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A Marshall-Olkin type multivariate model with underlying

dependent shocks

Sabrina Mulinacci∗

Abstract

In this paper we study the distributional properties of a vector of lifetimes modeled as the first
arrival time between an idiosyncratic shock and a common systemic shock. Despite unlike the classical
multidimensional Marshall-Olkin model here only a unique common shock affecting all the lifetimes is
assumed, some dependence is allowed between each idiosyncratic shock arrival time and the systemic one.
The dependence structure of the resulting distribution is studied through the analysis of its singularity,
its associated survival copula function and conditional hazard rates. Finally, some possible applications
to actuarial and credit risk financial products are proposed.

Keywords: Marshall-Olkin distribution; Kendall’s distribution function; Kendall’s tau;
systemic risk; conditional hazard rates; copula

Mathematics Subject Classification (2020): 62H10; 62N05; 91B05; 91G45

1 Introduction

In this paper we consider a particular generalization of the multidimensional Marshall-Olkin
distribution (Marshall and Olkin, 1967) in the specific case in which, in addition to the
idiosyncratic ones, only one common shock is considered whose occurrence causes the si-
multaneous end of all lifetimes. More specifically, if (X0, X1, . . . , Xd) are positive random
variables that represent the arrival times of some shocks, then we consider, as resulting
lifetimes, the random variables T1, . . . , Td defined as Tj = min(X0, Xj), j = 1, . . . , d.

In the Marshall-Olkin model the underlying shocks arrival times are assumed to be in-
dependent and exponentially distributed. Many extensions exist in the literature in order
to consider marginal distributions different from the exponential one and to include some
dependence among the underlying shocks arrival times, even in the more general case where
additional systemic shocks involving subsets of the lifetimes T1, . . . , Td are assumed. The
approach of considering general marginal distributions in place of the exponential one, even
preserving the independence, is studied in Li and Pellerey (2011) in the bivariate case and
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extended to the multidimensional case in Lin and Li (2014). As for models allowing for some
dependence among the underlying shocks, the scale-mixture of the Marshall-Olkin distribu-
tion, introduced in Li (2009), is obtained by scaling, through a positive random variable, a
random vector distributed according to the Marshall-Olkin distribution: this is equivalent
to assume that the underlying shocks arrival times have a dependence structure given by an
Archimedean copula with a generator that is the Laplace transform of the mixing variable.
Scale-mixtures of the Marshall-Olkin distributions have also been considered in Mai et al.
(2013) where, in the exchangeable case, a different construction, involving Lévy subordina-
tors, is presented, while the case of Archimedean dependence among the underlying shocks
with a fully general generator is analyzed in Mulinacci (2018). The combination of Marshall-
Olkin and Archimedean dependence structures is also studied in Charpentier et al (2014).
The main weakness of these extensions is that they assume an underlying exchangeable de-
pendence. Aiming at considering an asymmetric underlying dependence, in Pinto and Kolev
(2015), when d = 2, the case in which X1 and X2 are dependent, while the external shock X0

is independent of (X1, X2) is studied: this model has been further investigated and applied
to life-insurance pricing in Gobbi et al. (2019).

The specific generalization of the Marshall-Olkin distribution presented in this paper is
characterized by an asymmetric dependence in the vector (X0, . . . , Xd) that goes in the
opposite direction with respect to the one considered in Pinto and Kolev (2015): X1, . . . , Xd

are assumed to be independent while a particular pairwise dependence is assumed between
each Xj, j = 1, . . . , d and X0. The pairwise dependence results from the assumption that
X0 = min

j=0,1,...,d
Yj where Y0, . . . , Yd are mutually independent while each Yj is correlated with

the idiosyncratic shock arrival time Xj, j = 1, . . . , d.
A possible branch of application of this model is in the reliability modeling of mechanical

or electronic systems, and consequently, in the modeling of the resulting operational and
actuarial risk. Consider for example d working machines (or electronic components) Mj,
j = 1, . . . , d, all separately connected with a same machine M0 so that if M0 stops to
working, immediately the same occurs for all the other machines. Assuming the classical
Marshall-Olkin model, the failure of a single machine Mj, j = 1, . . . , d does not influence
the failure of the machine M0 or of the remaining Mi, i = 1, . . . , d, i 6= j. Conversely, in our
model, the failure of one of the Mj, j = 1, . . . , d can influence the probability of failure of
M0, and, consequently, of the collapse of the whole system. Consider, for example, the case
in which a component Mj fails to works correctly: being connected to M0, this fact could
worsen or even interrupt the functioning of M0.

Another branch of application of this model is credit risk. There is a wide literature on
applications of the Marshall-Olkin model and its generalizations to credit risk (see, among the
others, Giesecke, 2003, Lindskog and McNeil, 2003, Elouerkhaoui, 2007, Mai and Scherer,
2009, Baglioni and Cherubini, 2013 and Bernhart et al., 2013). Given the specific type
of assumed dependence, the probabilistic model analyzed in this paper looks particularly
suitable for the analysis of the joint lifetimes of the so called Systemically Important Financial

2



Institutions (SIFI) for which the default (or the proximity to it) of one of them, is directly
correlated with the collapse of the whole system.

In this paper, we first discuss the survival distribution of the underlying vector of shock
arrival times (X0, . . . , Xd): we study the associated survival copula function and recover
expressions for the Kendall’s distribution function and Kendall’s tau of the pairs (X0, Xj),
j = 1, . . . , d. Then we focus on the resulting joint survival distribution of the lifetimes
(T1, . . . , Td): we analyze the probability of simultaneous end of all lifetimes (that is the sin-
gularity of the distribution) and the dependence properties through the analysis of the pair-
wise Kendall’s distribution function and Kendall’s tau and the expressions of the conditional
hazard rates. We do not make, in principle, any assumption on the marginal distributions of
the underlying shocks arrival times and on the underlying dependence structure: however,
in order to obtain closed formulas, we restrict the analysis to particular classes of marginal
distributions (that include the exponential one as a particular case) and to Archimedean
bivariate copulas. Finally, some specific case is numerically analyzed in order to study the
impact of the parameters governing the model on the resulting dependence structure and
practical credit and actuarial applications are considered.

The paper is organized as follows. In section 2 we present and analyze the underlying
shocks arrival times model. In section 3 we derive the distribution of the resulting, subject
to shocks, lifetimes which is, by construction, singular: we compute the probability of the
singularity and we analyze the dependence structure through the identification of the pairwise
Kendall’s distribution function and Kendall’s tau formulas and the conditional hazard rates.
Section 4 is focused on a particular specification of the general model previously presented,
for which it is possible to obtain specific and meaningful formulas. In section 5 we perform a
sensitivity analysis in the two-dimensional case and we briefly present possible applications
to actuarial and credit risk products while section 6 concludes.

2 The shocks arrival times model

In this section we introduce and study the probabilistic model of the underlying shocks
arrival times that define the lifetimes, T1, . . . , Td, of the d components of a system.

Let (Ω,F ,P) be a probability space and (Y,X) = (Y0, Y1, . . . , Yd, X1, . . . , Xd), be a 2d+1-
dimensional random vector with strictly positive elements. In the sequel, we will interpret
each random variable Xj (j = 1, . . . , d) in X as the arrival time of a shock causing the default
of only the j-th element in the system, while all random variables Yj (j = 0, 1, . . . , d) in Y
represent the arrival times of shocks causing the default of the whole system.

We assume that each Xj in the subvector X has a survival distribution function, denoted
by F̄Xj , for j = 1, . . . , d, strictly decreasing on (0,+∞). The survival distribution functions
of the random variables in the subvector Y, denoted by F̄Yj for j = 0, . . . , d), can be either
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strictly decreasing or identically equal to 1 on (0,+∞): nevertheless, we assume that there
exists at leat one j ∈ {0, . . . , d} such that F̄Yj is not identically equal to 1 on (0,+∞).

As for the dependence structure, the random variables in the subvector X are assumed
to be mutually independent, as well as those in the subvector Y, while each pair (Yj, Xj)

for j = 1, . . . , d has a survival dependence structure given by a bivariate survival copula Ĉj.
More precisely, the copula associated to the survival distribution of the vector (Y,X) is

Ĉ(Y,X)(u0, u1, . . . , ud, v1, . . . , vd) = u0

d∏
j=1

Ĉj (uj, vj) .

It follows that the joint survival distribution function of (Y,X) is

F̄(Y,X)(y0, y1, . . . , yd, x1, . . . , xd) = F̄Y0(y0)
d∏
j=1

Ĉj
(
F̄Yj(yj), F̄Xj(xj)

)
.

Starting from the above setup, we define the arrival time of the systemic shock (that is the
shock causing the collapse of the whole system) as

X0 = min
j=0,1,...,d

Yj.

Clearly, its survival distribution function is

F̄X0(x) =
d∏
j=0

F̄Yj(x)

and, by the assumptions of the model, it is strictly decreasing on (0,+∞).

Let us now consider the d + 1-dimensional random vector S = (X0, X1, . . . , Xd) whose
joint survival distribution function is, for (x1, . . . , xd) ∈ (0,+∞)d,

F̄S(x0, x1, . . . , xd) = P (Y0 > x0, Y1 > x0, . . . , Yd > x0, X1 > x1, . . . , Xd > xd) =

= F̄Y0(x0)
d∏
j=1

Ĉj
(
F̄Yj(x0), F̄Xj(xj)

)
.

