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On the semi-global stability of an EK-like Filter
Pauline Bernard1, Nicola Mimmo2 and Lorenzo Marconi2

Abstract— This paper proposes to apply the Kalman-
like observer paradigm to general nonlinear systems by
linearization along the estimated trajectory, similarly to an
Extended Kalman Filter. The main difference is that the
quadratic Riccati equation is replaced by a linear Lyapunov
equation which can be solved and explicitly related to a
determinability Gramian. This allows to show by Lyapunov
analysis and without any ad-hoc assumption on the Ric-
cati solution, that the resulting observer, called Extended
Kalman-like Filter, can be made semi-globally convergent if
the input is actively used to a) stabilize the (unknown) true
trajectory, b) sufficiently excite the determinability of the
linearized systems along the (known) estimated trajectory.
A class of systems where this compromise can be reached
is provided.

Index Terms— nonlinear observers, Extended Kalman
Filter, Kalman-like observers

I. INTRODUCTION

IN many practical applications, whether it be for control or
surveillance purposes, it is often crucial to estimate in real-

time the state of the plant. This observer design problem was
solved for linear systems in the early 60s with the so-called
Kalman-Bucy and Luenberger observers [16], [19] for time-
varying and time-invariant systems respectively. Research has
striven ever since to extend those methods to nonlinear systems
but, unfortunately, no systematic practical design exists yet.
Methods are usually limited to particular classes of systems
that are transformable into a particular normal form, such as
triangular forms [7], [9] or linear forms with output injection
[1], [14] (among many others).

The appeal of the Kalman filter mainly lies in its robustness
and simplicity, since it is made of a copy of the dynamics and
a correction gain obtained from a dynamic Riccati equation,
whose parameters can be linked to physical quantities like
noise covariance. That is why a very popular method consists
in applying the Kalman filter also to nonlinear dynamics by
using the linearized model, leading to the so-called Extended
Kalman Filter (EKF). Unfortunately, the linearization is car-
ried out along the estimated trajectory, which introduces a loop
in the analysis and only local convergence can be proved.
More importantly, the stability analysis is performed under
an ad-hoc lower/upper-boundedness assumption on the Riccati
solution that depends on the estimate itself and thus cannot be
verified [3], [5], [24], [25], [28]. Very few exceptions exist
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in the particular context of uniformly observable systems in
triangular form [10], [17].

In parallel to the Kalman filters, the so-called Kalman-like
observers, first for state-affine systems [4], [11], and later
also for triangular systems using high-gain [2], were also
developed. The main difference is that the quadratic Riccati
equation is replaced by a linear Lyapunov equation which can
be solved and explicitly related to the so-called observabil-
ity/determinability Gramian. However, as far as we know, this
Kalman-like design has not been used in an extended fashion
for general nonlinear systems.

In this paper, we thus introduce the Extended Kalman-like
Filter. We show that its basin of attraction is characterised
by the bounds on the Lyapunov matrix which, unlike in the
EKF, can be explicitly expressed in terms of a certain deter-
minability Gramian. In particular, the basin of attraction can be
enlarged provided the plant’s trajectories remain bounded and
the determinability of the linearized dynamics along the known
estimate is sufficiently excited. If the input can be chosen to
satisfy those two conditions, then the observer becomes semi-
global. As far as we know, it is the first result proving the
possibility of non-local convergence of an EK-likeF, or even an
EKF, without any ad-hoc assumption on the Riccati solution.

The idea of optimising the input to maximise observability
appears mostly in the literature of sensor positioning [30]
or active sensing [8], [12], [13]. Similarly, [23] proposed a
closed-loop optimal experiment design for online parameter
identification in nonlinear systems where the input is chosen
to maximize the information content while ensuring asymp-
totic stability. Then, [26] proposed an optimal input selection
method to improve the performance of the discrete Kalman
filter for LTV systems. More recently, [27] proposed a gradient
optimization approach to maximize observability of nonlinear
systems, with the hope of improving the performance of
the EKF. Of course, optimizing observability means first
quantifying observability. For that, some indicators have been
developed, generally based on the observability Gramian or
an empirical version of it [18], [21], [26], [29]. Actually,
as noticed in [27], observer design requires to reconstruct
the current state and not its initial condition and it is thus
more natural to consider a constructibility, or determinability
Gramian. It is indeed that Gramian that naturally appears in
the bounds of the Kalman-like Lyapunov matrix and it is thus
the one we propose to optimize.

