and tensile strength/elongation (Figure 10). 

 It can be also confirmed that the hardness is a significant parameter for defining the 

mechanical behavior of spheroidal cast iron, as indicated by the trend in the UTS, YS 

and ε as a function of HB (Figure 11). 

4. Data Mining Perspective 

4.1. Dataset and Datatool 

From a data mining perspective, the dataset consists of 36 instances (i.e., the numerical 

vector collecting data from each specimen) and 12 features (i.e., each measured character-

istic), equivalent to 432 data. No value is missing (e.g., measurements that are not made 

or are incorrect), and all data are numeric (i.e., no categorical or time-series data). 

The data analysis was performed using the Orange Data Mining platform [39]. This 

is an effective and efficient open-source toolbox developed by the University of Ljubljana 

for data analysis and visualization. It enables the relatively easy use of supervised and 

unsupervised machine learning (ML) tools and their built-in learners/solvers [40]. 

Specifically, a workflow was arranged within the scope of the study through the vis-

ual programming enabled by the platform and by using widgets and links (as exemplified 

in Figure 12). 
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Figure 12. Example of the Orange workflow for data mining. 

The data analysis can only begin after the identification of the target. Essentially, one 

feature has to be selected as the target. In this case, the cube side was set as the (initial) 

target, with the aim of investigating (firstly) the influence of the geometric features on the 

microstructural characteristics (e.g., ferrite, graphite, etc.) and, consequently, on the me-

chanical properties of the cast iron (e.g., UTS, YS, etc.). (Later, the analysis was extended 

to include all features as targets.) 

4.2. Principal Component Analysis 

The principal component analysis (PCA), however, confirmed that the features are 

not fully independent. Specifically, 4 principal components (instead of 11 features), should 

be enough to recreate the dataset with an accuracy of ~90%. With 8 principal components, 

the accuracy is established as ~99.2%, while the 10th and 11th principal components are 

useless (Table 2). 

Table 2. Principal component analysis (PCA) with component variances and cumulate variances. 

Component 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 

Variance 0.4551 0.2217 0.1410 0.0802 0.0444 0.0211 0.0182 0.0104 0.0066 0.0012 0.0000 

Cumulate 0.4551 0.6768 0.8178 0.8980 0.9424 0.9635 0.9817 0.9922 0.9988 1.000 1.000 

4.3. Correlation Analysis 

Through a correlation analysis (CA), performed using Pearson (rpxy) or Spearman (rsxy) 

coefficients, it is possible to quantify the relations [41,42]. For example, by referring to the 

dimension of the cubes (side), the Pearson coefficient highlights its inverse linear correla-

tion with the nodularity (rpxy = −0.744), nodular density (rpxy = −0.624) and graphite content 

(rpxy = −0.420). This means that the dimension of the castings reduces the nodularity almost 

proportionally, affecting the nodular density (but not the nodules’ dimensions) and, to a 

lesser extent, the graphite content. 

Such correlations can be (slightly) improved when a Spearman coefficient is used 

(with rsxy = −0,766, −0.707 and −0.469, respectively). While Pearson’s correlation assesses 

linear relationships, Spearman’s correlation assesses monotonic relationships, whether 

they are linear or not. Other variables are not significatively influenced by the dimension 

of the cubes (side). 

The CA can be extended to all parameters, allowing other correlations to emerge. 

Some of these are evident (e.g., ferrite vs. pearlite, rsxy = −0.935) or already discussed (e.g., 

the nodule density vs. cube size, rsxy = −0.624), while other are less evident. They are more 

interesting when related by Spearman’s correlation coefficient which, as mentioned, goes 

beyond linear relationships. Table 3 reports the top ten highest correlations. 
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Table 3. Top ten highest correlations (in accordance with Spearman’s rank correlation, rsxy). 

Ferrite Pearlite −0.935 R YS 0.787 

Pearlite R 0.906 R UTS 0.766 

Pearlite UTS 0.826 Ferrite UTS −0.757 

Ferrite R −0.821 Size Nodularity −0.744 

Pearlite YS 0.790 Ferrite YS −0.727 

For instance, the table indicates that the resilience (R) is deeply dependent on the 

alloy contents of pearlite (i.e., it is proportionate) and ferrite (i.e., it is inversely propor-

tionate). The R is also significantly correlated with the other material properties, such as 

the UTS and YS. Even if these concepts already emerged during the data discussion, here, 

a specific indicator (i.e., Pearson or Spearman’s coefficients) confirms the accuracy of the 

data interpretation, also providing a clear measurement/weight of the relationship. 

4.4. Rank Analysis 

Through rank analysis, it is possible to score variables according to their relevance 

with respect to the target variable. The method is based on scorers. In the present case, 

characterized by the regression of the numerical data, the in-built scoring methods are: 

 Univariate regression: linear regression for a single variable. 

