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Research Highlights (Required)

o A semi-supervised activity recognition approach able to identify unknown activity classes.

Approach designed to deal with small-sample set scenarios with limited amount of training data.

Approach based on affinity propagation clustering able to automatically identify the number of clusters.

Results on public datasets confirm the efficacy of the proposed approach.
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ABSTRACT

A semi-supervised activity recognition system is here proposed to deal with partially labeled video-se-
quences, where the uncertainty in the data comes from two different factors: only a subset of the data
has a class label assigned and only part of the activity classes are known. In particular, the paper
presents ActivityExplorer, an approach able to identify clusters of similar activity patterns within the
dataset and to identify those clusters that might correspond to new activity classes, still unknown to
the recognition system. These capabilities are realized thanks to a combination of metric learning,
used to determine a suitable subspace for pattern classification, an advanced clustering technique and
ad hoc indicators defined to estimate the membership of each pattern to known classes and possibly

identify new activities.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction and related works

Human action recognition (HAR) is a topical issue in the de-
velopment of vision systems, due to its numerous applications
such as video-surveillance, robotics, instructional video analy-
sis (Tang et al.| (2020a))) or ambient assisted living, just to men-
tion a few. HAR recognition has been widely studied in the past
years and a variety of techniques for activity detection or recog-
nition have been proposed in the literature. Interested readers
can refer to the recent survey by Minh Dang et al.| (2020) for an
overview of the state-of-the-art. This work is motivated by the
observation that many works in the literature deal with a sort
of “closed-set” scenario, where all the activities of interest are
known to the system whose only task is therefore limited to as-
sign one of the known class labels to newly incoming data. This
assumption is of course a great limitation to the potentialities of
HAR systems which would gain a much more significant role
if they were able to autonomously identify also unknown but
repeatedly observed activity patterns. Approaches of this kind
are usually defined semi-supervised, since they are able to deal
with a partially labeled dataset of activity patterns in the hy-
pothesis that only a subset of the existing activities is known to
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the system. This assumption is much more feasible in real en-
vironments where manually labeling data is very expensive, te-
dious and time consuming. Whereas the availability of labeled
data is very limited, a huge amount of unlabeled data can easily
be acquired by a hypothetical continuous monitoring system.
Such unlabeled data usually neglected by most approaches, can
be successfully by continuous learning strategies, such as incre-
mental template updating approaches (Franco et al.| (2020b)),
aimed at improving the known activities representation, or un-
known activity discovery techniques; the authors of (Chen et al.
(2020) show another interesting use of unlabeled data as aux-
iliary data exploited to better deal with spatio-temporal varia-
tions.

The problem of unsupervised and semi-supervised activity
recognition has been addressed by some works in the litera-
ture. Driven by the increased popularity and widespread dif-
fusion of wearable devices with different sensing capabilities,
most of the relevant approaches are based on the analysis of
signals obtained through low-level sensors which provide sim-
pler and easily manageable data. Smartphones are certainly the
most studied devices. In|Lu et al.|(2017) accelerometer data are
encoded by nineteen features used to construct a graph-based
representation; clustering is then proposed for activity discov-
ery. Accelerometer and gyroscope data are used by the authors
of Kwon et al.| (2014) who combine features from time and
frequency domains to represent the signals acquired by smart-



phones; in [Li et al.| (2014) different approaches are compared
for unsupervised feature learning from accelerometer and gyro-
scope data. In this case Gaussian mixture models and clustering
are used for unsupervised learning. Other sensing devices have
also been explored, such as wearable wrist bands in Bai et al.
(2019), inertial ring and bracelet in [Moschetti et al.| (2017) or
other inertial sensors at different body parts in [Trabelsi et al.
(2013). A combination of different environmental sensors, as
well as information about interaction with objects are exploited
by [Riboni et al.| (2016)) to derive semantic correlations among
activities and sensor events. Our work, however, focuses on
vision-based approaches for activity recognition (Beddiar et al.
(2020)) where the explicit interaction of users with acquisition
devices is not necessary. Recently, some approaches based on
RGB video sequences and deep learning techniques have been
proposed to deal with large scale open-set activity recognition
(Gutoski et al.|(2020) and [Yu et al.| (2020)), action prediction
from incomplete sequences |Chen et al.| (2021) or group ac-
tivity recognition (Tang et al.| (2019) and Tang et al.| (2020b))
with interesting results. However, the adoption of deep learning
techniques requires a huge amount of training data, not always
available in a small-scale problem, an home environment for
instance, where few users and few activity samples per user are
generally available. In this scenario, we believe that also “tra-
ditional” computer vision techniques can achieve good results
and real time processing capabilities even with limited compu-
tational power.

