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AN ELLIPTIC BOUNDARY VALUE PROBLEM WITH FRACTIONAL
NONLINEARITY

NICOLA ABATANGELO AND MATTEO COZZI

Abstract. We investigate existence and uniqueness of solutions to second-order elliptic bound-
ary value problems containing a power nonlinearity applied to a fractional Laplacian. We detect
the critical power separating the existence from the non-existence regimes. For the existence
results, we make use of a particular class of weighted Sobolev spaces to compensate boundary
singularities which are naturally built in the problem.

1. Introduction

Given a bounded domain Ω ⊆ RN with ∂Ω ∈ C2, σ ∈ (0, 1), and p ∈ [1,∞), we study
problems of the form 

−4u+
∣∣(−4)σu

∣∣p−1
(−4)σu = f in Ω

u = g on ∂Ω

u = h in RN \ Ω.

(1.1)

Here 4 denotes the (classical) Laplace operator, whereas (−4)σ is the fractional Laplacian

(−4)σu(x) := cN,σ p.v.

∫
RN

u(x)− u(y)

|x− y|N+2σ
dy = cN,σ lim

ε↓0

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2σ
dy, (1.2)

a nonlocal positive operator of fractional order 2σ ∈ (0, 2). The positive constant cN,σ is a
normalization in order to have that the Fourier symbol of the operator is |ξ|2σ, i.e.,

F
[
(−4)σu

]
(ξ) = |ξ|2σFu(ξ), u ∈ C∞c (RN ).

We refer to [4, 15] for an introduction to this operator. Let us here simply remark that defi-
nition (1.2) only makes pointwise sense for functions which are defined in the whole Euclidean
space RN . For this reason, the prototypical well-posed boundary value problem driven by the
fractional Laplacian takes the form{

(−4)σu = f in Ω,

u = h in RN \ Ω.
(1.3)

In this setting, prescribing the values of the solution u on ∂Ω is immaterial, as the integral
operator (−4)σ does not see negligible sets. Nevertheless, it is reasonable to investigate the
boundary regularity of solutions and, in particular, their continuity across ∂Ω, like for example
in [8] or more recently in [7]—in both cases in a more general setting than the one in (1.3).

Problem (1.1) is motivated by the understanding of the interaction and the overlapping of the
different boundary conditions required by the Laplacian and the fractional Laplacian. Indeed,
although the term |(−4)σu|p−1(−4)σu can be interpreted as a mere nonlinear perturbation
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of the leading one 4u, one needs to know the values of u also outside Ω in order to make
it meaningful. Mind also that different definitions of u outside Ω might drastically affect the
operator on the interior, a peculiarity of its nonlocality.

1.1. Main results. The exponent p has a prominent role in the solvability of (1.1). The range
of p splits at p = 1/σ into two regimes: below this value, which we call subcritical regime, it is
possible to solve (1.1) if the other prescribed data f and g are somewhat well-behaved; above
that value, in the supercritical regime, a switch in the lead of the equation takes place and
the nonlocal term becomes the dominant one, making it impossible (in general) to attain the
desired values at the boundary ∂Ω. See Theorems 1.1 and 1.3 for the precise statements.

In all the following, Ω is supposed to be a bounded domain with C2 boundary.

Theorem 1.1 (Existence in the subcritical regime). Let g ∈ C0(∂Ω), h ∈ L∞(RN \ Ω), and f
be a locally Hölder continuous function in Ω satisfying

dist(·, ∂Ω)2−αf ∈ L∞(Ω), (1.4)

for some α > 0. If
1 ≤ p < 1

σ
, (1.5)

then problem (1.1) has a unique solution u ∈ L∞(RN ) ∩ C2(Ω) ∩ C0(Ω).

We underline how data g and h are completely unrelated in the above statement: in particular,
we do not need to assume that the values of g on ∂Ω match with those of a suitable extension
of h to ∂Ω (which, in fact, needs not to be continuous nor continuously extensible up to the
boundary).

In the particular case p = 1, the equation becomes linear and it admits a Green function for
which sharp two-sided estimates are available, see Chen, Kim, Song, and Vondraček [12, 13]:
although we do not make use of these, let us just mention here that Theorem 1.1 (for p = 1)
can also be deduced by means of such Green representation. Very recently, Biagi, Dipierro,
Valdinoci, and Vecchi [10] have studied existence, maximum principles, and regularity for (1.1)
with p = 1 and g, h = 0: their techniques and goals are quite different from our approach, but
their main result [10, Theorem 1.7] is, nonetheless, closely related to Theorem 1.1.

The core of the proof of Theorem 1.1 relies on a fixed-point argument for the nonlinear
operator

u 7−→ −4u+
∣∣(−4)σu

∣∣p−1
(−4)σu. (1.6)

The (possible) jump discontinuity of u, inherited by the prescription of g and h in (1.1), entails a
singularity in the nonlocal part of (1.6) at the boundary of Ω. This represents a major challenge
in solving (1.1), which turns out to be not only a nonlinear problem but also a singular one.
To overcome this issue, we consider an approximating family of regularized problems, run the
fixed-point argument to solve these problems, and pass to the limit via uniform estimates in
Sobolev spaces of fractional order with boundary weights, cf. (2.2)-(2.3). Their definition is
due to Lototsky [24]: we briefly outline their construction and prove some new results (cf.
Lemma 2.3) in Section 2. The full proof of Theorem 1.1 is contained in Section 5.

An important feature we will need in the proofs is a comparison principle.

Proposition 1.2 (Weak comparison principle). Let Ω ⊆ RN be a bounded open set and Φ :

Ω × R → R be a Carathéodory function with Φ(x, ·) non-decreasing for a.e. x ∈ Ω. Let w,w ∈
L1
σ(RN ) ∩ C2(Ω) be two functions satisfying{

−4w + Φ
(
· , (−4)σw

)
≤ −4w + Φ

(
· , (−4)σw

)
in Ω

w ≤ w in RN \ Ω.
(1.7)
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For any x0 ∈ ∂Ω, suppose in addition that

[−∞,+∞) 3 lim sup
Ω3x→x0

w(x) ≤ lim inf
Ω3x→x0

w(x) ∈ (−∞,+∞]. (1.8)

Then, w ≤ w also in Ω.

Here, L1
σ(RN ) denotes the space of functions v ∈ L1

loc(RN ) for which (1 + | · |)−N−2σv ∈
L1(RN ). As is known, this assumption on v, along with its local C2 (or C2σ+ε) regularity, is
enough to have (−4)σv well-defined in the pointwise sense as the integral operator (1.2). We
will mostly apply Proposition 1.2 to functions w and w continuous up to the boundary of Ω. In
this case, assumption (1.8) simply boils down to

w ≤ w on ∂Ω.

Notice, however, that (1.8) makes sense even when w|Ω and w|Ω cannot be continuously extended
up to ∂Ω. This feature will be crucial in order to deal with solutions of (1.1) which blow up at
the boundary. Section 4 deals with the proof of Proposition 1.2 and its consequences.

Passing to non-existence results, we have the following.

Theorem 1.3 (Non-existence in the critical and supercritical regimes). Let g ∈ C0(∂Ω) and
h ∈ L∞(RN \ Ω) be such that g 6≤ 0 on ∂Ω and h ≤ 0 in RN \ Ω. If σp ≥ 1, then problem

−4u+
∣∣(−4)σu

∣∣p−1
(−4)σu = 0 in Ω

u = g on ∂Ω

u = h in RN \ Ω

(1.9)

has no solution u ∈ L∞(RN ) ∩ C2(Ω) ∩ C0(Ω).

Note that the threshold p = 1/σ is indeed quite natural. The analogue local problem{
−4u+

∣∣∇u∣∣p = 0 in Ω

u = g on ∂Ω
(1.10)

is known to always have a solution for p ∈ [1, 2] [31, Hilfssatz 3] (or also [30, Section 11] for
a more general statement), whereas existence is lost in general for p > 2, see [30, Theorem 1,
Section 16]. Interestingly, in this case the critical power p = 2 is included in the existence
regime, whereas in (1.1) p = 1/σ falls into the nonexistence one.

The next theorem shows that condition (1.4) on the right-hand side is almost sharp.

Theorem 1.4 (Non-existence for large sources). Let f ∈ L∞loc(Ω) be such that

dist(·, ∂Ω)2f ≥ κ in Ω,

for some κ > 0. Then, for all p as in (1.5), problem
−4u+

∣∣(−4)σu
∣∣p−1

(−4)σu = f in Ω

u = 0 on ∂Ω

u = 0 in RN \ Ω

(1.11)

has no solution u ∈ L∞(RN ) ∩ C2(Ω) ∩ C0(Ω).

