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A B S T R A C T

Mobile crowdsensing (MCS) has become a popular paradigm for data collection in urban environments. In MCS
systems, a crowd supplies sensing information for monitoring phenomena through mobile devices. Depending
on the degree of involvement of users, MCS systems can be participatory, opportunistic or hybrid, which
combines strengths of above approaches. Typically, a large number of participants is required to make a sensing
campaign successful which makes impractical to build and deploy large testbeds to assess the performance of
MCS phases like data collection, user recruitment, and evaluating the quality of information. Simulations offer
a valid alternative. In this paper, we focus on hybrid MCS and extend CrowdSenSim 2.0 in order to support
such systems. Specifically, we propose an algorithm for efficient re-route users that would offer opportunistic
contribution towards the location of sensitive MCS tasks that require participatory-type of sensing contribution.
We implement such design in CrowdSenSim 2.0, which by itself extends the original CrowdSenSim by featuring
a stateful approach to support algorithms where the chronological order of events matters, extensions of the
architectural modules, including an additional system to model urban environments, code refactoring, and
parallel execution of algorithms.
. Introduction

Mobile CrowdSensing (MCS) gained exponential interest in the last
ears and has become one of the most promising paradigms for data
ollection in urban environments within the scope of smart cities [1].
CS systems gather data from sensors typically embedded in citizens’
obile devices, such as smartphones, tablets, and wearables. The num-

er of worldwide smartphones sales is still increasing according to
artner statistics, reaching 1.55 billion units in 2018 [2]. The crowd
nalytics market is projected to reach USD 1 142.5 million by 2021,
aising from USD 385.1 million of 2016 at a compound annual growth
ate of 24.3% [3].

Data acquisition can be either participatory or opportunistic, de-
ending on the degree of involvement of the users in sensing processes.
articipatory sensing systems directly tasks users by specifying a set
f requests, e.g., to record a sound using the microphone [4]. To be
ffective and mitigate the risk of obtaining little contribution, participa-
ory approaches require specific incentive mechanisms and recruitment
olicies [5]. Opportunistic sensing systems do not task users directly

✩ This paper is an extension of Montori et al. (2019).
∗ Corresponding author.
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ndrea.capponi@uni.lu (A. Capponi), luciano.bononi@unibo.it (L. Bononi).

1 In the rest of the paper, we will use the terms users, citizens, and participants interchangeably.

user, but rather the applications themselves are responsible for taking
sensing decisions that are typically context-aware. Hybrid approaches
combine the strengths of both paradigms [6]. A number of applications
in the context of public health monitoring, safety and emergency
can benefit from hybrid schemes [7]. Public health monitoring is
particularly relevant nowadays because of the recent outbreak of the
COVID-19 virus and crowdsensing techniques can help mitigate and
control the rate of diffusion. The concept of hybrid in MCS is also
employed to refer to those systems that mix static sensor networks and
mobility provided by MCS. HySense [8] is one of such frameworks.
Its objective is to leverage the fixed sensing architecture when mobile
nodes contribute too little so to balance sensing opportunities in differ-
ent regions make the resulting data contribution as uniform as possible.
Following a similar principle, the authors of [9] build a multi-sensor
platform to create high-resolution pollution maps.

The success of a MCS campaign typically relies on large participa-
tion of users [10]. Unfortunately, often it is not feasible to develop
testbeds and platforms that involve a multitude of citizens.1 On the one
hand, the cost of recruitment scales with the number of users involved
https://doi.org/10.1016/j.comcom.2020.07.021
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and the amount of data collected. On the other hand, the required time
for setting up a large-scale sensing campaign is prohibitively long. To
this end, simulators offer a valid alternative to assess the performance
of MCS systems in city-wide scenarios with large user participation in
a reasonable time. Specifically, simulators are well-suited to assess and
compare the performance of specific aspects of MCS systems (e.g., the
decision process to sense and report data).

In this work, we focus on hybrid MCS and provide the researchers
in the area with a fundamental tool to assess the performance of such
systems. To this end, we extend CrowdSenSim 2.0 [11] by proposing
an algorithm to efficiently re-route users that would offer opportunistic
contribution towards the location of sensitive MCS tasks that require
participatory-type of sensing contribution. This is achieved by including
a new module in the simulator called Path Changer. CrowdSenSim 2.0
itself extends the architecture of CrowdSenSim [12]. From the original
1.0 version, we kept its core architecture and re-implemented almost
integrally the simulator engine, besides several other improvements. As
a matter of fact, the legacy version of CrowdSenSim can simulate with
a high level of detail MCS systems in urban scenarios and assess the
energy consumption of mobile devices. However, it lacks adaptation
to several MCS sensing paradigms like Hybrid and other applications
that require features such as statefulness and flexible event triggering.
Indeed, as it will be explained in Section 3, the original CrowdSenSim
featured only stateless use cases and was oriented to model network
and energy consumption characteristics rather than algorithmic ones.

With respect to the original CrowdSenSim [12], CrowdSenSim 2.0
makes the following contributions:

1. It significantly improves the original platform by implementing
a set of crucial features tailored to embrace a larger class of MCS
algorithms and frameworks. In a nutshell, CrowdSenSim 2.0
supports stateful simulations (i.e., where the simulation events
are chronologically dependent and the algorithm operation relies
on such dependence), MGRS spatial encoding, a flexible time
interval for event generation, and the integration of a new
algorithm to determine user trajectories.

2. It optimizes the computational performance by means of a full
code refactoring and the introduction of algorithm-level paral-
lelism, which enables researchers to run several MCS algorithms
simultaneously or several runs of the same algorithm at the same
time.

Furthermore, besides the above contributions directly inherent to the
simulation platform, the paper makes these additional contributions:

• We include a new module in CrowdSenSim 2.0 to support hybrid
data collection. Such module enhances the original flow of
the simulator by operating a significant change in terms of the
applications supported.

• We validate the benefits CrowdSenSim 2.0 brings in terms of
runtime execution and memory utilization. We also show the
impact of simulation parameters, such as the city size, the number
of simulated users and the number of path changes, in terms of
time performance.

• We present two use cases: (i) an analysis of a stateful distributed
data collection algorithm implemented in CrowdSenSim 2.0 and
(ii) a new algorithm for hybrid data collection and its validation
evaluated in three different cities.