Many other approaches for activity recognition exploit RGB-
D sensors (see for instance [Wang et al.| (2018)) and [Jaeyong
Sung et al.|(2012)) able to capture multiple data streams (RGB,
depth images, skeleton data), thus enabling the development of
multi-modal approaches (Ehatisham-Ul-Haq et al.[(2019), [Thi-
anle et al.| (2020), [Franco et al.|(2020a)). In this context, a few
works deal with unsupervised learning. |Ong et al| (2013)) ex-
ploit skeleton data extracted by RGB-D sensors for human ac-
tivity detection using a K-means clustering approach. In [Fer-
nando et al.| (2017) an approach aimed at matching the same
activity sequence in different videos is provided, with the pe-
culiarity of not exploiting supervision to identify such video
segments. The approach is based on an unsupervised tempo-
ral encoding method and exploits the temporal consistency in
human actions. An approach based on skeleton is proposed in
Su et al.|(2020) where an encoder-decoder recurrent neural net-
work is used to cluster similar movements into the same cluster
and distinct movements into distant clusters.

The main focus of this paper is on semi-supervised activity
recognition in uncertain conditions where only a subset of the
data is labeled and only some of the activity classes are known.
To further increase the complexity of this task, we deal with
vision-based approaches based on a complex activity encoding,
often derived from multimodal data sources, generally resulting
in high-dimensional feature vectors. Operating in sparse high-
dimensional spaces is known to be very hard and the paper pro-
poses an approach to address these issues by adopting some key
components: i) a dimensionality reduction technique based on
metric learning, more effective for pattern classification com-
pared to the standard Euclidean distance, to make the data more
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manageable and improving at the same time their discriminabil-
ity; ii) a robust clustering algorithm able to autonomously iden-
tify the natural distribution of patterns into classes; iii) a mech-
anism able to “recognize” new activities as data clusters not ad-
equately represented by the known activity classes. A general
approach has been designed here without any specific assump-
tion on the feature set used for activity encoding; the exper-
imental results will demonstrate the effectiveness of our pro-
posal on different datasets.

2. The proposed approach

The aim of this work is to describe a general approach able
to discover new activities within a continuous data stream ac-
quired in a typical home environment, in a simple and efficient
way. The constant research and discovery of new activities car-
ried out by users should allow to overcome the “closed” sce-
nario, in which the activities are fixed and not modifiable, mov-
ing towards a more realistic scenario. Figure[I]draws a general
outline of the proposal. Let TR = {(X1,y1), (X2,¥2), +.., (Xn, Yn)}
be a small initial set of data, available for training the activity
recognition system; it consists of a set of n patterns where x;
is a p-dimensional feature vector representing an activity pat-
tern and y; is the associated activity label (with y; € {1, .., m}).
The features used for activity encoding are strictly related to the
specific dataset used and details on this aspect will be provided
along with the dataset description is Section A classifier is
trained using the set of labeled data TR (see section @; it will
thus try to learn the function f{x;) = y; able to associate each
single feature vector x; to the activity that it represents y;.
After the initial learning stage, the activity recognition system
will have to classify incoming sequences under the hypothesis
that also activities belonging to unknown classes are presented
to the system. We thus assume that the set of incoming ac-
tivities is Z = ({z1,y1), (Z2,¥2), ..., (Zn, Yn)}, With z; € RP and
yi € {1,..,m + s} where m of the activity classes in Z are known
to the activity classification system and the remaining s are un-
known. Those s unknown classes represent exactly what the
algorithm aims to discover.