Notation : We denote the set of natural and real numbers
with N and R respectively. The interior of a set X is denoted
int(X ). I denotes the identity matrix of appropriate dimension,
and given a matrix S ∈ Rm×n, this paper denotes with σ(S)
and σ(S) the smallest and largest singular values of S.



II. EXTENDED KALMAN VS KALMAN-LIKE FILTERING

Consider a plant

ẋ = f(x, u) , y = h(x, u) (1)

with state x ∈ Rdx , input u ∈ Rdu , output y ∈ Rdy , and
maps f, h ∈ C1. As mentioned in the introduction, a popular
observer for (1) is the Extended Kalman Filter (EKF)

˙̂x = f(x̂, u) + P
∂h

∂x
(x̂, u)>R−1(y − h(x̂, u)) (2a)

Ṗ =
∂f

∂x
(x̂, u)P + P

∂f

∂x
(x̂, u)> +Q

− P ∂h
∂x

(x̂, u)>R−1 ∂h

∂x
(x̂, u)P

(2b)

with R = R> > 0 and Q = Q> > 0. It is obtained by
copying the dynamics (1) and using a gain P (∂h/∂x)>R−1,
that mimics the Kalman-Bucy filter gain for linear systems
( [15], [16]), where the linear dynamics matrices are simply
replaced by the linearized pair (∂f/∂x, ∂h/∂x) around the
only available estimate (x̂, u). Unfortunately, apart from spe-
cific triangular structures [10], [17], only local convergence of
the estimation error x̂−x can be ensured, under the additional
ad-hoc assumption that there exist p, p > 0 such that (see [3],
[5], [24], [25], [28])

pI ≤ P (t) ≤ pI ∀t ≥ 0 . (3)

But the trajectory of P depends on that of x̂ itself, so that
assuming (3) somehow introduces a loop in the stability
analysis based on the Lyapunov function

V (x, x̂, t) = (x− x̂)>P (t)−1(x− x̂) .

Note that in [3], a global result is derived in the case where
the output is linear, but still under an ad-hoc assumption of
the type (3).

A slight variation of (2b) was proposed in [25]

Ṗ = λP +
∂f

∂x
(x̂, u)P + P

∂f

∂x
(x̂, u)> +Q

− P ∂h
∂x

(x̂, u)>R−1 ∂h

∂x
(x̂, u)P

(4)

where the additional linear term λP provides exponential
stability. Indeed, S(t) := P (t)−1 follows the dynamics

Ṡ = −λS − ∂f

∂x
(x̂, u)>S − S ∂f

∂x
(x̂, u)− SQS

+
∂h

∂x
(x̂, u)>R−1 ∂h

∂x
(x̂, u)

(5)

and λ > 0 somehow dictates the exponential convergence
rate. However, the assumption (3) is still made and the loop
remains.

On the other hand, parallel to the Kalman school following
[15], [16], Kalman-like observers were introduced, originally
for linear time-varying systems as an optimal solution to a
deterministic optimisation problem [4], [11] and later extended
to some categories of nonlinear triangular systems [2]. This
optimization problem does not take into account errors in the
model so that the matrix Q is taken equal to 0, while the linear
term λP is kept for stability purposes and models a “forgetting

factor” on the past measurements (see [4]). This thus makes
the dynamics (5) linear in S and explicitly solvable, unlike
the Riccati-based equations (2b), (4), or (5) which are all
quadratic. As will be detailed in Section III, the expression
of S is then directly related to a constructibility Gramian and
bounds of the form

sI ≤ S(t) ≤ sI ∀t ≥ 0 (6)

are explicitly obtained through persistence of excitation con-
ditions on the input. Indeed, in [2], [4], [11], the matrices
involved in the dynamics of S are independent from the
estimate trajectory x̂ and the invertibility of S is thus only
related to the excitation capability of u.