The rest of the paper is structured as follows. Section 2 outlines
the main research efforts in the area, Section 3 describes the simulator
with particular focus on the improvements, Section 4 validates its
computational performance in comparison to CrowdSenSim, Section 5
describes the distributed data collection algorithm that we integrated,
implementation details of such algorithm, and its results. Section 6
describes a new algorithm for hybrid data collection and shows how our
simulator provides support for such type of data collection. The results
are validated for three different cities, i.e., Luxembourg, Bologna and

Melbourne. Finally, Section 7 concludes the work.
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2. Related works

After having scanned the state-of-the-art thoroughly, it has become
evident that it does not exist a simulation tool that covers all the
components of MCS. This is because MCS is a general paradigm which
groups highly heterogeneous requirements, settings and objectives. For
example, data collection can be opportunistic or participatory accord-
ing to the degree of user involvement. Users might contribute freely
to a sensing campaign or can be recruited through specific policies.
The objectives of MCS research span over a number of areas, including
quality and coverage of information over an area of interest, user
recruitment, and incentive mechanisms [1,13]. Thus, such research
areas typically propose optimization frameworks or algorithms that are
evaluated standalone and often leave apart important components that
impact on the correct modeling. These components include realistic
user mobility [14] and modeling of urban environments [15] as well as
modeling of the network that transfers sensing readings from end-users
to the cloud where it is typically processed.

For the above reasons, a number of proposed simulation platforms
are not suitable to properly evaluate MCS systems because they typi-
cally focus on one component at a time [16]. For example, in [17] the
authors propose to leverage the capabilities of Network Simulator 3
(NS-3) to simulate ad-hoc scenarios for reporting incidents. NS-3 is a
highly detailed simulation tool for networking purposes and models
network protocols down to the granularity of the single packet across
all the layers of the network stack. This strongly limits scalability, as
the level of detail in such simulations is too high and modeling typical
MCS sensing campaigns with thousands of users overall contributing
during hours/days timescale becomes prohibitive. The same applies to
similar simulation tools such as OMNeT++, used in [18]. CupCarbon,
proposed in [19], is a WSN-based simulator in which the researcher can
individually deploy both sensors and base stations on realistic urban
environments obtained from OpenStreetMap (OSM).2 Sensors can be
mobile and can have dedicated paths along the roads, which makes
it suitable for MCS scenarios. However, CupCarbon limits the size of
the scenario, which precludes scalability to thousands of nodes. The
most notable effort in the last years is given by CrowdSenSim [12],
a simulator for MCS scenario capable of supporting a high number
of users (order of hundreds of thousands) and their motion along the
roads of cities imported by OSM without modeling in full the network
stack, yet providing a sufficient level of detail on battery consumption
statistics and number of tasks executed. The focus of the simulator is
heavily energy-driven, implementing a number of algorithms, both in
participatory and opportunistic scenarios, aiming to reduce the energy
consumption per device. Being primarily implemented for energy con-
sumption oriented scenarios, CrowdSenSim lacks adaptability to many
MCS use cases as it does not support a number of features, such as
statefulness, that are required by the majority of MCS systems.

3. The CrowdSenSim 2.0 architecture

This section presents the architecture of CrowdSenSim 2.0 by high-
lighting its novelties over the original CrowdSenSim. In particular, we
detail the architecture of the simulator outlining the role of each mod-
ule and we expose the new features and improvements. We specifically
highlight the novelties that allow CrowdSenSim 2.0 to support hybrid
CrowdSensing data collection, since such novelties bring a significant
conceptual change to the whole architecture compared to the one
presented in [11].

2 https://www.openstreetmap.org/.

https://www.openstreetmap.org/
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Fig. 1. Simulator modular architecture, including original features of CrowdSenSim and novelties of CrowdSenSim 2.0 in its dynamic version.
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.1. General architecture

Fig. 1 shows the architecture of CrowdSenSim 2.0, which includes
ajor modifications and added features to the previous version of
rowdSenSim. In particular, the novel contributions include a stateful
pproach that is fundamental for specific classes of MCS applications,
he support for a more flexible generation of events in terms of temporal
ranularity and other configurable parameters, the MGRS spatial en-
oding, the generation of highly-precise user trajectories and dynamic
ath change to support hybrid MCS scenarios. These features will
e explained in detail throughout the section. Additionally, the code
nderwent a significant code refactoring and cleaning processes.

The simulator generates a set of participants moving within a street
etwork, contributing data through the sensors of their mobile devices,
nd reporting it through the closest cellular base station or WiFi access
oint, according to the design of the MCS campaign. The Event Gen-
rator module consists of creating events, defined as ‘‘the arrival of a
articipant in a given location at a defined time’’. To this end, it takes in
nput the City Layout, the User Mobility, the Coordinates of the Antennas
that can include either/both deployed WiFi access points and LTE/4G
ase stations), and a set of parameters from the Event Configuration file.
fter such a macro step has been performed, the list of events is passed

o the Simulator Engine, which defines the behavior of each participant
pon each event.

The Path Changer module was developed from scratch and inte-
rated with the system by implementing procedures that the other
odules can call. Throughout the simulation, the Path Changer module

llows users change their path at runtime, upon occurrence of certain
onditions. This change alters the list of events, and once is finalized the
imulator Engine resumes its execution using the updates list. Both the
imulator Engine and the Event Generator have been integrally rewritten
o make possible the integration of a set of necessary functionalities,

hich are explained thereafter. c
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.2. City layout

The City Layout module allows researchers to define the urban
treet network of a city-wide scenario over which the participants
ove. The street network is defined as a set of coordinates where
edestrians can be located, including latitude, longitude, and altitude.

.2.1. High-precision street network design
While CrowdSenSim received as input a .txt file with a list of all

oordinates to generate the city layout, CrowdSenSim 2.0 automatically
ets the coordinates by exploiting OSMnx, an open-source Python pack-
ge to download and simplify street networks from OSM [20]. The map
hereby obtained is in a form of a graph describing the street network,
n which each node corresponds roughly to a change of direction in a
treet or to a cross. We refer to such graph as the ‘‘OSM City Layout’’.
urthermore, CrowdSenSim 2.0 implements the AOP algorithm [21] to
ugment the precision of the OSMnx City Layout, with a granularity
hosen according to the needs and the objectives of the MCS campaign
nder study. Fig. 2(a) shows the map of the city layout and the street
etwork where users can walk. Pedestrian movement is generated over
he points, which correspond to the set of downloaded coordinates. This
econd graph is defined as the ‘‘AOP City Layout’’; it is much denser
han the OSMnx one and much more suitable for generating fluidly
obility traces.

.2.2. MGRS support
CrowdSenSim 2.0, in addition, supports Military Grid Reference

ystem (MGRS) spatial encoding [22], which allows the developer to
esign data collection algorithms on top of such hierarchical spatial
ncoding. As a matter of fact, the usage of MGRS is crucial in data
ollection algorithms for MCS and several applications are built on top
f it [23–25]. In particular, each event is generated along with its MGRS

oordinates with the finest possible granularity (a 1 m-sided square
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Fig. 2. City layout, user trajectories and distribution of users connected to BSs in Luxembourg City. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
area) and such data is then passed to the Simulator Engine module for
processing.