Thanks to Sklar’s theorem, the induced survival dependence structure is given by the survival
copula

ĈS(u0, u1, . . . , ud) = F̄Y0 ◦ F̄−1
X0

(u0)
d∏
j=1

Ĉj
(
F̄Yj ◦ F̄−1

X0
(u0), uj

)
(1)

where here and in the sequel the symbol “◦” denotes functions composition.
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Notice that the vector S is obtained through a particular implementation of the con-
struction proposed by Liebscher (2008) in his Lemma 2.1, where this technique is applied
in order to construct asymmetric copulas. It follows that (1) is a particular specification of
the copula family defined in Theorem 2.1 in Liebscher (2008). In fact, let, for j = 0, . . . , d,
gj = F̄Yj ◦ F̄−1

X0
and consider d + 1-dimensional copulas Cj for j = 0, . . . , d, so that, for

j = 1, . . . , d if u = (u0, u1, . . . , ud) with ui = 1 for i 6= 0, j, then Cj(u) = Ĉj(u0, uj). Clearly,

ĈS(u0, u1, . . . , ud) = C0 (g0(u0), 1, . . . , 1) · C1 (g1(u0), u1, 1, . . . , 1) · · ·Cd (gd(u0), 1, . . . , 1, ud) .

Since, for j = 0, . . . , d, gj = F̄Yj ◦ F̄−1
X0

: [0, 1]→ [0, 1] is strictly increasing or identically equal

to 1 and
∏d

j=0 gj(v) = v, then (1) represents a particular specification of the family of copulas

obtained according to the methodology proposed in Theorem 2.1 in Liebscher (2008). As
a consequence, the results about the type of induced dependence structure studied in that
paper apply. Since ours is a very particular specification of Liebscher (2008) copula family,
for copulas given in (1) we are able to find explicit formulas for the Kendall’s distribution
function and the Kendall’s tau of the pairs of type (X0, Xi), as we are going to show in next
subsection.

2.1 The dependence structure between the systemic shock arrival time and
each idiosyncratic one

The joint survival distribution of the arrival time of each idiosyncratic shock Xj and that of
the systemic one X0 is

F̄(X0,Xi)(x0, xi) = Ĉi
(
F̄Yi(x0), F̄Xi(xi)

) F̄X0(x0)

F̄Yi(x0)

and the corresponding bivariate survival copulas are

Ĉ0,i(u0, ui) = Ĉi
(
F̄Yi ◦ F̄−1

X0
(u0), ui

) u0

F̄Yi ◦ F̄−1
X0

(u0)
. (2)

In order to analyze the dependence structure induced by (2) we compute the Kendall’s
distribution function of a copula C̃ of type

C̃(u, v) = C (g(u), v)
u

g(u)
(3)

where g : [0, 1]→ [0, 1] is strictly increasing.

We remind that the Kendall’s distribution function of a bivariate copula C(u, v) is defined
as the cumulative distribution function of the random variable C(U, V ) where the random
variables U and V are uniformly distributed on the interval [0, 1] and their joint distribution
function is given by the considered copula C(u, v). More precisely the Kendall’s distribution
function of a bivariate copula C is a function KC : [0, 1]→ [0, 1] defined as

KC(t) = P (C(U, V ) ≤ t) , for t ∈ [0, 1]
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(see Nelsen, 2003), where P is the probability induced by C. The relevance of this notion relies
on the fact that it induces, through the corresponding one-dimensional stochastic ordering, a
partial ordering in the set of bivariate copulas: notice in particular that if C1(u, v) ≤ C2(u, v)
for all (u, v) ∈ [0, 1]2, then KC1(t) ≥ KC2(t) for all t ∈ [0, 1] (see Nelsen, 2003, for more
details).
In order to simplify the notation, we set ∂1C(u, v)) = ∂

∂u
C(u, v) for any copula C(u, v).

Proposition 2.1. Let g : [0, 1]→ [0, 1] be strictly increasing and differentiable and the copula
C(u, v) be strictly increasing with respect to v for any u. Then the Kendall’s distribution
function of a copula C̃ of type (3) is

K(t) = K0(t) + t ln (g(t)) +

∫ 1

t

∂1C(g(u), lt(u))
g′(u)

g(u)
u du

where lt(u) solves C̃(u, lt(u)) = t and K0(t) = t− t ln t is the Kendall’s distribution function
of the product copula.

Proof. Since, for a given u, C̃(u, v) is strictly increasing with respect to v, the inverse function

lt(u) with respect to v is well defined for all t ∈ (0, u] and satisfies C (g(u), lt(u)) = g(u)
u
t.

Since

K(t) = t+

∫ 1

t

∂1C̃(u, lt(u))du

(this is (6) in Genest and Rivest (2001)), after straightforward computations we have that

K(t) = t− t ln

(
t

g(t)

)
+

∫ 1

t

∂1C(g(u), lt(u))
g′(u)

g(u)
udu.

The Kendall’s distribution function is strictly related to the widely used concordance
measure known as Kendall’s tau (see Nelsen, 2003). In fact, the Kendall’s tau τ can be
obtained from the Kendall’s distribution function through

τ = 3− 4

∫ 1

0

K(t)dt.

Hence, under the assumptions of Proposition 2.1, the Kendall’s tau of a copula of type (3)
is

τ = −4

∫ 1

0

t ln (g(t)) dt− 4

∫ 1

0

∫ 1

t

∂1C(g(u), lt(u))
g′(u)

g(u)
u dudt.

Example 2.1. Archimedean copulas case
Let us now assume that the bivariate survival copula functions Ĉj, for j = 1, . . . , d are of
Archimedean type, with strict generator φj, that is φj : [0,+∞) → (0, 1] satisfies φj(0) =
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1, lim
x→+∞

φj(x) = 0 and it is strictly decreasing and convex on [0,+∞) (see McNeal and

Nešlehová, 2009). Hence, from (3), we get

C̃(u, v) = φ
(
φ−1 (g(u)) + φ−1(v)

) u

g(u)
. (4)

The expression of the Kendall’s distribution function of a copula of this type can be immedi-

ately recovered from Proposition 2.1, taking into account that, now, lt(u) = φ
(
φ−1

(
g(u)
u
t
)
− φ−1(g(u))

)
.

In fact it is a straightforward computation to verify that

K(t) = t− t ln t+ t ln (g(t)) +

∫ 1

t

h
(
g(u)
u
t
)

h (g(u))

g′(u)

g(u)
udu

with h(x) = φ′ ◦ φ−1(x).

If we further assume the function g in (4) be of type g(v) = vθ, with θ ∈ (0, 1] (this specific
case was firstly introduced in Khoudraji, 1995), we get

K(t) = t− t ln t+ θt ln t+ θ

∫ 1

t

h
(
uθ−1t

)
h (uθ)

du

and

τ = θ − 4θ

∫ 1

0

∫ 1

t

h
(
uθ−1t

)
h (uθ)

dudt.

In particular,

• Clayton case, that is φ(x) = (1 + x)−
1
β , with β ≥ 0: since h(y) = − 1

β
y1+β, we have

K(t) = t

(
1 +

θ

β

)
− (1− θ)t ln t− θ

β
t1+β (5)

and

τ =
β

β + 2
θ = τCβ θ (6)

where τCβ is the Kendall’s tau of the Clayton copula with parameter β;

• Gumbel case, that is φ(x) = e−x
1
β

, with β ≥ 1: since h(y) = − 1
β
y(− ln y)1−β, we have

K(t) = t− t ln t

[
1− (β − 1)

(
θ

1− θ

)β ∫ +∞

θ
1−θ

1

zβ(z + 1)
dz

]
and

τ =

(
1− 1

β

)[
β

(
θ

1− θ

)β ∫ +∞

θ
1−θ

1

zβ(z + 1)
dz

]
= τGβ

[
β

(
θ

1− θ

)β ∫ +∞

θ
1−θ

1

zβ(z + 1)
dz

]
where τGβ is the Kendall’s tau of the Gumbel copula with parameter β.
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3 The lifetimes model

In this section we study the joint distribution of the observed lifetimes (T1, T2, . . . , Td), each
defined as the first arrival time between the corresponding idiosyncratic shock and the sys-
temic one. More precisely, for j = 1, . . . , d, let

Tj = min(Xj, X0)

be the lifetime of the j-th element in the system. If Zj = min(Yj, Xj), then

Tj = min

 min
i=0,...,d
i6=j

Yi, Zj

 (7)

and we have that each Tj can also be modeled as the first arrival time among d+1 independent
shocks arrival times.
The survival distribution of each Tj is, for x ≥ 0,

F̄Tj(x) = Ĉj
(
F̄Yj(x), F̄Xj(x)

) F̄X0(x)

F̄Yj(x)
,

while the joint survival distribution function of T = (T1, . . . , Td) is

F̄T(t1, . . . , td) = F̄Y0

(
max
i=1,...,d

ti

) d∏
j=1

Ĉj

(
F̄Yj

(
max
i=1,...,d

ti

)
, F̄Xj(tj)

)
(8)

for (t1, . . . , td) ∈ (0,+∞)d.

