Functorial String Diagrams for Reverse-Mode
Automatic Differentiation

Mario Alvarez-Picallo &
Programming Languages Laboratory, Huawei Research Centre, Cambridge, UK

Dan Ghica =

Department of Computer Science, University of Birmingham, UK
Programming Languages Laboratory, Huawei Research Centre, Cambridge, UK

David Sprunger =24
Department of Computer Science, University of Birmingham, UK

Fabio Zanasi &
Department of Computer Science, University College London, UK

—— Abstract

We formulate a reverse-mode automatic differentiation (RAD) algorithm for (applied) simply typed
lambda calculus in the style of Pearlmutter and Siskind [27], using the graphical formalism of string
diagrams. Thanks to string diagram rewriting, we are able to formally prove for the first time the
soundness of such an algorithm. Our approach requires developing a calculus of string diagrams
with hierarchical features in the spirit of functorial boxes, in order to model closed monoidal (and
cartesian closed) structure. To give an efficient yet principled implementation of the RAD algorithm,
we use foliations of our hierarchical string diagrams.

2012 ACM Subject Classification Mathematics of computing — Automatic differentiation; Theory
of computation — Categorical semantics

Keywords and phrases string diagrams, automatic differentiation, hierarchical hypergraphs
Digital Object Identifier 10.4230/LIPIcs.CSL.2023.6

Funding The last three authors acknowledge support from EPSRC grant EP/V002376/1.

1 Introduction

Interest in incorporating differential structure to programming languages has grown with
their use in machine learning, especially to support gradient-based training algorithms [4]. A
central piece of these algorithms is reverse-mode automatic differentiation (RAD, also called
backpropagation), which has proven to be an efficient way to compute gradients. For programs
constructed entirely of differentiable operations on (tuples of) real numbers, automatic
differentiation amounts to a mechanisation of the chain rule from (finite dimensional)
multivariable calculus. However, in many programming languages, programs can themselves
consume and produce other programs. Since spaces of functions on non-trivial real vector
spaces are infinite dimensional, the differentiation of these higher-order programs cannot
rely on the same justifications for correctness. Moreover, a notion of differentiation for
higher-order programs can be useful even in situations where it is not necessary. For example,
mapping a function over a list can always be expressed by an equivalent first-order program,
but rewriting a program to fully remove higher-order functions is often not as convenient or
efficient as a higher-order approach would be.

In this paper, we propose a differentiation algorithm for higher-order code which
incorporates the fine-grained structure induced by defining and reusing programs within
programs. In a nutshell, our algorithm extends every closure in the code with a back-
propagator which computes the gradient of the original function along a given vector. It

© Mario Alvarez-Picallo, Dan Ghica, David Sprunger, and Fabio Zanasi;
37 licensed under Creative Commons License CC-BY 4.0

31st EACSL Annual Conference on Computer Science Logic (CSL 2023).

Editors: Bartek Klin and Elaine Pimentel; Article No. 6; pp. 6:1-6:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:mario.alvarez.picallo@huawei.com
https://orcid.org/0000-0001-9843-3768
mailto:dan.ghica@gmail.com
https://orcid.org/0000-0002-4003-8893
mailto:d.sprunger@bham.ac.uk
https://davidsprunger.com
https://orcid.org/0000-0002-2518-4710
mailto:f.zanasi@ucl.ac.uk
https://orcid.org/0000-0001-6457-1345
https://doi.org/10.4230/LIPIcs.CSL.2023.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

Functorial String Diagrams for RAD

accomplishes this by executing a reversed version of the original computation graph. In order
to differentiate higher-order functions, we also collect the partial derivatives of a function’s
output with respect to any captured variables/terms in its environment and pass those as the
tangent value corresponding to an input of function type — in a similar style to Pearlmutter
and Siskind’s automatic differentiation algorithm [27].

1. o +=y;
2. y 1= Tx*xz;
1. z += y; 3. <§+=z*<§;
2. y :=xT*xz; 4. <?+=x>k?;
5. ? = 0;
6. ? += 7
(a) Original. (b) Transformed. (c) String diagram. (d) Transformed diagram.

Figure 1 Approaches to RAD: program transformation and graphical.

In a typical program transformation approach to reverse-mode AD, each line of a program
is paired with a small program computing that line’s derivative. These derivatives are then
assembled in the reverse order of the corresponding lines to obtain a transformed program
which computes the original program (the “primal”) together with its derivative. An example
two-line primal program and its transformed version are shown in Figure la and Figure 1b.
Note the first two lines of the original program are repeated (the “forward pass”). Lines 3-5
compute the derivative of line 2 and line 6 computes the the derivative of line 1, together
forming the “reverse pass”.

A good explanation of such a transformation should be detailed enough to serve as a
complete specification for implementation and verification while also conveying the high-level
ideas to facilitate necessary extensions. For example, the transformation of [27] assumes the
program has been preprocessed to straight-line single-assignment code with unary and binary
operations only. These assumptions rule out in-place assignments like line 1, so without
high-level guidance one may not discover that destructive assignments like line 2 must have
a zeroing line (line 5) in their reverse pass while nondestructive assigments should not.