3.3. User mobility and event generation

The User Mobility module defines the initial user placement, at what
time they ‘‘spawn’’ in the urban environment and how they move.
Users are generated using a spatial distribution function and move
according to different possible models. For instance, mobility can be
uniformly or randomly distributed, can be based on real traces, or built
upon different weights according to the point of interests and time of
the day (e.g., following the distribution of Google Popular Times3).
Each participant has a certain travel time (e.g., 20 min walk) and its
trajectory is generated consequentially as a sequence of events, defined
in Section 3.1, equally spaced in time. After an event is generated,
the participant jumps to a location over the urban network topology
reachable in a certain time given its walking speed, which is generated
uniformly within the interval 1–1.5 m/s.

3.3.1. User trajectories
User mobility is generated as pedestrian trajectories with a random

start and end point according to the walking period of each citizen
over the street network of the chosen city. This feature allows high-
lighting the periods of active contribution of users along their paths
according to the data collection framework (DCF) under analysis. For
instance, Fig. 2(b) illustrates the trajectories of 5 participants walking
in Luxembourg City and contributing with a Deterministic Distributed
Framework (DDF) [26] in which users stop the sensing process after
a certain amount of collected data. The circle represents the starting
walking point and the star the ending point. The green path indicates
when users contribute data, the purple one when they do not sense
data.

Each user sends data to the closest cellular base station (BS) or WiFi
access point (AP) according to the chosen communication technology.
For instance, Fig. 2(c) shows the concentration of users connected
to each BS in Luxembourg City at a given instance of time of the
simulation runtime. The same concept is reused when a participant
wants to change its path at runtime. In such case, the starting point of
the newly generated path is the GPS coordinate where the participant is
located, whereas the new destination is chosen by the participant itself
(further details in Section 3.5).

3.3.2. Event configuration
In CrowdSenSim 2.0 many options in the generation of events

have been made configurable (see the block ‘‘Event Configuration’’ in
Fig. 1). The distribution function for generating users can be selected

3 https://support.google.com/business/answer/2721884.
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when configuring the simulation, e.g., a normal or uniform distribu-
tion, whereas in the old version users were generated only uniformly.
By selecting among various generation functions, it is now possible
to simulate different density of the users throughout the simulation
runtime. The amount of time each user moves in the urban environment
can be configured like in the original CrowdSenSim. The time interval
𝛥𝑡 between two events has been made configurable as well, while in
CrowdSenSim was fixed to 60 s. This enables to simulate possibly more
complex scenarios, in which the time between updates is not decided
at design time, but can change through configuration. This makes the
number of supported applications significantly higher.

3.4. Simulator engine

The simulator engine is written in C++ and, as shown in Fig. 1, it
takes in input a list of events, corresponding to the time in which users
perform an action. In turn, each event triggers the sampling of each
sensor as well as the communication module of each device because
the Simulator Engine implements an apposite callback function. In
practice, the Simulator Engine defines the behavior of each participant
by implementing the action performed upon each event.

3.4.1. Global statefulness
CrowdSenSim 2.0 executes the events in absolute chronological

order. To make the present CrowdSenSim 2.0 simulator more oriented
to the algorithmic side rather than energy consumption of MCS systems,
we implemented the Simulator Engine in a way in which events are
ordered chronologically, whereas, in the previous version, events were
executed per-participant – i.e., all the events of the first participant
were executed before all the events of the second, and so on – mak-
ing the implementations of certain algorithms unfeasible. In fact, the
original CrowdSenSim could implement any stateless algorithms as
well as any algorithm requiring only local statefulness, i.e., a state
maintained only internally by each participant and does not interact
with other participants in any case. With the novel version of the
simulator presented in this paper, CrowdSenSim 2.0, we can implement
any algorithm with global statefulness, i.e., the state is maintained by
each participant as well as a central entity, and each event can be
influenced by the past ones. Note that this increases the expressiveness
of the simulator without preventing data collection algorithms that
were implementable in the past version to be also implemented in
CrowdSenSim 2.0.

3.4.2. Algorithm-level data collection parallelism
Comparing the performance of multiple algorithms (e.g., for data

collection) at a time is often a desirable feature in simulation platforms.
CrowdSenSim 2.0 makes it possible to run different algorithms within
the same run, simply by defining more than one callback function
relative to each event. More in detail, any time the Simulator Engine

https://support.google.com/business/answer/2721884
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Fig. 3. Examples of the two different types of path change performed by a participant originally going from A to B and, when in A′, decides to head to a new direction C in
order to perform a task. The example takes place in the Italian city of Bologna.
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is triggered upon the occurrence of an event, it is possible to specify
more than one function to be called separately. In this way, it is
possible to define a number of algorithms to run at the same time, that
will output their results separately just as if they were separate runs.
Obviously, one can also run the same algorithm several times in parallel
with a different random seed. Such advance boosts the performance
of the simulator significantly, as in a single run several algorithms
can be tested at the same time. We show performance evaluation of
this aspect in Section 4. As shown in Fig. 1, parameters such as the
algorithms used as well as the number of runs can be specified in the
Simulation Configuration file. The simulator implements DDF, PCS, and
PDA algorithms as in [27], in particular, PDA has been re-designed in
its global stateful version [28] (Section 5). Note that, in order for the
algorithmic-level parallelism to take place, all the different simulation
configurations must observe the same list of events, which means that
the mobility of each user must be unaltered.

3.4.3. Participant awareness
To enable applications and algorithms that require privacy or fine-

grained energy savings mechanisms, CrowdSenSim 2.0 allows the sim-
ulated users to be aware of certain information detained by the cen-
tral entity organizing the sensing campaign. For example, instructions
about the amount of yet to be delivered information in a certain area.
Therefore, users can be in:

• Power-save mode, thus eligible to receive such information
when it is piggybacked on another communication (e.g., when
they are pushing data).

• Active mode, thus eligible to receive such information upon each
of their events occur.

• Oracle mode, thus aware of such information at any time.

When looking at such division from a privacy perspective, users in
power-save mode are those with limited access to global information
because they are not trustworthy, whereas users in oracle mode have
higher privileges. Clearly, the additional state may be implemented in
case the simulated scenario requires it.

3.5. Path changer

The newly added feature for CrowdSenSim 2.0 is the Path Changer.
This additional module allows the participants to alter their trajectory
at runtime upon the occurrence of certain events. The new module
 o
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significantly amplifies the potential of CrowdSenSim 2.0 to support
reactive application and participatory data collection. The main novelty
lies in the fact that the simulated mobile users are enforced with the
capability of actively performing decisions that contribute in the MCS
campaign, such as moving towards a localized task upon occurrence of
a specific event like an accident. This comes at the price of breaking
the usual ‘‘waterfall-like’’ flow of CrowdSenSim 2.0, in which the list
of events is pre-determined. Instead, as it can be observed in Fig. 1,
the execution can revert to the modification of the list of events by the
Path Changer and the new list has to be passed again to the Simulator
Engine.