Relation (7) implies that the random vector (T1, . . . , Td) is built again following the same
construction introduced in Lemma 2.1 in Liebscher (2008) and the associated survival copula
function

ĈT(u1, . . . , ud) = min
i=1,...,d

F̄Y0 ◦ F̄−1
Ti

(ui)
d∏
j=1

Ĉj

(
min
i=1,...,d

F̄Yj ◦ F̄−1
Ti

(ui), F̄Xj ◦ F̄−1
Tj

(uj)

)
is of the same type as the copula family defined in his Theorem 2.1. In fact, considering the
d-dimensional copulas

K1(u1, . . . , ud) = Ĉ1

(
min

{
F̄Y1 ◦ F̄−1

Z1
(u1), u2, . . . , ud

}
, F̄X1 ◦ F̄−1

Z1
(u1)

)
...

Kd(u1, . . . , ud) = Ĉd
(
min

{
u1, u2, . . . , F̄Yd ◦ F̄−1

Zd
(ud)

}
, F̄Xd ◦ F̄−1

Zd
(ud)

)
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associated to the d-dimensional vectors (Z1, Y1, . . . , Y1), . . . , (Yd, . . . , Yd, Zd), respectively, and
the upper Fréchet bound copula K0(u1, . . . , ud) = mini=1,...,d ui, then

ĈT(u1, . . . , ud) =
d∏
j=0

Kj (gj1(u1), . . . , gjd(ud))

where gjj(uj) = F̄Zj ◦ F̄−1
Tj

(uj) and gji(ui) = F̄Yj ◦ F̄−1
Ti

(ui) for i 6= j.

3.1 The probability of simultaneous default

By construction, the distribution of T has a singularity generated by the occurrence of the
simultaneous default of more than one element in the system. In this subsection we will
analyze the distribution of the time of the simultaneous end of all the considered lifetimes.
Let

S(ω) =

{
Ti(ω), if T1(ω) = · · · = Td(ω)
−∞, otherwise

(9)

be the time of occurrence of the simultaneous default of all the elements in the system.

Proposition 3.1. If the random vector T has a survival distribution of type (8), then the
survival distribution function of S, for t ≥ 0 is given by

F̄S(t) =
d∑
j=0

Hj(t) (10)

where

H0(t) = −
∫ +∞

t

d∏
j=1

F̄Zj(x)dF̄Y0(x) (11)

and, for j = 1, . . . , d,

Hj(t) = −
∫ +∞

t

F̄Y0(x)

(∏
i 6=j

F̄Zi(x)

)
∂1Ĉj

(
F̄Yj(x), F̄Xj(x)

)
dF̄Yj(x). (12)

Proof. The conclusion immediately follows taking into account that, after some algebra, it
can be shown that

P (S > t, S = Yj) = E [P (Xk > Yk, ∀k = 1, . . . , d, Yi > Yj > t, ∀i = 0, . . . , d, i 6= j|Yj)]

coincides with Hj(t) given by (11), if j = 0, and (12), otherwise.

It follows that P (T1 = T2 = · · · = Td) =
∑d

j=0 Hj(0).
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3.2 The pairwise Kendall’s distribution function

In this section we recover the formula of the pairwise Kendall’s distribution function of the
bivariate subvectors extracted from T.

In order to simplify the notation we set, for i, k = 1, . . . , d, i 6= k,

Pi,k(x) =
F̄X0(x)

F̄Yi(x)F̄Yk(x)
.

It can be easily checked that the survival distributions of the pairs (Ti, Tk) are

F̄i,k(ti, tk) = Pi,k (max(ti, tk))
∏
j=i,k

Ĉj
(
F̄Yj(max(ti, tk)), F̄Xj(tj)

)
.

Proposition 3.2. Let us assume that Ĉi and Ĉk are strictly increasing with respect to each
argument. If Ki,k is the Kendall’s distribution function associated to the pair (Ti, Tk), then,
for t ∈ [0, 1],

Ki,k(t) = t− t

(
ln

(
(F̄Zi · Pi,k) ◦ F̄−1

Ti
(t)

(F̄Zi · Pi,k)(zt)

)
+ ln

(
(F̄Zk · Pi,k) ◦ F̄−1

Tk
(t)

(F̄Zk · Pi,k)(zt)

))
+

−
∫ F̄−1

Ti
(t)

zt

F̄ZiPik(x) ∂1Ĉk
(
F̄Yk(x), F̄Xk(ht(x))

)
dF̄Yk(x)+

−
∫ F̄−1

Tk
(t)

zt

F̄ZkPik(x) ∂1Ĉi
(
F̄Yi(x), F̄Xi(gt(x))

)
dF̄Yi(x)

where zt is the solution of F̄i,k(zt, zt) = t, ht(·) solves F̄i,k(x, ht(x)) = t for zt < x ≤ F̄−1
Ti

(t)

and gt(·) solves F̄i,k(gt(y), y) = t for zt < y ≤ F̄−1
Tk

(t).

Proof. Since F̄i,k(x, x) = F̄Zi(x)F̄Zk(x)Pi,k(x) is strictly decreasing, given any t ∈ [0, 1], the
solution of F̄i,k(x, x) = t, denoted by zt, is well defined.
If we restrict to ti > tk, then

F̄i,k(ti, tk) = F̄Zi(ti)Ĉk
(
F̄Yk(ti), F̄Xk(tk)

)
Pi,k(ti) (13)

which is strictly decreasing with respect to tk ∈ [0, ti) for any given ti. Hence, for x ∈
(zt, F̄

−1
Ti

(t)] and for any t ∈ [0, 1], the function ht satisfying F̄i,k(x, ht(x)) = t is well defined.
By similar arguments, the function gt of the statement is also well defined.

If we rewrite the Kendall’s distribution function Ki,k in terms of the joint survival distri-
bution function, we get

Ki,k(t) = P(F̄i,k(Ti, Tk) ≤ t) =

= F̄Ti(zt)− P((Ti, Tk) ∈ D1) + F̄Tk(zt)− P((Ti, Tk) ∈ D2)− t

10



where
D1 = {(ti, tk) : zt < ti ≤ F̄−1

Ti
(t), 0 ≤ tk ≤ ht(ti)}

and
D2 = {(ti, tk) : zt < tk ≤ F̄−1

Tk
(t), 0 ≤ ti ≤ gt(tk)}.

Let us start computing P((Ti, Tk) ∈ D1). Since here (13) holds true, thanks to the
definitions of zt and ht, we have

P ((Ti, Tk) ∈ D1) =

∫ F̄−1
Ti

(t)

zt

(P(Tk > ht(x)|Ti = x)− 1) dF̄Ti(x) =

=

∫ F̄−1
Ti

(t)

zt

P(Tk > ht(x)|Ti = x)dF̄Ti(x)− t+ F̄Ti(zt) =

=

∫ F̄−1
Ti

(t)

zt

t · d(F̄Zi · Pik)(x)

F̄Zi · Pik(x)
+

+

∫ F̄−1
Ti

(t)

zt

F̄Zi · Pik(x) · ∂1Ĉk
(
F̄Yk(x), F̄Xk(ht(x))

)
dF̄Yk(x)− t+ F̄Ti(zt) =

= t ln

(
(F̄Zi · Pi,k) ◦ F̄−1

Ti
(t)

(F̄Zi · Pi,k)(zt)

)
+

+

∫ F̄−1
Ti

(t)

zt

F̄ZiPik(x) · ∂1Ĉk
(
F̄Yk(x), F̄Xk(ht(x))

)
dF̄Yk(x)− t+ F̄Ti(zt).

Since P((Ti, Tk) ∈ D2) can be computed similarly, we get the conclusion.

3.3 The lack of memory property

Since the lack of memory property characterizes the Marshall-Olkin distribution and its
marginals, we investigate if and when this property is satisfied by the distribution of (T1, . . . , Td).

Given a random vector Z of dimension d we define the residual lifetimes vector at time
t ≥ 0 as the vector

Zt = [Z1 − t, . . . , Zd − t|Z1 > t, . . . , Zd > t] .

We have that Z satisfies the weak lack of memory property (WLMP) if, for all t ≥ 0,

F̄Zt(z) = F̄Z(z), ∀z ∈ Rd.

Proposition 3.3. If (Y,X) satisfies the WLMP then also T does.

Proof. It is an immediate consequence of the fact that for all t ≥ 0,

F̄Tt(x1, . . . , xd) = F̄(Y,X)t(x̂, . . . , x̂, x1, . . . , xd)
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where x̂ = max
i∈{1,...d}

xi.

Proposition 3.4. (Y,X) satisfies the WLMP if and only if each pair (Yj, Xj), for j =
1, . . . , d does and Y0 is exponentially distributed.

Proof. The result immediately follows from the fact that the WLMP for the vector (Y,X)
can be written as

F̄Y0(y0 + t)

F̄Y0(t)

d∏
j=1

F̄Yj ,Xj(yj + t, xj + t)

F̄Yj ,Xj(t, t)
= F̄Y0(y0)

d∏
j=1

F̄Yj ,Xj(yj, xj).