The main novelty of our approach is the use of category theory to provide a firm semantic
foundation to the algorithm. Our categorical environment features both the axioms of
cartesian closed categories, modelling the operations of a generic functional language, and of
reverse differential categories [12], accounting for first-order differentiability. We extract a
detailed RAD transformation from the reverse differential operator; the axioms governing that
operator provide a flexible high-level description one could use, for example, to understand
why destructive and nondestructive assignment must be treated differently.

Roughly speaking, programs in these functional languages correspond with morphisms
in these categories. To facilitate automated manipulation of these morphisms, we represent
them as string diagrams, which are a graphical, yet completely formal language to represent
morphisms [29]. For example, the program of Figure la corresponds with the string diagram
of Figure 1c and its RAD transformed version (Figure 1b) corresponds to the string diagram
of Figure 1d. To represent higher-order functions, we rely on a more sophisticated string
diagram, namely hierarchical string diagrams, which in turn use functorial boxes [25].

A second ingredient that we need to introduce is the notion of foliation. A foliation is a
“maximally spread out” representation of a string diagram; leaves in these foliations roughly
correspond to lines in a program. This enables us to reason by induction on diagrams.

M. Alvarez-Picallo, D. Ghica, D. Sprunger, and F. Zanasi

We formulate our algorithm as a rewriting system which, when applied to a foliation of
a string diagram, produces its reverse-mode derivative. Thanks to the underlying reverse
differential structure, using equational reasoning on string diagrams we are able to formulate
and prove correctness of the algorithm (Theorem 17).

At a more fundamental level, these developments show how the dual nature of string
diagrams — which may be interpreted both as (hyper)graphs and as a formal syntax — offers
new perspective in the study of AD. On the one hand, string diagrams are akin to lower-level
structures standardly found in AD implementations, such as computation graphs [1], and
can be manipulated combinatorially. At the same time, their syntactic specification and
algebraic properties enable methodologies typical of more abstract formalism, such as the
approaches based on functional programming [13, 27]. Particularly, the use of induction,
rewriting, and reverse derivative categories provide a basis for arguing soundness we do not
see in computation graphs alone. In this sense, our approach ideally acts as a bridge between
different formalisms to reason on AD algorithms.

Synopsis. In Section 2 we build towards the definition of hierarchical string diagrams.

In Section 3 we develop the tools necessary to compute with these diagrams: foliations,
hierarchical hypergraphs, and reverse differentiation. In Section 4 we present our algorithm
for automatic differentiation and prove its correctness. Finally in Sections 5 and 6, we discuss
related work and future work.

2 Hierarchical string diagrams

In this section we give a diagrammatic introduction to the basics of monoidal closed categories.

String diagrams in this work are to be read from top to bottom.

2.1 Functorial string diagrams

Given a category, we denote the identity on an object X by |, a morphism f: X — Y

x

Y for the composition f; g of morphisms f: X — Y and g: Y — Z. Note

by Y , and write

the string diagrammatic notation neatly absorbs associativity and identity of composition.

Following [25], we extend string diagrams with labelled frames which indicate mappings
between categories. The application of a mapping F' to a morphism f can be seen in
Figure 2a. Often such a mapping is a functor, respecting composition and identity as
depicted in Figure 2b. We write 1¢ for the identity functor on category C.

Fi (f) x f
x x| = _ B
[/] [.
FX q
- Y
T‘ . FX T\[;z
Fo(f) rz
(a) Labelled frame. (b) Functor axioms.

Figure 2 Labelled frames and functors.

6:3

CSL 2023

6:4

Functorial String Diagrams for RAD

A natural transformation from a functor F' to a parallel functor G is an object-indexed
family of morphisms 64 : FX — GX satisfying the property depicted in this diagrammatic
language in Figure 3a.

We may also express an adjunction between functors F : D — C (left adjoint) and
G : C — D (right adjoint), via natural transformations € : FG — 1¢ and 1 : 1p — GF, which
satisfy unit and counit axioms found in Figure 3b. We will write the counit of an adjunction

as a lower semicircle , the unit as an upper semicircle ﬁ%ﬁ , and omit the label

X

when the map is clear from context.
mx FX FX Gx
HX X 2
GX [2] 652) EPE
[f] FY FGFX @?

7] | Y /Fx,
< Gy QY X <l
Gy ax

(a) Naturality. (b) Unit and counit axioms.

Figure 3 String diagrams for natural transformations and adjunctions.

2.2 String diagrams for monoidal categories

The diagrammatic notation can be generalised to bifunctors by drawing a two-place frame.
One bifunctor that plays a special role in string diagrams is the tensor product or monoidal
product, in particular when it is strict. The strict tensor is represented diagrammatically as:

XU XQU
x| |U U XY
x| [v v v v
YRV YV

The diagram above contains three representations. In the first one we see tensor as a
bifunctor, with the two separate boxes indicating the two arguments of the bifunctor. The
second one is special notation for the tensor, essentially hiding the functorial box and using
a graphical convention (the horizontal line) to represent the “unravelling” of the tensored-
labelled stem into components. Finally, the third is special notation for strict monoidal
tensor, in which the tensor X ® U is represented as the list of its components [X, U].

The category is symmetric monoidal when there is a “symmetry” natural transformation
vx,y : X ®Y — Y ® X which is involutive, i.e. vxyv;vy,x =idx ® idy. Diagrammatically,

we represent symmetry by = >< . As a consequence of the naturality of v, we can

“push” morphisms through symmetry: - .