 RReliefF: relative distance between the predicted (class) values of two instances. 

According to the univariate regression, for instance, the UTS is influenced (in order) 

by the pearlite (score = 73), ferrite (45) and nodular density (21), and much less by the 

graphite (6). Similarly, the YS, too, is shown to be influenced by the pearlite, ferrite and 

graphite, but not by the nodular density (score = 1). This is an interesting difference. 

Using a rank analysis, it is also easy to quickly identify and quantify relationships 

between variables (here, features). It is possible to include additional ranking methods, 

such as PCA or CA, but ML learners also offer a very powerful tool. 

4.5. Machine Learning 

The ML methods discussed here are based on training and use supervised learners. 

Specifically, the following learners were preferred for this study (in alphabetical order): 

 Classification tree  (CT) 

 k-nearest neighbors  (kNN) 

 Neural network   (NN) 

 Random forest   (RF) 

 Support vector machine (SVM) 

For the theory behind these mathematical tools, the reader should refer to specialized 

texts. For their validation and practical use in similar cases, the reader can refer to [43]. 

Specifically, according to common practice for the use and validation of ML algo-

rithms, the dataset was fractionized into two parts, one for training and the other for testing 

the learners’ ability to make predictions. Random sampling randomly splits the data into 

the training and testing sets in the given proportions. Then, the whole procedure is re-

peated a specified number of times. Here, different settings were considered, with the 

most balanced results achieved using 90% of the data for the training and 10% for the 

testing. In practice, respectively, 32 and 4 of the 36 available items were used, with 10–20 

repetitions so as to statistically consolidate the results. Then, the learners’ degrees of ef-

fectiveness were compared and ranked. 

For performance statistics, several standard methods may be used (e.g., mean square 

error, relative mean square error, mean absolute error, etc.). In the present discussion, the co-

efficient of determination (R2) was preferred due to its relationship with the Pearson cor-

relation coefficient and its linearity. The R2 is interpreted as the proportion of the variance 
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in the dependent variable that is predicted using the independent variable. In brief, the R2 

can be between −∞ and 1. When R2 = 0, this means that the adopted model offers an inter-

pretation of that data that is not better than the average data value and, under 0, the model 

is even worse than the average value. However, when R2 = 1, this means that the model 

perfectly explains the data. 

The initial tests, which used the default settings for the learners, were not especially 

encouraging, with the R2 often being negative and never higher than + 0.3/0.4. However, 

after some changes to the settings, the accuracies were greatly improved, especially for 

NN and RF, with an R2 over 0.9. This means that these learners are extremely precise in 

predicting the target values. SVM and tree also offer a reasonable level of accuracy. In the 

case of SVM, which is frequently used in similar investigations on cast irons, a precision 

level of 82–85% was also confirmed here. 

The following (main) parameters were selected in order to achieve the declared ac-

curacy: 

 NN: max 500 neurons in hidden layers, logistic activation, L-BFGS-B solver, max 400 

iterations, and regularization at 0.0001 

 RF: max 24 trees, 5 attributes at each split, and 3 as the limit depth of individual trees. 

 SVM: cost = 200, regression loss epsilon = 1.00, and kernel polynomial. 

 Tree: max 7 instances in the leaves, 3 as the smaller subset, and 10 as the max tree 

depth, stopping when the majority reaches 99%. 

 kNN: five as the number of neighbors, Mahalanobis metrics, and uniform weight. 

Table 4 offers an a priori evaluation of the learners using all the available methods. 

Table 4. Comparison of the learners according to the data. 

Model MSE RMSE MAE CVRMSE R2 

Neural network 136 11 8 7 0.923 

Random forest 171 13 9 8 0.904 

SVM 298 17 14 11 0.833 

Tree 367 19 13 12 0.794 

kNN 1005 31 24 20 0.438 

4.6. Predictions 

After the learners’ validation, they were used to predict the target values (Table A2 

in Appendix A). Specifically, the ‘leave on out’ approach was applied. This means that 

one specimen was excluded from the dataset, and the others (35) were used to train the 

learners. Then, they were required to predict the target value in the case of the excluded 

specimen. The same process was repeated for each specimen, with the aim of predicting 

every available target value. In other words, the learners were required to offer their best 

evaluation of the cube side for each specimen, considering all the others. The results are 

shown in Figure 13 in terms of the predicted and expected target values. The accuracy is 

evident. 
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Figure 13. Predictions of the target values by the different learners (NN, SVM, RF, k-NN). 

