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Jose Albites-Sanabria, Graduate Student Member, IEEE, Pierpaolo Palumbo, Jorunn L. Helbostad, 
Stefania Bandinelli, Sabato Mellone, Luca Palmerini, Lorenzo Chiari 

Abstract— Postural control naturally declines with age, 
leading to an increased risk of falling. Within clinical settings, 
the deployment of balance assessments has become 
commonplace, facilitating the identification of postural 
instability and the development of targeted interventions to 
forestall falls among older adults. A dearth of studies has 
ventured beyond the controlled laboratory, leaving, however, 
a gap in our understanding of balance in real-world 
scenarios. In response, this study combined previously 
reported algorithms to build a finite-state machine (FSM) with 
four states: walking, turning, sitting, and standing. The FSM 
was validated against video annotations (gold standard) in 
an independent dataset with data collected on 20 older 
adults. Later, the FSM was applied to data from 168 
community-dwelling older people in the InCHIANTI cohort. 
The InCHIANTI participants were evaluated both in the 
laboratory and then remotely in real-world conditions for a 
week. In identifying fallers, mean frequency, sway path, and 
jerk, computed during standing, revealed significant 
relationships with fall risk. A 70/30 data split with recursive 
feature selection and resampling techniques was used to 
train and test four machine-learning models. Our findings 
revealed that the best-performing model (Lasso Regression) 
built on real-world balance features had a higher area under 
the curve (AUC, 0.76) than one built on lab-based 
assessments (0.57). This study shows, for the first time, that 
real-world balance characteristics while standing differ 
significantly from lab-based assessments and are more 
predictive than lab-based assessments in identifying older 
adults at higher risk of falling. 

Index Terms— lab-based, real-world, inertial sensors, 
balance assessment, fall risk 

I. INTRODUCTION 

alls are a significant health concern for older adults, as 

they can lead to severe injuries and loss of 

independence. According to the World Health 
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Organization (WHO), falls are the second leading cause of 

accidental or unintentional injury deaths worldwide[1]. 

Identifying individuals at risk for falls is therefore critical 

for preventing falls and reducing associated health care costs. 

One important aspect of fall risk assessment is balance 

evaluation. Poor balance has been identified as a significant 

risk factor for falls in older adults [2]–[4]. Traditional balance 

assessment methods include clinical measures such as the 

Berg Functional Balance Scale [5] and the Balance Evaluation 

Systems Test [6], or force plate stabilometry [7]. Nonetheless, 

administering those tools requires trained personnel and 

specialized laboratory or clinical settings.  

Although laboratory assessments demonstrated a high 

potential for identifying balance and mobility issues, it is 

currently unknown whether they accurately reflect the 

complexity and diversity of balance during daily life activities 

or whether they are related to responses to perturbations of 

balance that occur in real life [8], [9]. Indeed, several gaps 

remain in our understanding of the use of wearable sensors for 

real-world balance assessment. Considering fall risk in older 

adults, these gaps are particularly relevant and require urgent 

responses. First, there is a need to evaluate the feasibility of 

using real-world recordings to identify standing events among 

different daily activities. Second, it is still unclear whether and 

to what extent real-world balance assessments using wearable 

sensors are comparable to laboratory-based assessments. 

Finally, to the best of our knowledge, no research has ever 

investigated the prognostic ability of a wearable sensor-based, 

real-world balance assessment for falls. 

In this study, we aimed to develop and validate a tool to 

assess balance while standing in real-world conditions with a 

single inertial sensor placed at the lower back. We carried out 

three tasks to achieve this objective: i) we developed a finite-

state machine (FSM) algorithm and validated it against a gold 

standard (video annotations); ii) we compared measurements 
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obtained from laboratory and real-world balance assessments; 

and iii) we analyzed the laboratory and real-world balance 

assessments in terms of their prognostic ability in identifying 

individuals at risk of falling. 

II. MATERIALS AND METHODS 

A. Study Protocol 

The present study is based on data from two different cohorts 

of community-dwelling older adults: the ADAPT [10] (A 

Personalized Fall Risk Assessment System for promoting 

independent living) and the InCHIANTI [11] (“Invecchiare nel 

Chianti”) studies. A total of 20 older adults (76.4±5.6 years), 

75% female, participated in the ADAPT study, performing 

various Activities of Daily Living (ADL). The ADAPT data 

collection protocol was divided into two sessions: an in-lab 

semi-structured supervised protocol and a free-living 

unsupervised protocol (out-of-lab). In the in-lab semi-

structured protocol, subjects were asked to follow a series of 

tasks in the “Usability Laboratory” at the Faculty of Medicine 

and Health Sciences at the Norwegian University of Science 

and Technology, Trondheim, while being monitored by ceiling-

mounted cameras. As a part of the free-living protocol, subjects 

were instructed to perform their usual ADLs naturally and to 

include predefined activities without any instruction or 

supervision on how to perform them. A GoPro camera was 

attached to the chest as a gold standard [10]. Several inertial 

sensing units were placed at various body locations. Our 

analysis used only the sensor worn on the lower back (uSense, 

3D accelerometer, 3D gyroscope, 100 Hz sampling frequency). 