A cartesian (monoidal) category is a monoidal category where the tensor operation
and unit are given by categorical products and the terminal object. One standard recipe
to enforce this condition (see e.g. [19, Theorem 6.13]) on a monoidal category is to add
monoidal natural transformations dx : X — X ® X (contraction) and wx : X — I
(weakening) making I terminal, making every object into a cocommutative comonoid, and

M. Alvarez-Picallo, D. Ghica, D. Sprunger, and F. Zanasi

interacting nicely with the product structure, i.e. dxgy = (0x ®dy); (Idx @ vx,y ®idy). We
represent contraction as /l\ and weakening as \ . The cocommutative comonoid equations

include (‘L\, = ‘ = [H and Q = h . Copying and discarding are both consequences of

naturality, i.e. and : ! .

2.3 Hierarchical string diagrams

Monoidal closed categories and cartesian closed categories are fundamental in the construction
of categorical models for the linear and simply-typed A-calculus, respectively [6]. A symmetric
monoidal closed category is a symmetric monoidal category where for every object Y, the
(endo)functor Fy (X) = X ®Y has a right adjoint Gy (X) = X — Y. The equations defining
this adjunction are presented diagrammatically in Appendix A.

We will not be using these here, but rather a hom-set presentation of the adjunction,
consisting of a natural bijection between C(I' ® X,Y") and C(I', X — Y). This bijection is
known as “currying”, and is a more germane presentation for the A-calculus. We define
abstraction, the composition of the unit of the adjunction with the functorial box for G, as
syntactic sugar denoted by a plain box with rounded corners.

T

r
X —o(P®X)

This structure for abstraction yields our notion of a hierarchical string diagram, which is
to say a string diagram which may contain other string diagrams in these boxes.

A cartesian monoidal category which is also a monoidal closed category is called a
cartesian closed category. In the sequel we will restrict ourselves to cartesian closed categories,
and so we will write x for ® and = for —o.

For computational purposes, it is important to have a data structure efficiently interpreting
string diagrams. For string diagrams in symmetric monoidal categories, such a data structure
is provided by hypergraphs with interfaces [8]. This can be extended to our closed context
with hierarchical hypergraphs [2]. We also point out that foliations for hierarchical string
diagrams (see Section 3.2) can be found efficiently by interpreting the string diagram as a
hypergraph, then topologically sorting the edges.

3 Foliations and reverse differentiation

Next we focus on cartesian closed categories freely generated from a signature. In order to
define differential structure, these signatures must include the vector space-like structure
of (cartesian closed) left additive categories [7]. For our developments, we are especially
interested in using foliations, special presentations of morphisms in these categories which
enable the use of inductive definitions and proofs.

6:5

CSL 2023

6:6

Functorial String Diagrams for RAD

3.1 Freely generated categories

» Definition 1. A signature (3¢, 1,1, 0) consists of a set Xq of types, a set ¥1 of operations,
and functions i,0 : £1 — X giving input and output types for each operation.

Derivatives are usually defined to be the linear map best approximating a function near
a point. For us, this notion is provided by left additive categories, which introduce a monoid
structure on homsets generalizing vector space addition.

» Definition 2 ([12]). A cartesian category C is cartesian left additive if each object X in C
is a commutative monoid, meaning there are morphisms Ox : 1 — X and +x : X x X —- X
satisfying the first three equations depicted below. Furthermore, these monoids are required
to be compatible with the cartesian structure in the sense of the last two equations.

5 - - o - -G

XxY XY XxY

It is equivalent to say that every hom-set C(X,Y) is a commutative monoid, compatible
with the cartesian structure; a full account of this notion can be found in [12]. Note that we
do not assume any interaction between the additive structure and the comonoid structure

given by counit and comultiplication;e.g. equations such as = do not hold in most

models.

» Definition 3 ([7, 1.4]). A cartesian closed left additive category is both a cartesian left
additive category and a cartesian closed category which respects the additive structure:

X oY

Now we can give the setting for our automatic differentiation algorithm.

» Definition 4. Suppose ¥ is a signature. We let As be the free (strict) cartesian left
additive category generated by ¥, and we let Cx, be the free (strict) cartesian closed left
additive category gemerated by Y. Naturally, As, is included in Cs.

The construction of these free categories is standard.

3.2 Foliations

Freely generated categories provide inductive structures with which we can describe all
objects and morphisms. Being able to factorise morphisms gives us access to foliations, which
allow us to treat morphisms as almost syntactic objects that we can perform induction on.
Foliation-like objects, such as the more general polygraphs, are well-known in the literature,
see for example [11, 18, 34]. Of particualr relevance is the use of foliations in [35] to enable
the programmatic manipulation of string diagrams. We fix here the relevant definitions as
they relate to hierarcical string diagrams.

M. Alvarez-Picallo, D. Ghica, D. Sprunger, and F. Zanasi

» Definition 5. Fiz a set of string diagrams Yg, which we call atomic.! A foliation (with
respect to Y) is a sequential composition of string diagrams, which we call leaves. A leaf
consists of an atomic morphism or an abstraction, tensored with any number of identities on
either side. A maximal foliation is a foliation comprising only leaves. A maximal hierarchical
foliation is a maximal foliation which is either abstraction free, or in which all abstracted
diagrams are also mazximal hierarchical foliations.

For instance, the maximal foliations of are and ,if f and g are atomic.
9
The following is an obvious generalisation of a folklore theorem.