Thanks to Theorem 3.2 in Mulero and Pellerey (2010), (Yj, Xj) satisfies the weak lack
of memory property when the associated survival copula is Clayton and the marginal sur-

vival distributions are of type F̄Yj(x) =
(

1 + ecx−1
aj

)− 1
βj and F̄Xj(x) =

(
1 + ecx−1

bj

)− 1
βj with

c, aj, bj > 0, 1
aj

+ 1
bj

= 1 and βj is the parameter of the associated bivariate Clayton survival

copula Ĉj. In this case, if Y0 is exponentially distributed with parameter γ0, we get the class
of joint survival distribution functions

F̄T(t1, . . . , td) = e−γ0 t̂
d∏
j=1

(
ect̂

aj
+
ectj

bj

)− 1
βj

where t̂ = max
i=1,...,d

ti.

3.4 Conditional hazard rates

In order to point out short or long-term dependence of one lifetime with respect to the end
of another one, we analyze the conditioned hazard rates associated to (8)

In this subsection we assume that all bivariate survival copulas Ĉ1, . . . , Ĉd are absolutely
continuous, with densities ĉ1, . . . , ĉd, respectively.

Given a positive random variable W , and an event A, we define the conditional hazard
rate given A

λW (t|A) = lim
h→0+

P (t < W ≤ t+ h|A)

h
.

In order to simplify the notation, we set, for i = 1, . . . , d,

λi(t) = λTi (t|Tj > t, ∀j = 1, . . . , d)

and, for i, k = 1, . . . , d, i 6= k and t ≥ tk,

λi|k(t|tk) = λTi (t|Tk = tk, Tj > t, ∀j = 1, . . . , d, j 6= k) .

12



Clearly,

λi(t) = −∂
+
i F̄T (t, t, . . . , t)

F̄T (t, t, . . . , t)
and λi|k(t|tk) = −

∂2
i,kF̄T (xk (t, tk))

∂kF̄T (xk (t, tk))
.

where ∂+
i denotes the right partial derivative with respect to the i-th argument, ∂k the

partial derivative with respect to the k-th variable, ∂2
i,k the mixed second partial derivative

with respect to i-th and k-th argument and xk (t, z) the d-dimensional vector with the k-th
entry equal to z and all remaining entries equal to t.
After some algebra, we get

λi(t) =
fY0(t)

F̄Y0(t)
+
fZi(t)

F̄Zi(t)
+

d∑
j=1
j 6=i

fYj(t)

F̄Zj(t)
· ∂1Ĉj

(
F̄Yj(t), F̄Xj(t)

)
=

= λY0 (t|Y0 > t) + λZi (t|Zi > t) +
d∑
j=1
j 6=i

λYj (t|Yj > t,Xj > t)

and

λi|k(t|tk) =
fY0(t)

F̄Y0(t)
+
fZi(t)

F̄Zi(t)
+

ĉk
(
F̄Yk(t), F̄Xk(tk)

)
∂2Ĉk

(
F̄Yk(t), F̄Xk(tk)

)fYk(t) +
d∑
j=1
j 6=i,k

∂1Ĉj
(
F̄Yj(t), F̄Xj(t)

)
Ĉj
(
F̄Yj(t), F̄Xj(t)

) fYj(t) =

= λY0 (t|Y0 > t) + λZi (t|Zi > t) + λYk (t|Yk > t,Xk = tk) +
d∑
j=1
j 6=i,k

λYj (t|Yj > t,Xj > t) .

As expected, the conditional hazard rates are the sum of the conditional hazard rates of the
independent random variables that determine Ti (see 7). It follows that

λi|k(t|tk) = λi(t) +

(
ĉk
(
F̄Yk(t), F̄Xk(tk)

)
∂2Ĉk

(
F̄Yk(t), F̄Xk(tk)

) − ∂1Ĉk
(
F̄Yk(t), F̄Xk(t)

)
F̄Zk(t)

)
fYk(t) =

= λi(t) + λYk (t|Yk > t,Xk = tk)− λYk (t|Yk > t,Xk > t) .

(14)

From (14) we have that λi|k(t|tk) ≥ λi(t) if and only if
ĉk(F̄Yk (t),F̄Xk (tk))
∂2Ĉk(F̄Yk (t),F̄Xk (tk))

≥ ∂1Ĉk(F̄Yk (t),F̄Xk (t))
F̄Zk (t)

:

notice that, if ĉk(u,v)

∂2Ĉk(u,v)
≥ ∂1Ĉk(u,v)

Ĉk(u,v)
for (u, v) ∈ [0, 1]2, by integrating both sides, we get

Ĉk(u, v) ≥ uv.

Moreover, again from (14), λi|k(t|tk) is an increasing (decreasing) function of tk ∈ [0, t] if

and only if ĉk(u,v)

∂2Ĉk(u,v)
is a decreasing (increasing) function of v: this is in line with the results

presented in Spreeuw (2006) where conditional hazard rates in copula-based models for joint
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residual lifetimes distributions are analized. As a consequence, the performance of short
and long-term dependence is induced by the survival copula function associated to the pair
(Yk, Xk): this was expected, since the lifetime Tk influences the other lifetimes through Yk.

4 Archimedean dependence and proportional cumulative hazard
rates of shocks arrival times

In this section we will focus on a particular specification of the model presented and studied
in previous sections and we will provide the corresponding expressions for the dependence
quantities there analyzed.

In line with the classical Marshall-Olkin model, we assume that all the independent ran-
dom variables involved in defining the observed lifetimes belong to the same parametric
family of distributions: we suppose that their cumulative hazard rates differ for a multiplica-
tive parameter. Moreover, we restrict the analysis to the case in which the bivariate survival
copulas Ĉj are of Archimedean type. More precisely, we assume that

• F̄Yj(x) = Gγj(x), j = 0, . . . , d and F̄Zj(x) = Gηj(x),j = 1, . . . , d, where G is the survival
distribution function of a strictly positive continuous random variable with support
(0,+∞), γj ≥ 0 (with at least one j for which γj > 0) and ηj > 0;

• Ĉj is Archimedean with strict generator φj.

Since F̄Zj(x) ≤ F̄Yj(x) we have that λj = ηj − γj ≥ 0, for j = 1, . . . , d. If λ0 =
∑d

j=0 γj we
have that

F̄X0(x) = Gλ0(x) and F̄Tj(x) = Gλ0+λj(x), x ≥ 0. (15)

Moreover, F̄Xj(x) = φj
(
φ−1
j (Gηj(x))− φ−1

j (Gγj(x))
)
, from which (see (8))

F̄T(t1, . . . , td) = Gγ0

(
max
i=1,...,d

ti

) d∏
j=1

φj

(
φ−1
j

(
Gγj

(
max
i=1,...,d

ti

))
+ φ−1

j (Gηj(tj))− φ−1
j (Gγj(tj))

)
.

(16)
Applying Sklar’s theorem, we obtain the associated survival copula function

ĈT(u1, . . . , ud) = min
i=1,...d

u
γ0

λ0+λi
i

d∏
j=1

φj

[
φ−1
j

(
min
i=1,...d

u
γj

λ0+λi
i

)
+ φ−1

j

(
u

ηj
λ0+λj

j

)
− φ−1

j

(
u

γj
λ0+λj

j

)]
.

Let us set, for j = 1, . . . , d,

αj =
λ0

λ0 + λj
,
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which represents the ratio between the systemic shock intensity and the marginal one, and,
for j = 0, 1, . . . , d,

θj =
γj
λ0

,

which represents, for j = 1, . . . , d, the contribution percentage of each bank to the sys-
temic shock intensity, while for j = 0 is the percentage of contribution of some completely
independent exogenous shock.

Then, we can rewrite the survival copula as

ĈT(u1, . . . , ud) = min
i=1,...d

uαiθ0i

d∏
j=1

φj

[
φ−1
j

(
min
i=1,...d

u
αiθj
i

)
+ φ−1

j

(
u

1−αj(1−θj)
j

)
− φ−1

j

(
u
αjθj
j

)]
.

(17)
In particular, setting H(t) = ln(G(t)),

• if φj is for all j = 1, . . . , d the Gumbel generator with parameter βj ≥ 1, then F̄Xj(x) =

exp

{(
η
βj
j − γ

βj
j

)1/βj
H(x)

}
, from which we get

F̄T(t1, . . . , td) = exp

{
−γ0

(
max
i=1,...,d

ti

)
−

d∑
j=1

[
ajH

βj

(
max
i=1,...,d

ti

)
+ bjH

βj (tj)

]1/βj
}
,

(18)

where aj = γ
βj
j and bj = η

βj
j − γ

βj
j ≥ 0, and

ĈT(u1, . . . , ud) = min
i=1,...d

uαiθ0i exp

{
−

d∑
j=1

[
θ
βj
j max
i=1,...,d

{−αi lnui}βj + σj(− lnuj)
βj

] 1
βj

}
(19)

where σj = (1− αj(1− θj))βj − α
βj
j θ

βj
j ;

• if φj is for all j = 1, . . . , d the Clayton generator with parameter βj > 0, then F̄Xj(x) =(
1 + eηjβjH(x) − eγjβjH(x)

)− 1
βj from which

F̄T(t1, . . . , td) = e
−γ0H

(
max

i=1,...,d
(ti)

)
d∏
j=1

H

(
e
aj

(
max

i=1,...,d
(ti)

)
+ eajH(tj)

(
ebjH(tj) − 1

))−1/βj

,

(20)
where aj = γjβj and bj = λjβj, and

ĈT(u1, . . . , ud) = min
i=1,...d

uαiθ0i

d∏
j=1

[(
max
i=1,...,d

u−αii

)θjβj
+ u

−(1−αj(1−θj))βj
j − u−βjαjθjj

]− 1
βj

.