The second part of the study is based on data from the 4th 

follow-up of the InCHIANTI study (clinical trial: 

NCT01331512). One hundred and sixty-eight community-

dwelling older adults over 65 years (79.7±6.6), 50.9% female, 

were monitored using a smartphone embedded with a tri-axial 

accelerometer and gyroscope (100 Hz sampling frequency), 

worn on the lower back in a belt. During the laboratory 

assessment, participants were evaluated with the Romberg test 

[12]. The first quiet standing condition (eyes open on a rigid 

surface for 30 seconds) was used in the analyses of this study. 

For the real-world analysis, participants received a dedicated 

smartphone and information on how to wear it (using a belt) and 

take care of it properly. They were instructed to wear it after 

dressing, from morning to night, during their usual daily 

activities for a weekly monitoring period, and then return it to 

the clinical staff. A fall was defined as “an unexpected event in 

which the person comes to rest on the ground, floor, or lower 

level [13]”. Prospective fall incidence was ascertained through 

monthly telephone interviews for 6 months and at the 12th 

month from the start of continuous monitoring. Participants 

who did not fall prospectively were defined as non-fallers 

(NFs). Participants who fell one or more times were defined as 

fallers (Fs). Table I provides demographic information for both 

studies. The Ethical Committee of the Italian National Institute 

of Research and Care of Aging [11] approved the InCHIANTI 

study protocol. The protocols of both studies comply with the 

Declaration of Helsinki. All participants received a detailed  

description of the study purpose and procedures and gave their 

written informed consent. 

 
TABLE I 

ADAPT AND INCHIANTI STUDY COHORT CHARACTERISTICS 

 

 

B. Data Processing  

Inertial sensor data from the lower back were acquired from 

both datasets. The signals from the sensor were first low-pass 

filtered with a cutoff frequency of 5 Hz to remove high-

frequency noise. Then, gait, sitting transfers, and turn 

identification algorithms were implemented in Python 3.8 

based on previously validated studies [14]–[16].  

Standing events were identified using a finite-state machine 

(FSM) logic based on the identified gait, sitting, and turn 

events. An FSM is a model abstraction for any system with a 

limited number of conditional states of being, and it has an 

excellent advantage for real-world applications, given its 

predictability. The proposed FSM identified standing events by 

first detecting all stationary periods. Stationary periods were 

defined as epochs in which the participant’s lower back was 

almost entirely still (|𝑎| < 0.05𝑚 𝑠2⁄ ) [15]. The algorithm then 

examined the surrounding activities (gait, turn, and sitting 

transfers) to determine whether the stationary period was an 

actual standing event. A standing event was identified if it 

occurred in between gait activities and after or before sitting 

transfers (Fig. 1 and Algorithm 1 in Appendix). 

 

 
Fig. 1. Finite-state machine (FSM) algorithm development 

 

Balance features were selected from the literature. Only 

features showing good test-retest reliability were considered for 

the study (Table II) [10]–[12]. Balance features were calculated 

from the sensor data during the first 30 seconds of the standing 

laboratory assessments. For the real-world assessment, all the 

identified standing events with a duration of at least 30 seconds 

were considered for the analysis. Still, balance features were 

calculated only during the first 30 seconds of each event. Each 
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real-world balance feature was then averaged across all the 

identified standing events for each subject. In addition, two 

additional features were extracted: the number of stands per 

hour (stands/h) and the duration of the standing events (actual 

identified duration of the event). 

 
TABLE II 

SUMMARY OF EXTRACTED BALANCE FEATURES. IF NOT SPECIFIED, 

FEATURES’ DEFINITIONS AND FORMULAS WERE TAKEN FROM [17] 

 
 

C. Validation and Statistical Analysis  

The FSM was validated using the video-labeled annotations 

(gold standard) in the ADAPT dataset. Data from both in-lab 

and out-lab protocols were merged for the analysis. Sensitivity, 

specificity, accuracy, and F1-score were computed based on the 

labels from the video camera recordings (gold standard). Bland-

Altman plots were used to assess the agreement between the 

algorithm and the gold standard concerning the start time and 

the end of the identified standing events.  