The training and testing stages of the proposed approach, out-
lined in Figure|l} are described in detail in the next sections.

2.1. Training stage

This stage (see Figurdlh) consists of training a classifier on
the set of m initially known activities. In order to maximize the
effectiveness of the classifier and to reduce at the same time the
dimensionality of the feature vectors representative of the ac-
tivity sequences, a metric leaning approach for dimensionality
reduction is applied. Each feature vector x; € R? is therefore
projected into a space R?, where g << p. The literature on met-
ric learning is huge and recently some interesting deep metric
learning techniques have been proposed (see [Kaya and Bilge
(2019), [Zheng et al.| (2020), |Song et al.| (2016))), but they are
unfeasible for the small-scale scenario analyzed in this work.

In this scenario, dimensionality reduction is aimed at dis-
criminating the different activity classes, i.e. creating clus-
ters of high density data belonging to a single class. In|Gold-
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Figure 1: Outline of the training (a) and testing (b) stages of the proposed approach.

[berger et al.| (2005) an algorithm called Neighborhood Compo-
nent Analysis (NCA), capable of responding to these require-
ments, is described. It is based on a metric learning technique
and learns a linear transformation in a supervised fashion to im-
prove the classification accuracy of a stochastic nearest neigh-
bors rule in the transformed space. The goal of NCA is to learn
an optimal linear transformation matrix A such that the average
leave-one-out (LOO) classification performance is maximized
in the transformed space. NCA tries to predict the class label
of a single data point by consensus of its k-nearest neighbours,
using a given distance metric. The set of nearest-neighbours of
a generic vector X; can be quite different after the transforma-
tion in order to maximise the number of correct classifications.
Unfortunately, it’s hard to identify the optimal matrix as any
objective function based on neighborhood points would be not
differentiable. In particular, the set of neighbors for a point may
undergo discrete changes in response to regular changes in the
elements of A. NCA overcomes this difficulty by adopting an
approach based on stochastic gradient descent. The entire trans-
formed data set is considered as stochastic nearest neighbours
using a softmax function of the squared Euclidean distance be-
tween a point and each other point in the space. In order to find
the best dimensionality, we made several experiment with sev-
eral values. After dimensionality reduction, the patterns in the
training set TR are used to train a classifier.

2.2. Testing stage

The testing stage is outlined in Figure[Tp. This is where Ac-
tivityExplorer acts to identify classes of unknown activities. To
this aim, the patterns in the set of incoming activity sequences
Z are first projected into the reduced feature space identified by
NCA in the training stage; then, the following steps are exe-
cuted:

o Qutlier detection. In order to keep only the most repre-
sentative samples, outliers are removed on the basis of the

Local Outlier Factor technique (see section[2.2.1)).

o Clustering. The application of a clustering algorithm (see
section [2.2.2)) to this set of well-separated patterns allows
to identify clusters related to known activities and to use
subsequently the cluster information to identify unknown
activity classes.

e Activity discovery. The patterns in each cluster are clas-
sified by the classifier trained in the learning stage and
a score proportional to the probability of belonging to
the known classes is assigned to each cluster (see section
[2:23). According to this score, those groups that present
very low membership values can be considered as repre-
sentatives of new activity classes.