Specifically, the accuracy offered by NN, SVM, RF and k-NN was evaluated by meas-

uring the correlations between the predicted and expected values using Pearson’s coeffi-

cient, which equaled, respectively, rpxy = 0.952, 0.914, 0,799 and 0.768. The tree classification 

is ignored here, since its results were always in line with those of RF (e.g., rpxy = 0.746). 

Details regarding the full correlation analysis are available in Table 5. 

Table 5. Comparison of the learners according to the data predictions using Pearson’s (rpxy) and 

Spearmen’s (rpxy) correlation analysis and rank. 

Model rpxy rsxy Rank 

Neural network 0.952 0.935 1st 

Random forest 0.799 0.780 3rd 

SVM 0.914 0.919 2nd 

Tree 0.746 0.724 5th 

kNN 0.768 0.746 4th 

With respect to the initial comparison of the learners (performed a priori using a dif-

ferent method, the R2), the high accuracy rate of NN is also confirmed here. As evident in 

the diagram, the NN learner is able to categorize predictions for the five target values (210, 

180, 150, 120, 75). The overlap between categories is quite limited, and no evident outliers 

exist, as in the case of RF. SVM’s accuracy is also confirmed. Indeed, for this different 

classification, performed a posteriori, it is better than RF, confirming the validity of other 

researchers’ decision to use SVM for their own analyses. The difference in precision be-

tween NN and SVM is minimal and mainly linked to the data variability with respect to 

one of the categories (target = 120), which appears to be the most complex class recognized 

here, possibly due to a stronger variability among the input data. An inadequate precision 

is instead evident in the graph of k-NN. The learner tends not to categorize values into 

groups but into indifferent ones within the same range (e.g., 130–180). This creates several 
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problems, such as, e.g., an inability to identify all the targets and loss of the extremes (i.e., 

75 and 210). 

The learners’ levels of precision can be represented using a diagram of the predicted 

vs. expected values (as in Figure 14, in the representative cases of NN and k-NN), where 

the points closer to the bisector line represent the highest prediction accuracy, and their 

distance from that line exemplifies the error. It is evident that NN, in comparison with k-

NN, exhibits points more clustered points around the bisector line. 

  

Figure 14. Predicted vs. expected values in the case of learners with best/worst accuracy (i.e., NN 

and k-NN, respectively). 

5. Discussion 

5.1. Preliminary Considerations 

The analysis of material experimental data is a complex task, especially in the pres-

ence (as in this case) of intrinsic variability in the process conditions and material proper-

ties, which are closely related to each other. Nevertheless, with adequate attention and 

expertise, it is possible to reconstruct the physical meaning of the experimental data, re-

sulting in a myriad of new information and considerations (as discussed in Section 3.2). 

In light of so many important new ‘outcomes’, one might consider that the data anal-

ysis could not be achieved. In this case, however, the additional benefits offered by the 

advanced application of a data mining procedure would be lost. 

In general, it is plausible to state that a data mining process, based on an ML meth-

odology, permits researchers to (precisely): 

 Recognize and analyze non-linear effects. 

 Measure and quantify outcomes. 

 Predict phenomena and their probability of occurrence. 

 These concepts deserve a better explanation. 

5.2. Recognizability 

In experimental data analysis, less clear-cut results stem from non-linear relation-

ships, which are very difficult to observe without using a data mining approach. Non-

linearity can occur, for instance, when the variable under investigation is related to: 

 One variable (or more), but not linearly. 

 Two (or more) variables, even if they are linearly related. 

This occurred frequently with our data. In this regard, the PCA highlighted two pat-

terns that were not independent (when the data matrix was rearranged with respect to a 

linearly independent vector base, although, from a physical point of view, this is of little 

interest for this specific case).  
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5.3. Quantifiability 

In experimental data analysis, data-driven considerations are often provided without 

their real quantification. For example, from Figure 7, it is evident that there is a fer-

rite/pearlite inverse trend with respect to the cube side. However, this graph groups meas-

urements around specific cube sides (e.g., 75, 100, etc.), and in any case, their numbers are 

very different (3 ÷ 9). Thus, a quantification is convenient. The Spearman correlation (rsxy = 

−0.878), applied to the draft data (Figure 5), confirms that a monotonous relationship ex-

ists, while the Pearson correlation (rpxy = −0.935~−1) indicates that this relationship is strong 

and linear (not just monotonous). Their negative values finally prove the inverse trend. 

Similarly, Table 6 reports an overview of the scoring of the Pearson and Spearmen co-

efficients, respectively, showing the linear and monotonic relationships between varia-

bles. Many of the concepts discussed in Section 3.2 plainly emerge here. For instance, the 

great positive influence of pearlite on three of the five mechanical properties can immedi-

ately be noted (R, UTS and Y, with very high correlations). At the same time, the scores 

also highlight that pearlite moderately influences the hardness (HB) and has marginal ef-

fects on the elongation/ductility (ε). 

