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Robust Global Asymptotic Stabilization of Linear
Cascaded Systems With Hysteretic
Interconnection

Alessandro Bosso™', Member, IEEE, Luca Zaccarian

Abstract—We address the problem of setpoint reg-
ulation for cascaded minimum-phase linear systems
interconnected through a scalar hysteresis, modeled as
a Prandtl-Ishlinskii operator. Employing well-posed con-
strained differential inclusions to represent the hysteretic
dynamics, we formulate the control problem in terms of
stabilization of a compact set of equilibria depending on
the hysteresis states. For our design, we firstly consider a
proportional-integral controller for linear systems with hys-
teretic input, and provide model-free sufficient conditions
based on high-gain arguments for closed-loop stability.
Then, the controller is dynamically extended to obtain an
inversion-free stabilizer of the overall cascade. For the
presented schemes, we prove robust global asymptotic sta-
bility of a compact set that ensures setpoint regulation,
regardless of the hysteresis states.

Index Terms—Hysteresis, Lyapunov methods, Prandtl-
Ishlinskii operator, switched systems.

[. INTRODUCTION

MART materials are becoming widespread nowadays due

to their unique sensing and actuation capabilities [1],
leading to innovative solutions in several domains such as
next-generation mechatronic technologies. For control systems
involving smart materials, one of the major challenges is the
typical presence of hysteretic behaviors, causing performance
deterioration if not correctly addressed. In this context, the
control-theoretical literature has dedicated several works to
hystereses represented with the Prandtl-Ishlinskii (PI) opera-
tor [2], particularly useful given the existence of its analytical
inverse [3]. Numerous control strategies have been developed
based on the explicit inversion of the PI operator [4]-[6].
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However, the computational burden or the inversion inaccuracy
has led to inversion-free or implicit inversion solutions, involv-
ing integral control [7], [8], adaptive control [9], or adaptive
conditional servo-compensation [10].

All the above works consider systems with hysteretic inputs,
while [8] also considers a feedback-interconnected hysteresis.
In this note, instead, we address inversion-free setpoint regula-
tion for linear cascaded systems where a finite-dimensional PI
operator affects the interconnection. This problem is inspired
by operator-based models of thermal shape memory alloys
(SMAs), comprising a thermal and a mechanical subsystem
where the temperature influences the elastic behavior through
a hysteresis [11], [12]. Although highly nonlinear and cou-
pled models typically describe thermal SMAs, we believe that
the methodologies developed here are instrumental in address-
ing those systems, paving the way towards robust controllers
for a large class of smart actuators. Specifically, we consider
a cascade where the system affecting the hysteresis input is
an integrator (see Fig. 1). This choice is made to streamline
the presentation, as the proposed strategy is straightforwardly
extended to any linear system that can be robustly stabilized by
output feedback. On the other hand, we require that the system
with hysteretic input has minimum phase and relative degree
1, while we aim to relax this assumption in future works.

Our design is based on equivalently writing the PI operator
as a sum of stop operators, modeled as a well-posed differ-
ential inclusion constrained in a compact set [13, Ch. 2]. In
this setting, we develop a setpoint regulation framework based
on the analysis tools for hybrid dynamical systems [14]. We
firstly address the scenario where the hysteresis input can be
assigned as a control input. In that context, we show that a
proportional controller ensures practical regulation, whereas
including an integral action enables global exponential sta-
bilization. As compared to the integrator-based approaches
of [7], [8], we do not rely on model-based LMIs to tune the
controller. Instead, we provide high-gain arguments ensuring
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Pr¢] operator P,[ - |, with constant radius r > 0, is given by:

/é C ¢ (1) = max{min{¢ (1) + r, ¢ (fi—1)}, (1) — 1} 2
- See Fig. 2-Left for a depiction of the play operator. The finite-
7/ " dimensional Prandtl-Ishlinskii operator is then defined as [7]:

p
TI¢] = pot + ) wiPrlzl, 3)

i=1

Fig. 2. Left: representation of a play operator. Right: behavior of a Pl

operator implemented as in (5), (6) with input ¢(f) = 0.04tsin(t).

quadratic stability without any knowledge of the system matri-
ces and of the hysteresis. The proportional-integral controller
is then combined with a high-gain filter of the regulation error
to obtain the design for the overall cascade. For the closed-
loop dynamics, we prove the existence of a globally robustly
asymptotically stable attractor ensuring setpoint regulation,
regardless of the hysteresis states.