In this paper, we propose to apply this design to general
nonlinear systems in an EKF-like fashion, namely by consid-
ering the following “Extended Kalman-like observer”

˙̂x = f(x̂, u) + S−1 ∂h

∂x
(x̂, u)>R−1(y − h(x̂, u)), (7a)

Ṡ = −λS − ∂f

∂x
(x̂, u)>S − S ∂f

∂x
(x̂, u)

+
∂h

∂x
(x̂, u)>R−1 ∂h

∂x
(x̂, u)

(7b)

with R = R> a positive matrix and λ a positive scalar. We
start by deriving in Section III explicit bounds for the solutions
S to (7b). In particular, we show that S remains positive
definite if a certain determinability Gramian of the linearized
dynamics is sufficiently excited. Then, in Section IV we study
the basin of attraction of the observer (7) and show semi-global
convergence if the input can be chosen to stabilize the plant
while sufficiently exciting the determinability Gramian along
the estimated trajectory. Finally, we illustrate this result by an
example in Section V where this dual goal can be achieved.

Remark 1: The dynamics (7) are equivalent to

˙̂x = f(x̂, u) + P
∂h

∂x
(x̂, u)>R−1(y − h(x̂, u)), (8a)

Ṗ = λP +
∂f

∂x
(x̂, u)P + P

∂f

∂x
(x̂, u)>

− P ∂h
∂x

(x̂, u)>R−1 ∂h

∂x
(x̂, u)P

(8b)

which avoid the computation of S−1 online, similarly to the
standard EKF (2) and the modified EKF (4). �

III. DETERMINABILITY GRAMIAN

A. Determinability vs observability

Let us define the auxiliary linear dynamics

χ̇ =
∂f

∂x
(x̂, u)χ yχ =

∂h

∂x
(x̂, u)χ (9)

with input (x̂, u). The transition matrix Ψx̂,u : R2 → Rdx×dx
of system (9) is defined as the unique matrix verifying

∂Ψx̂,u

∂τ
(τ, s) =

∂f

∂x
(x̂(τ), u(τ))Ψx̂,u(τ, s) (10)

for all (τ, s) ∈ R2 and with Ψx̂,u(s, s) = I . The associated
determinability Gramian Gx̂,u : R × R → Rdx×dx relative to



a positive matrix R [27], is then defined by

Gx̂,u(t1, t2) =

∫ t2

t1

Ψx̂,u(τ, t2)>
∂h

∂x
(x̂(τ), u(τ))>

R−1 ∂h

∂x
(x̂(τ), u(τ))Ψx̂,u(τ, t2)dτ

(11)

for all (t1, t2) ∈ R2. The transition matrix is used to express
the solutions to system (9) since for any (τ, s) ∈ R2, we have

χ(τ) = Ψx̂,u(τ, s)χ(s). (12)

It follows from (9) that yχ(τ) = ∂h
∂x (x̂, u)Ψx̂,u(τ, s)χ(s) and

therefore,

χ(t)>Gx̂,u(t0, t)χ(t) =

∫ t

t0

y>χ (τ)R−1yχ(τ) dτ

for all t0, t ∈ R2. It follows that the determinability or
constructibility of the linear system (9), namely the property
that for t sufficiently large

yχ(τ) = 0 ∀τ ∈ [t0, t] =⇒ χ(t) = 0

is characterized by the invertibility of Gx̂,u(t0, t). It is thus
related to the ability to reconstruct the value of the solution
χ(t) at a given time t, based on the knowledge of the past
output on [t0, t].

Instead, we could also have considered the more classical
observability Gramian [6] whose invertibility rather conditions
the ability to reconstruct the initial condition χ(t0), based on
the knowledge of the output on [t0, t], namely the observability
of (9). Since the solutions to (9) verify

∃τ : χ(τ) = 0 ⇐⇒ χ(t) = 0 ∀t ,

both properties are qualitatively equivalent. But, as soon as
a quantification of this observability is needed for observer
design, as below, the natural quantity to handle is the deter-
minability Gramian, as also explained in [27]. Indeed, we are
interested in the ability to reconstruct the current state of the
plant, based on its past output, not its initial condition.