Theorems 1.3 and 1.4 are proved in Section 6.
We finally show, in Section 7, how the nonlinear character of (1.1) allows for solutions that

become singular1 at ∂Ω and are therefore called boundary blow-up solutions or, simply, large
solutions.

1These solutions appear in classical semilinear problems when the nonlinearity fulfils the so-called Keller-
Osserman condition [21,29]. They also show up in problems of the same type as (1.10) as remarked, for example,
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Theorem 1.5 (Large solutions). For any

p ∈
(

3− σ
1 + σ

,
1

σ

)
,

problem 
−4u+

∣∣(−4)σu
∣∣p−1

(−4)σu = 0 in Ω

u = +∞ on ∂Ω

u = 0 in RN \ Ω

(1.12)

admits a solution u ∈ L1(RN ) ∩ C2(Ω). Moreover, there exists a C > 0 such that this solution
satisfies

0 < u ≤ C dist(·, ∂Ω)−2(1−σp)/(p−1) in Ω. (1.13)

1.2. Notation. We will use the following notation without further notice.
We set δ = dist(·,RN \ Ω) in RN . By Dj we denote the collection of partial derivatives of

order j ∈ N. The letters C and C will be used to indicate constants that have values larger
than 1 and that may change from line to line. Constants denoted by C will depend only on
the structural quantities involved in the problem (i.e., N , Ω, p, σ, and α), whereas C may also
depend on the norms of the data—‖δ2−αf‖L∞(Ω), ‖g‖L∞(∂Ω), and ‖h‖L∞(RN\Ω). Whenever a
constant also depends on an additional quantity, we will emphasize it by using subscripts—for
instance, Cj will denote a constant that also depends on j on top of the previously specified
parameters.

2. Fractional Sobolev spaces with weights

Following [24], we introduce weighted spaces Ls,pθ modelled upon Bessel potential spaces, from
which we borrow the usual notation. For s ≥ 0 and p ≥ 1, we let Ls,p(RN ) denote the Bessel
potential space, obtained as the completion of C∞c (RN ) with respect to the norm

‖u‖Ls,p(RN ) :=
∥∥(1−4)s/2u

∥∥
Lp(RN )

. (2.1)

We recall that (1−4)s/2 is the operator defined by

(1−4)s/2u := F−1
((

1 + | · |2
)s/2Fu) on any u ∈ C∞c (RN ),

where F denotes the Fourier transform. Note that L0,p(RN ) reduces to the standard Lebesgue
space Lp(RN ).

For any k ∈ Z, we define

Ak :=
{
x ∈ Ω : 2−k−1 < δ(x) < 2−k+1

}
.

Let (ζk)k∈Z be a smooth partition of unity, namely a family of non-negative functions ζk ∈
C∞c (RN ) such that supp(ζk) ⊆ Ak,

|Djζk(x)| ≤ Cj 2jk for any x ∈ RN and j ∈ N0,

for some constant C|α| > 0 and with |α| = α1 + . . .+ αN , and∑
k∈Z

ζk(x) = 1 for any x ∈ Ω.

Given another parameter θ ∈ R, introduce the space

Ls,pθ (Ω) :=
{
u ∈ Lp(Ω) : ‖u‖Ls,pθ (Ω) < +∞

}
, (2.2)

in [22]. For fractional order equations the situation is more involved, the interested reader might want to
check [1, 2, 11,18].
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where
‖u‖p

Ls,pθ (Ω)
:=
∑
k∈Z

2−kθ
∥∥ζk(2−k·)u(2−k·)

∥∥p
Ls,p(RN )

. (2.3)

For simplicity, we just write Lpθ(Ω) instead of L0,p
θ (Ω).

The space Ls,pθ (Ω) is a Sobolev space with a weight at the boundary ∂Ω, introduced by
Lototsky in [23, 24]. In the next statement we collect some of its basic properties that will be
used in the rest of the paper—see [24, Proposition 2.2] for their proofs.

Proposition 2.1 ([24, Proposition 2.2]). The following statements hold true.
i) The space C∞c (Ω) is dense in Ls,pθ (Ω).
ii) The space Ls,pθ (Ω) is independent of the choice of partition of unity (ζk)k∈Z, and different

partitions lead to equivalent norms.
iii) The quantity

‖u‖∗Lpθ(Ω) :=
(∫

Ω

∣∣u(x)
∣∣p δ(x)θ−N dx

)1/p
(2.4)

defines an equivalent norm for the space Lpθ(Ω).
iv) If s = k is a non-negative integer, then

Lk,pθ (Ω) =
{
u ∈ Lpθ(Ω) : δjDju ∈ Lpθ(Ω) for all j = 1, . . . , k

}
and the norm

‖u‖∗
Lk,pθ (Ω)

:=

( k∑
j=0

(
‖δjDju‖∗Lpθ(Ω)

)p)1/p

is equivalent to the one defined in (2.3).
v) For si ≥ 0, pi > 1, θi ∈ R (i = 0, 1), and ν ∈ (0, 1), it holds

Ls,pθ (Ω) =
[
Ls0,p0θ0

(Ω), Ls1,p1θ1
(Ω)
]
ν
,

with

s := (1− ν)s0 + νs1,
1

p
:=

1− ν
p0

+
ν

p1
, θ := (1− ν)θ0 + νθ1,

and where [X,Y ]ν denotes the complex interpolation space of X and Y .

In view of (2.4), one has LpN (Ω) = Lp(Ω)—note however that Ls,pN (Ω) differs from the un-
weighted Bessel potential space Ls,p(Ω) when s > 0.

One of the most important outcomes of the analysis carried out in [24] is a weighted Calderón-
Zygmund-type estimate for solutions of a class of degenerate elliptic second-order equations. In
Section 5, we will take advantage of a very particular case of this result, which we state here
below for the reader’s convenience and for further reference—see [24, Section 5] for its proof.

Proposition 2.2 ([24, Lemma 5.2]). Let p > 1, f ∈ Lpθ(Ω), and u ∈ C2(Ω)∩Lpθ(Ω) be a solution
of −4u = f in Ω. Then, u ∈ L2,p

θ (Ω) and

‖u‖
L2,p
θ (Ω)

≤ C
(
‖f‖Lpθ+2p(Ω) + ‖u‖Lpθ(Ω)

)
,

for some constant C > 0 depending only on N , p, θ, and Ω.

One last element of this theory that we will need is an estimate on the Lpθ(Ω) norm of
the fractional Laplacian of a regular function. Before heading to its statement, we note that,
for p > 1, the norm ‖ · ‖Ls,p(RN ) introduced in (2.1) for Ls,p(RN ) is equivalent to

|||u|||Ls,p(RN ) := ‖u‖Lp(RN ) +
∥∥(−4)s/2u

∥∥
Lp(RN )

.
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Indeed, for s ∈ N this follows from [27, Corollary 10.1.2/1] and [5, Corollary 4.16 and Theo-
rem 7.63(f)]. In this case, Ls,p(RN ) coincides with the usual Sobolev space W s,p(RN ). When s
is not an integer, the equivalence can be deduced from [27, Theorem 10.1.2/4].

Thanks to this observation, we can prove the following estimate. We will use it in Sections 5
and 7, respectively with r = p and r = 1.

Lemma 2.3. Let p > 1, r ∈ [1, p], σ ∈ (0, 1), and θ > (N/r + 2σ)p. Then, for every ε > 0,
there exists a constant C > 0, depending only on N , p, r, σ, θ, Ω, and ε, such that

‖(−4)σu‖Lpθ(Ω) ≤ C
(
‖u‖

L2σ,p
θ−2σp−ε(Ω)

+ ‖u‖Lr(Ω)

)
(2.5)

for every function u : RN → R that vanishes outside Ω and is of class C2 in Ω.

Proof. By the properties of the ζk’s, the fact that u = 0 in RN \ Ω, and a suitable change of
variables, we have

‖(−4)σu‖Lpθ(Ω) ≤
∑
j∈Z
‖(−4)σ(ζju)‖Lpθ(Ω)

=
∑
j∈Z

(∑
k∈Z

2−kθ
∥∥∥ζk(2−k·)(−4)σ(ζju)(2−k·)

∥∥∥p
Lp(RN )

)1/p

≤
∑
j∈Z

(∑
k∈Z

2−(θ−N)k
∥∥(−4)σ(ζju)

∥∥p
Lp(Ak)

)1/p

.