» Lemma 6. Any hierarchical string diagram can be written as a (non-unique) mazximal
hierarchical foliation.

The proof is straightforward: intuitively, whenever two terms are “level” in a diagram one of
them can be “shifted” using identities, then tensors and compositions can be reorganised
using the functoriality of the tensor.

Foliations are inductive, allowing syntactic transformations defined recursively. Then
instead of defining “big” rules for general sequential and parallel composites, we only need
“small” rules for composing a morphism with a leaf, which is the format presenting the
transformation in Figure 8. This also makes for simpler inductive proofs about the folations.

3.3 Reverse differential categories

Finally, we present a graphical treatment of basic reverse-mode differentiation without
abstraction or function evaluation. The reverse-mode derivative of a function f: R™ — R"
is the function (Jf)T : R™ — (R™ — R™) taking a base point in the domain of the function
to the (linear map represented by the) transpose of the Jacobian of the function at that
point. We denote the reverse mode derivative of a function by Rf.

» Example 7. Consider binary multiplication, m : R? — R given by m(x,y) = x - y. The
Jacobian of this function at (g, yo) is [¥o =0]. Recall this means that given a small change in

the inputs [ﬁgj] to m, the output will change by approximately [vo @o] [ﬁz] = Az-yot+xo-Ay.

Thus, the reverse-mode derivative of m is the function Rm : R? — (R — R?) given by
(Rm) (0, y0) = [Az = (yo - Az, m0 - Az)].

The idea of this “reverse-mode derivative” is captured in the formalism of reverse
differential categories [12].

» Definition 8 ([12, Def. 13]). A reverse differential category, or reverse derivative category,
(RDC) is a cartesian left additive category endowed with a combinator R sending each
morphism f: X =Y to a morphism R[f] : X xY — X. This combinator satisfies seven
azioms (RD1-7) which can be found in both equational and diagrammatic form in Appendiz B.

We will introduce the axioms of the reverse derivative combinator necessary for

understanding our algorithm gradually. We will use the a frame to denote
R

the reverse derivative Rf of a morphism f in diagrammatic form. Note we are using the
morphism frame notation for a non-functorial operation on morphisms. Despite this, this

operator does have interesting compositional properties, as shown by axioms RD4 and RD5.

1 Typically, we will take ¥z to be the morphisms of a signature, together with some set of structural
morphisms in a category.

6:7

CSL 2023

6:8

Functorial String Diagrams for RAD

‘2 v ow X z ‘ WX zZz WY Z
X Z Y wW l l v W X Z WY Z
[| == i Ll ‘e
f (] w z
: E. ﬁg . i é@
I I I S |

Ng
.

(2]

4=k

(c) Derivative of a leaf g : X — Y, via two
(a) RD4. (b) RD5. uses of RD4 and RD2.

Figure 4 RDC axioms as string diagrams.

Next we consider an important class of morphisms: the linear morphisms.

» Definition 9. A morphism f: X — Y in a reverse differential category is linear whenever
there is a morphism g : Y — X such that R[f] = wx X g and R[g] = wy x f.
Note that if f is linear, then so is g. We call g the dual of f and denote it by f1.

The subcategory of linear maps in an RDC is a dagger category [12, Prop. 24].

» Lemma 10. When f and g are linear maps in a reverse differential category, so are f;g
and f x g and their duals are (f;)" = gt fT and (f x g)t = fT x g1.

The axioms of reverse differential categories require the structural morphisms (idx,
vx,v,0x,wx,0x, and +x) to be linear, and further require that Ox is dual to wx, +x is
dual to dx, vx,y is dual to vy, x, and idx is dual to itself.

In order to equip categories generated from a signature with reverse differential structure,
it is sufficient to designate a suitable derivative for each of the basic operations by the
following lemma.

» Lemma 11. Suppose ¥ is a signature and suppose that for every operation g : X —'Y
in X1, there is a well-defined reverse derivative R[g] morphism in Ayx, satisfying RD2, RDG6,
and RD7. Then Ay is a reverse differential category.

In such a case, we will call ¥ a differentiable signature.

It is an exercise for the reader to check that with the reverse-mode derivative of
multiplication defined in Example 7, the string diagram of Figure 1d is the tupling of
the string diagram of Figure 1c with its reverse-mode derivative. In this exercise, one will
find that the zeroing of ? is the dual of the discard of the destructive assignment. Thus, that
this requires a zeroing of the corresponding reverse-pass variable (while in-place operations
do not) is a consequence of the RDC axioms.

3.4 Optimizing RAD string diagrams

Reverse differential categories are defined without closed structure to maximize generality.
However, in a closed setting, we can abstract the differential component of input to the
reverse derivative. With this, we can more precisely state the goal of this work: we seek an
“adjoint transformation” taking f: X — Y to Af : X - Y x (Y = X), which augments the
result of f with a function representing its reverse-mode derivative at the given input. We
depict this transformation in Figure 5a.

M. Alvarez-Picallo, D. Ghica, D. Sprunger, and F. Zanasi 6:9

X
) -
YY I n
Y Y=X ‘ ‘
(a) Adjoint transformation. (b) Adjoint transformation applied to sequential composition.

Figure 5 Basics of the adjoint transformation.