B. Persistent determinability

Unlike the quadratic Riccati equations of the Kalman litera-
ture, the dynamics (7b) in the Kalman-like observers are linear
and therefore explicitly solvable. This allows to explicitly
relates its expression to a determinability Gramian and derive
explicit bounds of the form (3).

Lemma 1: Consider X̂ ⊂ Rdx and Û ⊂ Rdu and assume

cf := sup
(x̂,u)∈X̂×U

∣∣∣∣∂f∂x (x̂, u)

∣∣∣∣ < +∞ (13a)

ch := sup
(x̂,u)∈X̂×U

∣∣∣∣∂h∂x (x̂, u)

∣∣∣∣ < +∞ . (13b)

Fix R = R> > 0. For any input (x̂, u) ∈ X̂ ×U , any solution
to (7b) initialized at S(0) > 0 is positive definite for all t ≥ 0
and

• if λ > 2cf , then

S(t) ≤ sλI ∀t ≥ 0

with sλ := max

{
σ(S(0)),

c2h
λ− 2cf

1

σ(R)

}
. (14a)

• if there exist positive scalars t0, t̄, α such that

Gx̂,u(t− t̄, t) ≥ αI ∀t ≥ t0 ≥ t̄ , (14b)

then

su,λI ≤ S(t) ∀ t ≥ t0 with su,λ := αe−λt̄ . (14c)
Proof: The dynamics (7b) are linear in S so its solutions

are explicitly given by

S(t) =e−λtΨx̂,u(0, t)>S(0)Ψx̂,u(0, t) +

∫ t

0

e−λ(t−τ)

Ψx̂,u(τ, t)>
∂h

∂x
(x̂, u)>R−1 ∂h

∂x
(x̂, u)Ψx̂,u(τ, t)dτ.

Therefore, since S(0) > 0, S is symmetric and positive.
Besides, Ψx̂,u verifies

Ψx̂,u(τ, t) = I +

∫ τ

t

∂f

∂x
(x̂(s), u(s))Ψx̂,u(s, t)ds

so that for all τ ≤ t, |Ψx̂,u(τ, t)| ≤ 1 +
∫ t
τ
cf |Ψx̂,u(s, t)| ds

and by Gronwall’s lemma, |Ψx̂,u(τ, t)| ≤ ecf (t−τ). It follows
from the expression of S that for λ > 2cf ,

S(t) ≤ e−(λ−2cf )t σ(S(0))I+∫ t

0

e−(λ−2cf )(t−τ)

∣∣∣∣∂h∂x (x̂, u)>R−1 ∂h

∂x
(x̂, u)

∣∣∣∣ dτ ≤ sλI .
On the other hand, if (14b) holds, then for all t ≥ t0, S(t) ≥
e−λt̄Gx̂,u(t− t̄, t) ≥ αe−λt̄, which concludes the proof.

From (14a), we deduce that S is bounded as long as (x̂, u)
remains in X̂ × U where (13) holds. Besides, we conclude
from (14c) that S is (uniformly) positive definite if (x̂, u)
ensures persistent determinability of the linearized system (9)
as described by (14b). We show in the next section how those
properties enable to prove semi-global convergence of the
observer (7) under sufficient excitation.

IV. BASIN OF ATTRACTION OF THE EK-LIKEF

Consider a compact set X ⊂ Rdx , a positive definite matrix
S0, a scalar µ > 1 and define

v0 := max
(x,x̂)∈X×X

(x− x̂)>S0(x− x̂)

X̂ :={x̂ ∈ Rdx : ∃x ∈ X : (x− x̂)>S0(x− x̂) ≤ µ2v0},
(15)

along with the maps

ϕf (x, x̂, u) := f(x, u)− f(x̂, u)− ∂f

∂x
(x̂, u)(x− x̂)

ϕh(x, x̂, u) := h(x, u)− h(x̂, u)− ∂h

∂x
(x̂, u)(x− x̂).