In detail, the Simulator Engine implements a changeDestina-
ion() function, which can be invoked by a participant by setting a
ew GPS coordinate as a destination. This is translated into a Python
bject through embedding [29], which then invokes the dedicated func-
ion in the Path Changer module. The latter elaborates the path by using
he single source Dijkstra algorithm over the AOP City Layout graph,
y setting the source and the destination to their closest counterparts in
he graph. Alternatively, the OSMnx graph can be used, which allows
or faster execution (the graph is much coarser) at the price of a higher
pproximation. The newly generated list of events is passed on to the
imulator Engine, which then deletes all the events belonging to the
alling participant that are yet to be processed and replaces them with
he new list, respecting the chronological order of the total list of
vents. Such operation is performed in linear time, as all the newly
enerated events as well as the original list remain in chronological
rder.

Fig. 3(b) shows the two types of path change that are implemented:

• Type 1, or simply ‘‘change of direction’’ allows for each partici-
pant to pick a new destination.

• Type 2, or simply ‘‘deviation’’ allows for the user to pick a point
of interest and immediately change its path to first get there and
then, once such point has been reached, head to the original
destination. This results in performing the single-source Dijk-
stra algorithm twice, however only one call to the Path Change
module is performed.

s the use of this module changes the original list of events, the boost
iven by the algorithm level parallelism cannot be used for such type

f simulations.
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4. Performance evaluation

The newly developed CrowdSenSim 2.0 has undergone a complete
code refactoring procedure as detailed in Section 3. Such operation has
been extremely delicate as we needed to assure that every feature of
the original CrowdSenSim was left intact. In other words, the novel
simulator is retro compatible with the previous implementation, to
allow reproduce results regardless of the simulator version used. In this
section, we show that both CrowdSenSim and CrowdSenSim 2.0 exhibit
the same behavior on common use cases and we highlight the benefits
in terms of RAM utilization that the new version brings. Moreover we
quantify the performance of the newly introduced Path Changer module
along with scalability tests that show how the simulator performs by
changing its parameters.

4.1. Validation of CrowdSenSim 2.0 over CrowdSenSim

Both the instances of CrowdSenSim and CrowdSenSim 2.0 that we
used throughout the paper have been launched on a virtual machine
using 1 core of the host machine with 4 GB of dedicated RAM and
unning Ubuntu 16.04.6 LTS. The host machine is an AMD Ryzen 5
600 at 3.2 GHz (6 core, 12 thread) with 16 GB RAM and running
indows 10 Pro 1809.
In order to efficiently validate CrowdSenSim 2.0, we referred to

n energy consumption analysis of the DDF data collection algorithm
riginally proposed in [26] that was implemented and practically eval-
ated in [27]. DDF is a locally stateful data collection algorithm in
hich participants keep on generating data up to a certain threshold of
nergy consumption depending on their battery capacity. For the sake
f energy-related analysis, we left the energy calculation of the original
rowdSenSim untouched. In detail, we equipped each participant with
mobile device carrying an accelerometer, a pressure sensor, and a

emperature sensor. As in [12], the sensors generate readings with the
ame sampling frequency. For all the simulations, we resort to 10 000
articipants in the center of Luxembourg City, which covers an area
f 51.73 km2 with a perimeter of 52.5 km and a population of 119 214
nhabitants as of the end of 2018. The simulation has a duration of 12-h
starting at 12:00 PM and ending at 11:59 PM) and paths are generated
ith a duration uniformly distributed between 20 min and 40 min.

We fed both CrowdSenSim and CrowdSenSim 2.0 with the same set
f events, which are sampled per-participant with a frequency of 60 s.

We ran extensive simulations and measured the current drain of the
evice of each participant in relation to the sensing and reporting ac-
ivity, and we plot the results in Fig. 4. Devices use the WiFi technology
or communication as in [12]: a number of WiFi hotspots are deployed
n the area of interest, and every time a participant needs to transmit
t sends data through the closest AP in the map. We observed that both
rowdSenSim and CrowdSenSim 2.0 generate the exact same values,
hich proves their equivalence in terms of results output.

In order to further strengthen our claim, we also compared the
ransmission consumption between the two simulators. As we did for
he sensors, we did not modify the way in which participants transmit
ata. Again the values produced by the two simulators match perfectly,
alidating their equivalence.

.2. Performance analysis of runtime execution and memory utilization

The code refactoring and the parallel processing feature brought a
ignificant boost in the simulation performance in terms of the time of
xecution and memory consumption.

Fig. 5 shows the simulator runtime in seconds on top of the number
f algorithms run. Even in one single run, CrowdSenSim 2.0 achieves
lower run time than CrowdSenSim (7 s in average against 8 s). Fur-

hermore, as CrowdSenSim 2.0 allows for multiple algorithms to run in
arallel — or multiple runs of the same algorithm, the time execution
emains almost constant whereas in the original CrowdSenSim it scales
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Fig. 4. Density of the energy consumed by participants with CrowdSenSim and
CrowdSenSim 2.0.

Fig. 5. Runtime execution of DDF with multiple runs.

Fig. 6. Performance of CrowdSenSim and CrowdSenSim 2.0 in terms of RAM
consumption.

linearly. Indeed, to perform multiple runs, the original CrowdSenSim

needs to be launched several times sequentially.

Fig. 6 shows in boxplot form the performance of CrowdSenSim and

CrowdSenSim 2.0 in terms of RAM consumption. For a fair comparison,

we used only one algorithm at a time. CrowdSenSim 2.0 outperforms

CrowdSenSim significantly. This is due to several code optimizations,

such as the use of integers as identifiers instead of strings.
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Fig. 7. Performance of the Path Changer. In (a), plot of simulation time by changing the probability of event changes. In (b), plot of the time needed by the event generation
phase and simulation time for the same city (Luxembourg city) while varying the total number of users in the simulation.
Fig. 8. Map building, Event generation and Simulation times for 6 cities in different continents.
Table 1
General information about the cities taken into account for the scalability test.

Caracas Toronto Melbourne Paris Tokyo Cape town

Surface (km2) 4715 5906 9943 17,174 14,034 400
Population (in millions) ∼2.25 ∼6.42 ∼5.08 ∼12.53 ∼38.14 ∼4.01

4.3. Performance analysis of path changer and scalability tests

The benefit of supporting hybrid CrowdSensing scenarios comes at
the cost of slowing down the whole simulation process. Indeed, the
Path Changer module breaks the usual simulator flow and requires a
communication pipe between a C++ module and a Python module as
well as individual re-instantiation of shortest path calculations. We now
quantify the execution delay in the presence of a massive amount of
path changes.