Table 6. Overview of the correlations between features according to the Pearson’s (down) and Spear-

men’s (up) coefficients: higher correlations are highlighted by colors. 

 Side GR FE PE NO Area ρ UTS YS ε HB R  

Side  −0.469 −0.096 0.282 −0.766 0.125 −0.707 0.355 0.182 −0.327 0.126 0.388 

S
p

ea
rm

a
n

 C
o

ef
fi

ci
en

t 
(r

s xy
) 

GR −0.420  0.138 −0.569 0.671 0.559 0.526 −0.578 −0.505 0.322 0.036 −0.551 

FE −0.014 0.102  −0.878 −0.173 −0.239 0.278 −0.709 −0.684 0.169 0.657 −0.760 

PE 0.162 0.447 −0.935  −0.170 −0.062 −0.468 0.876 0.822 −0.308 −0.567 0.905 

NO −0.744 0.646 −0.194 −0.054  0.315 0.448 −0.225 −0.158 0.461 −0.099 −0.219 

Area 0.176 0.592 −0.296 0.055 0.342  −0.354 −0.016 −0.102 0.262 0.076 −0.037 

ρ −0.624 0.445 0.316 −0.442 0.280 −0.401  −0.566 −0.355 −0.023 −0.135 −0.489 

UTS 0.151 −0.408 −0.757 0.826 0.043 0.159 −0.619  0.738 −0.151 −0.440 0.849 

YS −0.058 −0.385 −0.757 0.790 0.023 −0.076 −0.172 0.655  −0.269 −0.484 0.802 

ε −0.271 0.353 0.083 −0.200 0.483 0.270 −0.092 0.093 −0.269  0.342 −0.417 

HB 0.189 −0.070 0.670 −0.578 −0.150 −0.084 −0.098 −0.444 −0.516 0.138  −0.476 

R 0.230 −0.471 −0.821 0.906 −0.122 0.008 −0.408 0.766 0.787 −0.364 −0.477  

 Pearson Correlation Coefficient (rpxy)  

However, the concept expressed here aims to be more general. Statistics tools (with 

the Pearson and Spearman correlations only representing two out of many) can be inte-

grated naturally into a data mining approach, with the aim of measuring and ranking 

(obvious and less obvious) relationships. To achieve this aim, ranking tools are available 

and permit us to classify relationships according to a large range of classifiers. 

5.4. Predictability 

An accurate predictability of the phenomena represents the highest level of compres-

sion in science. In this specific case, five AI algorithms were trained, which were used for 

the prediction and compared, showing a very high accuracy of up to 95% (Table 5, NN 

learner). 

This means that, with 11 parameters being known, it was possible to estimate the 

12th with a high degree of precision. Such a result was obtained with respect to a specific 

target feature (i.e., the cube side). This implies, e.g., that when the microstructure and 

mechanical properties of a specimen are known, it is possible to recognize the dimensions 

of the cube from which it originated. 
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However, nothing prevents us from repeating the analyses with respect to another 

target. 

It is conceptually possible to estimate any of the mechanical properties, thus avoiding 

the performance of a test. For example, we can ask the system to identify the expected 

resilience or the expected hardness knowing all the other (microstructural and mechani-

cal) values. 

It is also possible to estimate the value of such a target property (e.g., the hardness) 

as a function of another one (e.g., the resilience) when knowing the others. The resulting 

‘isocurves’ can be used to support the development of new alloys or process monitoring. 

This approach constitutes a first step toward the solution of an ‘inverse problem’ that 

has always been crucial for casting processes and foundries: the question of how to derive 

the cast iron microstructure from the expected/desired mechanical characteristics. 

An AI system, based on machine learning, can help to find the solution through, e.g., 

a ‘pattern recognition’ approach applied to the myriads of date used for the training. 

These data, as demonstrated in Table 6, emerge from a multitude of relationships, which 

may be strong or weak, direct or inverse, linear or non-linear, and so on. In this case, an 

automated recognition of the patterns and regularities in the data can ‘unravel the skein’. 

In this study, the analysis was repeated 11 additional times, considering each of the 

features as the new target variable and comparing results. As implemented before, 90% 

of the available data were used for the training and the residual 10% for the valida-

tion/comparison, replicating the process 20 times so as to ensure the statistical significance 

of the results. 

Here, the analysis was limited to the NN, RF and SVM learners, and their comparison 

was performed (again) using the coefficient of determination (R2), since this parameter 

can be more (intuitively) informative. The results (Table 7) show: 

 A high accuracy rate of the predictions, especially evident in the case of the micro-

structural properties. 

 The graphite, ferrite and pearlite contents are fully predictable. 

 The nodular area and density are also predictable with a low margin of error. 