(2.6)

Now, we consider separately the cases k ≥ j − 2 and k ≤ j − 3.
In the first situation, we estimate

+∞∑
k=j−2

2−(θ−N)k
∥∥(−4)σ(ζju)

∥∥p
Lp(Ak)

≤ 4θ−N2−(θ−N)j
+∞∑
k=j−2

∥∥(−4)σ(ζju)
∥∥p
Lp(Ak)

≤ 3 · 4θ−N2−(θ−N)j
∥∥(−4)σ(ζju)

∥∥p
Lp(RN )

,

(2.7)

where for the last inequality we used that the Ak’s intersect at most three times.
On the other hand, take k ≤ j − 3 and observe that |x − y| ≥ 2−k−2 for every x ∈ Ak

and y ∈ Aj . We compute

∥∥(−4)σ
(
ζju
)∥∥
Lp(Ak)

=

(∫
Ak

∣∣∣∣ ∫
RN

ζj(y)u(y)

|x− y|N+2σ
dy

∣∣∣∣pdx
)1/p

≤

≤

(∫
RN

(∫
RN

ζj(y)|u(y)|
χRN\B

2−k−2
(x− y)

|x− y|N+2σ
dy

)p
dx

)1/p

.

From this and Young’s convolution inequality, we deduce that

∥∥(−4)σ(ζju)
∥∥
Lp(Ak)

≤ ‖ζju‖Lr(RN )

(∫
RN\B

2−k−2

|z|−
(N+2σ)pr
pr−p+r dz

) pr−p+r
pr

≤

≤ 2

(
N
r
−N
p

+2σ
)
k
C‖ζju‖Lr(RN ).

Also, since Ω is bounded, there exists k0 ∈ Z such that Ak = ∅ for all k < k0. In light of these
facts, we have

j−3∑
k=−∞

2−(θ−N)k
∥∥(−4)σ(ζju)

∥∥p
Lp(Ak)

≤ C‖ζju‖pLr(RN )

j−3∑
k=k0

2−k(θ−Np
r
−2σp) ≤ C‖u‖pLr(Aj),

6



where the last inequality holds since θ > (N/r + 2σ)p.
By combining the above estimate with (2.7), changing coordinates, and using the scaling

property
(−4)σ

[
v(λ·)

]
= λ2σ(−4)σv(λ·) for λ > 0,

we deduce from (2.6) that

∥∥(−4)σu
∥∥
Lpθ(Ω)

≤ C
+∞∑
j=k0

(
2
− θ−N

p
j∥∥(−4)σ (ζju)

∥∥
Lp(RN )

+ ‖u‖Lr(Aj)
)
≤

≤ C
( +∞∑
j=k0

2
− θ−2σp

p
j
∥∥∥(−4)σ

[
ζj(2

−j ·)u(2−j ·)
]∥∥∥
Lp(RN )

+ ‖u‖Lr(Ω)

)
.

Since, by the definition of ||| · |||L2σ,p(RN ) and its equivalence to ‖ · ‖L2σ,p(RN ),∥∥∥(−4)σ
[
ζj(2

−j ·)u(2−j ·)
]∥∥∥
Lp(RN )

≤
∣∣∣∣∣∣ζj(2−j ·)u(2−j ·)

∣∣∣∣∣∣
L2σ,p(RN )

≤ C
∥∥ζj(2−j ·)u(2−j ·)

∥∥
L2σ,p(RN )

,

we conclude that∥∥(−4)σu
∥∥
Lpθ(Ω)

≤ C
( +∞∑
j=k0

2
− θ−2σp

p
j∥∥ζj(2−j ·)u(2−j ·)

∥∥
L2σ,p(RN )

+ ‖u‖Lr(Ω)

)
.

To obtain (2.5), we are left to show that the above series can be controlled by the L2σ,p
θ−2σp−ε(Ω)

norm of u, for every ε > 0. This is a consequence of a simple inequality for numerical series.
Indeed, given any sequence (aj)j∈N of non-negative numbers, Hölder’s inequality gives that

+∞∑
j=k0

2
− θ−2σp

p
j
aj =

+∞∑
j=k0

(
2
− θ−2σp−ε

p
j
aj

)
2
− ε
p
j

≤
( +∞∑
j=k0

(
2
− θ−2σp−ε

p
j
aj

)p)1/p( +∞∑
j=k0

2
− ε
p−1

j
)(p−1)/p

≤ C
(∑
j∈Z

2−(θ−2σp−ε)japj

)1/p

.

Applying this with aj = ‖ζj(2−j ·)u(2−j ·)‖L2σ,p(RN ) and recalling (2.3), we infer that (2.5) holds
true. �

3. Barriers

In this section, we present the construction of positive supersolutions for both the classical
and the fractional Laplace operator in bounded domains. Ultimately, they will be used as
barriers for the nonlinear operator

u 7−→ −4u+
∣∣(−4)σu

∣∣p−1
(−4)σu.

We begin with a simple barrier that will be used for equations involving bounded right-
hand sides. In this case, we may restrict ourselves to consider balls as underlying domains,
and thus the construction is rather standard. As usual, for x, y > 0 we denote by B(x, y) =∫ 1

0 t
x−1(1− t)y−1 dt the beta function.

Lemma 3.1. For R > 0, the function uσ(x) := (R2 − |x|2)σ+, x ∈ RN , satisfies

−4uσ(x) = 2σ
N(R2 − |x|2) + 2(1− σ)|x|2

(R2 − |x|2)2−σ ≥ 2σNR2σ−2, for every x ∈ BR, (3.1)

and
(−4)σuσ(x) =

cN,σB(σ, 1− σ) |∂B1|
2

> 0, for every x ∈ BR. (3.2)
7



Proof. A straightforward computation gives (3.1). Identity (3.2) is due to [19]—see [17] for an
elementary proof and for more general relations. �

In order to deal with right-hand sides that blow up at the boundary, we can no longer limit
ourselves to balls, and instead we need to construct barriers tailored to each specific domain.
We do this in the next lemma, by considering powers of the so-called torsion function, i.e., of
the solution of the Dirichlet problem {

−4τ = 1 in Ω,

τ = 0 on ∂Ω.
(3.3)

The existence and uniqueness of the solution τ of the torsion problem (3.3) is classical. Fur-
thermore, τ > 0 in Ω thanks to the strong maximum principle.

Lemma 3.2. Let Ω ⊆ RN be a bounded domain with boundary of class C2 and τ ∈ C∞(Ω) ∩
C1(Ω) be the solution of (3.3). For α ≥ 0, set

vα := ταχΩ in RN .

Then, the following statements hold true.
i) There exists a constant C1 ≥ 1, depending only on Ω, such that

C−1
1 δα ≤ vα ≤ C1δ

α in Ω, (3.4)

for all α ∈ (0, 1].
ii) There exists a constant C2 ≥ 1, depending only on N , Ω, and σ, such that

C−1
2 α(1− α) δα−2 ≤ −4vα ≤ C2 α δ

α−2 in Ω, (3.5)

−C2 diam(Ω)αδ−2σ ≤ (−4)σvα ≤ C2 δ
α−2σ in Ω, (3.6)

for all α ∈ (0, 1).
iii) There exists a constant C3 ≥ 1, depending only on N and Ω, such that

C−1
3 δ−2σ ≤ (−4)σv0 ≤ C3 δ

−2σ in Ω. (3.7)

Proof. First, we notice that
C−1

1 δ ≤ τ ≤ C1δ in Ω, (3.8)
for some constant C1 ≥ 1 depending only on Ω. The upper bound on τ follows from its C1(Ω)

regularity, whereas the lower bound is a consequence of its positivity inside Ω and of Hopf’s
lemma.

Knowing this, we address the validity of the claims made in the statement. Of course, (3.4)
follows from (3.8) right away. In order to prove (3.5), a straightforward computation gives that

∂ijvα = α(α− 1)τα−2∂iτ∂jτ + ατα−1∂ijτ in Ω, (3.9)

for every i, j = 1, . . . , N , and thus, by (3.3),

−4vα = α(1− α)τα−2|∇τ |2 + ατα−1 in Ω.

As τ ∈ C1(Ω), we infer that −4vα ≤ Cατα−2 in Ω, for some constant C ≥ 1 depending only
on Ω. On the other hand, using again Hopf’s lemma, we get that |∇τ | ≥ C−1 in Γε = {x ∈
Ω : δ(x) < ε} for some ε > 0 small enough. Since we also clearly have that τ ≥ C−1 in Ω \ Γε,
we deduce that −4vα ≥ C−1α(1− α)τα−2 in Ω. These facts combined with (3.8) immediately
lead to (3.5).