The test is performed in the city of Luxembourg, the number of
participants is lowered to 1000 and the duration of the simulation is
reduced to 2 h. The sampling frequency is tuned to 10 s, therefore
bringing the total amount of events above 150 000. We ran several simu-
lations in which participants change direction with a given probability
for each event. The destination of the path change is kept the same
as the original, as defining a new one would not be meaningful to a
performance evaluation test. The shortest path calculation is executed
through the use of the OSMnx City Layout, which has 35,548 nodes.

Fig. 7(a) shows the obtained time execution performance. On the
𝑥-axis the probability for each event of generating a path change spans
from 0% (no change) to a maximum of 1%, which translates in roughly
1500 changes. The two curves represent the time in seconds taken
for executing a full simulation either with a Type 1 or a Type 2
path change. As the Type 2 path change almost doubles the execution
time, we can state that a large part of the execution is devoted to the

shortest path invocation (as no real change happens in the mobility).
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We also observe that a high number of Type 2 path changes pushes the
simulation time to less than 40 min, which is well below the simulated
time, also bearing in mind that such a high number of changes is
unlikely to happen in a realistic scenario.

In order to complement the performance test shown in Fig. 7(a),
we ran further experiments to show the scalability of the simulator,
specifically quantifying its behavior by changing (i) the number of
users and (ii) the size of the map. Fig. 7(b) shows the performance
in time of the simulator by varying the number of users. We used the
same configuration as above: the simulation takes place in the city of
Luxembourg, we fixed the number of Type 1 path changes to 25, the
duration of the simulation to 2 h and increase the number of users by
a factor 10 starting from a total of 10 to 100,000. The axes in the
figure are represented in logarithmic scale and show the time taken
by the simulator to generate the events as well as the duration of the
actual simulation. Both of them display a linear increase, which is easily
deducible by the architecture of the simulator. Fig. 8 shows instead the
performance of the simulator by changing the size and the structure of
the city taken into account. With respect to the previous tests, we still
kept the number of path changes fixed to 25 and the number of users
to 1000, while we changed the city and the radius of the map extracted
from its center. In particular, we used one representative city for each
continent and ran simulations over areas with a radius of 2.0 km, 3.5 km
and 5.0 km. Table 1 reports the actual size of the metropolitan area of
each city and its population as of the latest reports available. For a
fair comparison, we extracted the following features: the time needed
for downloading the map and running the AOP algorithm (the ‘‘Map’’
time), the time for computing the generation of the events (the ‘‘Events
generation’’ time) and the actual simulation time (the ‘‘Simulation’’
time). These are stacked in bars in the figure, quantifying also the total
time taken. In general, we can observe how enlarging the area increases
mostly the map time with a linear trend, the event generation time is
minimally affected and the simulation time is almost the same. Some of
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the cities, like Toronto and Melbourne, tend to present a small increase
in duration when extending the radius from 2.0 km to 3.5 km compared
to its absolute duration when the radius is 2.0 km. This happens even
though the area considered is more than doubled, reason being most of
the streets (and, consequently, nodes) are grouped in the very center,
which is far denser than the outskirts. This difference is less noticeable
in cities like Caracas and Tokyo.

5. Case study: a stateful distributed opportunistic algorithm

In this section, we outline our Asymptotic Opportunistic algorithm
for Joint Fairness and Satisfaction index (AO-JFS) that was initially
proposed in [28] along with its simplified versions AO-F and AO-S. Both
variants are implemented in CrowdSenSim 2.0 as members of a family
of algorithms called Probabilistic Distributed Algorithms (PDA) [27].
Originally, performance evaluation was conducted using an ad-hoc
simulator. The algorithm has been designed for data collection control,
that is, preventing the whole scenario from generating too much or
excessively less data. Too less data would result in a poor mapping of
a phenomenon on an urban (or rural) environment, whereas too much
data may result in too much noise to get rid of as well as an unbearable
amount of users to reward for data that is much more than required
and, consequently, an unnecessary energy consumption. We model such
scenario in a push-based and totally anonymous distributed algorithm
in which the central entity has no direct control over the single users –
i.e., it cannot specifically query users about certain resources – neither
it has knowledge of where the users are and how many of them
are contributing. Participants can contribute pushing their data at a
defined frequency to the central entity, which will only reply with a
Satisfaction Index (𝑆𝐼), a number that resembles how much the server
is ‘‘satisfied’’ about the number of observations received in a defined
time window about a resource. Consequentially, participants decide
with a probabilistic distribution whether to contribute or not at the
following time slot on top of the received 𝑆𝐼 : if the satisfaction is low,
they are pushed to contribute more, if it is high, their contribution is
discouraged.

A similar version of such algorithm was implemented in the orig-
inal CrowdSenSim [27] and called PDA, although CrowdSenSim 2.0
for its stateful approach would have been required to assess AO-JFS
properly. Indeed, AO-JFS requires the central entity to be aware of
all data delivered by the participants at each instant of time in order
to correctly calculate the 𝑆𝐼 . With the original CrowdSenSim, each
participant executes all its events completely before the events of
another participant can take place. Hence, the chronological order of
the events is not enforced. Therefore, CrowdSenSim 2.0 with its stateful
approach is necessary for any MCS algorithm that heavily depends on
the chronological sequence of the events. In the rest of the section, we
will outline in detail the behavior of AO-JFS.

5.1. AO-JFS core idea

We can model the problem as 𝑁 different stations (we use the terms
stations, users, and participants interchangeably) that adhere to the
MCS campaign and perform observations against a given phenomenon.
Such number 𝑁 can vary over time due to mobility, in particular,
participants may leave the interested area, whereas new ones may join
it. We assume to split our timeline in time slices 𝛥𝑡𝑖, that represent
the atomic units during which a station cannot transmit more than
once due to internal clocks. We also assume that the stations will send
observations relative to 𝜈 certain resources 𝛹0,… , 𝛹𝜈 periodically. The
entral entity’s goal is to obtain exactly 𝑀𝑗 observations about 𝛹𝑗 for
∈ [0, 𝜈] within every time window 𝑇𝑖, the length of which is given

y |𝑇 | = 𝑤. We follow the approach of the sliding window, thus
𝑖 = {𝛥𝑡𝑖−𝑤,… , 𝛥𝑡𝑖}, this means that 𝑇𝑖 and 𝑇𝑖−1 are overlapping by
−1 time slots. The central entity displays the performances of the data

ollection process through the above-cited 𝑆𝐼 . Such value is calculated
 𝑓
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Fig. 9. Base probability plus different booster values.