 The estimation of the nodularity is less accurate but still of an acceptable level. 

 The casting dimension affects these properties in a very predictable way. 

 The NN learner shows the highest accuracy, but other learners have a good usability. 

 The prediction of the mechanical properties represents a more complex task. 

 The UTS and R are acceptably predictable (R2~0.75), but improvements are required. 

 NN does is not especially useful; the other learners work better. 

Table 7. Model accuracy in the prediction of the different variables as the target (according to R2): 

for each target, the highest accuracy in predictions is highlighted. 

Target  NN RF SVM 

Dimension Side 0.923 0.904 0.833 

Graphite GR 0.998 0.630 0.966 

Ferrite FE 1.000 0.818 1.000 

Pearlite PE 1.000 0.919 1.000 

Nodularity NO 0.875 0.821 0.757 

Nodular area Area 0.953 0.632 0.949 

Nodular density ρ 0.940 0.567 0.909 

Ultimate tensile strength UTS 0.597 0.594 0.762 

Yield strength YS 0.491 0.386 0.556 

Elongation at break ε 0.400 0.454 0.436 

Hardness HB 0.511 0.556 0.246 

Resilience R 0.663 0.755 0.767 



Metals 2022, 12, 1493 20 of 27 
 

 

5.5. Learners 

It is not possible, unfortunately, to identify the most suitable ML learner with respect 

to a given dataset in advance [44–47]; a testing and scoring procedure is always required. 

Similarly, it is also useful to carefully modulate the leaners’ settings (i.e., the so-called 

hyperparameters). 

5.5.1. Neural Network 

 NN (as implemented in Orange) is a very powerful method, as long as due attention 

is given to the correct choice of the activation (identity, logistic, tanh, Relu) and solver 

(i.e., L-BFGS-B, SDM, Adam). 

 Relu activation, which is quite common and the first historically implemented 

method, due to its simplicity, does not offer impressive results (compared to identity 

and logistic). 

 The L-BFGS-B solver is stable in its predictions, offering excellent results when pre-

dicting microstructures, while only Adam manages to come close to the prediction 

of the mechanical properties (which, however, is almost always inadequate). 

 Of course, the number of hidden neurons in the network affect the results, but not 

excessively so. The problem under investigation, in this sense, is not highly complex 

and, above the level of 60–80 hidden neurons, the accuracy of the prediction increases 

slowly up to around 200/300. Beyond this second threshold, no improvements are 

evident. 

5.5.2. Random Forest 

 RF is a classifier based on a ‘forest’ of classification trees, which is very sensitive to 

the number of trees and their replication speed. At the level of over 10–15 trees, the 

accuracy is stable. 

 RF is not able to offer outstanding results in any case but, on the other hand, it is 

stable with respect to the learner settings (e.g., attributes considered in each split, the 

depth of individual trees, etc.). This represents a great advantage in its practical use. 

 Here, RF provided better predictions than tree. This was expected, since RF repre-

sents a methodological extension of this learner, using multiple independent decision 

trees. At the same time, RF’s superiority was often limited, demonstrating that the 

complex data could be also managed by a single decision tree. 

5.5.3. Support Vector Machine 

 SVM has been confirmed as a powerful and flexible learner, which is able to offer 

valid predictions in the material data analysis. 

 Its flexibility is based on its constant parameters (e.g., cost, regression loss epsilon, 

etc.), which can (be made to) assume a wide range of values (from 0.1 to 400, here), 

with significant impacts on the predictions. 

 SVM is also highly subject to the kernel type, whereas linear and polynomial (instead 

of RBF and sigmoid) were the best in terms of accuracy. 

5.6. Analysis with Respect to the State-of-the-Art Literature 

Even if, as shown by the literature review, there are few scientific papers on this spe-

cific subject (i.e., the use of machine learning to identify relationships between the micro-

structure and strength properties in the case of nodular cast iron), the results are in line 

with the available state-of-the-art literature. For instance, [48,49] used an identical ap-

proach, based on information about the chemical composition, process variables (i.e., tem-

perature) and microstructure, to predict the tensile strength of steels. In particular, in [49], 

an NN with 20 variables was applied, achieving a comparable accuracy (i.e., 93% in terms 

of the R2 coefficient) in the prediction of the yield (YS) and ultimate (UTS) strength. 
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In general, two ML methods have been favored by researchers, these being NN and 

SVM [27,32,33,35], which also offered the best accuracy here (Table 5). As regards NN, the 

ability to predict the material properties was rather as expected, but this was not the case 

for SVM. As a method that defines a hyperplane in order to separate data belonging to 

two classes with a maximum margin, this method seemed to be more suitable for classifi-

cation problems than for regression (as the present paper has shown). Such considerations 

(about learners) were also confirmed in [37], where a general assessment of the ability of 

machine learning methods to predict the mechanical parameters of castings using a dif-

ferent approach to the image analysis was reported. 