We now proceed to verify (3.6). To this aim, we claim that

‖D2vα‖L∞(Bδ(x)/4(x)) ≤ C?δ(x)α−2 for every x ∈ Ω, (3.10)
8



for some constant C? > 0 depending only on N and Ω. This estimate is a simple consequence
of the Schauder theory. Indeed, by, e.g., [20, Theorem 4.6], (3.3), and the upper bound in (3.8),
we have

‖D2τ‖L∞(Bδ(x)/4(x)) ≤ C
(
δ(x)−2‖τ‖L∞(Bδ(x)/2(x)) + ‖1‖L∞(Bδ(x)/2(x))

)
≤ Cδ(x)−1

for some constant C > 0 depending only on N and Ω. Taking advantage of this, the C1(Ω)

regularity of τ , and (3.9), one easily deduces (3.10). To establish (3.6), we take a point x ∈ Ω

and write

c−1
N,σ(−4)σvα(x) = p.v.

∫
Bδ(x)/4(x)

vα(x)− vα(y)

|x− y|N+2σ
dy +

∫
RN\Bδ(x)/4(x)

vα(x)− vα(y)

|x− y|N+2σ
dy.

On the one hand, by (3.10), we have∣∣∣∣p.v.∫
Bδ(x)/4(x)

vα(x)− vα(y)

|x− y|N+2σ
dy

∣∣∣∣ =

∣∣∣∣ ∫
Bδ(x)/4(x)

vα(x)− vα(y) +∇vα(x) · (y − x)

|x− y|N+2σ
dy

∣∣∣∣
≤ ‖D2vα‖L∞(Bδ(x)/4(x))|∂B1|

∫ δ(x)/4

0
t1−2σ dt ≤ Cδ(x)α−2σ.

On the other hand, using (3.4), we find that∫
RN\Bδ(x)/4(x)

vα(x)− vα(y)

|x− y|N+2σ
dy ≤ |∂B1| vα(x)

∫ +∞

δ(x)/4

dt

t1+2σ
≤ Cδ(x)α−2σ

and∫
RN\Bδ(x)/4(x)

vα(x)− vα(y)

|x− y|N+2σ
dy ≥ −C

∫
Ω\Bδ(x)/4(x)

δ(y)α

|x− y|N+2σ
dy ≥ −Cdiam(Ω)αδ(x)−2σ.

Putting together the last four formulas, we arrive at (3.6).
We are left to prove (3.7). The right-hand inequality is straightforward, as

c−1
N,σ(−4)σv0(x) =

∫
RN\Ω

dy

|x− y|N+2σ
≤
∫
RN\Bδ(x)(x)

dy

|x− y|N+2σ
≤ Cδ(x)−2σ

for every x ∈ Ω. To check that the left-hand one holds as well, we first observe that it suffices to
establish it at points in Γε = {x ∈ Ω : δ(x) < ε}, for some ε > 0 arbitrarily small but depending
at most on N , Ω, and σ. Let x ∈ Γε and denote by zx ∈ ∂Ω a point for which δ(x) = |x−zx|. By
the C2 regularity of ∂Ω, there exists an exterior tangent ball Bδ(x)(wx) to Ω at zx, provided ε
is small enough (in dependence of Ω only). By virtue of this, we compute

c−1
N,σ(−4)σv0(x) =

∫
RN\Ω

dy

|x− y|N+2σ
≥
∫
Bδ(x)(wx)

dy

|x− y|N+2σ
≥ C−1δ(x)−2σ,

and the lower bound in (3.7) follows. The proof of the lemma is thus complete. �

A simple application of the barriers constructed in Lemma 3.2 is the following result, which
provides estimates on how fast solutions of the Poisson equation attain their data in the presence
of a right-hand side that blows up at the boundary. Half of this result is included in [20,
Theorem 4.9] when the domain is a ball and in [20, Problem 4.6] for the general case.

Lemma 3.3. Let α ∈ (0, 1), Ω ⊆ RN be a bounded domain with boundary of class C2, and f
be such that δ2−αf ∈ L∞(Ω). Let u ∈ C2(Ω) ∩ C0(Ω) be a solution of{

−4u = f in Ω,

u = 0 on ∂Ω.

Then,
‖δ−αu‖L∞(Ω) ≤ Cα−1(1− α)−1‖δ2−αf‖L∞(Ω), (3.11)
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for some constant C ≥ 1 depending only on Ω. Furthermore, if f ≥ 0 in Ω, then

inf
Ω

(
δ−αu

)
≥ C−1α−1 inf

Ω

(
δ2−αf

)
. (3.12)

Proof. Let vα and C2 be as in Lemma 3.2. By the left-hand inequality in (3.5), the function

v := α−1(1− α)−1C2‖δ2−αf‖L∞(Ω)vα

satisfies {
−4v ≥ ‖δ2−αf‖L∞(Ω)δ

α−2 in Ω,

v = 0 on ∂Ω.

Thus, by the weak maximum principle (applied with v and −v respectively as super- and
subsolution), we have that |u| ≤ v = C2α

−1(1 − α)−1‖δ2−αf‖L∞(Ω)vα in Ω. This and (3.4)
give (3.11).

When f ≥ 0, estimate (3.12) can be established again via the maximum principle, this time
taking advantage of the right-hand inequality in (3.5) and using v := α−1C−1

2 infΩ(δ2−αf)vα as
a subsolution. �

To deal with solutions that blow up at the boundary, we need a different class of barriers.
They are provided by the next lemma, which is essentially due to [11]. Following [11, Section 3],
we define, for β ∈ (−1, 0),

Vβ(x) :=


η(x) for x ∈ Ω \ Γδ0 ,

δ(x)β for x ∈ Γδ0 ,

0 for x ∈ RN \ Ω,

(3.13)

where Γt = {x ∈ Ω : δ(x) < t}, the parameter δ0 > 0 is sufficiently small to have that δ ∈
C2(Γδ0), and η is any positive function for which Vβ is of class C2 in Ω.

Lemma 3.4. Let β ∈ (−1 +σ, 0) and Ω ⊆ RN be a bounded domain with boundary of class C2.
Then, there exist two constants δ1 ∈ (0, δ0] and C] ≥ 1, depending only on N , Ω, σ, and β, such
that

C−1
] δβ−2 ≤ 4Vβ ≤ C] δβ−2 in Γδ1 , (3.14)

C−1
] δβ−2σ ≤ (−4)σVβ ≤ C] δβ−2σ in Γδ1 . (3.15)

Proof. The inequalities in (3.14) are straightforward. Indeed, a simple computation using
that |∇δ| = 1 yields

4Vβ = |β|δβ−2(1− β − δ4δ) in Γδ0 .

Hence, (3.14) follows from the C2 regularity of δ in Γδ0 and taking δ1 suitably small.
On the other hand, (3.15) is the content of [11, Proposition 3.2 (ii)], once one realizes that

the quantity labeled as τ0(α) in [11] is equal to −1 + α. This has already been observed
in [2, Remark 3.1] and is a consequence of the fact that the function x−1+α

+ is α-harmonic
in (0,+∞)—the function appearing in [11, formula (1.13)] is equal, up to an irrelevant factor,
to the α-Laplacian of xτ+ evaluated at x = 1. The α-harmonicity of x−1+α

+ in (0,+∞) can
be verified in several ways—see, e.g., [3, Lemma 4.1] for a proof based on the computations
of [17]. �
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4. Comparison principles

In this section, we prove the weak comparison principle of Proposition 1.2 and deduce from
it some estimates on the supremum of subsolutions of (1.1).

Proof of Proposition 1.2. Assume first that both inequalities in (1.8) and on the first line of (1.7)
are strict, i.e., that w and w satisfy

−4w + Φ( · , (−4)σw) < −4w + Φ( · , (−4)σw) in Ω

w ≤ w in RN \ Ω

lim sup
Ω3x→x0

w(x) < lim inf
Ω3x→x0

w(x) for all x0 ∈ ∂Ω.

(4.1)

Let w := w − w and
M := sup

Ω
w.

We claim that
M ≤ 0. (4.2)

Of course, if (4.2) is valid, then we are done. Therefore, we argue by contradiction and suppose
that M > 0.

By the continuity of w and w inside Ω and the strict inequality on the third line of (4.1),
there exists a point xM ∈ Ω at which w(xM ) = M . As w ≤ 0 outside of Ω, we infer that

w(xM ) = M = max
RN

w.

Accordingly,
−4w(xM ) ≥ 0 and (−4)σw(xM ) ≥ 0,

that is,
−4w(xM ) ≥ −4w(xM ) and (−4)σw(xM ) ≥ (−4)σw(xM ).

In view of this and the monotonicity of Φ(xM , ·), we obtain that

−4w(xM ) + Φ(xM , (−4)σw(xM )) ≥ −4w(xM ) + Φ(xM , (−4)σw(xM )),

in contradiction with the first inequality in (4.1). Thus, (4.2) holds true and the lemma is
proved when (4.1) is in force.