upon each time window 𝑇𝑖 and it is defined as 𝑆𝐼𝑖,𝑗 =
𝑚𝑖 ,𝑗
𝑀𝑗

, where 𝑚𝑖,𝑗 is
he actual number of observations received by the central entity within
𝑖 for the resource 𝛹𝑗 . The aim of the central entity is to obtain a 𝑆𝐼

equal to 1 for each resource.
We assume that each participant knows the 𝑆𝐼 values at all times

i.e., the central entity broadcasts the 𝑆𝐼 constantly) and, for each
tomic time slot, performs a decision of whether to send or not the
ocal measurement of the sensor (for each resource). In detail, at the
ime 𝛥𝑡𝑖+1, each participant calculates a probability of sending the
easurement relative to the sensor 𝛹𝑗 that is basically the inverse of

he received 𝑆𝐼𝑖,𝑗 , therefore 𝑃𝑖,𝑗 = 1 − 𝐶𝑆𝐼𝑖−1,𝑗 with 𝐶𝑆𝐼𝑖, 𝑗 being the
Constrained Satisfaction Index:

𝐶𝑆𝐼𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜖 if 𝑆𝐼𝑖,𝑗 < 𝜖,
1 − 𝜖 if 𝑆𝐼𝑖,𝑗 > 1 − 𝜖,
𝑆𝐼𝑖,𝑗 otherwise,

(1)

ith 𝜖 being a very small number (in our case 0.001). This forces the
𝐼 to range from a very small number close to 0 to a number close to
for the purpose of probability calculation.

.2. Boosting runtime execution

To prevent contributions to stabilize at a too low or too high 𝑆𝐼 , we
ntroduced boosters for the probability calculation. We define a booster
s an exponent 𝐸 to which we elevate the 𝐶𝑆𝐼 in the probability
alculation: 𝑃𝑖,𝑗 = 1 − 𝐶𝑆𝐼𝐸𝑖−1,𝑗 . Fig. 9 shows the probability curve for
ifferent values of 𝐸 (the central straight line is obviously for 𝐸 = 1).
pecifically, we introduce an overall booster value 𝑏𝑗 and an individual
alue 𝑘𝑗 per sensor.

Suppose the aim is to maintain 𝑆𝐼 in the range 𝑆𝐼 ∈ [⊓𝑆𝐼 ;⊔𝑆𝐼 ],
here the bounds are, for example, set as 0.95 and 1.15. Then ∀𝑖, 𝑗, if
𝐼𝑖,𝑗 > ⊓𝑆𝐼 then 𝑏𝑗 = 𝑑𝑒𝑐(𝑏𝑗 ), whereas if 𝑆𝐼𝑖,𝑗 < ⊔𝑆𝐼 then 𝑏𝑗 = 𝑖𝑛𝑐(𝑏𝑗 )
ith:

𝑛𝑐(𝑏) =
{ 1

(1∕𝑏)−1 if 𝑏 < 1,
𝑏 + 1 otherwise.

(2)

𝑑𝑒𝑐(𝑏) =
{𝑏 − 1 if 𝑏 > 1,

1
(1∕𝑏)+1 otherwise. (3)

𝑘 is the attempting factor, calculated individually by each station on
top of the received 𝑏 as

𝑘𝑗 =
{

⌊log2(𝜂)⌋ if 𝑏𝑗 < 1,
𝜂 ⋅ 𝑏𝑗 if 𝑏𝑗 ≥ 1,

(4)

where 𝜂 > 0 is the number of 𝛥𝑡𝑖 slots elapsed since the last transmis-
sion. In the end, the probability is calculated as

𝑃𝑖,𝑗 = 1 − 𝐶𝑆𝐼 𝑖𝑛𝑐
𝑘(𝑏)

𝑖−1,𝑗 . (5)

Note that the term 𝑓 𝑛(𝑥) indicates the iterative composition as 𝑓 𝑛(𝑥) =
◦𝑓 𝑛−1(𝑥).
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Fig. 10. Number of active users 𝑁 over time for 3 different values of generated users
(𝐺 = 2500, 𝐺 = 5000, 𝐺 = 10 000).

5.3. Implementation and testing of AO-JFS

We outline how to integrate the AO-JFS algorithm (Section 5) with
CrowdSenSim 2.0. AO-JFS is a distributed algorithm where the active
part is given by the participants and the central entity is only ‘‘reac-
tive’’. In more details, each event generated by the event generator on
the map triggers an action by a participant. Since events are processed
in chronological order, each of them depends on the sequence of
events previously occurred. Thus CrowdSenSim 2.0 can be employed
for its analysis. We implemented AO-JFS only in Active Mode, which
means that each participant receives information about the status of
the SI once every time slot 𝛥𝑡. Upon the occurrence of an event, each
participant at time slot 𝑡𝑖 (for each sensor 𝑗, with 𝑗 ∈ [0, 𝜈]):

1. Retrieves the known value of the 𝑆𝐼𝑖,𝑗 and transform it to
a 𝐶𝑆𝐼𝑖,𝑗 for the purpose of the probability calculation using
Eq. (1).

2. Retrieves the known value of the global booster 𝑏.
3. Sets the local attempting factor 𝑘 using Eq. (4).
4. Calculates the actual probability 𝑃𝑖,𝑗 to send the observation for

the resource 𝛹𝑗 using Eq. (5).

Therefore, events for an AO-JFS simulation are merely the instants
n which a participant decides whether to send observations or not.

hen all the events for 𝑡𝑖 occurred, then the values of the 𝑆𝐼 are
updated before taking into account the next time slot. The Path Changer
module is not used in this algorithm, as users are contributing oppor-
tunistically and do not actively perform decisions. On the contrary, we
make use of the algorithm-level parallelism in this use case.

Our implementation of AO-JFS is evaluated for 2 h long simulations
in the center of Luxembourg City. Parallelism is used to test 50 runs of
AO-JFS at the same time, each of them using a different random seed.
𝛥𝑡 is set to 10 s and 𝑤 = 30, therefore the time window 𝑇 is 5 min.
We set 𝜈 = 3, in particular, we used the three sensors mentioned in
Section 4 as our resources, and fixed the desired amount of observations
as 𝑀1 = 7500,𝑀2 = 5000,𝑀3 = 2500. We generated users using a
niform distribution and set the total number 𝐺 as 2500, 5000 and
0 000. Fig. 10 shows the number of active users 𝑁 over time. As the
istribution is uniform, 𝑁 tends to reach a steady state after an initial
ransient.