This letter is organized as follows. In Section II, we intro-
duce the considered class of systems, present the state-space
hysteresis model, and define the control problem. Section III
is dedicated to the control design for linear systems with
hysteretic input. Then, Section IV provides the overall con-
troller and the main stability result. Finally, Section V reports
numerical results and Section VI concludes this letter.

Il. LINEAR CASCADED SYSTEMS WITH HYSTERETIC
INTERCONNECTION

A. Model Description

We consider a class of systems comprising two linear sub-
systems, having states £ € R"” and ¢ € R, interconnected
through a scalar hysteresis I'[ - ], as shown in Fig. 1:

s T
e P[] o

with control input u € R and available output y, € R?. In (1),
matrix A and vectors b and ¢ have appropriate dimensions,
while hysteresis I'[ - ] has been indicated in square brackets to
highlight its intrinsically dynamic behavior.

For plant (1), we design a controller ensuring asymptotic
setpoint regulation of constant reference signals for the output
y of the &£-subsystem, without any knowledge of matrices A,
b, and c (except for the sign of c¢'b) or of the hysteresis
I'[-]. This objective is addressed under the following standard
assumptions [15, Ch. 2].

Assumption 1: Pair (A, b) is reachable and pair (cT,A) is
observable.

Assumption 2: System & = A& + bv with output y = ¢' &
has relative degree 1 and is minimum phase. Furthermore, it
holds that ¢ "5 > 0.

B. Prandtl-Ishlinskii Operator

We model hysteresis I'[ - ] in (1) as a finite-dimensional
Prandtl-Ishlinskii (PI) operator, given by a weighted sum
of basic hysteresis functions known as play operators.
Specifically, following [16] and [7], for any continuous input
¢(-) that is monotone in each interval ¢ € [f;_1, #;] of the par-
tition 0 =17 < #; < ... <t =T, the output ¢(-) of a play

where P,[-1,i€{l,...,p}, are play operators with constant
radii r;, while p;, i € {0, ..., p}, are constant scalar weights.
Note that the linear term multiplying po corresponds to the
output of a play operator with radius ro = 0. For simplicity,
we consider the case where the radii satisfy 0 < rj < ... <
rp, while for weights u; we require the following property,
ensuring controllability of the cascade in Fig. 1.

Assumption 3: The weights of the Prandtl-Ishlinskii opera-
tor in (3) satisfy wu; > 0, for all i € {0, ..., p}.

Loosely speaking, Assumption 3 ensures that the slope of
the input-output behavior of I'[¢] is positive, as shown in
the example of Fig. 2-Right. This property is reasonable for
hysteretic behaviors without saturations. However, since sat-
urations might occur for large inputs in several applications,
we are planning to relax Assumption 3 in future works.

C. Representation via Constrained Differential Inclusions

We provide a state-space representation of the PI opera-
tor (3) based on the reformulation proposed in [13, Sec. 2.3]
of the play operator as a well-posed constrained differen-
tial inclusion. Specifically, we employ the complement of the
play operator P,[ - ], called stop operator and denoted by
Sy[ - 1. Indeed, for all i € {1, ..., p} and under an exact one-
to-one mapping of the operators initial conditions, it holds
that P, [¢] + S,[¢] = ¢, where §; := S,[¢] has a behavior
modeled as the regularization of a differential equation with
discontinuous right-hand side [13, eq. (2.8)]:

(ot max{Z, 0}, if & = —ry,
Sieyi, _ if 8; € (—ri. 1),

co(Z, min{¢, 0}), if & =y,
5 € Aj = [=ri. ril @

where co{-} denotes the closed convex hull operation.
System (4) can be rewritten in compact form as SieF v (Bi, o),
8; € A;, where the set-valued map F,(§;, gL) is outer semi-
continuous, locally bounded relative to A; x R, and for each
(8;,) € A; x R it is nonempty and convex. These prop-
erties will lead to a closed-loop system whose data satisfy
the so-called hybrid basic assumptions [14, Assumption 6.5].
Under these assumptions, global asymptotic stability of a com-
pact set implies robust global XL asymptotic stability in
the presence of fairly general perturbations of the dynam-
ics [14, Definition 7.18]. As compared to a classical switched
dynamics formulation of the stop operator [13, eq. (2.6)], the
regularized version (4) does not generate additional solutions
in the sense of [14, Definition 2.6]. From (4), I'[¢] in (3) can
be equivalently defined through stop operators, leading to
Fry(31,8) ,
S§eFr@,t) = , (SGA::l_[A,-, 5)
Fry(8p, §) i=1
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having state § := (41, ..., p), which constitutes the hysteresis
internal memory, and output map

p p p
TT=) wd =) wbi=yl—pn's, y:=) w6
i=0 i=1 i=0

where u = [ug -~ ,up]—r is a constant vector of positive
parameters. Note that y > 0 in (6) by Assumption 3.

The state-space representation of system (1) is given by the
following well-posed constrained differential inclusion:

E=As+byc—p's) [é
§6Fr(8,u) 51 eR"x A xR. @)
{=u ¢

D. Problem Statement

For systems expressed in the form (7), we consider the
problem of output-feedback setpoint regulation of constant
references for the output y := ¢'&. More specifically, our
objective is to design an output feedback control law for
u, based on the available signals y, = (cT&, ¢) and under
Assumptions 1, 2, and 3, such that:

lim y(r) =", ®)
t—00

for any constant reference y* € R. We intend to achieve this
objective through robust asymptotic stabilization of a compact
set depending on y*, so that suitable stability properties will
be ensured in addition to (8). Among other things, stability
will imply uniformity of the convergence (8). To this aim, we
inspect the effect of § on the equilibria of (7) ensuring y = y*.
By Assumptions 1 and 2, the system of equations

AE+bv=0, c'E—y =0, ©))

admits a unique equilibrium pair (§*,v*). To evaluate the
steady-state value for ¢, we consider then equation

ye—pu's =", (10)

which can be solved because y > 0 by Assumption 3, but
whose solution is not unique due to the presence of the hystere-

sis state 8. More precisely, all equilibria of (7) satisfying (10)
correspond to elements of the compact set

E=1{0.0) e AXR:yl =pu"8+ v} (11)

Note that & is a set of equilibria for the (8, {)-subsystem
because, by Assumption 3 and Si € co{0, é}, the definitions of
y and p in (6) (with g > 0) imply that (8, ¢) € &; (satisfying
]/é‘ = u'8) holds only if § = 0 and ¢ = 0. Therefore, we
can reformulate goal (8) by ensuring appropriate attractivity
properties of the following compact regulation set:

E={E,8,0)eR" x AxR:
AE+b(E —pu'8) =0,c'E =y =) x &, (12)

for which we will also achieve a suitable stability property.
We are ready to precisely state the control problem.

Problem 1: Under Assumptions 1, 2, 3, design a controller
for the input u such that the closed-loop system admits a
compact attractor that is robustly globally ICL asymptotically
stable in the sense of [14, Definition 7.18] and whose projec-
tion in the plant state directions coincides with the regulation
set (12).

[1l. SETPOINT REGULATION FOR SYSTEMS WITH
HYSTERETIC INPUT

This section considers a simplified scenario wherein ¢ of (7)
can be assigned algebraically as a differentiable control input
(so that { is well defined). Namely, we address the setpoint
regulation objective y = ¢T& — y* in (8) for system

E=AE+Dbys—pu'®) [E] _on
5 e Fr(s.¢) M €R"xA,

with control input ¢ € R. In the following, we adopt a robust
control approach where no knowledge of matrices A, b, c, and
hysteresis I'[¢] is required, beyond Assumptions 1-3.