Suppose now that w and w satisfy the weaker hypotheses (1.7) and (1.8). Let R > 0 be large
enough to have Ω ⊆ BR and consider the function uσ(x) := (R2 − |x|2)σ+. By Lemma 3.1, we
know that

(−4)σuσ > 0 and −4uσ ≥ 2σNR2σ−2 > 0 in BR. (4.3)
Consequently, letting wε := w+ εuσ for any small ε > 0 and using again the monotonicity of Φ

with respect to the second variable, we see that
−4w + Φ( · , (−4)σw) < −4wε + Φ( · , (−4)σwε) in Ω

w ≤ wε in RN \ Ω

lim sup
Ω3x→x0

w(x) < lim inf
Ω3x→x0

wε(x) for all x0 ∈ ∂Ω.

By what we established before, w ≤ wε ≤ w + εR2σ in the whole RN . The conclusion of the
lemma now follows by letting ε ↓ 0. �

As applications of Proposition 1.2, we have two results providing upper bounds on the supre-
mum of subsolutions of (1.1). Of course, from these one may easily deduce the corresponding
lower bounds for supersolutions and two-sided bounds for solutions.

First, we suppose the right-hand side f in (1.1) to be a bounded function. In this case, it
suffices to apply Proposition 1.2 in conjunction with the barrier of Lemma 3.1.
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Corollary 4.1. Let Ω ⊆ RN be a bounded open set and Φ : Ω × R → R be a Carathéodory
function with Φ(x, ·) non-decreasing and Φ(x, 0) ≥ 0 for a.e. x ∈ Ω. Let f ∈ L∞(Ω), g ∈
L∞(∂Ω), h ∈ L∞(RN \ Ω), and w ∈ L∞(RN ) ∩ C2(Ω) ∩ C0(Ω) be such that

−4w + Φ( · , (−4)σw) ≤ f in Ω

w ≤ g on ∂Ω

w ≤ h in RN \ Ω.

(4.4)

Then,
sup

Ω
w ≤ sup

∂Ω
g+ + sup

RN\Ω
h+ + C diam(Ω)2 sup

Ω
f+,

for some constant C > 0 depending only on N and σ.

Proof. Write R := diam(Ω) and pick x0 ∈ RN in such a way that Ω ⊆ BR(x0). Without loss
of generality, we may assume that x0 = 0. Similarly to what we did at the end of the proof of
Proposition 1.2, we consider the function uσ(x) := (R2 − |x|2)σ+, which satisfies (4.3). Hence,
the function

w(x) := sup
∂Ω

g+ + sup
RN\Ω

h+ +
R2(1−σ) supΩ f+

2Nσ
uσ(x), x ∈ RN ,

is such that 
−4w + Φ( · , (−4)σw) ≥ f in Ω

w ≥ g on ∂Ω

w ≥ h in RN \ Ω.

(4.5)

The conclusion now follows by Proposition 1.2. �

By combining Proposition 1.2 with Lemma 3.2, we may tackle the case when f is merely
in L∞loc(Ω) and blows up at the boundary of Ω at a strictly slower rate than the square of the
inverse distance function.

Corollary 4.2. Let Ω ⊆ RN be a bounded open set with boundary of class C2 and Φ : Ω×R→ R
be a Carathéodory function with Φ(x, ·) non-decreasing and Φ(x, 0) ≥ 0 for a.e. x ∈ Ω. Let f
be such that δ2−αf ∈ L∞(Ω) for some 0 < α ≤ α < 1, g ∈ L∞(∂Ω), and h ∈ L∞(RN \ Ω).
Let w ∈ L∞(RN ) ∩ C2(Ω) ∩ C0(Ω) be such that (4.4) holds true. Then,

sup
Ω
w ≤ sup

∂Ω
g+ + sup

RN\Ω
h+ + Cα−1 sup

Ω

(
δ2−αf+

)
(4.6)

for some constant C > 0 depending only on N , Ω, σ, and α.

Proof. For M > 0, define the non-negative function

w(x) := α−1 sup
Ω

(
δ2−αf+

)(
Mv0(x) + C2(1− α)−1vα(x)

)
, x ∈ RN ,

where v0, vα, and C2 are as in Lemma 3.2. By estimates (3.5)-(3.7), in Ω we then have

−4w ≥ sup
Ω

(
δ2−αf+

)
δα−2,

(−4)σw ≥ α−1 sup
Ω

(
δ2−αf+

)(
C−1

3 M − C2
2 (1− α)−1 diam(Ω)α

)
δ−2σ ≥ 0,

provided M is large enough, in dependence of N , Ω, σ, and α only. Thus,

−4w + Φ( · , (−4)σw) ≥ f in Ω.

This yields that w := w+ sup∂Ω g+ + supRN\Ω h+ satisfies (4.5). From Proposition 1.2 it follows
that w ≤ w. Estimate (4.6) is then a consequence of Lemma 3.2. �
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5. Existence. Proof of Theorem 1.1

We present here the proof of Theorem 1.1 under the notational conventions explained in
Subsection 1.2. For readability purposes, we split the proof into four intermediate steps:

Step 1) First, we reduce (1.1) to an equivalent problem having vanishing boundary and
exterior data.

Step 2) The so-obtained Dirichlet problem will contain singular terms originating from the
lack of smoothness of the fractional Laplacian at the boundary and we circumvent
this issue by solving a family of regularized problems by cutting the singularities off.

Step 3) We then obtain uniform estimates on the solutions to these regularized problems;
to get stronger estimates, we use the family of weighted Sobolev spaces introduced
in Section 2, wherein all necessary notation can be found.

Step 4) Finally, the estimates enable us to conclude that the solutions to the regularized
problems accumulate at a solution of the original one. Its uniqueness then immedi-
ately follows from Proposition 1.2.

5.1. Reduction to homogeneous data. Let ḡ be the harmonic extension of g inside Ω,
i.e., ḡ ∈ C2(Ω) ∩ C0(Ω) is the unique solution of the Dirichlet problem{

−4ḡ = 0 in Ω

ḡ = g on ∂Ω.

We define

ψ := χΩḡ + χRN\Ωh =

{
ḡ in Ω

h in RN \ Ω.

Notice that ψ ∈ L∞(RN ) ∩ C2(Ω) ∩ C0(Ω).
Letting v := u− ψ, it is clear that (1.1) is equivalent to the problem2{

−4v + P [v] = f in Ω

v = 0 in RN \ Ω,
(5.1)

with

P [v] :=
{∣∣(−4)σv + (−4)σψ

∣∣p−1(
(−4)σv + (−4)σψ

)}∣∣∣
Ω
.

Observe that both (−4)σψ and f are locally bounded and Hölder continuous functions in Ω.
However, they may in general blow up at the boundary of Ω. Indeed, we have that

|(−4)σψ(x)| ≤ C
(
‖g‖L∞(∂Ω) + ‖h‖L∞(RN\Ω)

)
δ(x)−2σ for all x ∈ Ω. (5.2)

To see this, on the one hand, by the maximum principle and the classical Schauder theory
(e.g., [20, Theorem 4.6]), one gets that

‖ḡ‖L∞(Ω) + δ(x)2‖D2ḡ‖L∞(Bδ(x)/4(x)) ≤ C‖g‖L∞(∂Ω) for all x ∈ Ω.

Consequently, arguing as we did to get estimate (3.6) in Lemma 3.2, we find that

|(−4)σ(χΩḡ)(x)| ≤ C‖g‖L∞(∂Ω)δ(x)−2σ,

for all x ∈ Ω. On the other hand, by computing directly,

|(−4)σ(χRN\Ωh)(x)| ≤ cN,σ
∫
RN\Bδ(x)(x)

χRN\Ω(y)|h(y)|
|x− y|N+2σ

dy ≤ C‖h‖L∞(RN\Ω)δ(x)−2σ,

for all x ∈ Ω. The combination of the last two estimates leads to (5.2).

2Let us stress here that RN \ Ω = ∂Ω ∪ (RN \ Ω).
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In light of this diverging behaviours, to solve (5.1) it is convenient to consider a family of
suitably regularized problems. This will be the content of the next subsection.

5.2. Approximating problems. For any large integer j, consider the open set

Ωj :=
{
x ∈ Ω : δ(x) > 2−j

}
.