The RDC axioms, particularly RD5, tell us how to compute this adjoint transformation
when f can be decomposed as a sequential composite, as shown in Figure 5b. This immediately
suggests important, common optimizations in practical implementations.

In proceeding from the third diagram to the fourth, some computation is saved (f is used
only once on the right) at the cost of having to transmit an extra intermediate result to the
closure giving the derivatve. This is a common time-space tradeoff in backpropagation where
usually space is sacrificed.

Next, if the second layer of computation is a leaf in a foliation, we can make this diagram
even more precise. Substituting the reverse derivative of a leaf from Figure 4c into the
diagram in Figure 5b, we obtain Figure 6a. This expresses space savings common in all
practical implementations: the whole state of the computation does not need to be saved at
each step, only the values which are used in the next operation.

)

(a) Adjoint transformation on a leaf. (b) Adjoint transformation on a linear
leaf.

Figure 6 Adjoint transformation on (linear) leaves.

Finally, if the operation in a leaf is linear, we can simplify to Figure 6b. This saves even
more space — no inputs to this step need be saved since the derivatives of linear operations
do not depend on the base point.

CSL 2023

6:10

Functorial String Diagrams for RAD

4 A diagrammatic AD algorithm

This section presents the main technical result of our paper: to define and prove the soundness
of an algorithm for performing reverse-mode automatic differentiation on hierarchical string
diagrams. Our algorithm can be considered a simplified version? of the one introduced
in [27], which was remarkable for being one of the first such algorithms that can correctly
differentiate code containing closures and higher-order functions.

4.1 Rewrite rules on string diagrams

Our algorithm consists of three transformations, the application of which we denote by
differently coloured boxes around a diagram. We emphasise that these boxes represent
meta-level transformations, and are not to be confused with object-level entities such as the
rounded rectangles that we use to denote abstraction.

We have previously described the adjoint transformation we seek. Its only rewrite rule
can be found in Fig. 7a, is denoted by a blue box, and is the entry point of the algorithm.
Given a diagram written as a maximal foliation f, o...o f; : X — Y, this transformation
extends it with an extra closure Y = X called a backpropagator; the final result being a
diagram of type X — Y x (Y = X). This backpropagator computes the reverse derivative
of the original diagram along a given input vector. In particular, if the original diagram
produces a single real number, evaluating its backpropagator at 1 computes the gradient of
the original diagram.

|

Ay let oy 2 e1; = A let d{z, E ek

N 2 Ze, #an = ea}
| in. 2 end in (7, (\rn let 2] 20 (71 a);
x :
220 %)
X1 — Tn =0 (J’l -L‘_U)
) T 20 (T D)
pzn = eals
I .
&
J’ le oz = e
in (['#f,..., "]z, "zo) end)) end
(a) Our adjoint rule. (b) Reverse transform in [27].

Figure 7 Comparison of RAD transformations.

This adjoint transformation is in turn defined by two further transformations: a forward
pass (in orange labelled by |, rewrite rules in Fig. 8a) and a reverse pass (in green labelled
by 1, rewrite rules in Fig. 8b) which are applied to the leaves of the foliation. These rules
correspond to the forward and reverse passes commonly employed in reverse-mode AD. The
forward pass executes the original function “as is”; the reverse pass computes the gradient
of every sub-expression in reverse order of execution. In our algorithm, as explained in

2 Specifically, our algorithm does not handle lists, Boolean values or conditionals, although it can be
extended to account for these features in a straightforward way.

M. Alvarez-Picallo, D. Ghica, D. Sprunger, and F. Zanasi

Section 3.4, intermediate values computed during the forward pass are stored and passed
along to the diagram corresponding to the reverse pass, shown in Fig. 7a as a bundle of type
I" flowing from the forward pass into the backpropagator, which we refer to as the context
wire.

The adjoint transformation corresponds to the “reverse transform” of [27, p. 26]. The
definition of this reverse transform is shown in Figure 7b. This definition references two
other per-line transformations ¢ and p, which correspond to our forward (¢) and reverse (p)
passes. The ¢ transformation generally keeps the same program shape, occasionally binding
new variables; analogously our forward pass occasionally saves intermediate values for the
backpropagator. Inside the binding, Pearlmutter and Siskind’s reverse transformation zeroes
many variables (since they assume the program has been preprocessed to single-assignment),
then p-transforms the original code, analogous to our reverse pass.

|
ﬂgz N
\ i
\
T
0
]
L] i || i L] ; | ;
>< — r—) /l\x — x| o~
ﬂ\\ = 7l ﬂ‘
Y X ‘
Y X x x X X
11| | . || [
H B i . AL
S : == —

az.z
Where 0=32.Y =(Zx X)

(b) Rewrites defining the reverse pass.

Figure 8 Forward and reverse pass rewrites.

The first four rules (top row) of the forward and reverse pass follow the logic introduced
in Section 3.4: linear morphisms are simply replaced by their dual in the reverse pass —
observe that, since the reverse derivative of a linear diagram does not depend on its base
point, these rules only generate a “dummy” unit value to be added to the context wire. We
have already seen the logic for the last rule on the bottom row as well: for a generic nonlinear
basic operation, the forward pass needs to save the basepoint and the reverse pass uses that
for its reverse-mode derivative.