Given the equilibrium pair (§*, v*) of (9), define & := £ —&*,
e =y —y*. From A£* 4+ bv* = 0 due to (9), we compute the
error dynamics for the £-subsystem as

E=AE+b(yc—pu's—v), e=c'E.

Due to the relative degree 1 assumption, under a suitable
change of coordinates [15, Sec. 2.3], [17, Remark 4.3.1],
system (14) can be rewritten as

(13)

(14)

T *
. . s+v
7 =Az+ bee, e=CZTz+ae+,3<;“—M—>

, (15
where z € R"™! is the state of the internal dynamics, A., b.,
¢;, and o are matrices of suitable dimensions, while 8 =
yeTh > 0 is the high-frequency gain. Due to Assumption 2,
A; is Hurwitz, thus there exists P, = P;r > 0 such that:

PA;+A]P. = —I, . (16)
A. Proportional Control Law
Consider the proportional controller
§ = —ke, a7

where k is a positive gain. The resulting closed-loop system,
obtained from the interconnection between (13) and (17), is
the following constrained differential inclusion

t=Az+be, é=clz—(Bk—a)e— B s+V)/y

§ € Fr(8, —k(c]z— (Bk—a)e — B(u'8 +v")/y)), (18)
with (z,¢,8) € R" x A. Since § belongs to the compact
set A, the (z, e)-subsystem is a linear system with bounded
input disturbance '8 4 v*. Due to its structure, it is possible
to choose k sufficiently large to ensure that its solutions are
bounded. To show this property, consider the Lyapunov func-
tion Vi(z,e) = zTPZz + €2, with P, = P;r > 0 selected as
in (16). Choose the proportional gain

k>k* = %(a + |P.b, + c|?). (19)
Then, along the solutions of (18), we obtain
Vi = —zl® + 227 (P:b: + c)e — 2(Bk — )

— 2Be(u’ 5+ /y
—5 121 = 2Blel((k — k"l — [nT8 +v*1/y),

IA

which implies, from the boundedness of § € A and v*:

maxsea{|p’ 8 + v*|}
y(k —k*)

le| > ey == = Vi <0,
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2maxseaflp 8 +v*)
Yy (k—k*)/B
with the second inequality obtained by splitting the analysis
in |e|] > ey and |e| < ey. From (20), (z, ¢) eventually con-
verges to compact sublevel sets of Vi, thus the solutions of (18)
are bounded. Moreover, (z, ¢) approaches an arbitrarily small

neighborhood of (0, 0) (i.e., £ approaches an arbitrarily small
neighborhood of £*) for k > 0 sufficiently large.

- Vk<0,

lz| > (20)

B. Proportional-Integral Control Law

We have shown that controller (17) ensures global bound-
edness of solutions but cannot achieve (z,e¢) — 0. Thus, in
place of (17), consider a controller with an integral action:

6 = —he, =0 —ke, 2n

where o € R is the integrator state and k, & are the proportional
and integral gains. Define 6 := o — (wT8+v9)/y. Using (15),
the interconnection among (13) and (21) yields:

t=Agz+be, é=c z— (Bk—a)e+p5
T

& € —he — EFr(5. —he — k(c]z — (Bk — a)e + &)
v

§ € Fr(8, —he —k(c] z— (Bk — a)e + B5)), (22)

with (z,e,5,6) € R*! x A. We now expand the dynamics of
¢ in terms of the components §; that lie in the linear region.
Namely, inspired by (4), introduce

o s O, if |8 =r and 8¢ > 0,
qi(3i. &) = { 1, otherwise, (23)
so that we can write 8; = ¢;(8;, £)¢, then define
. 1 & )
96,8 = D wigi(8i, O). (24)
i=1
Note that, by Assumption 3 and from (6),
12
0 < g < qmax ZZ;Zﬂi<1~ (25)
i=1

Using (22) and (24), we obtain

6 =—he—pu'8/y =—he— qc
—he — q(—he — k(c] z — (Bk — a)e + B&))
= —(h(1 — q) + kq(Bk — @))e + kBq& + gke] z. (26)

Thus, the (z, e, 6)-subsystem in (22) can be written as

; A, b, 0
S| — (Bk—a) Bl o
& gke] ( —hd— )+ kBq || o
¢\ = kq(Bk — )
=As(q)

with the time-varying input g € [0, gmax] C [0, 1) due to (25).
For system (22), we provide the following relevant result.