(21)
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From (17) the survival copula associated to (Ti, Tk) is

ĈTi,Tk(ui, uk) =

= (min(uαii , u
αk
k ))1−θi−θk

∏
j=i,k

φj

(
φ−1
j

(
(min(uαii , u

αk
k ))θj

)
+ φ−1

j

(
u

1−αj(1−θj)
j

)
− φ−1

j

(
u
αjθj
j

))
from which, setting αi = 1, we recover the survival copula associated to (X0, Tk)

ĈX0,Tk(ui, uk) =
min(ui, u

αk
k )

(min(ui, u
αk
k ))θk

φk

(
φ−1
k

(
(min(ui, u

αk
k ))θk

)
+ φ−1

k

(
u

1−αk(1−θk)
k

)
− φ−1

k

(
uαkθkk

))
.

Notice that, from (1), we get

ĈS(u0, u1, . . . , ud) = uθ00

d∏
j=1

φj

(
φ−1
j

(
u
θj
0

)
+ φ−1

j (uj)
)

and, in particular,

ĈX0,Xj(u0, uj) = u
1−θj
0 φj

(
φ−1
j

(
u
θj
0

)
+ φ−1

j (uj)
)
.

The expressions of the corresponding Kendall’s distribution function and Kendall’s tau are
provided in Example 2.1.

Remark 4.1. If Ĉj(u, v) = uv, for all j = 1, . . . , d, we get

F̄T(t1, . . . , td) = Gλ0

(
max
i=1,...d

ti

) d∏
j=1

Gλj(tj),

which is a particular specification of the generalized Marshall-Olkin distribution (see Li and
Pellerey, 2011 and Lin and Li, 2014) with only one independent shock arrival time X0 and
the associated survival copula is of Marshall-Olkin type.

4.1 The probability of simultaneous default

Under the considered specific model assumptions, (11) and (12) are given by

H0(t) =
γ0

λ̂
Gλ̂(t)

and

Hj(t) = γj

∫ G(t)

0

yλ̂−λj−1hj (yηj)

hj (yγj)
dy,
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respectively, where λ̂ =
∑d

i=0 λj and hj = φ′j ◦ φ−1
j . It follows that

P (T1 = T2 = · · · = Td) =
γ0

λ̂
+

d∑
j=1

γj

∫ 1

0

yλ̂−λj−1hj (yηj)

hj (yγj)
dy. (22)

Example 4.1. Clayton and Gumbel cases.

• In Clayton case (that is φj(x) = (1 + x)
− 1
βj with βj > 0 and hj(x) = − 1

βj
x1+βj , for

j = 1, . . . , d), we have that the survival distribution of S given in (9) is

F̄S(t) =
γ0

λ̂
Gλ̂(t) +

d∑
j=1

γj

λ̂+ λjβj
Gλ̂+λjβj(t) (23)

and

P (T1 = T2 = · · · = Td) =
γ0

λ̂
+

d∑
j=1

γj

λ̂+ λjβj
=

=
θ0∑d

i=1 α
−1
i − (d− 1)

+
d∑
j=1

θj∑d
i=1 α

−1
i − d+ βj(α

−1
j − 1)

.

• In Gumbel case (that is φj(x) = e−x
1
βj

with βj ≥ 1 and hj(x) = − 1
βj
x(− lnx)1−βj , for

j = 1, . . . , d), we have

F̄S(t) =

(
γ0

λ̂
+

1

λ̂

d∑
j=1

γj

(
1 +

λj
γj

)1−βj
)
Gλ̂(t) (24)

and

P (T1 = T2 = · · · = Td) =
γ0

λ̂
+

1

λ̂

d∑
j=1

γj

(
1 +

λj
γj

)1−βj
=

=
θ0∑d

i=1 α
−1
i − (d− 1)

+
d∑
j=1

θj∑d
i=1 α

−1
i − (d− 1)

(
1 +

1− αj
αjθj

)1−βj
.

4.2 Kendall’s distribution function and Kendall’s tau

By Proposition 3.2, since zt = G−1
(
t1/(λ0+λi+λk)

)
, after some algebra we recover
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Ki,k(t) = t− t ln t

(
αi(1− αk)(1− αiθk)
αi + αk − αiαk

+
αk(1− αi)(1− αkθi)
αi + αk − αiαk

)
−

− θk
∫ tαi

t
αiαk

αi+αk−αiαk
y

1−αi
αi

hk

(
ty
− 1−θkαi

αi

)
hk(yθk)

dy − θi
∫ tαk

t
αiαk

αi+αk−αiαk
y

1−αk
αk

hi

(
ty
− 1−θiαk

αk

)
hk(yθi)

dy,

where hj = φ′j ◦ φ−1
j , for j = i, k.

Example 4.2. Let us consider Clayton and Gumbel survival copulas specific cases.

1. Clayton case (φj(x) = (1 + x)
1
βj , βj > 0, j = i, k).

If we set

τMO
ik =

αkαi
αk + αi − αkαi

which is the Kendall’s tau of the Marshall-Olkin bivariate copula with parameters αi
and αk and

ρrs =
1− αs
αs

τMO
rs , r, s = i, j

we get

Ki,k(t) = t

(
1 +

θk
βk
αi +

θi
βi
αk

)
− t ln t ((1− θkαi)ρik + (1− θiαk)ρki) +

− θk
βk
αit

ρikβk+1 − θi
βi
αkt

ρkiβi+1.

The above Kendall’s distribution function can be decomposed in

Ki,k(t) = K0
ik(t) +K

(i)
0,k +K

(k)
0,i − 2KI(t),

where
K0
ik(t) = t−

(
1− τMO

ik

)
t ln t, (25)

K
(i)
0,k = t

(
1 +

θkαi
βk

)
− (1− θkαiρik)t ln t− θkαi

βk
t1+βkρik , (26)

K
(k)
0,i = t

(
1 +

θiαk
βi

)
− (1− θiαkρki)t ln t− θiαk

βi
t1+βiρki (27)

and
KI(t) = t− t ln t. (28)

Notice that: (25) is the Kendall’s distribution function of the Marshall-Olkin copula
with parameters αi and αk; (26) is a Kendall’s distribution function of type (5) with
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parameters θ = θkαiρik and β = βkρik (that represents the effect of the dependence
between Yk and Xk on the resulting dependence structure of (Ti, Tk)); simmetrically,
(27) is a Kendall’s distribution function of type (5) with parameters θ = θiαkρki and
β = βiρki; (28) is the Kendall’s distribution function of the independence copula. As a
consequence, we get a very meaningful decomposition of the Kendall’s tau:

τik = τMO
ik + τ̄

(i)
0,k + τ̄

(k)
0,i ,

where

τ̄
(i)
0,k = αiρikθk

ρi,kβk
ρi,kβk + 2

and τ̄
(k)
0,i = αkρkiθi

ρk,iβi
ρk,iβi + 2

are Kendall’s tau of type (6) with suitably modified parameters.

It follows that

τTk,X0 = αk + (1− αk)θk
(1− αk)βk

(1− αk)βk + 2
=

= τMO
Tk,X0

+ τ ∗0,k

(29)

where τMO
Tk,X0

is the Kendall’s tau between the observed lifetime and the systemic shock
arrival time in the Marshall-Olkin model and τ ∗0,k is a Kendall’s tau of type (6) with
parameters rescaled by the coefficient 1− αk.

2. Gumbel case (φj(x) = e−x
1
βj

, βj ≥ 1, j = i, k).

If

Aik = τMO
ik

(
1− αk
αk

(1− αiθk) +
1− αi
αi

(1− αkθi)
)

+

+ (θkαi)
βk−1

∫ αiθk

θkτ
MO
ik

(
z

θkαi − z(1− θkαi)

)βk−1

dz + (θiαk)
βi−1

∫ αkθi

θiτMO
ik

(
z

θiαk − z(1− θiαk)

)βi−1

dz,

then
Ki,k(t) = t− Aikt ln t

and
τi,k = 1− Aik.

Even if, as in the Clayton case, we can recognize that the resulting dependence is the
sum of the Marshall-Olkin one and two different contributions arising from the assumed
dependence between Yi and Xi and between Yk and Xk, unlike that case, the latter ones
cannot be written in a closed form in terms of of the corresponding Kendall’s tau given
in Example 2.1.

Moreover, we have

τTk,X0 = 1− (1− αk)(1− θk)− θβk−1
k

∫ θk

θkαk

(
z

θk − z(1− θk)

)βk−1

dz.
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4.3 Hazard rates

Let M(t) and µ(t) be the cumulative hazard function and the hazard rate of G(t). Formulas
for conditional hazard rates are now given by

λi(t) = µ(t)

γ0 + ηi +
d∑
j=1
j 6=i

γj
Gλj(t)

· hj (Gηj(t))

hj (Gγj(t))


and

λi|k (t|tk) = µ(t)

γ0 + ηi + γk
φ′′k (Dk(t, tk))

φ′k (Dk(t, tk))
· Gγk(t)

hk (Gγk(t))
+
∑
j=1
j 6=k,i

γj
Gλj(t)

· hj (Gηj(t))

hj (Gγj(t))

 ,

where, for h = 1, . . . , d,

Dh(x, y) = φ−1
h (Gγh(x)) + φ−1

h (Gηh(y))− φ−1
h (Gγh(y)) .