5.7. Improvements 

Apart from the learners, a better prediction accuracy can be also achieved by the fol-

lowing considerations. 

5.7.1. Dataset Enhancement 

Using new experiments and data, the dataset can be enlarged (in quantity) and im-

proved (in quality). It is well known that ML tools are more useful and powerful when 

more data is available. At the same time, more data can cause the pattern recognition to 

be more complex when non-homogeneous information is also introduced. This is why 

even rather small datasets (such as the one used here), especially if they are very homo-

geneous, can assure accurate predictions. 

A comparative test was carried out by including the experimental data from [35,37] 

in the dataset, consisting of 27 instances in addition to the current 36 (+75%). However, 

they are defined by 8 features (instead of 12), including the casting dimension (side), which 

is a fixed value (=25 mm). Specifically, the following categories are missing: area, ρ, HB 

and R, where, based on the results already described, area and ρ should not be essential, 

as they can be derived from the other metallographic properties. Thus, the complex da-

taset contained 756 (63 × 12) data with 108 (27 × 4) missing values, being equal to 14%. To 

avoid these missing values, dataset was downscaled to 504 (63 × 8), which is equivalent to 

+ 16% with respect to the initial set (this was achieved, however, by reducing the number 

of features’). 

With respect to this new enhanced dataset, the analysis was duplicated to estimate 

the mechanical properties (i.e., the microstructural properties were already predicted with 

an extreme level of precision). Specifically, in the cases of the UTS (0.912, kNN) and YS 

(0.886, RF), the accuracy of the predictions was through the introduction of new data. The 

opposite case was observed for the elongation (ε); no learner was able to offer proper 

modelling. 

5.7.2. Dataset Pre-Processing 

The pre-processing of available data is an important aspect of data mining, since in-

coherent information can hinder the solvers. Data pre-processing mainly consists of: 

 Filtering incoherent data (e.g., outliers, shown as red spots in Figure 11, the UTS di-

agrams). 

 The identification and elimination of ‘unnecessary’ features. 

While outliers are commonly related to experimental errors or variability and should 

be addressed carefully, the presence of ‘unnecessary’ features represents an intrinsic as-

pect of the dataset that must be understood before the data analysis begins. Two opposite 

cases can occur: 

 A feature is not significant, directly or indirectly, for the object under study (target). 

 A feature is directly derivable from another feature. 
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In both cases, in practice, the dataset includes data that are useless for understanding 

relationships, while they are misleading when evaluating the accuracy. Pattern recogni-

tion works, in fact, through information, and not based on the amount of data. 

The principal component analysis (PCA) was useful for understanding the situation, 

enabling the quantification of the number of independent variables that were present in 

the system, while the correlation analysis (CA) enabled the identification of variables that 

were linearly dependent in order to enable (eventually) the reduction of the dataset. 

In the present case, the CA (Table 6) made it clear that no direct correlation exists (rpxy 

or rsxy = 1). The features are most linked by a weak (<0.50) or medium (<0.75) correlation. 

Only 10 relationships (out of 66), accounting for 15%, can be defined as strongly correlated. 

Among these, only those already mentioned (FE vs. PE) and (PE vs. R) are significa-

tive (>0.90). As a result, there was no need to ‘downgrade’ the dataset in the present study. 

However, here, the operation was introduced simply in order to verify the effect. The FE 

and R features were deleted from the dataset, one after the other, with the effect, as ex-

pected, of producing no clear modification of the precision offered by NN. 

6. Conclusions and Future Work 

The present experimental investigation was focused on a nodular cast iron, a material 

that has found an increasing number of applications in industry over the last few decades. 

This alloy, like many others, has metallurgical and mechanical properties that are closely 

related to each other. Moreover, even minimal changes in the chemical composition 

and/or process parameters may significantly affect such properties. It follows that cast 

iron, including nodular cast iron, has been extensively studied, starting with experimental 

measurements, to develop predictive models. 

Here, data mining and machine learning techniques were used to perform a data 

analysis in search of information that was not evident, rather than a more traditional 

method of study. 

The experimental data were derived through an experiment designed to ensure ade-

quate consistency with respect to some key aspects of casting (e.g., the characteristic di-

mensions) but also to the operation of a traditional foundry. The measurements were per-

formed through standard tests: image analysis for the microstructures and strength tests 

for the mechanics. Firstly, considerations were developed through a preliminary data 

evaluation. Then, the dataset, consisting of 36 instances × 12 features, was analyzed by 

principal component analysis (PCA) and correlation analysis (CA), which permitted the 

identification and weighting of the correlations. Finally, data were used to train several 

different machine learning (ML) algorithms on the Orange Data Mining platform, includ-

ing random forest (RF), neural network (NN), k-nearest neighbors (kNN) and the support 

vector machine (SVM), which are able to predict material properties with remarkable ac-

curacy (i.e., >90% in half of the cases). 