_ Theorem 1: Let k = gk and h = g*h, with gains g > 0,
h > 0, and k such that

o+ ,6}_1(2 — gmax)

B(1 — gmax)

k > (28)

Then, there exists g* > 0 such that, for all g > g*, the compact
attractor A, = {(z,e,6,8) € R™L x A : (z,e,6) = 0} is
globally exponentially stable for (22).

Proof: Define 6 = 6/g and x = (e,5) € R?. Then,
using (27), system (22) can be rewritten as

2=Az+[b: 0l

X =8Aq, g x +B@z ¢ €0, gmax]

§ € Fr(8, —he — k(cz — (Bk — a)e + Bg5)),  (29)
with (z, x,8) € R""! x A, B(g) := [c. kqc,]" and
Alg.g7h) = [_m _‘q(ffgq"(‘g,—(l_) a1 ,—{qﬁﬂ}. (30)
Consider the auxiliary switching system:
V=A.g Y. aeQ (31)
where Q@ :={geR:qg=) ;.7 ni/y.Z C{l,...,p}}. Below,

we show that the origin of system (31) is GES for all g > 1
and for any switching sequence ¢t +— ¢(f). Notice that the
characteristic polynomial of A(g, g~!) is A2 + A(Bk(1 — q) —
ag™ ") + Bh(1 — q), therefore, by (28), A(q, g~ ") is Hurwitz
for all (g, g) € [0, gmax] X [1, 00) because gmax < 1 and

- o otg_1

> > ,
B = gmax) — Bl —q)

By [7] and [18], (31) admits a Common Quadratic Lyapunov
Function (CQLF) if there exists P, = P; > 0 such that:

h>0.

(32)

PyA©, g +A0. g )P, < -1

PyA(Gmax: 87) + AlGmax. 8NPy < =L (33)
Since rank(A(0, g~') —A(gmax, g~ 1)) = 1, from [19], we have
that matrix P, exists if and only if the matrix pencil I1(¢c) =

BhA0, g + cA(gmax, g~ 1) is invertible, for all ¢ > 0.
Straightforward computations show that

det(T1(5)) = Ph(l — gmax)s* + Bh )

+((Bk — g™ ) (Bk(1 — gmax) — g™ ") — BA(2 — gmax))s.
As det(T1(0)) > O, it is sufficient to verify that (Bk —
ag™ ) (Bk(1 = gmax) — @g™") = B2 = gmax) > 0, which is

ensured for any g > 1 by choosing 2 > 0 and k according
to (28). Returning to system (29), define

Vo(z, x) =2 Pz+x Pyx, (34)

which is positive definite and radially unbounded with respect
to Ay. Along the solutions of (29), it holds that

Vo < —lz* = glx|? +22" (Pb:[1 01+ B(@) " Py)x
< — L1z — (¢ — 4IP.b.> — 4P, B@)P) X -

Therefore, selecting g according to
g > g = 4P:b:” + 4Py Pl (1 + Bang)  (35)

ensures that V, is a CQLF for A, which implies GES. ®
Remark 1: Compared with [7], [8], our tuning approach
involves high-gain arguments instead of LMIs. In fact, for any
h > 0, it is possible to choose k > 0 sufficiently large to
satisfy (28), which then implies the existence of g* in (35).
We present a direct consequence of the proof of Theorem 1.
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Corollary 1: Choose gains k and & so that A, in Theorem 1
is GES. Then, there exists a CQLF for (22). Namely, there
exists Py = P;r > 0 such that PsAg(q) + As(q) TPy < —1, nt1s
for all g € [0, gmax] C [0, 1), with Ag(g) defined in (27).