2.2.1. Outlier Detection

The step aims to improve the overall quality of the data
by identifying and removing outliers, i.e. elements that differ
significantly from the rest of the data. Their presence could
strongly influence the subsequent steps and interfere with the
identification of correct clusters. A variety of outlier detection
algorithms is available in the literature. Since in this case some
of the data classes are unknown, an unsupervised technique is
needed. Local Outlier Factor (LOF) is an algorithm described
in [Breunig et al.| (2000) for finding anomalous data points by
measuring the local deviation of a given data point with respect
to its neighbours. It works locally, since the anomaly score
depends on how isolated the object is with respect to the sur-
rounding neighborhood. Applying this type of algorithm in the
reduced space means removing all the data points distant from
the clusters representing an activity. The size of the neighbor-
hood, in terms of k-neighbors, represents of course the fun-
damental parameter for the whole algorithm. Let d(x;,x;) be
the Euclidean distance between x; and x; and k_distance(x;) be
the Euclidean distance of a generic point X; to its k-th nearest




neighbor. This distance measurement is essential to calculate
the reachability-distance (RD) between X; and another generic
point x;:

RD(x;,x;) = max{k_distance(X;), d(x;, X )} (D)

The RD from x; to x; is the real distance between the two
points only if this is greater than the k_distance of x;. All
the elements belonging to the k-nearest neighbors of x; are
therefore considered to be equally distant and, in general, the
reachability-distance is not symmetric. The set of points whose
distance is less than the k_distance(x;) is defined as N (x;). To
estimate if a point belongs to a local dense region, it is nec-
essary to calculate the local reachability density (LRD), which
measures the average reachability of a point from its k neigh-
bors:

LRD(x) — Vs o
Zxjeny (x) RD(Xi, X )

It is important to note that the reachability value does not
concern the neighborhood starting from x;, but the exact oppo-
site path. Given a point, the local reachability density is then
compared with those of the neighbors:

ZrENk(x,-) LRD(r)

INk(x)| - LRD(x;)

determining the local outlier factor (LOF) value assigned to
each point. If this value is close to one, this means that the
element is comparable with those present in its neighborhood.
A value greater than one denotes instead a point laying in a re-
gion with a lower density than that presents in its neighborhood.
That element can therefore be defined as an outlier and can be
removed from the dataset.

LOF(x;) 3)

2.2.2. Clustering

After outlier removal, the data should be adequately grouped
and each of these groups can therefore be captured by a cluster-
ing algorithm. Given a set of observations X = {x;, Xy, ..., X,}, a
clustering algorithm should partition the data into a number of
subsets containing elements that can be considered similar. In
our work, algorithms requiring an a priori definition of the num-
ber of clusters are unfeasible since not all the activities (classes)
in the data are known. Moreover, it has been observed that the
density-based solutions encounter important difficulties. The
application of metric learning on known activities only tends
to separate groups of unknown activities, thus limiting the ef-
fectiveness of density-based techniques. For this reason we de-
cided to adopt the Affinity Propagation approach proposed in
Frey and Dueck| (2007)) and based on the concept of “message
passing” between data points. The number of clusters is deter-
mined by the algorithm itself based on the characteristics of the
data. In Affinity Propagation the data points can be seen as a
network where all the data points send messages to others. This
exchange leads to the identification of exemplars, which are the
main representative points of their clusters. The algorithm it-
erates until it converges or it reaches a maximum number of
iterations. During each iteration, two types of messages are ex-
changed. Let x; and x; be two different points of the dataset:
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o the responsibility message r(X;, X;) contains a value that in-
dicates how well-suited point X; is to serve as the exemplar
for x;, considering all the other candidates exemplars;

e the availability message a(x;, X;) contains a value that rep-
resents how appropriate it would be for x; to pick x; as its
exemplar, taking into account other points’ preference for
X; as an exemplar.

The similarity between pair of points is calculated as the neg-
ative squared distance (Xu and Wunsch| (2005))):

s(xi, xj) = — || xi —xj || “4)

For each pair of points, the values of availability and respon-
sibility are stored in two different matrices. Initially, all avail-
abilities are generally set to zero and all responsibilities are set
to the similarity between each pair of points. At each iteration,
the values are updated:

r(xi, X;) = s(x;,X;) — mgx{a(xi,Xj’) + s(x;, X)) 5
J#]

(6)

{min{O, F(X, X)) + rgi max{o, r(x, X))}, i # j
a(xi, X)) = .
ey max{0, r(xp, X))}, 1 = j

As the iterations proceed, the results tend to change until con-
vergence or a maximum limit of iterations is reached. Among
all the available points, the exemplars emerge, i.e. those who
guide the aggregation of a set of points to create a cluster. In
fact, for each points it is possible to identify its exemplar as the
point that maximizes the sum of availability and responsibility:

exemplar(x;, X;) = Z max{a(xy,X;) + r(Xy, X;)} @)
'

Since the responsibility and availability do not exhibit symmet-
ric properties, the exemplar value is consequently not symmet-
rical. Points that share the same exemplar constitute a single
cluster, therefore, the number of exemplars determines the num-
ber of clusters.