Moreover,

λi|k (t|tk) = λi(t) + γkµ(t)

{
φ′′k (Dk(t, tk))

φ′k (Dk(t, tk))
· Gγk(t)

hk (Gγk(t))
− 1

Gλk(t)
· hk (Gηk(t))

hk (Gγk(t))

}
.

Example 4.3. • Clayton case:

λi(t) = µ(t)

γ0 + ηi +
d∑
j=1
j 6=i

γjG
βjλj(t)


and

λi|k (t|tk) = λi(t)+γkµ(t)
[
(1 + βk)G

−γkβk(t)
(
G−γkβk(t) +G−βkηk(tk)−G−γkβk(tk)

)−1 −Gλkβk(t)
]
.

• Gumbel case:

λi(t) = µ(t)

γ0 + ηi +
d∑
j=1
j 6=i

γ
βj
j η

1−βj
j


and

λi|k (t|tk) = λi(t)+γ
βk
k µ(t)


(
γβkk M

βk(t) +
(
ηβkk − γ

βk
k

)
Mβk(tk)

) 1
βk + βk − 1

γβkk M
βk(t) +

(
ηβkk − γ

βk
k

)
Mβk(tk)

Mβk−1(t)− η1−βk
k

 .
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4.4 Probability density function

The fact that the probability of simultaneous default is positive, implies that the distributions
considered in this paper are not absolutely continuous with respect to the Lebesgue measure.
Nevertheless, they admit a density with respect to a measure dominating the Lebesgue one:
this approach is formally described in Asimit et al. (2016) for a family of non absolutely
continuous multivariate Pareto distributions. We will illustrate it in the simplified case
d = 2, where the reference dominating measure on R2 is given by the sum of the Lebesgue
measure on R2 and that of the Lebesgue measure on R concentrated on the straight line
{(t1, t2) ∈ R2 : t1 = t2}. In particular, we will compute the densities for the survival
distributions given in (18) and (20), that, for d = 2, can be, respectively, rewritten as

F̄T(t1, t2) =

= exp

{
−γ0 (max (t1, t2))−

2∑
j=1

[
ajH

βj (max (t1, t2)) + bjH
βj (tj)

]1/βj}
=

=

 exp
{
−(γ0 + (a1 + b1)1/β1)H(t1)−

[
a2H

β2 (t1) + b2H
β2 (t2)

]1/β2} , if t1 ≥ t2

exp
{
−(γ0 + (a2 + b2)1/β2)H(t2)−

[
a1H

β1 (t2) + b1H
β1 (t1)

]1/β1} , if t1 < t2
,

(30)

and
F̄T(t1, t2) =

= e−γ0H(max(t1,t2))

2∏
j=1

(
eajH(max(t1,t2)) + eajH(tj)

(
ebjH(tj) − 1

))−1/βj
=

=

{
e
−
(
γ0+

a1+b1
β1

)
H(t1) (

ea2H(t1) + ea2H(t2)
(
eb2H(t2) − 1

))−1/β2
, if t1 ≥ t2

e
−
(
γ0+

a2+b2
β2

)
H(t2) (

ea1H(t2) + ea1H(t1)
(
eb1H(t1) − 1

))−1/β1
, if t1 < t2

.

(31)

Using (24), and after some straightforward algebra, it can be proved that the density asso-
ciated to (30) is

f(t1, t2) =


F̄ (t1, t2)H ′(t1)H ′(t2)g(t1, t2), t1 6= t2(

γ0 +
∑2

j=1 aj (aj + bj)
1
βj
−1
)
e
−
(
γ0+

∑2
j=1(aj+bj)

1
βj

)
H(t)

H ′(t), t = t1 = t2

where

g (t1, t2) =

=


b2A

1
β2
−2

2 (t1, t2)Hβ2−1(t2)

[
c1A2(t1, t2) + a2

(
A

1
β2
2 (t1, t2) + β2 − 1

)
Hβ2−1(t1)

]
, t1 > t2

b1A
1
β1
−2

1 (t1, t2)Hβ1−1(t1)

[
c2A1(t1, t2) + a1

(
A

1
β1
1 (t1, t2) + β1 − 1

)
Hβ1−1(t2)

]
, t1 < t2
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with, for i = 1, 2, ci = γ0 + (ai + bi)
1
βi and Ai(t1, t2) = aiH

βi(t3−i) + biH
βi(ti).

Similarly, using (23), we can calculate the density associated to (31), which is

f(t1, t2) =

=


e−c1H(t1)H ′(t1)C2(t2)B2(t1, t2)

[(
c1 + a2

1+β2
β2

)
ea2H(t1) + c1e

a2H(t2)
(
eb2H(t2) − 1

)]
, t1 > t2

e−c2H(t2)H ′(t2)C1(t1)B2(t1, t2)
[(
c2 + a1

1+β1
β1

)
ea1H(t2) + c1e

a1H(t1)
(
eb1H(t1) − 1

)]
, t1 < t2

H ′(t)
[
γ0e
−λ̂H(t) +

∑2
j=1

aj
βj
e−(λ̂+bj)H(t)

]
, t = t1 = t2

with λ̂ = γ0 +
∑2

j=1
aj+bj
βj

and ci = γ0 + ai+bi
βi

, Ci(ti) = 1
βi
eaiH(ti)H ′(ti)

[
(ai + bi)e

biH(ti) − ai
]
,

Bi(t1, t2) =
(
eaiH(t3−i) + eaiH(ti)

[
ebiH(ti) − 1

])−βi+2

βi , for i = 1, 2.

5 Sensitivity analysis and applications

In this section we will analyze the impact of the parameters on marginal distributions and
on the dependence structure considering specific examples in the framework of Section 4.
Next, we will discuss how to use the model in practical applications in reliability, credit and
insurance.

5.1 Sensitivity analysis

5.1.1 Fixed marginal intensities

Let us consider the exchangeable bivariate case with γ1 = γ2 = 0.1, γ0 = 0.01 and λ1 = λ2 =
0.1. Under these assumptions, the marginal survival distributions (see (15)) are fixed to be

F̄Tj(x) = G0.31(x) for j = 1, 2. Moreover we assume that the survival copulas Ĉj associated
to the survival distribution of (Yj, Xj) are the same for j = 1, 2. As a consequence, the
vector (T1, T2) is exchangeable. In next Tables 1 and 2, we compare the effect of Gumbel
and Clayton survival copulas on the dependence quantities introduced in previous sections
varying the Kendall’s tau value τ of the pairs (Yj, Xj), j = 1, 2. We remark that the
case τ = 0 corresponds to the classical Marshall-Olkin model with only one systemic shock
and that the considered quantities do not depend on the choice of the survival distribution
function G.

In both cases, the singularity mass, P(T1 = T2), as well as the single contribution to it
due to the occurrence of each Yi, with i = 1, 2 (that is Hi(0) given by (12)) is decreasing with
respect to the dependence induced by the bivariate survival copulas. This was expected since,
as the dependence between Yj and Xj increases, being the distribution of Zj = min(Yj, Xj)
and Yj fixed (depending on ηj = λj +γj and γj, respectively), the survival distribution of Xj

decreases, implying an increase in the probability of the event {Xj < Yj}. We notice that
that this effect is much stronger for the Gumbel survival copula with respect to the Clayton
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τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.99
P(T1 = T2) 0.5121951 0.4115612 0.2682927 0.08536585 0.02439024
H0(0) 0.02439024 0.02439024 0.02439024 0.02439024 0.02439024
Hi(0) 0.2439024 0.1935855 0.1219512 0.0304878 0
τT1,T2 0.5121951 0.5294137 0.5569266 0.6048447 0.6674419
τTi,X0

0.6774194 0.6936507 0.7196973 0.7655784 0.8287377

Table 1: Gumbel case with Kendall’s tau τ . From top to bottom: Singularity mass, contribution to the
singularity mass due to the occurrence of Y0, contribution to the singularity mass due to the occurrence of
Yi, i = 1, 2, Kendall’s tau between T1 and T2, Kendall’s tau between each Ti and X0.