In the InCHIANTI study, the Mann-Whitney U test was 

performed to analyze differences between fallers and non-

fallers, and adjusted p-values (Benjamini-Hochberg) were 

computed to account for the false discovery rate. Univariate 

associations between balance features and prospective fallers 

were assessed using logistic regression analysis. The predictive 

performance of balance features obtained from real-world 

recordings and lab assessments was evaluated by fitting four 

machine learning classification models: Logistic Regression, 

Lasso Regression, Support Vector Machine (SVM), and 

Decision Tree. A 70-30% data split was performed, with 70% 

of the dataset used for training and 30% for testing the models. 

These models have demonstrated the ability to discern patterns 

and relationships within complex datasets and have been used 

in previous studies for fall risk assessment [4], [18]–[20]. To 

account for imbalanced data issues, random undersampling, 

Synthetic Minority Oversampling Technique (SMOTE), and 

near-miss techniques were analyzed for each classification 

technique. Recursive feature elimination was used in the 

training dataset to identify relevant features in each model. 

Finally, the area under the curve (AUC), sensitivity, specificity, 

accuracy, F1-score, and geometric mean were computed as 

performance metrics for the trained models in the test data. 

These analyses were performed using the SciPy [21] and Scikit-

learn [22] libraries in Python 3.8. 

III. RESULTS 

A. Standing events: validation of the algorithm 

Table III reports the performance of the FSM in the ADAPT 

dataset. The algorithm successfully identified standing events 

that occurred between gait and sitting transfers and excluded 

sitting and lying events, resulting in a high specificity for 

standing events (0.99). However, the sensitivity of the 

algorithm was low, identifying about half of the video-labeled 

standing events (sensitivity of 0.48 in-lab, 0.39 out-lab).  

 
TABLE III 

STANDING ALGORITHM VALIDATION IN THE ADAPT DATASET 

 

 
 

From the Bland-Altman plots, one can see that the FSM 

detects the start time of a standing event with a mean delay of 

2.04 s and marks the end of the standing period on average in 

advance by 5.06 s (Fig. 2). 

 

 
(a) 

 

 
(b) 

Fig. 2. Difference between gold standard and FSM algorithm in the 

identification of the start time (a) and the end  (b) of standing events 
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B. Fall risk associations with instrumented laboratory 
balance assessment 

Table IV reports the summary statistics for the balance 

features computed for the participants of the InCHIANTI study 

during the laboratory testing. Range (max-min) was calculated 

for both the anteroposterior acceleration (AP Acc Range) and 

the mediolateral acceleration (ML Acc Range).  

Univariate analysis (Fig. 3 and Table BI-Appendix) showed 

that Jerk (OR: 1.24, 95% CI: 1.028-1.495) and LDE (OR: 1.18, 

95% CI: 1.021-1.363) were significant features associated with 

12-month prospective falls (p < 0.05).  

 
TABLE IV 

BALANCE FEATURES (MEDIAN AND INTERQUARTILE RANGE, IQR) DURING 

LABORATORY ASSESSMENT AND SIGNIFICANT DIFFERENCES (U MANN-

WHITNEY) IN THE INCHIANTI STUDY 

 

 
 

 
 

Fig. 3. Forest plot of univariate analyses (z-scored), laboratory balance 

features’ associations with 12-month prospective falls. 

 

C. Fall risk associations with real-world balance 
assessments 

Participants were monitored from 5 to 9 days (6.4±1.2 days). 

A total of 20,021 standing events with a duration of at least 30 

seconds were identified by the FSM for all the participants of 

the InCHIANTI study throughout the monitoring period. The 

duration of the identified events ranged from 30 to 60 seconds 

(Fig. 4).  

 
(a) 

 

 
(b) 

 
Fig. 4. Total number of standing events per participant identified through 

the monitoring period (a). Distribution of standing duration across all 

participants (b). 

 

Table V shows the computed balance features of the 

participants of the InCHIANTI study (median and interquartile 

range) during real-world conditions.  