Fig. 11 shows the results of the simulations. In particular, the values
f the 𝑆𝐼 for the three sensors 𝛹1, 𝛹2, and 𝛹3 are shown for each
onfiguration in the form of a Probability Distribution Function (PDF)
n which the data points are the value of the 𝑆𝐼 sampled each 𝛥𝑡.
or each sensor, the 𝑆𝐼 value stabilizes around 1, which is the goal
f AO-JFS. In more details, Fig. 11(b) shows the behavior of the 𝑆𝐼
t 𝐺 = 5000, with the number of active users over time 𝑁 floating

round 1 200. This number is in a good balance with the number of
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equired observations, in fact the 𝑆𝐼 value for all the sensors tends to
luster almost regularly around 1. Fig. 11(c) shows the behavior of the
𝐼 with 𝐺 = 10 000, with 𝑁 settling around 2300. This number is very
igh in comparison to the number of required measurements. Therefore
he effort of AO-JFS is in limiting the number of contributions by the
articipants. This is even more evident for 𝛹3, the resource for which
he fewer contributions are needed, as the respective 𝑆𝐼 values tend to
luster at a slightly higher value (i.e., around 1.1). On the other hand,
ig. 11(a) shows the 𝑆𝐼 for 𝐺 = 2500 and, consequently, 𝑁 floating
round 500, which is a low number in comparison to the contribution
equired. Although the behavior of the 𝑆𝐼 is quite similar to the other
lots, we can appreciate a slight difference for 𝛹3, as its values are more
pread. This is due to 𝑏 being quite high: as the participants are pushed
o contribute more, the probability curve gets very high for most of the
𝑆𝐼 values in input and causes more likely peaks and troughs in the
ontribution over time.

. Case study: a stateful task-based hybrid algorithm

This section shows the potential of CrowdSenSim 2.0 in supporting
ybrid data collection campaigns by implementing a policy that allows
o both capture a phenomenon through opportunistic data collection as
ell as sporadic events through participatory data collection. Without

oss of generality, in this section we term tasks the latter and assume
hat opportunistic data collection occurs in the background through
O-JFS. We implement hybrid collection by allowing the users to be
otified by some important events occurred in the vicinity and allow
hem to change their mind at runtime by deviating from the initial
rajectory to move close to the location of the event. Please note
hat acceptance to deviate from the original trajectory is expressed
robabilistically to capture the fact that only part of the population
ould be willing to do so. We call such hybrid scheme HTA (Hybrid
ask Accomplishment).

.1. HTA core idea

The scenario works as follows: we assume an urban scenario in
hich users walk along their pre-defined routes. We also assume that
ach of such users is provided with a mobile application able to notify
hem whenever a task occurs – for simplicity, tasks are assumed to be
udden events that cannot be inferred beforehand – together with their
ocation and their duration in time. In order to perform a task, it is
ufficient for a participant to be at some point in the coverage area
f the task, without the constraint of lingering there for a minimum
mount of time. We make this assumption as it does not weakens our
valuation and realistically it is enough for the user to perform the
ction needed, e.g., to shoot a picture.

When a task appears all the users in the city are notified of its
resence and can freely decide whether to go and perform it, which
ranslates in deviating from their path in order to cross the area of
he task. Mathematically, a task is a tuple 𝑇𝑖 = ⟨𝑙𝑎𝑡𝑖, 𝑙𝑜𝑛𝑖, 𝑟𝑖, 𝑠𝑡𝑎𝑟𝑡𝑖, 𝑒𝑛𝑑𝑖⟩,
here 𝑙𝑎𝑡 is its latitude, 𝑙𝑜𝑛 is its longitude, 𝑟 is the radius of the area
ertaining the task, 𝑠𝑡𝑎𝑟𝑡 is the starting time and 𝑒𝑛𝑑 is its ending
ime. A participant can be represented in each moment as 𝑃𝑗 =
𝑙𝑎𝑡𝑗 , 𝑙𝑜𝑛𝑗 , 𝑙𝑎𝑡𝑓 , 𝑙𝑜𝑛𝑓 ⟩, where 𝑙𝑎𝑡𝑗 , 𝑙𝑜𝑛𝑗 are its position and 𝑙𝑎𝑡𝑓 , 𝑙𝑜𝑛𝑓 are
ts destination. When the task is generated the user is notified and,
ssuming that 𝑙𝑎𝑡′𝑖 , 𝑙𝑜𝑛

′
𝑖 are the coordinates of the point closest to the

articipant within the area of the task, then we model the probability
f the participant to go there (and then go to its original destination)
s inversely proportional to the amount of time spent to perform the
ask in addition to its normal path. Formally, we define the function
(𝑙𝑎𝑡1, 𝑙𝑜𝑛1, 𝑙𝑎𝑡2, 𝑙𝑜𝑛2) to output the estimated time to go from the

location (𝑙𝑎𝑡1, 𝑙𝑜𝑛1) to (𝑙𝑎𝑡2, 𝑙𝑜𝑛2). Then we model the probability 𝑃 for
the participant 𝑃𝑗 to perform task 𝑇𝑖 as:

𝑃 = 1−
𝐸(𝑙𝑎𝑡𝑗 , 𝑙𝑜𝑛𝑗 , 𝑙𝑎𝑡′𝑖 , 𝑙𝑜𝑛

′
𝑖) + 𝐸(𝑙𝑎𝑡′𝑖 , 𝑙𝑜𝑛

′
𝑖 , 𝑙𝑎𝑡𝑓 , 𝑙𝑜𝑛𝑓 ) − 𝐸(𝑙𝑎𝑡𝑗 , 𝑙𝑜𝑛𝑗 , 𝑙𝑎𝑡𝑓 , 𝑙𝑜𝑛𝑓 ) , (6)
𝑇𝑀𝐴𝑋
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Fig. 11. PDF of the SI for the three sensors for different values of 𝐺.
Fig. 12. Street networks used for the evaluation of HTA, together with the shapes of the 1 km-sided MGRS squares.
Fig. 13. Number of users in the task area per minute over the simulation. The task on the left is close to the city center, while the task on the right is in the outskirts.
here 𝑇𝑀𝐴𝑋 is the maximum amount of time that a person would
realistically spend to perform a task. The calculation of such probability
is obviously subject to

𝐸(𝑙𝑎𝑡𝑗 , 𝑙𝑜𝑛𝑗 , 𝑙𝑎𝑡′𝑖 , 𝑙𝑜𝑛
′
𝑖) ≤ 𝑡 − 𝑒𝑛𝑑𝑖, (7)

here 𝑡 is the current time. We intentionally formulate 𝑃 is fairly sim-
le way. Indeed, modeling as realistically as possible the user behavior
s beyond the scope of this paper as it would require sociologically stud-
es. Our point is rather different: we aim to prove that CrowdSenSim 2.0
an support the simulation of such scenarios and we let the adopters of
ur simulator to specifically define a correct mathematical formulation
n line with the problem definition.