Then, let ηj ∈ C∞c (RN ) be a cut-off function satisfying 0 ≤ ηj ≤ 1 in RN , supp(ηj) ⊆ Ωj , ηj ≡ 1

in Ωj−1, and |∇ηj | ≤ Cj in RN . We take into account the auxiliary problem{
−4v + Pj [v] = ηjf in Ω

v = 0 in RN \ Ω,
(5.3)

with Pj [v] := ηjP [v]. To find a solution of (5.3), we will look at it as a fixed-point problem.
Let β ∈ (2σ, 2) \ {1} to be chosen later, in dependence of σ and p only, and consider the

Banach space
X :=

{
w ∈ C0(RN ) ∩ Cβ(Ω) : w = 0 in RN \ Ω

}
,

endowed with the norm ‖w‖X := ‖w‖Cβ(Ω).
First, we claim that Pj : X → L∞(Ω) is a continuous mapping and that

‖Pj [w]‖L∞(Ω) ≤ Cj
(
1 + ‖w‖pX

)
for every w ∈ X . (5.4)

The continuity easily follows from the fact that supp(ηj) ⊆ Ωj and the estimate

∣∣(−4)σw(x)
∣∣ =

cN,σ
2

∣∣∣∣ ∫
RN

2w(x)− w(x+ z)− w(x− z)
|z|N+2σ

dz

∣∣∣∣ ≤
≤ C

(∫
B

2−j−1

[w]Cβ(B
2−j−1 (x))

|z|N+2σ−β dz +

∫
RN\B

2−j−1

‖w‖L∞(RN\B
2−j−1 (x))

|z|N+2σ
dz

)
≤ Cj‖w‖X ,

which holds true for every w ∈ X and x ∈ Ωj . From this and (5.2), we also infer that∥∥Pj [w]
∥∥
L∞(Ω)

≤ C
(
‖(−4)σw‖pL∞(Ωj)

+ ‖(−4)σψ‖pL∞(Ωj)

)
≤

≤ Cj
(
‖w‖pX + ‖g‖pL∞(∂Ω) + ‖h‖p

L∞(RN\Ω)

)
,

which gives (5.4).
Denote now by (−4)−1 the inverse of the Dirichlet Laplacian in Ω, i.e., let (−4)−1F be the

only solution φ of the problem {
−4φ = F in Ω

φ = 0 on ∂Ω.

By the classical Calderón-Zygmund theory and the Sobolev embedding, the operator (−4)−1

maps L∞(Ω) into W 1,q
0 (Ω) ∩W 2,q(Ω) ∩ Cγ(Ω), for every q ∈ (1,+∞) and γ ∈ (0, 2). Also,

‖(−4)−1F‖Cγ(Ω) ≤ Cγ‖F‖L∞(Ω). (5.5)

Pick now any q ∈ [1,+∞) and γ ∈ (β, 2). Then, the standard inclusion ι : Cγ(Ω) → Cβ(Ω)

is compact. Hence, the mapping Tj : X → X defined by

Tj [w] :=

{
ι
(
(−4)−1(ηjf − Pj [w])

)
in Ω

0 in RN \ Ω,

for all w ∈ X , is also compact. We stress that Tj [w] defines a continuous function in RN—and
is thus an element of X—since its restriction to Ω belongs to W 1,q

0 (Ω) ∩ Cβ(Ω).
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Notice then that v ∈ X ∩ W 2,q(Ω) is a solution of (5.3) if and only if it is a fixed point
of the map Tj . Since Tj is compact, we can show the existence of a fixed point using the
Leray-Schauder Theorem (see, e.g., [20, Theorem 11.3]), provided we check that

‖v‖X ≤ Cj for every v ∈ X such that v = λTj [v] for some λ ∈ [0, 1]. (5.6)

To see this, note that if v ∈ X satisfies v = λTj [v], then v is a C0(RN ) ∩W 2,q(Ω) solution of{
−4v + λPj [v] = ληjf in Ω,

v = 0 in RN \ Ω.

Then, by standard elliptic regularity, v is actually of class C2 in Ω, and therefore the func-
tion u := v + ψ is a L∞(RN ) ∩ C2(Ω) ∩ C0(Ω) solution of

−4u+ ληj
∣∣(−4)σu

∣∣p−1
(−4)σu = ληjf in Ω

u = g on ∂Ω

u = h in RN \ Ω.

Hence, by the comparison principle of Corollary 4.2, we infer that ‖u‖L∞(Ω) is universally
bounded, and thus

‖v‖L∞(Ω) ≤ C. (5.7)

Knowing this, we may proceed to show the validity of (5.6). First, we remark that

‖ϕ‖Cα1 (Ω) ≤ C‖ϕ‖
1−α1/α2

L∞(Ω) ‖ϕ‖
α1/α2

Cα2 (Ω)
for all ϕ ∈ Cα2(Ω) and 0 < α1 < α2 < 2.

See, e.g., [25, Proposition 1.1.3 (iii)]. Thanks to this, (5.7), (5.5), and (5.4), we compute

‖v‖X = ‖v‖Cβ(Ω) ≤ C‖v‖
1−β/γ
L∞(Ω)‖v‖

β/γ

Cγ(Ω)
≤ Cλβ/γ‖Tj [v]‖β/γ

Cγ(Ω)

≤ Cγ‖ηjf − Pj [v]‖β/γL∞(Ω) ≤ Cγ
(
‖ηjf‖β/γL∞(Ω) + ‖Pj [v]‖β/γL∞(Ω)

)
≤ Cγ,j

(
1 + ‖v‖βp/γX

)
.

Notice that, since σp < 1, we can choose β ∈ (2σ, 2) \ {1} (close to 2σ) and γ ∈ (β, 2) (close
to 2) in a way that βp/γ < 1. By doing this and applying the weighted Young’s inequality,
claim (5.6) easily follows from the above estimate.

Accordingly, we can apply the Leray-Schauder Theorem and conclude that there exists a
fixed point vj ∈ X for the map Tj , i.e., a solution vj ∈ C0(RN )∩C2(Ω) of problem (5.3). Also,

‖vj‖L∞(Ω) ≤ C, (5.8)

as a consequence of (5.7).

5.3. Uniform estimates. We now want to let j ↑ ∞ and show that the limit of the vj ’s is a
solution of (5.1). In order to do this, we need estimates for vj that do not depend on j. Note
that we already know that each vj satisfies the uniform L∞ bound (5.8).

Let q ∈ (1,+∞). As vj is a solution of (5.3), by Proposition 2.2, Lemma 2.3 (applied here
with pq in place of p, r = pq, θ = N+2q > N+2σpq, and ε = 2(1−σp)q > 0), and estimate (5.8),
we have

‖vj‖L2,q
N (Ω)

≤ Cq
(
‖ηjf − Pj [vj ]‖LqN+2q(Ω) + ‖vj‖LqN (Ω)

)
≤ Cq

(
‖(−4)σvj‖pLpqN+2q(Ω)

+ ‖(−4)σψ‖p
LpqN+2q(Ω)

+ ‖f‖LqN+2q(Ω) + ‖vj‖Lq(Ω)

)
≤ Cq

(
1 + ‖vj‖p

L2σ,pq
N (Ω)

)
.

(5.9)
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Notice that, to get the last inequality, we also took advantage of the fact that, thanks to (5.2)
and (1.4),

‖(−4)σψ‖pq
LpqN+2q(Ω)

+ ‖f‖q
LqN+2q(Ω)

≤ Cq
∫

Ω

(∣∣(−4)σψ(x)
∣∣pq + |f(x)|q

)
δ(x)2q dx

≤ Cq
∫

Ω

(
δ(x)2q(1−σp) + δ(x)αq

)
dx ≤ Cq.

The interpolation inequality of, say, [26, Corollary 2.1.8] along with the representation of Propo-
sition 2.1(v) for the space L2σ,pq

N (Ω) and again (5.8) then give that

‖vj‖L2σ,pq
N (Ω)

≤ Cq‖vj‖1−σ
L

(1−σ)pq
1−σp

N (Ω)

‖vj‖σL2,q
N (Ω)

≤ Cq‖vj‖σL2,q
N (Ω)

.

By plugging this into (5.9) and taking advantage of the weighted Young’s inequality, we conclude
that

‖vj‖L2,q
N (Ω)

≤ Cq for every j ∈ N. (5.10)

Note that, once again, we used in a crucial way that σp < 1.
Next, we claim that, for any small ε ∈ (0, 1),

|vj(x)| ≤ Cε δ(x)min{1−ε,2(1−σp)−ε,α} for every x ∈ Ω and every j ∈ N. (5.11)

To check this, let q > N and notice that, using (5.10) and the standard Morrey’s inequality,

[
∇vj

]
C1−N/q(Bδ(x)/2(x))

≤ Cq
(
δ(x)−q

∥∥∇vj∥∥qLq(Bδ(x)/2(x))
+
∥∥D2vj

∥∥q
Lq(Bδ(x)/2(x))

)1/q

≤ Cqδ(x)−2

(∫
Ω
|∇vj(y)|qδ(y)qdy +

∫
Ω
|D2vj(y)|qδ(y)2qdy

)1/q

≤ Cqδ(x)−2
∥∥vj∥∥L2,q

N (Ω)
≤ Cqδ(x)−2.