Univariate analysis (Fig. 5 and Table BII-Appendix) showed 

that standing duration (OR: 1.422, 95% CI: 1.086-1.862), 

distance (OR: 0.699, 95% CI: 0.517-0.945), and mean 

frequency (OR: 1.546, 95% CI: 1.166-2.048) were significantly 

associated with 12-month prospective falls (p<0.05), indicating 

their potential importance in real-world balance assessments.  
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TABLE V 

LAB VS. REAL-WORLD BALANCE FEATURES (MEDIAN AND INTERQUARTILE 

RANGE, IQR), STATISTICAL DIFFERENCE (WILCOXON SIGNED-RANK TEST)  

 

 
 

 
Fig. 5. Forest plot of univariate analysis (z-scored), real-world balance 

features’ associations with 12-month prospective falls. 

 

D. Contextual differences: lab vs. real-world 
assessments 

Fig. 6 illustrates representative traces (and confidence ellipse 

areas) for a lab assessment and a real-world measurement during a 

standing event.  

The size and jerkiness of the accelerometer traces are larger 

during real-world assessments. Measurements were significantly 

different under the Wilcoxon signed rank test (p<0.05) between the 

two settings, with spatiotemporal features being significantly 

larger under real-world conditions (Table VI). Antero-posterior 

and mediolateral ranges and ellipse areas obtained in real-world 

settings showed an average increase of over 50% with respect to 

laboratory measurements (Fig. 7).  

 
 

 

 

 

 

 

 

TABLE VI 

LAB VS. REAL-WORLD BALANCE FEATURES (MEDIAN AND INTERQUARTILE 

RANGE, IQR), STATISTICAL DIFFERENCE (WILCOXON SIGNED-RANK TEST)  

 

 
 

 
(a) 

 

 
(b) 

 
Fig.  . Ellipse area (90% confidence) representative traces for a 30 s lab 

(a) and a 30s real-world assessment (b) 
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Fig. 7. Percentage change for features measured under real-world 

conditions compared with in-lab conditions. 

 

We built four machine-learning models to assess the prognostic 

ability of laboratory and real-world balance assessments for 

prospective fallers. On the training dataset, recursive feature 

selection identified the top five most relevant features for both 

laboratory (distance, ellipse area, jerk, spectral centroid, LDE) and 

real-world (duration, distance, mean frequency, area, path) 

assessments, which were subsequently used on the test dataset. 

Prognostic models based on real-world balance features 

outperformed those based on laboratory assessments. The AUC of 

models built on lab evaluations was in the range 0.35-0.56, 

whereas, for real-world assessments, it was in the range 0.6-0.76 

(Fig. 8). Furthermore, adopting a resampling strategy for training 

appeared to improve the performance of the models.   

 

 
Fig.  . AUC for each model and setting. 

 

Given the imbalanced nature of the dataset, additional metrics 

were computed to provide a complete picture of the performance 

of the models. Table VII provides performance metrics for the 

overall best models (based on AUC, F1-score, and geometric 

mean) for laboratory and real-world settings. Applying SMOTE to 

Lasso Regression in real-world balance features showed the best 

performance compared to other models, with a sensitivity of 0.67 

and a specificity of 0.79.  
 

 

TABLE VII 

PERFORMANCE METRICS FOR SELECTED MODELS USED IN THE TWO 

CONDITIONS: (L) LABORATORY, (R) REAL-WORLD 

 

 

IV. DISCUSSION 

Our study aimed to investigate the use of inertial sensors for 

balance assessment in older adults, both in laboratory and real-

world settings. The algorithm for identifying standing events 

based on the proposed finite-state machine (FSM) logic is 

essential to establishing the validity and reliability of real-world 

balance assessments. As a first objective, our FSM was 

validated against video annotations. While the sensitivity of the 

algorithm was relatively low, it is essential to highlight the 

context of our real-world monitoring approach. In real-world 

conditions, the monitoring spanned over seven days, allowing 

us to record many more standing episodes than standard lab-

based assessments. The extensive monitoring period enabled 

the identification of an average of over 100 standing events per 

participant. This contrasts with laboratory circumstances, 

where the number of measured experiments is frequently 

limited. The low sensitivity of the FSM could be attributed to 

the cumulative uncertainty of the gait, turn, and sitting 

algorithms used to identify true standing events. These 

algorithms prioritize specificity over sensitivity, which impacts 

the performance of the FSM. It is important to note that this 

trade-off between specificity and sensitivity was intentional and 

necessary for our purposes. In real-world scenarios where our 

algorithm was (and will be) deployed, it is more important to 

avoid false positives than false negatives to avert extracting 

balance features from non-standing events [8], [9]. Another 

limitation of our study is that our sample size was relatively 

small and may not represent the variability in the general 

population of older adults. Addressing these limitations may aid 

in increasing the identification of real-world standing 

occurrences, hence enhancing the accuracy of real-world fall 

prediction models. Furthermore, external validation in more 

extensive and different cohorts is a critical task for the future 

clinical validation of this tool [23], [24]. Our proposed tool 

could also be confronted with further machine-learning and 

deep-learning techniques, provided enough data is available for 

implementation and validation.  