.2. Implementation and testing of HTA

We implemented HTA in CrowdSenSim 2.0 by modifying the defi-
ition of a task to be MGRS-based (which provides simultaneously the
otion of location and area), therefore 𝑇𝑖 = ⟨𝑀𝐺𝑅𝑆𝑖, 𝑠𝑡𝑎𝑟𝑡𝑖, 𝑒𝑛𝑑𝑖⟩ and,
or simplicity, participants calculate their distance to the center of the
GRS square. The predicted time calculated by the function 𝐸() has
234
Fig. 14. Bar plots on the number of users in an MGRS square containing a task while
the task is active, averaged over the number of tasks.

been implemented by interfacing the simulator with a local deployment
of OSRM [30], which is a REST-based service that takes input a pair of
coordinates through an HTTP GET request and outputs the time and
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Fig. 15. Heatmaps showing the density of the users, sampled by 100 m-sided MGRS squares, and the accomplishment of the tasks through the sizes of red (with HTA) and black
(without HTA) circles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the distance to get from the first point to the second (optionally gives
all the streets crossed through the path). In order to evaluate the HTA
algorithm, in line with the evaluation of AO-JFS (Section 5.3), we ran
2-h long simulations, this time in different cities, as the street network
of differently shaped cities may affect significantly features related to
mobility such as rerouting [31]. In particular, we chose, alongside with
the already cited city center of Luxembourg 12(b), the city centers of
Bologna 12(a) and Melbourne 12(c).

Besides presenting the street networks employed, Fig. 12 also shows
the shapes of all the 1 km-sided MGRS squares in the area, which gives
also a flavor of its size. All the simulations feature 10 000 participants
running by default AO-JFS with the same parameters specified in
Section 5.3. In addition, each user can run HTA on top of AO-JFS
and, therefore, make use of the Path Changer module described in
Section 3.5. For HTA, we set 𝑇𝑀𝐴𝑋 to 30 min and deployed randomly
a set of tasks throughout the simulation. Each task is assigned to the
center of a 100 m-sided MGRS square, has a duration of 30 min and is
generated randomly once for each city.

For each set of tasks we performed 20 simulations (without
algorithm-level parallelism) with and without HTA to evaluate the level
of task accomplishment, i.e., how many users have contributed data for
it. We performed two sets of simulations for each city, one with 2 tasks
and the other with 10 tasks.

Fig. 13 shows for the first set the results for each isolated task
where each plot depicts the behavior of the two tasks. The first one
is generated at the beginning of the simulation close to the city center,
the other towards the end of the simulation and in the outskirts. The
tasks are enough distant in time to let the simulation revert back to
a steady state between the end of the first and the beginning of the
second. We compare the number of users performing the task within
the MGRS area coverage at a minute-level granularity. As expected,
HTA allows for a higher number of participants per task with respect
to the solely opportunistic approach AO-JFS. We note that three cities
share a similar behavior: tasks in the city center have higher chances of
augmenting the participation through HTA than tasks in the periphery.
Besides the actual scale, the trend is interesting because the three
cities have a different urban tissue which suggests that the re-direction
principle could be re-used effectively across different cities.

We notice similar results in Fig. 14. The plot is the result of a sim-
ulation with 10 tasks randomly over the three cities and the individual
result is the average amount of participants within MGRS task coverage
for the participatory tasks with and without HTA. The bars show the
mean and the standard deviation values over 20 simulations. The trend
for Luxembourg City and Bologna is quite similar compared to their
size, whereas Melbourne shows lower numbers. This happens because
the whole city center of Melbourne is in a grid-shape and streets are
spread quite evenly, causing users to be more distributed and less likely
to be close to a task.

Fig. 15 shows further results about this set of simulations with
geographical overlays over the three different cities. Specifically, we
 C
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colored in a scale from white to blue all the 100 m-sided MGRS squares
according to the number of users within such square that contribute
to the opportunistic sensing campaign. The results are averaged by
the number of simulations and, since at this level of representation
differences are almost unnoticeable, we also averaged the results be-
tween the configurations with and without HTA to show how users are
distributed at a macro-level in the street networks. The second overlay
shows the tasks depicted as circles, i.e., the center of the 100 m-sided
MGRS square that provides the coverage area of the task. The size of the
circle corresponds to the number of users that contributed to the task
when it was active (red and black for HTA-enabled and HTA-disabled
respectively). Obviously, red circles are always equal or bigger than the
black circles (where circles are equal, the red one is not visible). The
figure shows how the street network influences the accomplishment of
the tasks: in Luxembourg, users are dense in the center and get sparser
in the outskirts, in fact, tasks in the city center, unlike the ones in
the outskirts, show little gain for HTA; on the other hand, Melbourne,
being in a grid-shape and hosting a much higher number of streets in
a smaller area, shows an evener distribution of users, in fact, tasks get
a similar gain of accomplishment due to HTA. Bologna behaves in a
fuzzier way: this could be associated with its size, much bigger and
less dense than the other two, and its irregularity.

7. Conclusions

This paper presents CrowdSenSim 2.04 and its support for hybrid
obile crowdsensing data collection mechanisms. CrowdSenSim 2.0

xtends with major advances the existing CrowdSenSim platform for
imulations of MCS activities in realistic urban environments. Crowd-
enSim 2.0 exhibits three main novel aspects. First, the simulator
eatures a stateful approach that enforces all events to be executed
n chronological order with a higher fine-grained temporal resolution.
econd, it features two models to generate the city layouts over re-
listic street networks where users move, based on the popular OSM
nd the Military Grid Reference System. Third, the simulator supports
hanges in user trajectories during runtime, which is a fundamental
rerequisite for hybrid data collection. In a nutshell, other advances
nclude extensions of the architectural modules, code refactoring, and
lgorithms’ parallel execution that boost performance by making sig-
ificantly lower the runtime execution and memory utilization. This
learly enables the simulation of larger scale scenarios, which is of
aramount importance for research in MCS.

We demonstrate that when feeding CrowdSenSim 2.0 and the origi-
al CrowdSenSim with the same list of events, they perform identically
n terms of mobile device energy consumed for sensing and reporting,
hus making CrowdSenSim 2.0 compatible with previous studies. We
alidate CrowdSenSim 2.0 with two use cases. First, we showcase the

4 We make publicly available all the source files and scripts of
rowdSenSim 2.0 under https://crowdsensim.gforge.uni.lu/download.html.

https://crowdsensim.gforge.uni.lu/download.html
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performance evaluation of a distributed opportunistic algorithm for
data collection that shows how the stateful approach is fundamen-
tal for specific applications. Second, we show the support to hybrid
crowdsensing by developing and validating HTA, an algorithm that
re-routes users offering opportunistic contribution towards the loca-
tion of sensitive MCS tasks that require participatory-type of sensing
contribution.
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