Hence, from this and (5.8), it easily follows that

∣∣(−4)σvj(x)
∣∣ ≤ C(∫

Bδ(x)/2

[∇vj ]C1−N/q(Bδ(x)/2(x))

|z|N+2σ−2+N/q
dz +

∫
RN\Bδ(x)/2

‖vj‖L∞(Ω)

|z|N+2σ
dz

)
≤

≤ Cqδ(x)−2σ−N/q,

for every x ∈ Ω and q large enough. Estimate (5.11) is then a consequence of this inequal-
ity, (5.2), and Lemma 3.3, recalling that vj is a solution of (5.3) and taking q = Np/ε, with ε > 0

sufficiently small.
Thanks to the uniform bounds (5.10) and (5.11), we are now able to get a limit for vj as j ↑ ∞

and obtain a solution of (5.1). Bear in mind that estimate (5.10) gives in particular that

‖vj‖W 2,q(Ωk) ≤ Cq,k,

for any q > N . To see this, it is convenient to recall the equivalent representation for L2,q
N (Ω)

given in Proposition 2.1(iv). Thus, by Morrey’s inequality,

‖vj‖Cγ(Ωk) ≤ Cγ,k, (5.12)

for any fixed γ ∈ (max{2σ, 1}, 2) and every large integers j and k.
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5.4. Passage to the limit. By the compact embedding of Hölder spaces, bound (5.12), and a
standard diagonal procedure, (vj)j∈N converges (up to a subsequence) to a function v in Cγloc(Ω).
Letting j ↑ ∞ in (5.11), we obtain that the extension of v to 0 outside Ω (that we still call v)
defines a continuous function on the whole RN . By the dominated convergence theorem and
the uniform L∞ bound (5.8), we also have that vj → v in L1(RN ).

Passing (5.3) to the limit, one easily obtains that v is a weak solution of −4v + P [v] = f in
every open set compactly contained in Ω, that is∫

Ω

(
∇v · ∇ϕ+ P [v]ϕ

)
=

∫
Ω
fϕ for all ϕ ∈ C∞c (Ω).

Notice that this can be done since Pj [vj ] converges to P [v] in L∞loc(Ω), as a consequence of the
convergence of vj to v in Cγloc(Ω) and L1(RN ). Now, since f and P [v] are both locally Hölder
continuous functions in Ω (as v ∈ Cγloc(Ω) with γ > 2σ), by elliptic regularity we conclude
that v belongs to C0(RN )∩C2(Ω) and solves (5.1) pointwise. The proof of Theorem 1.1 is then
complete.

6. Non-existence. Proofs of Theorems 1.3 and 1.4

In this section, we establish our two non-existence results, which are valid respectively
when σp ≥ 1 or when the right-hand side f blows up too rapidly at the boundary of Ω.

First, we deal with the case of vanishing right-hand side and critical or supercritical regime.

Proof of Theorem 1.3. Letting α, ε > 0,m := max∂Ω g > 0, v0 = χΩ, and vα be as in Lemma 3.2,
we consider the function

wα,ε := m(v0 − εvα).

We claim that there exists an ε0 ∈ (0, 1) small enough such that wα,ε is a supersolution to
problem (1.1) for any α ∈ (0, σ) and ε ∈ (0, ε0].

Clearly, wα,ε ∈ L∞(RN ) ∩ C2(Ω) ∩ C0(Ω). Moreover,

wα,ε ≥ g on ∂Ω and wα,ε ≥ h in RN \ Ω,

thanks to the definition of m and the fact that h is non-positive. Therefore, in order to prove
that wα,ε is a supersolution to (1.9), we only need to check that

−4wα,ε +
∣∣(−4)σwα,ε

∣∣p−1
(−4)σwα,ε ≥ 0 in Ω, (6.1)

provided ε is sufficiently small, uniformly with respect to α ∈ (0, σ).
To do this, we take into account formulas (3.5)-(3.7) of Lemma 3.2, that give

−4vα ≤ C?δα−2 and (−4)σvα ≤ C?δ−2σ in Ω,

and
−4v0 = 0 and (−4)σv0 ≥ C−1

? δ−2σ in Ω,

for some constant C? ≥ 1 depending only on N , σ, and Ω. In particular,

−4wα,ε = εm4vα ≥ −C?mεδα−2 in Ω

and

(−4)σwα,ε = m
(

(−4)σv0 − ε(−4)σvα

)
≥ m

(
C−1
? − C?ε

)
δ−2σ ≥ m

2C?
δ−2σ in Ω,
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provided ε ≤ (2C2
? )−1. In light of these two relations, we obtain that, in Ω,

−4wα,ε +
∣∣(−4)σwα,ε

∣∣p−1
(−4)σwα,ε ≥ −C?mεδα−2 +

( m

2C?

)p
δ−2σp ≥

≥
( m

2C?

)p
δ−2σp

(
1− 2pCp+1

? diam(Ω)2(σp−1)+α

mp−1
ε

)
≥ 0

if ε is small enough, depending on N , σ, p, Ω, and m only. Note that the second inequality
holds since, by assumption, σp ≥ 1.

We have therefore proved the validity of (6.1), and thus that wα,ε is a supersolution to
problem (1.9) for any α ∈ (0, σ) and any ε ∈ (0, ε0], with ε0 ∈ (0, 1) independent of α. Suppose
now that there exists a solution u ∈ L∞(RN )∩C2(Ω)∩C0(Ω) of (1.9). By the weak comparison
principle of Lemma 1.2, we then deduce that

u(x) ≤ wα,ε(x) for any x ∈ Ω, α ∈ (0, σ), and ε ∈ (0, ε0].

By taking the limit as α ↓ 0, this in turn implies that

u(x) ≤ m(1− ε0) for any x ∈ Ω.

In particular, since m > 0, we infer that

sup
Ω
u ≤ m(1− ε0) = (1− ε0) max

∂Ω
g < max

∂Ω
g,

which contradicts the fact that u attains continuously the boundary datum g. �

Next, we establish the non-existence of solutions also in the case when the right-hand side is
too singular at the boundary.

Proof of Theorem 1.4. For α ∈ (0, σ), let vα be as in Lemma 3.2, and define

w α,ε := εvα,

for any ε ∈ (0, 1). With the help of (3.5), (3.6), and the fact that σp < 1, we compute

−4w α,ε + |(−4)σw α,ε|
p−1(−4)σw α,ε ≤ C2εδ

α−2 + Cp2ε
pdiam(Ω)αpδ−2σp

≤ εCp2
(
diam(Ω)α + diam(Ω)αp+2(1−σp)

)
δ−2 ≤ κδ−2 ≤ f

provided ε is chosen small enough, depending on N , σ, p, Ω, and κ only. Note that ε can be
chosen uniformly with respect to α ∈ (0, σ). Accordingly, w α,ε is a subsolution of problem (1.11)
for any α ∈ (0, σ). By the comparison principle of Proposition 1.2, we then have that any
solution u ∈ L∞(RN ) ∩ C2(Ω) ∩ C0(Ω) of (1.11) must satisfy u ≥ w α,ε = εvα in Ω. Hence,

u(x) ≥ ε lim
α↓0

τ(x)α = ε for any x ∈ Ω,

in contradiction with the fact that u ∈ C0(Ω) and the homogeneous boundary condition
in (1.11). �

7. Boundary blow-up solutions. Proof of Theorem 1.5

Here, we construct solutions of problem (1.12) which blow up at the boundary of Ω, thus
establishing Theorem 1.5. We will do this by first solving approximating Dirichlet problems
with larger and larger data on ∂Ω and then passing to limit. This last step will be possible
thanks to the barriers provided by the following preliminary result.
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Lemma 7.1. Let Ω ⊆ RN be a bounded domain with boundary of class C2. For

p ∈
(

3− σ
1 + σ

,
1

σ

)
,

let
γ = γ(σ, p) := −2(1− σp)

p− 1
∈ (−1 + σ, 0) (7.1)

and Vγ be defined as in (3.13). Then, there exist two constants A,B ≥ 1, depending only
on N , Ω, σ, and p, such that the L1(RN ) ∩ C2(Ω) function

u(x) := AVγ(x) +BχΩ(x), x ∈ RN ,

satisfies

−4u+
∣∣(−4)σu

∣∣p−1
(−4)σu ≥ 0 in Ω.