As part of our second objective, when applying the standing 

algorithm to real-world recordings, we found that the balance 

features obtained in real-world settings significantly differed 

from those obtained in laboratory settings. Our results are 

aligned with findings in other mobility domains, such as gait 

[9], [25]. In laboratory assessments, the environment is 

typically standardized (e.g., rigid standardized surfaces, no arm 
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movement, no noise or other disturbing input, etc.). In contrast, 

in real-world situations, the environment is far more complex 

and somewhat unpredictable (e.g., irregular surfaces, standing 

while talking, arm or head movement, and different interactions 

with the environment). Studies examining walking through 

crowded hallways and a city center showed that real-world 

environments might cause significant heterogeneity and 

asymmetry in mobility patterns [25].  

Later, we examined the laboratory and real-world balance 

features in terms of their prognostic ability to identify 

individuals at risk of falling In the lab, jerk and LDE were 

significantly associated with prospective falls; fallers had 

higher jerk and LDE, indicating more chaotic or unpredictable 

postural sway patterns. In the real world, longer duration, lower 

distance, and higher mean frequency became predictive of falls. 

Longer duration may indicate a possible increase in slowness 

and/or increased difficulty in switching between daily life 

activities. This result is consistent with what was shown in [26], 

where prospective fallers turned less frequently and took longer 

to turn.  On the other hand,  shorter distance and greater mean 

frequency may indicate a reduced ability to make larger 

postural adjustments when needed. This may be problematic in 

instances requiring sudden balance corrections, such as in real-

world settings. In addition, prognostic models based on real-

world balance features surpassed those based on laboratory 

assessments. Also, combining the SMOTE sampling technique 

with a Lasso Regression can manage imbalanced data and reduce 

irrelevant characteristics' influence on classification accuracy, 

resulting in a more precise and robust model. 

Finally, while previous studies investigated the prognostic 

value of various mobility domains [4], [8], [20], [26], [27], we 

place a deliberate emphasis on highlighting the predictive 

potential of balance features. We aimed to contribute a focused 

methodology to the distinctive predictive power of balance-

related metrics, thereby complementing the existing body of 

literature. By concentrating on this specific aspect, we sought 

to deepen the understanding of fall risk assessment and provide 

a comprehensive framework for enhancing fall prediction 

models. Future and ongoing research endeavors will delve into 

more comprehensive digital mobility biomarker paradigms, 

thereby enriching the predictive accuracy and encompassing a 

holistic spectrum of mobility factors in fall risk assessment. 

V. CONCLUSION 

To the best of our knowledge, this is the first study to show 

that real-world balance features differ considerably from 

laboratory balance assessments (Romberg test) and have a 

higher predictive capacity in identifying patients at high risk of 

falling. These findings highlight the need to move beyond 

traditional laboratory-based balance measures and develop 

more sensitive and accurate methods for predicting falls [8], 

[18], [26]. Lab-based assessments may not accurately reflect 

the demands of daily life and may not capture the full range of 

balance challenges that older adults encounter. Furthermore, 

unlike lab assessments, real-world assessments allow for the 

identification of multiple events, providing additional insights 

into the participants' exposure and fitness. In our study, due to 

the characteristics of real-world monitoring, two additional 

features were introduced: the number of stands per hour and the 

duration of the standing events. The latter was found to be 

significantly associated with prospective falls. Further research 

is needed to confirm the study's findings in an external, larger, 

and more diverse sample of older adults and to explore the 

potential of real-world balance assessments for predicting falls 

in other populations, such as individuals with neurological 

diseases or mobility impairments. 

APPENDIX 

A. Finite-State Machine 

Algorithm for identifying standing events. Periods without 

an identified state were labeled as “unknown” events. 
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B. Balance and Prospective falls associations 

 
TABLE BI 

ASSOCIATIONS BETWEEN BALANCE AND PROSPECTIVE FALLS IN THE 

LABORATORY ASSESSMENT (InCHIANTI STUDY) 

 

 
 

 

TABLE BII 

ASSOCIATIONS BETWEEN BALANCE AND PROSPECTIVE FALLS IN THE 

REAL-WORLD ASSESSMENT (INCHIANTI STUDY) 
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