6:11

CSL 2023

6:12

Functorial String Diagrams for RAD

» Remark 12. We note that each copy node in the primal code is replaced by an addition in
the reverse pass, adding up all the sensitivities corresponding to each use of a variable before
propagating them further up the computation graph. This prevents the fanout problem and
ensures efficiency without requiring additional optimization passes like linear factoring used
by [10] or sophisticated, quasi-symbolic representations of operations as in [22].

The rules for abstraction (left bottom row) and evaluation (middle bottom row) are
harder to back up with compelling intuitions. For abstraction, the diagram enclosed by
the bubble is recursively transformed using the blue rule in the forward pass — that is, any
abstraction in the primal diagram is replaced by a new abstraction that computes the adjoint
of the original one. Then, when this function is evaluated in the primal diagram, the forward
pass gets the result of the adjoint application — both the result of the original abstraction and
a backpropagator which is not used in the forward pass but is set aside for the reverse pass.

When rewriting an application node, the reverse pass applies the backpropagator produced
by the forward pass. This backpropagator in turn produces a wire for every operand of the
body of the original abstraction. The abstraction rule in the reverse pass then expects the
sensitivity of an abstraction to consist of a bundle of wires corresponding to the sensitivities
of each captured wire.

Figure 9 Differentiating a simple polynomial.

As an example, consider the program let mul z = y * z in mul y + y, which
computes the polynomial y ~ %2 + . In Fig. 9, we show the result of applying the
adjoint transformation to this diagram. We assume that the signature that generates our
category includes a multiplication® morphism (] whose corresponding reverse derivative is

given by (which is simply the gradient of the product familiar from basic calculus). The
resulting backpropagator, when applied to input 1, gives the correct derivative of the original
polynomial.

» Lemma 13. The adjoint transformation defined by Fig. 8a and Fig. 8b is independent of
the choice of foliation, up to a permutation of the context wire.

Proof (Sketch). By induction on the length of the foliation. It can be easily checked that
every pair of such rules commutes, modulo a permutation of the wires that are propagated
from the forward to the reverse pass. For a concrete example, consider the two rewrites
stemming from two different foliations of the same graph in Fig. 10, and note that they differ
only in the obvious permutation morphism v: X x (Y xI') - Y x (X x I). <

3 Multiplication here should be understood as multiplication of real numbers, and not be confused with
the product structure of our category.

M. Alvarez-Picallo, D. Ghica, D. Sprunger, and F. Zanasi 6:13

+ 1

=

Figure 10 Two rewrite sequences stemming from two distinct foliations of the same graph.

» Remark 14. The proof above, although simple, illustrates a proof method that is made
possible by using string diagrams: induction on the length of the foliation of the diagram
(Def. 5). This proof method also benefits from absence of names and all related bureaucratic
concerns (free vs. bound variables, alpha equivalence, capture-avoiding substitution).

4.2 Correctness

Our proof of correctness proceeds in two steps. First, we prove that our AD transformation
is compatible with Beta reduction: whenever two diagrams are equivalent modulo Beta
reduction, then so are their adjoints. Then, we show that the AD transformation is correct
for diagrams featuring only first-order nodes (featuring no abstractions or applications).

.
@[-]o

e

‘ G

!
2

Figure 11 AD is compatible with Beta-reduction.

» Lemma 15. The rewriting rules in Fig. 8 are compatible with beta reduction (The equation
in Fig. 11 holds).

Proof. The proof proceeds by straightforward application of the rewrite rules. We provide
the calculation in full in Fig. 12. <

u
=

ul

Figure 12 Beta-soundness of AD.

CSL 2023

6:14

Functorial String Diagrams for RAD

» Lemma 16. For every whose operands and results are all of a first-order type, there

is a Beta-equivalent that contains no instances of abstraction or evaluation and whose

every node has all first-order inputs and outputs.

Proof. Since our graphical language is simply-typed, evaluation of is guaranteed to

terminate, following an argument similar to the proofs of strong normalisation for the simply-
typed A-calculus (such as the one in [16, Chapter 6]), or for interaction nets (e.g. [24]). Such
a normal form cannot contain any redexes, so any abstraction or eval node must be connected
to an operand or a result wire, which cannot happen as these have all first-order types. <«

» Theorem 17. For every whose operands and results are all first-order, the following

(equivalent) equations hold:

Proof. Applying Lemma 16 and Lemma 15, it suffices to consider the case where

contains no instances of application or evaluation. Applying the rewrite rule in Fig. 7a shows
the equivalence of the two equations above. The result then follows by induction on the
foliation of the diagram . We show the case for contraction in full, with the other cases

being similar.

H+
i
(-]
=
B
=
o
o
>

Il
=]
i
Il
o
o
=1
i
Il
.|
o
5
T
|
=1 L1
yh;

5 Related work

5.1 String diagrams

Cartesian closed categories have been thoroughly studied in the context of logic and type
theory, because of the well-known correspondence of their internal language with A-calculus
and intuitionistic logic [32]. The linear version of this triad involves monoidal rather than
cartesian categories, but also proof nets, and linear logic, as indicated already in the original
paper [15]. [25] provides the foundation on which we build our language of string diagrams,
noting that all the basic ingredients are already there.

The route of using an enhancement of the monoidal closed structure with additional
properties to control sharing is fruitful and has been employed many times. For example it is
found in [9], where the manipulation of variables endowed with algebraic theories is modelled
as a cartesian structure on the top of a linear structure, or in [14] to specify multiplexers
and demultiplexers in high-level synthesis.