(16)



Theorem 1: Assume (13) holds for X̂ defined above and
assume there exist two scalars κf , κh > 0 such that

|ϕf (x, x̂, u)| ≤ κf |x− x̂|2 ∀(x, x̂, u) ∈ X × X̂ × U
|ϕh(x, x̂, u)| ≤ κh|x− x̂|2 ∀(x, x̂, u) ∈ X × X̂ × U

Choose R = R> > 0. There exist λ > 2cf and scalars
α, t̄, t0, c, λm > 0 such that for any x : [0,+∞) → Rdx
maximal solution to (1) initialised at x0 ∈ X0 and any
(x̂, S) : [0, t∞) → Rdx × Rdx×dx maximal solution to (7)
initialised at (x̂0, S0) with x̂0 ∈ int(X ) and input u ∈ U such
that
• x(t) ∈ X for all t ∈ [0,+∞),
• the persistence of excitation condition (14b) holds with
α, t̄, t0 and with inputs (x̂, u) on [0, t∞),

then, t∞ = +∞, and

x̂(t) ∈ X̂ ∀t ∈ [0,+∞) ,

|x̂(t)− x(t)| ≤ c e−
λm
2 (t−t0) ∀t ∈ [t0,+∞) .

Proof: Since x̂0 ∈ int(X ) and S(0) = S0, by exploiting
the continuity of the functions, there exists t0 > 0 such that
∀ t ≤ t0,

x̂(t) ∈ X ⊂ int(X̂ ) and S(t) ≤ µS0.

Therefore, defining

V (x, x̂, t) = (x− x̂)>S(t)(x− x̂) ,

we have V (x(t0), x̂(t0), t0) ≤ µv0. Now define t1 > t0 the
largest positive scalar such that x̂(t) is defined in int(X̂ ) for
all t ∈ [0, t1). According to Lemma 1, we have

su,λ|x− x̂|2 ≤ V (x, x̂, t) ≤ sλ|x− x̂|2 ∀t ∈ [t0, t1) (17)

with su,λ and sλ defined in (14). Therefore, exploiting (16),

ẋ− ˙̂x =

[
∂f

∂x
(x̂, u)− S−1 ∂h

∂x
(x̂, u)>R−1 ∂h

∂x
(x̂, u)

]
(x− x̂)

+ ϕf (x, x̂, u)− S−1 ∂h

∂x
(x̂, u)>R−1ϕh(x, x̂, u),

we have for all t ∈ [t0, t1)

V̇ (x̂, x, t) =ϕ>f S(x− x̂) + (x− x̂)>S ϕf

− ϕ>hR−1 ∂h

∂x
(x− x̂)− (x− x̂)>

∂h

∂x

>
R−1 ϕh

− λV − (x− x̂)>
∂h

∂x

>
R−1 ∂h

∂x
(x− x̂)

so that V̇ is bounded from above by

V̇ (x̂, x, t) ≤ −λm V (x̂, x, t)

with
λm := λ− 2

(
sλ κf
su,λ

+
ch κh

σ(R)su,λ

)
dm (18)

where dm := max(x,x̂)∈X×X̂ |x − x̂| is well-defined because
X × X̂ is compact. If we ensure sufficient excitation 1

µsλ ≤
su,λ(≤ sλ), then, using the fact that sλ ≥ σ(S0),

λm ≥ λ− 2µ

(
κf +

chκh
σ(R)σ(S0)

)
dm .

So, pick λ such that

λ > 2µ

(
κf +

chκh
σ(R)σ(S0)

)
dm , (19a)

and (α, t̄) such that

sλ ≥ αe−λt̄ ≥
1

µ
sλ (19b)

which is feasible since µ > 1. Then, λm > 0 and V decreases
for all t ∈ [t0, t1), namely

V (x̂(t), x(t), t) ≤ µv0 ∀t ∈ [t0, t1) .

This implies from (17) and from su,λ > sλ
µ > σ(S0)

µ that
∀t ∈ [t0, t1),

(x(t)− x̂(t))>S0(x(t)− x̂(t)) ≤

σ(S0)|x(t)− x̂(t)|2 ≤ σ(S0)

sλ,u
µv0 < µ2v0.