IV. SETPOINT REGULATION FOR CASCADED SYSTEMS
WITH HYSTERETIC INTERCONNECTION

We return to the problem of setpoint regulation for
system (1), i.e., we address the problem of designing an input
u such that y — y*. The key idea is to first generate a ref-
erence ¢{* that solves the regulation problem for the reduced
plant (13), then impose ¢ — ¢* by selecting u for the com-
plete plant (7). To this aim, we require £* be well defined
and available for control, which implies that (21) cannot be
employed directly as ¢ is unknown. Thus, we assign {* through
a modified version of (21) comprising a filter of the tracking
error:

6 = —hny, n=—tm—e, ("=o0—ky, (36)

where o € R is the integrator state, n € R is the filter state,

while ¢, h, and k are positive scalar gains. For convenience in

the analysis, we define the error variables
Gi=o—(u's+V)/y, fi=n—e 37)

Then, using (15), (24), and ¢ = 0 —kn+¢ —¢*, we can write
the interconnection between plant (7) and controller (36) as

Az+ bre
= —(Bk—a)e+ B5 + ¢z — kij + B(& — )
& =—hn—q¢
i = —(fn—(ﬂk—a)e+ﬂ0 +c]z— ki + B — M)
¢ = 8 € Fr(5,0), (38)
with (z, e, &, 17,¢,8) € RT3 x A.
A. Stability Analysis of the Reduced System
We study system (38) under the assumption that
{=¢"=0—ky (39)

is satisfied at all times. This reduction argument is instrumental
in introducing the controller of Section IV-B. Define:

X = 07 — (Bk — a)e + B& +c, . (40)

With (36), (37) we have { = (* = —hn + k€7, and then
using (39), (40) we can follow similar computations to (26)
exploiting 178/ = g to show that

& = —(h(1 — @) + kq(Bk — a))e + kBgé + gk z
— ghkxp — € 'h(1 — @) (x¢ + (Bk — @)e — BG — ¢, 2). (41)

Define x, := (z, e, 5) € R"™1. Then, in the coordinates x :=
(x5, xr), system (38) with condition (39) reads as

s = As(@)xs + Bs(q)x; + £~ Dy(q)x
xf = —Lxg + Dg(q, £ Hx

where Ag(g) is found in (27), Bs(g) == [0T 0 — gk]", while
Ds(g) and D¢(g, £~") are matrices of appropriate dimensions.
In particular, Ds(q, Z‘l) is an affine function of ¢!, so that its
entries are bounded as £ — oo. Using ¢, the analysis of (42)

§eFr(s, ), (42

is performed via timescale separation, where the x¢-subsystem
(the fast subsystem) is made arbitrarily fast with respect to
the xg-subsystem (the slow subsystem) by selecting £ > 0
sufficiently large. These arguments lead to the following result.

Proposition 1: Choose gains k and h so that A, in
Theorem 1 is GES. Then, there exists £* > 0 such that, for all
¢ > £*, attractor A, = {(xs, x1, 8) € R"2 x A : (x5, xr) = 0}
is GES for system (42).

Proof: Pick P from Corollary 1, then define d :=
2|Ps|2k2 42 2|PsBy(q)|* for all ¢ € [0, gmax] and

9max =
V(%) = x{ Poxs + de™ 11, (43)

which is positive definite and radially unbounded with respect

to A,. Then, we obtain:
Vi) < —Ixs|* + 2x] PsBx — 2dx} + 207 (x] PsDg + dxeDr)x
< —min{L, d}x? + 2671 (|PsDs| + d|Dgl) x|

Recalling that limg_. o £~ (|PsDs(g)|+d|Ds(q, £~1)|) = 0, for
£ > O sufficiently large, V; can be made quadratically negative
definite, ensuring that V;, is a CQLF for A,. |

B. Main Result

Differently from (39), we now address the general case of
the augmented plant (38) by removing the assumption that
¢ = ¢*. Thus, we define the error { = ¢ — { whose dynamics
are given, by (38) with (36) and (37), as ; =u-— g“* =u+
hn — k€(n — e). Therefore, we can ensure ¢ — 0 by selecting
u=_¢* — k£, with gain k¢, leading to:

£ = k. (44)

Using (36), this yields the following controller for plant (7):

n=—Ln—e, ¢ = —hn,

u=—hn+kl(n—e —k; (¢ —o+kn), (45)

with positive gains £, h, k, and k;. The following statement,
which confirms that controller (45) provides a solution for
Problem 1, is the main result of this letter.