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.99
P(T1 = T2) 0.5121951 0.4439707 0.3522591 0.22241 0.03428633
H0(0) 0.02439024 0.02439024 0.02439024 0.02439024 0.02439024
Hi(0) 0.2439024 0.2097902 0.1639344 0.0990099 0.004948046
τT1,T2

0.5121951 0.5240264 0.5430493 0.5786837 0.6632939
τTi,X0 0.6774194 0.6923329 0.7148852 0.7529652 0.8263652

Table 2: Clayton case with Kendall’s tau τ . From top to bottom: Singularity mass, contribution to the
singularity mass due to the occurrence of Y0, contribution to the singularity mass due to the occurrence of
Yi, i = 1, 2, Kendall’s tau between T1 and T2, Kendall’s tau between each Ti and X0.

one. On the other hand, H0(0), given in (11) is constant since it doesn’t depend on the

survival copulas Ĉj. As for the Kendall’s tau parameters associated to (T1, T2) and (Ti, X0),

instead, as expected, they do increase with the dependence modeled by Ĉi.
The different impact of the choice of the Gumbel and Clayton survival copulas is shown

in Figure 1 where scatter plots corresponding to Kendall’s tau 0.5 and 0.75 are provided.
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Figure 1: Scatter plots: from left to right, Gumbel and Clayton cases with parameters considered in subsec-
tion 5.1.1

5.1.2 Fixed intensities of the hidded shocks and Gumbel survival copulas

Let us now consider again the bivariate exchangeable case but focusing on Ĉj of Gumbel
type (with β1 = β2). In this case the survival distribution of Xj is given by F̄Xj(x) = Gµj(x)
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with µj =
(
η
βj
j − γ

βj
j

)1/βj
. We will perform the same analysis done above in the following

cases:

1. γ0 = γ1 = γ2 = 0.01, and µ1 = µ2 = 0.1: results are shown in Table 3;

2. γ0 = 0.01 and γ1 = γ2 = 0.1, and µ1 = µ2 = 0.1: results are shown in Table 4;

3. γ0 = 0.01 and γ1 = γ2 = 0.2, and µ1 = µ2 = 0.1: results are shown in Table 5.

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.99
ωi 0.13 0.1234614 0.1204988 0.1200025 0.12

P(T1 = T2) 0.1304348 0.08841155 0.05682567 0.04771314 0.04761905
H0(0) 0.04347826 0.04609936 0.04739392 0.04761791 0.04761905
Hi(0) 0.04347826 0.02115609 0.004715872 4.761434e-05 0
τT1,T2 0.1304348 0.1631895 0.1911915 0.2081436 0.2141442
τTi,X0

0.2307692 0.31505 0.3952031 0.460692 0.4988739

Table 3: Gumbel case with Kendall’s tau τ and with γi = 0.01, i = 0, 1, 2 and µi = 0.1, i = 1, 2. From top
to bottom: Marginal intensity, singularity mass, contribution to the singularity mass due to the occurrence
of Y0, contribution to the singularity mass due to the occurrence of Yi, i = 1, 2, Kendall’s tau between T1
and T2, Kendall’s tau between each Ti and X0.

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.99
ωi 0.31 0.2781793 0.2514214 0.2289207 0.2106956

P(T1 = T2) 0.5121951 0.5144359 0.517074 0.5201742 0.5236528
H0(0) 0.02439024 0.02887181 0.03414802 0.04034838 0.04730568
Hi(0) 0.2439024 0.242782 0.241463 0.2399129 0.2381736
τT1,T2

0.5121951 0.6180447 0.7346508 0.8620343 0.9942827
τTi,X0 0.6774194 0.7643964 0.8473775 0.9260153 0.9971333

Table 4: Gumbel case with Kendall’s tau τ and with γ0 = 0.01, and γi = µi = 0.1, i = 1, 2. From top to
bottom: Marginal intensity, singularity mass, contribution to the singularity mass due to the occurrence of
Y0, contribution to the singularity mass due to the occurrence of Yi, i = 1, 2, Kendall’s tau between T1 and
T2, Kendall’s tau between each Ti and X0.

In all cases, since µj, j = 1, 2 and γj, j = 0, 1, 2 are given, the marginal distributions of
T1 and T2 are not fixed, but they vary with the parameter of the underlying Gumbel survival
copulas: in fact they are given by F̄Tj(x) = Gωj(t) with

ωj =
2∑
i=0

γj +
(
µ
βj
j + γ

βj
j

) 1
βj − γj.

In particular, being F̄Xj and F̄Yj fixed, since survival copulas Ĉj increase with βj, we have that
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τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.99
ωi 0.51 0.4669759 0.4336068 0.4130543 0.41

P(T1 = T2) 0.6721311 0.7213187 0.8043743 0.9425901 1
H0(0) 0.01639344 0.01908573 0.02187162 0.02403219 0.02439024
Hi(0) 0.3278689 0.3511165 0.3912514 0.459279 0.4878049
τT1,T2

0.6721311 0.7863127 0.8992995 0.9854788 1
τTi,X0

0.8039216 0.8804045 0.946985 0.9926863 1

Table 5: Gumbel case with Kendall’s tau τ and with γ0 = 0.01 and γi = 0.2 and µi = 0.1, i = 1, 2. From top
to bottom: Marginal intensity, singularity mass, contribution to the singularity mass due to the occurrence
of Y0, contribution to the singularity mass due to the occurrence of Yi, i = 1, 2, Kendall’s tau between T1
and T2, Kendall’s tau between each Ti and X0.

F̄Zj(x) increases with βj and, consequently, ηj =
(
µ
βj
j + γ

βj
j

) 1
βj decreases. As a consequence

ωj decreases while H0(0) increases with βj.
From Tables 3, 4 and 5, we notice that when the distributions of the random variables

Xj and Yj, j = 1, 2, are fixed, the effect of an increase in the dependence in the vectors
(Yj, Xj) results always in an increment of the overall dependence between T1 and T2 and
between each Tj, j = 1, 2 and X0, while the effect on the singularity is different depending
on the relative magnitude of the intensities of Xj and Yj: this facts are also shown in Figure
2 where scatter plots from the survival copulas in the three cases are shown in the specific
case τ = 0.5.
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Figure 2: Scatter plots: the three cases considered in subsection 5.1.2 with underlying Gumbel survival
copulas with Kendall’s tau equal to 0.5. From left to right: γ1 = γ2 = 0.01, γ1 = γ2 = 0.1, γ1 = γ2 = 0.2

5.1.3 Non-exchangeable case

So far, we have considered the exchangeable case, but the observed effects on the singularity
can combine in different ways in the non-exchangeable case. In Table 6 we consider again the
Gumbel case with β1 = β2 but with γ0 = 0.01, γ1 = 0.01, γ2 = 0.2, and µ1 = µ2 = 0.1. While,
as expected, all Kendall’s taus increase with the dependence induced by the underlying
Gumbel survival copulas, single contributions to the singularity behave in opposite way with
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the increase of the underlying Gumbel dependence due to the different magnitudes of the
single common shock intensities (γj) with respect to the idiosyncratic ones (µj). In Figure
3 scatter plots of the resulting survival copulas corresponding to different Kendall’s tau are
shown.

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.99
ω1 0.32 0.3134614 0.3104988 0.3100025 0.31
ω2 0.32 0.2769759 0.2436068 0.2230543 0.22

P(T1 = T2) 0.5238095 0.536008 0.5683248 0.6424391 0.6774194
H0(0) 0.02380952 0.02699512 0.02993066 0.03194308 0.03225806
H1(0) 0.02380952 0.01238871 0.002978212 3.194069e-05 0
H2(0) 0.47619048 0.49662418 0.535415937 0.6104641 0.6451613
τT1,T2

0.5238095 0.6012654 0.6688531 0.7148461 0.7228528
τT1,X0

0.6875 0.7068935 0.7179654 0.7219115 0.7228528
τT2,X0 0.6875 0.8016304 0.9077599 0.986585 1

Table 6: Gumbel casewith Kendall’s tau τ and with γ0 = γ1 = 0.01, γ2 = 0.2 and µi = 0.1, i = 1, 2..
From top to bottom: Marginal intensities, singularity mass, contribution to the singularity mass due to the
occurrence of Y0, contribution to the singularity mass due to the occurrence of Y1 and Y2, Kendall’s tau
between T1 and T2, Kendall’s tau between T1 and X0 and between T2 and X0.
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Figure 3: Scatter plots: the Gumbel asymmetric case of subsection 5.1.3

5.2 Reliability, Credit and Actuarial applications

The model introduced and studied in this paper can be used to model joint residual lifetimes
in different frameworks.

In reliability theory, one can consider a system with d electronic or mechanical elements
whose residual lifetimes are modeled by the random variables T1, T2, . . . , Td, that is assuming
that the residual lifetime of each element i in the system is governed by an idiosyncratic
component Xi and by some systematic component modeled by X0 which is dependent on
Xi. If the elements are serially connected, then the failure time of the whole system is given
by Md = min(T1, . . . , Td). The model is also suitable to describe the situation in which a
component c0, whose residual lifetime is denoted by X0, is serially connected with a system
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of d devices with residual lifetimes X1, . . . , Xd connected in a parallel way: the failure of the
component c0 will cause the failure of the whole system.

As for credit applications, consider the case of a group of d firms or banks sharing a same
systemic risk they are correlated to. We assume that the time to default of each name is
given by an idiosyncratic component, represented by Xi and a systemic one, represented by
X0. Given the features of the model studied in this paper, it results to be particularly suited
to the situation in which contagion among the names takes place only through a systemic
shock causing the collapse of the whole system, which can be represented by the case of
Too-Big-To-Fail institutions.

Insurance products aiming at protecting against the cost due to the failure of some device
in a system and credit products against the loss due to the default of an institution, are
largely available in the market. Just to show how the model presented in this paper can be
applied for such risk protection purposes, we will analyze two examples: the First-to-default
and the simultaneous system collapse cases.