2.2.3. Adherence to classes

At the end of the clustering stage, the patterns will be orga-
nized into a set of groups containing similar data. Of course,
since the dataset is only partially labeled, it is reasonable to as-
sume that some of these clusters can be linked to known activity
classes, while others are likely to contain patterns of unknown
classes.
To identify such clusters, the probabilistic classifier trained on
the set of known activities during the learning stage is used (see
section [2.1). Each pattern x; € Z will be then classified by the
classifier; let ; be the most probable class for x; and p(3;) the
probability estimated by the classifier. In general, the patterns
belonging to unknown activity classes will achieve quite low
probability values and the clusters containing patterns associ-
ated with low probability values are likely to represent unknown
activities. For each cluster of data C; = {x;;, X2, ..., X;;}, a score
representing the overall cluster adherence to known classes is



computed by simply averaging the probabilities computed for
each point in the cluster:

AC(C) = ) pEH/ICH (8)

x;€C;

On the one hand this value summarizes to what extent the
elements of the cluster are likely to belong to known classes, on
the other hand it indirectly allows to identify which clusters are
most likely to refer to unknown classes, and therefore unknown
activities. The clusters associated to an AC(C;) value lower than
a fixed threshold ¢ will be identified as unknown and suggested
to the user for a possible model updating.

3. Experiments and results

3.1. Datasets and features

Several experiments have been carried out for performance
evaluation on two publicly available datasets.

Office Activity dataset (OAD) The OAD dataset (Franco
et al. (2017))) was acquired in our laboratoryﬂ It includes video
sequences of 14 activities performed twice by 20 subjects in a
different environment from several perspectives. Each video is
described by a feature vector composed of two main parts ex-
tracted from the use of an RGB-D camera. The first part of
the vector represents RGB information obtained with Improved
Dense Trajectories (Wang and Schmid) (2013)), well-known for
their excellent performance in action recognition tasks. Please
refer to|Franco et al.|(2020b)) for further details. The second part
of the vector contains information based on skeleton joint posi-
tions and orientations, proposed in|Franco et al.|(2017). In con-
clusion, each video sequence is represented by a feature vector
containing RGB (2000) and skeleton (100) information.

KTH dataset KTH is a well known video collection of hu-
man activities provided by |Schuldt et al.|(2004)). It includes 600
video sequences of 6 human activities performed several times
by 25 subjects in four different scenarios. For our experiments,
each video was encoded using the Dense Histogram of Optical
Flow (HOF) feature (Pers et al.| (2010)). For each pair of con-
secutive frames, the displacement of each pixel is identified by
calculating the optical flow. The result is then divided into non-
overlapping blocks and a histogram of orientations is stored for
each of them. The descriptor of each pair of frames is given by
the concatenation of these histograms. The final descriptor of
each video is finally made using a Bag of Word model (BoW)
(Wang et al.|(2009)). The choice of K, i.e. the number of words
that make up the dictionary for BoW computation, has been
fixed to Internal tests allowed to identify the appropriate trade-
off in the value 700, which also represents the size of the vector
associated with each video of the dataset.

3.1.1. Evaluation protocol

The efficacy of the proposed approach is tested, for each
dataset, considering different combinations of known and un-
known activity classes. Each configuration is repeated 5 times

10AD dataset.
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by randomly sampling the activities from the dataset, and the
average results are reported. The fraining set of known activ-
ities, needed to apply NCA dimensionality reduction and train
a classifier, is randomly extracted by taking 30% of the sam-
ples available for each known activity. The remaining samples
(70%) are included in the fest set. The latter also contains sam-
ples of unknown activities in equal measure.