Proof. In light of estimates (3.14)-(3.15) of Lemma 3.4 and (3.7) of Lemma 3.2 (recall that v0 =

χΩ a.e. in RN ), we have that
−4u ≥ −C]Aδγ−2

and

(−4)σu ≥ C−1
] Aδγ−2σ + C−1

3 Bδ−2σ ≥ C−1
] Aδγ−2σ in Γ = {x ∈ Ω : δ(x) < δ1}.

Since, by (7.1), we have γ − 2 = (γ − 2σ)p, the above two inequalities give that

−4u+
∣∣(−4)σu

∣∣p−1
(−4)σu ≥ C−p] Apδ(γ−2σ)p

(
1− Cp+1

] A1−p
)
≥ 0 in Γ,

provided A is large enough. The fact that, for B large, the same inequality also holds in Ω \ Γ

is a simple consequence of the left-hand bound in (3.7) and of the C2(Ω) ∩ L1(RN ) regularity
of Vγ—which yields in particular that −4Vγ and (−4)σVγ are both bounded in Ω \ Γ. �

Proof of Theorem 1.5. For any j ∈ N, consider the solution uj ∈ L∞(RN ) ∩ C2(Ω) ∩ C0(Ω)

of problem (1.1) associated to g ≡ j on ∂Ω, f ≡ 0 in Ω, and h ≡ 0 in RN \ Ω—its exis-
tence and uniqueness is guaranteed by Theorem 1.1. By the comparison principle of Proposi-
tion 1.2, (uj)j∈N is a non-decreasing sequence bounded above by the function u of Lemma 7.1.
Let now j ↑ ∞ to get that (uj)j∈N converges monotonically to some u ≤ u. We will show that
this pointwise limit is the sought solution.

Our argument is similar to the one displayed in Subsections 5.3-5.4. Let q > 1 and θ ≥ Npq
to be chosen later. By Proposition 2.2 and Lemma 2.3 (applied with pq in place of p, θ + 2q in
place of θ, r = 1, and ε = 2(1− σp)q > 0), we have

‖uj‖L2,q
θ (Ω)

≤ C
(
‖(−4)σuj‖pLpqθ+2q(Ω)

+ ‖uj‖Lqθ(Ω)

)
≤ C

(
‖uj‖p

L2σ,pq
θ (Ω)

+ ‖uj‖pL1(Ω)
+ ‖uj‖Lqθ(Ω)

)
,

for some constant C > 0 depending only on N , p, q, θ, σ, and Ω. In view of Proposition 2.1(v)

and [26, Corollary 2.1.8], we estimate

‖uj‖L2σ,pq
θ (Ω)

≤ C‖uj‖σL2,q
θ (Ω)

‖uj‖1−σ
L

pq(1−σ)
1−σp

θ (Ω)

.

Thus, using the weighted Young’s inequality along with the facts that σp < 1, p ≥ 1, and 0 ≤
uj ≤ u,

‖uj‖L2,q
θ (Ω)

≤ C
(
‖uj‖

(1−σ)p
1−σp

L

pq(1−σ)
1−σp

θ (Ω)

+ ‖uj‖pL1(Ω)
+ ‖uj‖Lqθ(Ω)

)
≤

≤ C
(
‖u‖

(1−σ)p
1−σp

L

pq(1−σ)
1−σp

θ (Ω)

+ ‖u‖p
L1(Ω)

+ 1

)
.
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Notice that the first term involving u on the right-hand side is finite, provided θ is taken
sufficiently large in dependence of N , p, q, and σ only, whereas the second term is always finite,
as u ∈ L1(Ω).

Since the last estimate holds for every q > 1, by compactness we deduce that (uj)j∈N actually
converges to u in C1,α

loc (Ω), for every α ∈ (0, 1). Using this, it is easy to see that u satisfies∫
Ω

(
∇u · ∇ϕ+

(
|(−4)σu|p−1(−4)σu

)
ϕ
)

= 0 for all ϕ ∈ C∞c (Ω).

By standard elliptic regularity, we then get that u ∈ C2(Ω) and solves the equation in the
pointwise sense.

Estimate (1.13) is an immediate consequence of the pointwise inequalities 0 ≤ u ≤ u. The
fact that u > 0 in Ω follows from a simple strong maximum principle. Finally, for all x0 ∈ ∂Ω

we have
lim inf
Ω3x→x0

u(x) ≥ sup
j∈N

lim
Ω3x→x0

uj(x) = sup
j∈N

j = +∞,

and the proof is complete. �

8. Comments, open questions, and motivations

We conclude the paper with a few remarks on possible extensions of our results, points left
open by our analysis, and possible applications.
i) Though stated for the specific operator u 7−→ −4u+|(−4)σu|p−1(−4)σu, the main results

of this paper can be extended to a larger class of operators having p-growth in (−4)σu

and satisfying the comparison principle of Proposition 1.2. For instance, Theorem 1.1 is
also valid for operators of the form

u 7−→ −4u+ Φ
(
·, (−4)σu

)
,

where Φ : Ω×R→ R is a uniformly Hölder continuous function satisfying Φ(·, 0) ≥ 0 in Ω

and the growth condition

|Φ(x, t)| ≤ C
(
1 + |t|p

)
for all x ∈ Ω, t ∈ R,

for some constant C > 0, in addition to the assumptions of Proposition 1.2.
ii) While, in light of the existence/non-existence dichotomy provided by Theorems 1.1 and 1.3,

the p-growth structure clearly cannot be fully abandoned, it would be nice to understand
whether our results could be extended to operators which do not satisfy the hypotheses
of Proposition 1.2, such as u 7→ −4u +

∣∣(−4)σu
∣∣p or u 7→ −4u −

∣∣(−4)σu
∣∣p−1

(−4)σu.
Indeed, in these cases the absence of comparison principles prevents one from using barrier
arguments: these are at the core of a priori estimates (see Corollary 4.2), which are in
turn essential to deduce uniform estimates (see Subsection 5.3) making our approximating
strategy feasible (see Subsection 5.4).

For some more details regarding this issue in the case p = 1, see also [10, Appendix A].
iii) Theorem 1.5 gives the existence of a solution to −4u +

∣∣(−4)σu
∣∣p−1

(−4)σu = 0 in Ω

which vanishes a.e. outside of Ω and blows up at its boundary, from the inside. As a
byproduct of the method of construction, we obtain the upper bound (1.13) on its blow-up
rate. Unfortunately, we are not able to determine neither a corresponding lower bound nor
the uniqueness of the solution. We believe it would be interesting to investigate both these
issues.

iv) As a matter of fact, equation (1.1) is related to the fractional Lane-Emden equation (with
sign-changing nonlinearity)

(−4)sv + |v|p−1v = f in Ω, s = 1− σ ∈ (0, 1).
20



The two can be bridged by simply relabeling, at least formally, (−4)σu = v in RN . In
doing so, one has to pay attention to what happens to the boundary conditions.

For example, if we perform this change of variable on a non-negative solution u of (1.1)
with g ≥ 0 and h ≤ 0, then v solves{

(−4)sv + |v|p−1v = f in Ω

v ≤ 0 in RN \ Ω

and may therefore act as a subsolution to the fractional problem. We believe that this could
contribute to the study of very large solutions of the fractional Laplacian, i.e., solutions of

(−4)sv + |v|p−1v = f in Ω

v

δs−1
= +∞ on ∂Ω

v = 0 in RN \ Ω.

for which there is still a number open problems, such as uniqueness and clear boundary
asymptotics (see [2, 11]).

v) For p = 1, the operator −4 + (−4)σ, σ ∈ (0, 1), is the infinitesimal generator of a
discontinuous Markov process which has both diffusion and jump components: roughly, this
means that trajectories look like disconnected portions of Brownian motions. This process
belongs to the class of Lévy processes (stochastic processes with stationary and independent
increments): these are, in particular, uniquely characterized by their characteristic function
via the Lévy-Khintchine formula, see for example [6]. The interested reader can also check
the self-contained presentation in [16, Appendix B] on how to recover this process as a limit
of discrete random walks.

Lévy processes are widely used in models from Mathematical Finance [14], especially
dealing with option pricing, and are related to optimization [9] and stochastic control [28]
problems described by a Hamilton-Jacobi-Bellman fully nonlinear integro-differential equa-
tion. The classical theory of Hamilton-Jacobi-Bellman equations, which is making use only
of the continuous diffusion entailed by the Laplacian, gives rise to boundary value problems
of the form (1.10)—possibly with g ≡ +∞, see [22]—for the optimal cost function.
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