5.3 First-to-default (failure) product

Let us consider the case of an insurance product paying a lump sum C at the time of
occurrence, by a term T , of the first default (or failure), that is at time Md = min(T1, . . . , Td).
In case of a system composed by d devices serially connected, the risk event covered by the
insurance product is represented by the loss due to the failure of the system. In credit
risk theory, this is the so called first-to-default swap, that is commonly used in the market
practice and that provides a conventional payment for the loss given to the occurrence of
the first credit event among the firms or financial institutions in a basket.

Assuming the model studied in this paper, the first failure can be that of only one element
in the system or that of the whole system. Notice that Md = min(Y0, Z1, . . . , Zd) with
Zj = min(Yj, Xj) and Y0, Z1, . . . , Zd independent. Assuming a constant interest rate r > 0
and a continuously compounding discounting rule, the present value at time 0 of the amount
C paid at time Md is C · e−rMd . The corresponding expected present value is

E
[
C e−rMd1{Md≤T}

]
= C

(
1− e−rT F̄Md

(T )− r
∫ T

0

e−rxF̄Md
(x)dx

)
=

= C

(
1− e−rT F̄Y0(T )

d∏
j=1

F̄Zj(T )− r
∫ T

0

e−rxF̄Y0(x)
d∏
j=1

F̄Zj(x)dx

)
.

In common practice, such contracts provide for a unique premium P paid at the contract
issue time or for a stream of regular premium payments p along the life of the contract
conditional on the non occurrence of the insured event. In case of a unique premium, then
P = CE

[
e−rMd1{Md≤T}

]
. In case of a regular stream of constant premiums p paid at times
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0 = t0 < t1 < . . . < tn < T , we have that, according to the equivalence principle,

E

[
n∑
i=0

pe−rti1{Md>ti}

]
= CE

[
e−rMd1{Md≤T}

]
,

that is

p =
CE

[
e−rMd1{Md≤T}

]∑n
i=0 e

−rtiF̄Md
(ti)

=
C
(

1− e−rT F̄Y0(T )
∏d

j=1 F̄Zj(T )− r
∫ T

0
e−rxF̄Y0(x)

∏d
j=1 F̄Zj(x)dx

)
∑n

i=0 e
−rtiF̄Y0(ti)

∏d
j=1 F̄Zj(ti)

.

Remark 5.1. In the model specification of section 4 one gets, in the case of a unique
premium,

P = CE
[
e−rMd1{Md≤T}

]
= C

(
1− e−rTGλ̂(T )− r

∫ T

0

e−rxGλ̂(x)dx

)
,

where λ̂ =
∑d

j=0 λj = γ0 +
∑d

j=0 ηj and, in the case of a periodical premium payment system,

p = C
1− e−rTGλ̂(T )− r

∫ T
0
e−rxGλ̂(x)dx∑n

i=0 e
−rtiGλ̂(ti)

.

In the exponential case, that is G(x) = e−x, and T integer with ti = i, i = 0, . . . , T − 1, we
recover

P = C
λ̂

r + λ̂

(
1− e−(r+λ̂)T

)
and

p = C
λ̂

r + λ̂

(
1− e−(r+λ̂)

)
,

and in the whole life case, that is T = +∞,

P = C
λ̂

r + λ̂
and p = C

λ̂

r + λ̂

(
1− e−(r+λ̂)

)
.

Notice that P is an increasing function of the maturity T while p doesn’t depend on the
maturity. Moreover, P and p are obviously always increasing functions of the parameter λ̂.

5.4 Simultaneous collapse of the whole system insurance product

Let us consider an insurance type contract against the systemic risk of the simultaneous
collapse of the considered system paying the lump sum C at the time of occurrence, by a
term T , of the simultaneous default (or failure) of all the d components of the system, that
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it at the time S given by (9). Assuming a constant interest rate r > 0 and following the
same reasoning of the first-to-default example, the correspondig expected present value is

E
[
C e−rS1{S≤T}

]
= −C

∫ T

0

e−rxdF̄S(x) = −C
d∑
j=0

∫ T

0

e−rxdHj(x),

where Hj are given by (11), when j = 0, and by (12) when j = 1, . . . , d. Hence, the unique

premium P paid at the issue time can be written as P =
∑d

j=0 Pj, where

Pj = E
[
C e−rS1{S=Yj≤T}

]
= −C

∫ T

0

e−rxdHj(x)

represents the amount of the premium due to the occurrence of j-th systemic shock. In case
of a stream of periodical premiums, following the same computations and notation as in the
First-to-default case, we get

p =
−C

∑d
j=0

∫ T
0
e−rxdHj(x)∑n

i=0 e
−rtiF̄S(ti)

and again this periodical premium can be split in the contributions of each Yj, j = 0, . . . , d,

that is p =
∑d

j=0 pj where

pj =
Pj∑n

i=0 e
−rtiF̄S(ti)

.

From a credit risk perspective, this can be seen as a contract paying the lump sum C in
case of collapse of the whole considered financial system due to the occurrence of a systemic
event causing the simultaneous default of all the names. Above formulas allow to split
the premium in sub-premia: those corresponding to j = 1, . . . , d can be charged to the
corresponding name, while that corresponding to j = 0, being completely exogenous to the
system, can be equally shared by the whole system.

Example 5.1. In the model specification of section 4, in the particular case in which G(t) =
e−t, one gets

P0 = γ0
1− exp(−(r + λ̂)T )

r + λ̂

and, for j = 1, . . . , d,

• Clayton case with parameters βj, j = 1, . . . , d: p0 = P0∑d
j=0

γj

λ̂+λjβj

1−exp(−(r+λ̂+λjβj)T )

1−exp(−(r+λ̂+λjβj))

, Pj =

γj
1−exp(−(r+λ̂+λjβj)T )

r+λ̂+λjβj
, j = 1, . . . , d and pj =

Pj∑d
j=0

γj

λ̂+λjβj

1−exp(−(r+λ̂+λjβj)T )

1−exp(−(r+λ̂+λjβj))

where we have

assumed β0 = 0;
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• Gumbel case with parameter βj, j = 1, . . . , d: p0 =
γ0λ̂(1−exp(−(r+λ̂)))

(r+λ̂)

(
γ0+

∑d
j=1 γj

(
1+

λj
γj

)1−βj
) , Pj =

γj

(
1 +

λj
γj

)1−βj 1−exp(−(r+λ̂)T )

r+λ̂
and pj =

λ̂γj

(
1+

λj
γj

)1−βj
(1−exp(−(r+λ̂)))

(r+λ̂)

(
γ0+

∑d
j=1 γj

(
1+

λj
γj

)1−βj
) .

In Figure 4 we show the plots of the constant and periodical premiums with respect to different
values of the Kendall’s tau associated to the underlying Gumbel survival copulas in the three
cases considered in section 5.1.2: being the resulting model exchangeable, we have P1 = P2

and p1 = p2 and so only P1 and p1 are plotted.
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Figure 4: Plots of the premiums dynamics against the underlying Gumbel dependence in the cases of section
5.1.2. First column: γ1 = γ2 = 0.01; top: P0 (black) and p0 (red); bottom: P1 (black) and p1 (red). Second
column: γ1 = γ2 = 0.1; top: P0 (black) and p0 (red); bottom: P1 (black) and p1 (red). Third column:
γ1 = γ2 = 0.2; top: P0 (black) and p0 (red); bottom: P1 (black) and p1 (red).

5.5 First-to-default-Simutaneous default insurance product

As noticed in section 5.3, the first default can be that of a single element or coincide with
that of the whole system: clearly, the loss due to the two cases is different. Hence, we can
consider the case of a product paying a different lump sum depending on which of the two
events will occur as first. Let C0 be the lamp sum in the case of the collapse of the whole
system, that is the case Md = S, and C that in the case in which only one element in the
system fails (or defaults). As a consequence, the expected present value is

C0E
[
e−rS1{S≤T}

]
+CE

[
e−rMd1{Md 6=S,Md≤T}

]
= CE

[
e−rMd1{Md≤T}

]
+(C0 − C)E

[
e−rS1{S≤T}

]
.
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Using the formulas obtained in sections 5.3 and 5.4, the unique and the periodical premiums
can be calculated following the same approach.

6 Conclusions

In this paper we have introduced a generalization of the Marshall-Olkin distribution in
which a specific non-exchangeable dependence among the underlying shocks arrival times
is assumed. More specifically, we have supposed that each lifetime is the first arrival time
between an idiosyncratic and a systemic shock and that, unlike the standard Marshall-Olkin
model, lifetimes influence each other only through the systemic shock arrival being their
idiosyncratic component dependent on it. The resulting joint distribution is investigated:
its singularity analyzed and its dependence properties studied through the induced survival
copula function, the associated pairwise Kendall’s distribution function and Kendall’s tau
and the conditional hazard rates. Results show that the dependence structure is the composi-
tion of a Marshall-Olkin type dependence and the assumed dependence of each idiosyncratic
component with the systemic shock arrival time. The model is considered for insurance
pricing purposes with a particular focus an a product whose aim is to cover losses due to
the occurrence of the systemic shock: in this case a very useful premium formula is provided
that allows to decompose the premium according to the dependence of each element in the
system with the systemic event.
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