3.1.2. Performance indicators

The efficacy of the proposed approach is evaluated using dif-
ferent indicators. For performance evaluation it is first neces-
sary to determine a ground truth, i.e. to assign a class label
yc, to each data cluster C; = {x;, x2, ..., x,}, simply identi-
fying the most frequent class. Some clusters will be associ-
ated to known activity classes, other to unknown ones. Let’s
K = {Cilyc, € {1,..,m}} be the set of clusters associated to
known activities and U = {Cylyc, € {m+1, .., m+h}} be the set of
clusters relate to unknown activities. Of course, multiple clus-
ters can be assigned to the same activity, and this is correct if
we consider the natural variability in the execution of actions by
different users. Based on the classes assigned as ground truth,
different indicators are computed to evaluate the capability of
correctly identifying unknown activity clusters (to be suggested
to the user for possible updating). As illustrated in section
the clusters are sorted by the classes adherence indicator
AC(C;). The clusters with low values are the less representative
of known classes and are likely to be associated with one of the
unknown activities. The algorithm can therefore fix a threshold
¢ and label as unknown activities (U) all the clusters C; whose
AC(C;) value is lower than #: U(f) = {C]AC(C;) <= t}. The
effectiveness is evaluated by the following indicators.

Homogeneity. For each cluster C; it represents the portion of
patterns belonging to the class assigned to the cluster:

Ix; € Cilf(x;) = ycl
ICil

homogeneity(C;) = )

Precision(t). It represents the portion of clusters in U(7) that
are unknown, i.e. that belong to U:

U@ N U|

< (10)
U@l

precision(t) =

Recall(t). It represents the portion of unknown clusters U
that have been correctly retrieved in U(1):

U@ N U|
recall(t) T (11
Class recall(t) and class precision(t). The same precision and
recall indicators described above are computed also at activity
class level (rather than cluster) to provide a complementary in-
formation (we should in fact consider that each activity class
can be mapped to different clusters).

3.2. Results on OAD and ablation study

The aim of the experiments on the OAD dataset is two-fold:
on the one hand, an internal evaluation of the proposed ap-
proach is performed in an ablation study on the clustering and
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Figure 2: Precision-recall curves (OAD dataset) at cluster and class level, as a function of the threshold ¢ applied to the adherence to classes value AC(C;), used to
label clusters C; as unknown activities. The graphs refer to a different number of known/unknown activities: 3/2 (a), 3/3 (b), 3/4 (c) 6/2 (d), 6/3 (e) and 6/4 (f).

dimensionality reduction algorithms; on the other, an in depth
analysis of the performance obtained in different testing scenar-
i0s, i.e. with a variable number of known/unknown activities,
is reported. For the experiments on the OAD dataset the neigh-
borhood value used for LOF has been set to 10, considering that
for each activity the fest set contains 30 samples. This leads to
the removal of about 10% of the data. For classification a Sup-
port Vector Machine (SVM) (Cortes and Vapnik| (1995)) with
RBF kernel was chosen. To conduct an ablation study, the re-
sults of the proposed approach are compared to those obtained
by changing:

o dimensionality reduction: as an alternative to NCA, we in-
ternally evaluated several alternatives (among which the
well-known UMAP approach proposed in [Mclnnes et al.
(2020)) and the best results have been obtained with Lin-
ear Discriminant Analysis (LDA) (Li and Jain| (2009)),
specifically designed to maximize the class discriminabil-
ity. Due to the dimensionality contraints w.r.t. the number
of classes, the reduced dimensionality has been fixed to 2.

o clustering algorithm: the results obtained with Affinity
Propagation are compared with those obtained using a
density-based solution, i.e. HDBSCAN (Campello et al.
(2013)), an extremely robust density-based clustering al-
gorithm, capable of identifying clusters with different den-
sity levels.