The next step in the research is to overcome the limits imposed by the current dataset, 

whose consistency varies from 432 to 756 values, which, through appropriate pre-pro-

cessing, could be extended to even more than one thousand data. However, this number 

is still quite low for expressing the ML potential. At the same time, it must be considered 

that the prediction accuracy is more closely related to the data quality than the numer-

osity. Foundry processes are intrinsically variable, and every action aimed at expanding 

the dataset must take this into account. This means, e.g., that it is not convenient to merge 

data from other investigations if they are subject to dissimilar (processes and materials) 

conditions. However, a different approach can be taken, with the aim of extracting more 

data from the available information. Specifically, it is possible to integrate the current da-

taset with information from a different image analysis. Here, each microstructure was 

considered according to specific parameters (such as, e.g., the pearlite, nodularity, nodu-

lar area, etc.), as in many other similar studies. Later, this information could be integrated 

through the output of an image embedder that is capable of transforming the image into 

hundreds of new parameters (limiting the choice to the most significant ones in the PCA). 
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Beyond this explosion of the data and parameters, however, we must understand whether 

new and useful information is really embedded in the analysis. 

A second way of improving the method is the introduction of a diverse concept of 

supervised learning. Although some of the learners offered excellent predictions, they also 

proved to be quite erratic and unpredictable. One of the most recently tested ways of over-

coming this (rather common) limitation combines the predictions in what is called ensem-

ble learning. Among its different techniques, the stacking technique is expected to be more 

valid, which can be used to introduce an additional ‘meta-learner’ (usually a linear regres-

sion) that is trained using the predictions of those learners, which, here, were scored as 

the most effective through the cross-validation. 
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Abbreviations 

The following nomenclature was adopted 
GJS Spheroidal graphite cast iron (EN 1563 denomination)  

SGI Spheroidal graphite cast iron (standard denomination)  

SEM Scanning electron microscope  

Side Casting representative dimension  [mm] 

GR Graphite (grade of) [%] 

FE Ferrite (grade of) [%] 

PE Pearlite (grade of) [%] 

NO Nodularity (grade of) [%] 

Area Nodule area [μm2] 

ρ Nodule density [N/mm−2] 

UTS Ultimate tensile strength [MPa] 

YS Yield strength [MPa] 

ε Elongation at break/ultimate strain [%] 

HB Brinell hardness [-] 

R Resilience [J] 

AI Artificial intelligence  

ML Machine learning  

RF Random forest learning algorithm  

NN Neural network learning algorithm  

kNN k-Nearest neighbors learning algorithm  

SVM Support vector machine learning algorithm  

Tree Classification tree learning algorithm  

PCA Principal component analysis  

CA Correlation analysis  

μ Mean value  

σ Standard deviation  

σ% Relative standard deviation  

rpxy Pearson correlation coefficient  

rsxy Spearman correlation coefficient  

R2 Coefficient of determination   

MSE Mean square error  

RMSE Relative mean square error  

MAE Mean absolute error  

CVRMSE Coefficient of determination of RMSE  
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Appendix A 

Table A1. Metallographic characteristics (graphite, ferrite and pearlite contents; nodularity; density; 

and area of graphite nodules) and mechanical properties of the spheroidal cast iron (yield strength 

(YS), tensile strength (UTS), elongation at break [ε], hardness (HB) and resilience (R)). 