M. Alvarez-Picallo, D. Ghica, D. Sprunger, and F. Zanasi

Our approach to string diagrams shares similarities with the formalisms of sharing graphs
for describing A-calculus computations [23]. The main difference is that string diagrams can
be manipulated as a syntax, whereas sharing graphs are usually studied as combinatorial
objects. Unlike syntax, reasoning about graphs algebraically requires a higher degree of
technical sophistication [17]. Finally, sharing graphs are typically used to study low-level
computational models for functional languages, in particular quantitative resource models [26],
whereas our approach is more focussed on equational reasoning and rewriting.

Monoidal closed categories extend not only to cartesian closed categories, but also to
*-autonomous categories. This second variation is very much relevant to the study of
multiplicative linear logic and it has been extensively studied in terms of proof nets. Our
graphical calculus is essentially different from proof nets. The grammar of generating
morphism does not stem from a sequent calculus, and we capture the intended semantics
via equations rather than a correctness criterion. But the connection might be made precise
relying on the existing translations between proof nets and string diagrams [20, 30].

Baez and Stay [3] propose an intriguing graphical innovation for monoidal closed categories,
a so-called clasp operator on stems. The exponential type is represented using the clasp,
and much like in our own language, a bubble is used to represent currying. It is unclear to
us how to represent higher-order objects like (A — B) —o C' using the clasp. However, we
think it preserves an appealing visual parallel between monoidal closed and compact closed
structures.

Although not presented explicitly as a string diagram language, the treatment of closures
in [28] is related in methodology to our work, although the use of partially-traced partially-
closed premonoidal categories as the categorical setting, in order to accommodate for effects,
is significantly different than our cartesian closed categorical language.

5.2 Automatic differentiation

Our AD algorithm is an adaptation of [27]. Beyond the presentation based on string diagrams,
the main differences are that our algorithm applies to simply-typed, recursion-free code
and it acts as a source-to-source transformation, lacking the reflection features that enabled
higher-order differentiation in the original work. We chose to focus on this algorithm for a
few reasons: first, reverse-mode AD is both more immediately useful (see [4] for a comparison
of both approaches) and harder to implement and prove correct than forward-mode AD.
Second, it is to our knowledge the first published algorithm for performing reverse-mode
AD on higher-order code, it forms the basis of a number of efficient implementations [5, 31]
and does not require more complex features, unlike e.g. [36] which makes use of mutable
state and continuations or [10] which relies on a limited form of continuations to encode dual
spaces.

A wave of recent research has also tackled the issues of correctness in automatic
differentiation. Notably, [10] and [33] provide correct reverse-mode AD algorithms capable
of handling closures. Unlike the first work, however, our algorithm is purely functional and,
while the second one can correctly differentiate terms with higher-order inputs and outputs,
it does so by using a more expensive representation of tangents of function spaces. The
main contribution of our approach, however, is the simplicity of the involved proofs thanks
to our diagrammatic notation which we believe improves on the readability of the original
paper [27] and the denser proofs in newer literature [10, 21, 33].

6:15

CSL 2023

6:16

Functorial String Diagrams for RAD

6 Conclusion and further work

In this paper we have presented a recipe for provably correct reverse automatic differentiation
built around a hierarchical calculus of string diagrams. As we have seen, the string diagram
presentation simplifies much of the bookkeeping of variables a term calculus would require,
which makes a complicated algorithm more readable. More importantly, the new perspective
offered by string diagrams and in particular the presentation of terms as foliations opens the
door for new and useful proof techniques.

We have not discussed implementation matters, yet these are of the essence. This is a
practical algorithm and it can be incorporated into real-life compilers for real-life programming
languages. We surmise that the improved perspective on AD that string diagrams offers will
help handle other challenging features of real-life languages, such as effects and recursion.
This work is ongoing.

—— References

1 Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. TensorFlow: a system for

large-scale machine learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pages 265—283, 2016.

2 Mario Alvarez-Picallo, Dan Ghica, David Sprunger, and Fabio Zanasi. Rewriting for monoidal
closed categories. In 7th International Conference on Formal Structures for Computation and
Deduction (FSCD 2022). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, 2022.

3 John Baez and Mike Stay. Physics, topology, logic and computation: a rosetta stone. In New
structures for physics, pages 95—172. Springer, 2010. doi:10.1007/978-3-642-12821-9_2.

4 Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res.,
18:153:1-153:43, 2017. URL: http://jmlr.org/papers/v18/17-468 .html.

5 Atilim Giines Baydin, Barak A. Pearlmutter, and Jeffrey Mark Siskind. Diffsharp: An AD
library for .net languages. CoRR, abs/1611.03423, 2016. arXiv:1611.03423.

6 Nick Benton, Gavin Bierman, Valeria De Paiva, and Martin Hyland. Linear A-calculus and
categorical models revisited. In International Workshop on Computer Science Logic, pages
61-84. Springer, 1992.

7 Richard F Blute, J Robin B Cockett, and Robert AG Seely. Cartesian differential categories.
Theory and Applications of Categories, 22(23):622-672, 2009.

8 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi.
Rewriting modulo symmetric monoidal structure. In Martin Grohe, Eric Koskinen, and
Natarajan Shankar, editors, Proceedings of the 81st Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 16, New York, NY, USA, July 5-8, 2016, pages 710-719. ACM,
2016. doi:10.1145/2933575.2935316.