The results obtained in terms of homogeneity on the OAD
dataset are summarized in Table [T} which reports the average
value of homogeneity measured for different testing setups de-
termined by a variable number of known/unknown activities.
The table shows the performance for different combinations
of dimensionality reduction (NCA 300 dim, NCA 100 dim,
LDA) and clustering algorithm (Affinity Propagation vs. HDB-
SCAN). With regard to dimensionality reduction, NCA (re-
duced dimensionality 300) generally outperforms the alterna-

tive solutions. As far as clustering is concerned, Affinity Prop-
agation shows a significantly better performance than its com-
petitor. The values obtained are very high, in particular when
coupled with NCA 300 where on average around 90% of the
data assigned to each cluster belong to a single activity class.
A very interesting aspect to consider is that the results are quite
constant across the different setups considered, even when the
number of unknown activities increases, thus confirming a good
robustness of the proposed approach.

Figure 2] shows all the results obtained in terms of precision
and recall, as a function of the threshold ¢ applied to the adher-
ence to classes value AC(C;), used to label clusters C; as un-
known activities. The two curves have, as expected, an inverse
trend: higher threshold values allow to increase the recall, i.e.
to identify a higher number of unknown activities, but the pre-
cision decreases accordingly indicating that some of the clus-
ters considered unknown correspond to a known activity class.
In all cases, it’s possible to identify a threshold corresponding
to an optimal trade-off between the two indicators; the opti-
mal value is generally inversely proportional to the number of
known activities: around 0.55 in the test case with 3 known
activities, about 0.4 with 6 known activities. This behaviour
is reasonable if we consider that the uncertainty of the activity
classifier will be generally higher when dealing with a higher
number of classes. The optimal threshold identified allows to
reach very good precision/recall values, between 85% and 90%
with 3 known activities and 2 to 4 unknown, between 75% and
80% with 6 known activities and 2 to 4 unknown. These results
are very encouraging since most of the unknown activities can
be successfully identified and suggested to the user for a human
verification and a semantic meaning assignment. The good re-
sults are confirmed when we observe the class-based results,
thus allowing to conclude that the approach is able to correctly
suggest to the user most of the unknown activities. The choice
of the operative threshold to be used can be partially automated
according to the results of an internal evaluation, but we believe




045 05 055 06 065 07 075 08 085 09 095 1 045 05 0,55 06 065 07 075 0,8 0,85 09 095 1
(@) . ) .

Figure 3: Precision-recall curves (OAD dataset) at cluster and class level, ob-
tained with LDA reduction, as a function of the threshold ¢ for the adherence
to classes AC(C;). The graphs refer to a different number of known/unknown
activities: 3/4 (a), 6/4 (b).

Table 1: Average cluster homogeneity on the OAD dataset for different values
of known/unknown activities. The results of different dimensionality reduction
(NCA vs. LDA) and clustering approaches (Affinity Propagation vs. HDB-
SCAN) are reported.

. Known 3 6

R AN 2 3 4 2 3 4
Affinity Prop. | 0.92 | 0.93 | 0.89 | 0.87 | 0.90 | 0.89

NCAB00) ~HRESCAN [ 0.72 [0.79 [ 0,60 | 0.7 | 0.78 | 0.75
Affinity Prop. | 0.89 | 0.88 | 0.88 | 0.88 | 0.85 | 0.78

NCA (100) "HBESCAN [ 0.76 [ 0.67 [ 0.70 [ 0.76 | 0.73 | 0.79

LDA Affinity Prop. | 0.65 | 0.65 | 0.63 | 0.65 | 0.60 | 0.59
HADBSCAN | 0.54 | 054 | 0.56 | 045 | 048 | 0.53

that the value has to be tuned by the final user according to the
desired precision/recall tradeoff.