We conclude that x̂(t) does not approach the boundary of X̂
and therefore necessarily t1 = +∞. It finally follows that for
all t ≥ t0,

|x̂(t)− x(t)| ≤

√
V (x̂(t), x(t), t)

sλ,u
≤
√
µv0

sλ,u
e−

λm
2 (t−t0). �

The bounds (13) and the existence of κf , κh > 0 are
guaranteed if U is compact and f, h are C2. Then, the result
says that, given a bounded set of initial conditions, if the input
u can be chosen in U so that both
• the determinability of the linearized dynamics (9) around

the (known) estimate x̂ is sufficiently excited after t0,
• the true trajectory x remains in the compact set X ,

then the observer stays in X̂ and exponentially converges
after t0 with a decay rate given by (18). This is indeed a
semi-global result. Of course, designing u to ensure both
goals simultaneously may seem difficult, especially since x
is unknown, but a class of systems where such a compromise
appears feasible is presented in Section V.

Concerning the choice of the design parameters, condition
(19a) says that λ should be chosen sufficiently large to
compensate for the maximal estimation error dm in X × X̂
and the nonlinearities of f and h. The parameter µ > 1 is
only an analysis parameter describing how close the excitation
su,λ := αe−λt̄ is to its upper-bound sλ. In terms of design,
(19b) says that this excitation should be maximized (see also
(18)). Note that αe−λt̄ decreases with λ, so that the excitation
time scale t̄ must be adapted to λ. Also, increasing R or S0

may seem to lighten the constraint (19a) on λ, but it may
simultaneously decrease α from the Gramian definition (11)
or increase cf , ch, κf , κh through X̂ . So R and S0 are fixed
beforehand. Then, λ > 2cf is fixed, if possible satisfying
(19a), but the latter constraint may be overestimated due to
the conservativeness of the proof. The input u is finally used
to maximise su,λ by increasing α and decreasing t̄ (and t0),
i.e. by sufficiently exciting the determinability of (9) relative
to R and sufficiently fast in the time scale imposed by λ.
Observe also that the larger su,λ, the closer the convergence
rate λm to the maximal rate λ.



It is also worth highlighting that theoretically speaking,
the computation of the Gramian involved in the excitation
condition (14b) is possible online since it depends only on the
known signals (x̂(τ), u(τ)) over the past interval τ ∈ [t−t̄, t].
Optimizing this Gramian along the estimated trajectory is
not by default, because the true trajectory is unavailable, but
indeed because this Gramian is the right one to consider
to ensure bounds on S: only the determinability along the
estimate matters, and not the true trajectory. Of course, both
join asymptotically.

V. EXAMPLE

A class of systems for which the compromise between
stabilisation of x and excitation of x̂ is conceivable is

ẋ = f(x, us) , y = h(x, uo) (20)

where the state x (stabilized by the input us) is known to
remain in a compact set X and uo is left to be chosen
for observation purposes. An example is when uo represents
the position of a fully actuated drone/vehicle chasing an
independent stable system x which transmits some information
h(x, uo) about its position with respect to uo. For instance,
the distance ‖x− uo‖ or some measured magnetic field as in
the transmitter/receiver devices used in avalanche search and
rescues scenarios [20]. Let us consider a target whose position
x should be estimated, and which moves according to a 2D
Van der Pol oscillator

ẋ1 = x2

ẋ2 = 4(1− x2
1)x2 − x1

, y = ‖x− uo‖2

where uo is the seeking drone position to be chosen.
Assume that the target is known to evolve in X = {x ∈

R2 : ‖x‖ ≤ 10}. The selection of S0 = I and a margin
µ > 1 leads us to X̂ = {x ∈ R2 : ‖x‖ ≤ 31} according to
(15). With these data at hand, cf ≈ 4·103 and λ is designed as
λ = 2.1cf . Theorem 1 claims that the estimate x̂ given by (7)
can be made to stay in X̂ and converge to x from any initial
condition in int(X ), if uo is sufficiently exciting for the linear
system

χ̇ =

(
0 1

−8x̂1x̂2 − 1 4(1− x̂2
1)

)
χ, yχ = 2(x̂− uo)>χ (21)