Theorem 2: Choose any gain k; > 0 and positive gains k, h,
¢ such that A, of Proposition 1 is GES. Then, attractor A :=
{(.8.5,m0) e R" x AxR*(5,8,0) € E.n=0,0 = ¢},
with £ as in (12), is robustly globally KCL asymptotically stable
for the interconnection between system (7) and controller (45).

Proof: The closed-loop system can be seen as the cascade
interconnection of (44) and (42) perturbed by . Namely, the
x-subsystem can be rewritten as

= A(9)x + Bx(9)C.

Consider the Lyapunov function V :=V, + pC2, where V, =
x! Pyx is defined in (43) and p > 0. By Proposition 1, there
exists a constant matrix Q, = QI > 0 such that

(46)

V < —x"Qux+ 2x " P.B.(q)C — 2pk; L7 (47)

Choosing p > 0 sufficiently large, we conclude that 4 is GES.
Finally, we note that system (7), (45) can be regarded as a
hybrid system, with empty jump set and jump map, satisfying
the hybrid basic conditions. Thus, from [14, Th. 7.21], A is
robustly globally KL asymptotically stable. ]
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Fig. 3. Closed-loop simulation results. (a): reference y* and output y.
(b): input w. (c): error e and filter state 5. (d): reference ¢*, state ¢, and
integrator state o. (e): £* and states &. (f): hysteresis states §.

Remark 2: Controller (45) can be tuned following
Remark 1 and selecting ¢ sufficiently large as per
Proposition 1. On the other hand, k; > 0 can be chosen
arbitrarily.

V. NUMERICAL RESULTS

We perform a numerical analysis to illustrate our theoreti-
cal results. Following the structure of (1) and Assumptions 1
and 2, we consider a £-subsystem having transfer function

(s+3)(s+ 1D
(s—5)(2+2s+4)°
Matrices A, b, ¢ are obtained as the minimal realization of (48)
in controllability canonical form. The PI operator I'[¢], whose
behavior is shown in Fig. 2-Right, is implemented accord-
ing to (5) using p = 5 stop operators with weights u =
[0.1 0.325 0.55 0.775 117, uo = 1, and radii r; = w;,
ief{l,...,5}. The feedback law is the one in (45) with gains
selected according to Remarks 1 and 2 as g = 20, k = 20,
h =200, £ =75, and k; = 5. Simulations have all the system
states initialized randomly and y* = 1. The results obtained for
a single run are shown in Fig. 3. Finally, although not shown
here due to space constraints, we tested references where a
sinusoid is added to y*. In this scenario, due to the semiglob-
ally practically robust asymptotic stability [14, Definition 7.18]
ensured by Theorem 2, the tracking error becomes arbitrarily
small as the harmonic frequency tends to zero.

G(s) =

(48)

V1. CONCLUSION

We provided a robust control strategy for linear cascaded
systems with a hysteretic interconnection. Employing a well-
posed constrained differential inclusion to represent the PI
operator, we formulated the regulation problem by defining

a compact set of equilibria depending on the hysteresis
states. Relying on high-gain arguments and the properties
of well-posed hybrid dynamical systems, we proved that the
closed-loop system admits a robustly globally asymptotically
stable compact attractor for a selection of the controller gains
not requiring parametric knowledge of the system. Future work
comprises generalizing the cascade dynamics and the hystere-
sis model, tracking references generated by exosystems (e.g.,
sums of sinusoids), and applying the results to thermal SMAs.
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