For comparative purposes, Figure [3] reports the precision-
recall curves obtained using LDA dimensionality instead of
NCA for the two testing scenarios of Figure [Jc) and (f). The
trend observed for LDA is far less satisfactory; for the first case,
the best precision/recall is reached at about 65% while NCA in
the same test achieved a value around 90%. For the second test-
ing case (6 known activities, 4 unknown) a good recall value is
observed but the precision is constantly low, independently on
the threshold selected, thus leading to many wrong suggestions
to the user and reducing the usability of the proposed system.
The superiority of NCA seems to suggest that it is better suited
for data sets of unknown complexity and structure; indeed, un-
like LDA, NCA does not make any assumptions about the class
distributions. Overall, the results confirm the superiority of the
proposed approach and the feasibility of NCA for dimensional-
ity reduction and Affinity Propagation for clustering.

3.3. Results on KTH dataset

Further experiments have been conducted on the KTH
dataset to evaluate the sensitivity of the proposed approach to
one of its main parameters, i.e. the number of neighbors used
for outlier removal (see LOF, section 2.2.I). Table [2] shows
the results obtained in terms of cluster homogeneity according
to the number of known/unknown activities and the number of
neighbors considered for outlier removal. The results obtained
can be considered quite good. On average, more than 80% of
the data assigned to each cluster belong to the same class, even
if a slight decrease can be observed as the number of activities
increases. Also in this case, the best results were obtained using
NCA and a dimensionality equal to 300.

These results overall confirm the effectiveness of the algo-
rithm for outlier detection (LOF) and its robustness with respect

e Precision (cluister )
Recall fcluster)
Rerall class)

01 1 aasaas Precision (class)

e Precision (cluster)

Recall cluster)

Recall [class)

...... Precision (ciass)
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Figure 4: Precision-recall curves (KTH dataset) at cluster and class level, as
a function of the threshold 7 for the adherence to classes AC(C;). The graphs
refer to a different number of known/unknown activities: 3/2 (a), 3/3 (b).

Table 2: Average cluster homogeneity on the KTH dataset for different values
of known/unknown activities as a function of the number of neighbors & used
for outlier removal.

# neighbors
5 10 15 20
2-11]0.85]0.83 | 081 | 0.84
# known/unknown | 2-2 | 0.84 | 0.85 | 0.86 | 0.79
activities 3-210.81 082|083 0.79
3-310.75 1076 | 076 | 0.77

to its main parameter, i.e. the number of neighbors considered.
In fact, Table[2]clearly shows a good stability of the homogene-
ity value. Figure[dreports the precision/recall curves for the ex-
periment with 3 known and 2 or 3 unknown activities; the num-
ber of neighbors for LOF has been fixed here to 15. The results
obtained here are slightly inferior to those observed in the OAD
dataset. The algorithm reaches here a trade-off between preci-
sion and recall around 70% (80% precision with 70% recall for
3 known and 2 unknown activities). Differently from the OAD
dataset, in this case the optimal threshold for the AC(C;) value
is higher, between 0.80 and 0.85. This particular behaviour to-
gether with the lower precision/recall values observed are prob-
ably related the features used to encode the activities, which are
less effective in this case, thus leading to a higher level of un-
certainty of the classifier, even for the set of known activities.
At class-level, the precision and recall values obtained are in
line or even better than those observed at cluster-level.

4. Conclusions

The development of adaptable HAR systems able to ex-
ploit continuous learning strategies must necessarily consider
an open-set scenario where only a part of the activities per-
formed by the subjects in the environment are known to the sys-
tem. In this work an approach for identifying unknown activi-



ties has been proposed, based on a combination of metric learn-
ing, an advanced clustering technique and ad hoc indicators
defined to estimate the membership of each pattern to known
classes. The experiments carried out on two public benchmarks
confirm the effectiveness of the proposal; precision/recall val-
ues around 80% or higher are achieved in the complex OAD
dataset, meaning that a high percentage of unknown activities
can be successfully suggested to the users with good precision.

In our future work, the main efforts will be devoted to the in-
tegration of this approach into a more complete continuous ac-
tivity learning system where activity detection, unknown activ-
ity discovery and automated template updating are effectively
integrated and adapted even to large scale scenarios.
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