We propose to choose uo = x̂ − δ with δ(t) ∈ R2 to be
designed to guarantee persistent determinability in (21). This
choice leads to the observability matrix

O = 2

(
δ1 δ2

δ̇1 + δ2(−8x̂1x̂2 − 1) δ̇2 + δ1 + 4δ2(1− x̂2
1)

)
By choosing δ(t) = r(cos(wt), sin(wt)), we notice that
O>O = r2M(w, x̂) with M invertible for x̂ ∈ X̂ and w
sufficiently large, thus ensuring at least persistent observabil-
ity/determinability [6, Theorems 6.O11, 6.O12]. Now, in order
to make this excitation sufficient, we may intuitively say that
increasing O>O, namely r, improves observability, but w
also needs to increase to maintain sufficiently fast excitation
“far from x̂”. Figure 1 shows the estimation trajectories from
200 initial conditions in int(X ) for (r, w) = (5, 10) (left)
and (r, w) = (15, 30) (right) respectively. The converging

Fig. 1. Converging (blue) and non converging (red) estimate trajectories
for initial conditions randomly distributed in X with slowly exciting control
law (left) and faster exciting control law (right).

trajectories are plotted in blue while the unstable ones appear
in red. We see that, despite the selection of the control law
guaranteeing the invertibility of the matrix M , the level of
excitation sλ associated to (r, w) = (5, 10) is not sufficient
to ensure stability from all the initial conditions belonging
to X . However, taking larger (r, w) enables to increase the
level of excitation and enlarge the basin of attraction to the
whole compact set X . The corresponding estimation errors are
plotted in Figure 2. Note that a failure of sufficient excitation
could also have meant that λ was not large enough.

Figure 3 depicts what can happen when the control u is not
sufficiently exciting. By reducing w and slowing down the
seeker to a point where u stops being exciting for the steady
state Van der Pol trajectories, the estimation error starts by
converging and then diverges. In fact, during the transient the
eigenvalues of S remain sufficiently away from 0. But once
x̂ has converged to the Van der Pol manifold, the excitation
no longer is sufficient, one eigenvalue of S goes to zero and
the estimator blows up. It is indeed the excitation along x̂ that
matters, but, in order to stabilize the zero-estimation error,
determinability along x becomes necessary in steady state.

Now, when we consider a larger set X , the parameters
cf and λ increase, so does X̂ . Therefore, w has to be
increased accordingly, to speed up the excitation and guarantee
observability, as instructed by the theory. Note that this semi-
globality is rendered possible by the fact that uo actively
adapts to x̂ instead of being based on x, and guarantees the
sufficient excitation of the determinability of the linearized
system (21) even for large initial conditions x̂(0). But more
work is necessary to provide effective optimization of the
determinability Gramian. In the general context, although the
Gramian depends only on known signals (x̂, uo) and can be
computed online, choosing uo via an MPC-like optimization
method would require to know the future of x̂. Unfortunately,
the latter is unknown since it depends on the future of the
output y. Note that a gradient-based optimization algorithm
avoiding this difficulty was recently presented in [27] and
could be used in this context.

VI. CONCLUSION

We have shown that an EK-likeF can be made semi-globally
convergent if the input is used to both stabilize the system and
sufficiently excite the determinability of the linearized system
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Fig. 2. Norm of the estimation error with sufficiently exciting control law
from random initial conditions in X , as in Figure 1 (right).
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Fig. 3. Case of input not sufficiently exciting. When the frequency ω is
too small the estimation diverges. (top-left) estimation error, (top-right)
geometrical distance from the estimation to the Van Der Pol manifold
M, (bottom-left) eigenvalues of S and (bottom-right) condition number
of S

along the estimated trajectory. This confirms the intuition of
[27] that the determinability Gramian should be optimized to
improve the observer performances. This statement is made
in [27] for the standard EKF without proof of convergence,
whereas considering the EK-likeF instead allows here to
explicitly study the basin of attraction and prove stability. It is
nonetheless possible that a similar result applies for the EKF,
since the lower-bound of the Riccati solution is related to the
same determinability Gramian as exhibited in [22].
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