N. Side Graphite Ferrite Pearlite Nodularity YS UTS ε HB R 

 mm % % % % μm2 N/mm−2 MPa MPa % HB10 J 

1 210 7.8 15.4 76.7 41.3 5287 15 520 624 5.4 4 196 

2 210 8.7 12.6 78.7 48.8 5527 16 455 647 7.6 4.5 197 

3 210 8.9 13.7 77.4 52.2 4761 19 487 663 6.7 4.5 197 

4 210 5.9 25.8 68.4 49.5 2199 27 455 598 5.9 4 196 

5 210 10.6 17.1 72.3 61.2 5009 21 487 617 8.8 5 202 

6 210 10.9 29.7 59.4 13.9 2217 49 390 416 3.4 4 177 

7 210 5.4 19.6 75.0 25.9 3346 16 455 627 5.9 4 198 

8 210 5.2 14.6 80.2 48.4 2782 19 455 630 6 4 199 

9 210 10.9 12.1 76.9 72.4 5527 20 487 650 5.4 4.5 206 

10 180 6.5 29.7 63.7 41.7 3805 17 422 591 8.9 6.5 183 

11 180 6.3 29.1 64.6 56.9 3831 17 435 604 10 5.5 180 

12 180 8.0 28.5 63.5 64.4 3405 23 390 552 5.9 7 184 

13 180 9.4 33.0 57.5 57.3 2914 32 390 565 7.9 6.5 179 

14 180 7.9 26.8 65.3 58.8 3336 24 390 585 8.4 5 187 

15 180 8.9 33.9 57.2 34.4 2977 30 390 455 4.1 8 180 

16 180 3.4 34.5 62.1 29.4 1516 22 390 585 9.6 5.5 175 

17 180 7.1 27.8 65.2 52.8 3154 22 409 585 8.3 6 180 

18 180 2.7 32.6 64.7 30.0 1243 22 422 608 9.6 7 193 

19 150 12.7 30.9 56.4 76.1 4354 29 395 516 9.4 5.5 167 

20 150 10.5 50.4 39.1 43.3 2444 43 331 395 4.2 7 164 

21 150 13.4 32.9 53.7 80.1 5044 26 382 510 9.4 5 177 

22 150 12.3 31.1 56.6 90.0 4188 29 382 522 9.6 7 179 

23 150 11.7 28.2 60.1 81.0 4453 26 395 522 9.4 5.5 173 

24 150 10.1 31.6 58.3 85.5 3978 25 395 529 8.8 7.5 178 

25 120 15.0 29.0 56.0 85.7 3854 39 364 551 12.3 5 171 

26 120 14.8 22.9 62.2 84.7 4569 32 390 558 11.7 4.5 179 

27 120 11.8 27.0 61.2 82.7 3879 30 442 545 11.4 4.5 179 

28 120 13.7 34.8 51.5 68.1 4022 34 364 545 4.3 4 175 

29 120 16.3 24.0 59.8 87.1 5681 29 364 558 11.4 5 175 

30 120 14.8 28.3 56.9 88.1 3998 37 377 540 12.9 5.5 172 

31 100 11.3 16.9 71.8 90.1 3935 29 416 577 6.9 4 195 

32 100 9.2 18.1 72.7 86.7 2863 32 519 597 8.6 4 192 

33 100 9.1 16.8 74.1 86.1 2850 32 390 597 8 4 190 

34 75 9.1 15.8 75.1 83.3 2276 40 519 561 6 4 194 

35 75 9.2 17.8 73.0 85.5 2636 35 558 649 6.3 4 196 

36 75 6.7 20.5 72.8 76.2 1555 43 545 597 6.3 4 195 

μ 9.6 25.4 65.0 28 63.9 63.9 28 568 7.9 5 185 

σ 3.3 8.3 9.2 8 21.8 21.8 8 61 2.4 1.2 10 

σ% 34% 32% 14% 28% 34% 34% 28% 10% 30% 24% 5% 

Min. 2.7 12.1 39.1 15 13.9 13.9 15 395 3.4 4 164 

Max. 16.3 50.4 80.2 49 90.1 90.1 49 663 12.9 8 206 

  



Metals 2022, 12, 1493 25 of 27 
 

 

Table A2. Target and predicted values by the neural network (NN), support vector machine (SVM), 

random forest (RF), classification tree (Tree), k-nearest neighbors (kNN) learning algorithms. 

N. Target NN SVM RF Tree kNN 

1 210 211 221 209 210 186 

2 210 206 214 209 210 192 

3 210 211 207 210 210 192 

4 210 195 174 185 210 164 

5 210 215 196 195 210 168 

6 210 186 180 158 172 159 

7 210 205 239 210 210 198 

8 210 203 191 210 210 154 

9 210 160 196 94 92 176 

10 180 180 183 181 175 174 

11 180 175 171 186 175 168 

12 180 177 174 177 175 162 

13 180 161 168 174 175 156 

14 180 202 176 200 210 148 

15 180 181 187 168 175 162 

16 180 180 199 176 175 192 

17 180 183 179 181 175 162 

18 180 177 205 179 175 186 

19 150 148 146 138 135 146 

20 150 178 158 167 177 162 

21 150 160 139 142 135 140 

22 150 143 143 144 135 156 

23 150 150 146 139 135 140 

24 150 158 165 140 135 162 

25 120 119 122 121 139 144 

26 120 115 104 120 92 144 

27 120 126 139 120 92 134 

28 120 129 168 193 207 159 

29 120 137 149 125 139 156 

30 120 112 124 129 139 126 

31 100 105 119 110 95 164 

32 100 87 90 86 95 114 

33 100 105 114 95 95 149 

34 75 73 62 93 99 127 

35 75 88 97 97 99 122 

36 75 88 100 104 99 122 
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