9 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. Deconstructing lawvere with distributive
laws. J. Log. Algebraic Methods Program., 95:128-146, 2018. doi:10.1016/j.jlamp.2017.12.
002.

10 Alois Brunel, Damiano Mazza, and Michele Pagani. Backpropagation in the simply typed
lambda-calculus with linear negation. Proc. ACM Program. Lang., 4(POPL):64:1-64:27, 2020.
doi:10.1145/3371132.

11 Albert Burroni. Higher-dimensional word problems with applications to equational logic.
Theoretical computer science, 115(1):43-62, 1993.

12 Robin Cockett, Geoffrey Cruttwell, Jonathan Gallagher, Jean-Simon Pacaud Lemay, Benjamin
MacAdam, Gordon Plotkin, and Dorette Pronk. Reverse derivative categories. arXiv preprint,
2019. arXiv:1910.07065.

https://doi.org/10.1007/978-3-642-12821-9_2
http://jmlr.org/papers/v18/17-468.html
http://arxiv.org/abs/1611.03423
https://doi.org/10.1145/2933575.2935316
https://doi.org/10.1016/j.jlamp.2017.12.002
https://doi.org/10.1016/j.jlamp.2017.12.002
https://doi.org/10.1145/3371132
http://arxiv.org/abs/1910.07065

M

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

28

29

. Alvarez-Picallo, D. Ghica, D. Sprunger, and F. Zanasi

Conal Elliott. The simple essence of automatic differentiation. Proceedings of the ACM on
Programming Languages, 2(ICFP):1-29, 2018.

Dan R. Ghica. Geometry of synthesis: a structured approach to VLSI design. In Martin
Hofmann and Matthias Felleisen, editors, Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2007, Nice, France, January
17-19, 2007, pages 363-375. ACM, 2007. doi:10.1145/1190216.1190269.

Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1-102, 1987. doi:10.1016/
0304-3975(87)90045-4.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types, volume 7. Cambridge
university press Cambridge, 1989.

Stefano Guerrini. A general theory of sharing graphs. Theor. Comput. Sci., 227(1-2):99-151,
1999. do0i:10.1016/50304-3975(99)00050-X.

Yves Guiraud. Rewriting methods in higher algebra. PhD thesis, Université Paris 7, 2019.
Chris Heunen and Jamie Vicary. Lectures on categorical quantum mechanics. Computer
Science Department. Ozxford University, 2012. URL: http://www.cs.ox.ac.uk/files/4551/
cgm-notes.pdf.

Dominic Hughes. Simple free star-autonomous categories and full coherence. CoRR, 2005.
arXiv:0506521.

Mathieu Huot, Sam Staton, and Matthijs Vakar. Correctness of automatic differentiation
via diffeologies and categorical gluing. In Jean Goubault-Larrecq and Barbara Konig,
editors, Foundations of Software Science and Computation Structures - 23rd International
Conference, FOSSACS 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings,
volume 12077 of Lecture Notes in Computer Science, pages 319-338. Springer, 2020. doi:
10.1007/978-3-030-45231-5_17.

Faustyna Krawiec, Simon Peyton Jones, Neel Krishnaswami, Tom Ellis, Richard A Eisenberg,
and Andrew W Fitzgibbon. Provably correct, asymptotically efficient, higher-order reverse-
mode automatic differentiation. Proc. ACM Program. Lang., 6(POPL):1-30, 2022.

John Lamping. An algorithm for optimal lambda calculus reduction. In Frances E. Allen, editor,
Conference Record of the Seventeenth Annual ACM Symposium on Principles of Programming
Languages, San Francisco, California, USA, January 1990, pages 16-30. ACM Press, 1990.
doi:10.1145/96709.96711.

Ian Mackie. Interaction nets for linear logic. Theor. Comput. Sci., 247(1-2):83-140, 2000.
doi:10.1016/S0304-3975(00)00198-5.

Paul-André Mellies. Functorial boxes in string diagrams. In Zoltdn Esik, editor, Computer
Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of the EACSL,
Szeged, Hungary, September 25-29, 2006, Proceedings, volume 4207 of Lecture Notes in
Computer Science, pages 1-30. Springer, 2006. doi:10.1007/11874683_1.

Koko Muroya and Dan R. Ghica. The dynamic geometry of interaction machine: A token-guided
graph rewriter. Log. Methods Comput. Sci., 15(4), 2019. doi:10.23638/LMCS-15(4:7)2019.
Barak A. Pearlmutter and Jeffrey Mark Siskind. Reverse-mode AD in a functional framework:
Lambda the ultimate backpropagator. ACM Trans. Program. Lang. Syst., 30(2):7:1-7:36, 2008.
doi:10.1145/1330017.1330018.

Ralf Schweimeier and Alan Jeffrey. A categorical and graphical treatment of closure conversion.
In Stephen D. Brookes, Achim Jung, Michael W. Mislove, and Andre Scedrov, editors, Fifteenth
Conference on Mathematical Foundations of Progamming Semantics, MFPS 1999, Tulane
University, New Orleans, LA, USA, April 28 - May 1, 1999, volume 20 of FElectronic Notes in
Theoretical Computer Science, pages 481-511. Elsevier, 1999. doi:10.1016/51571-0661(04)
80090-2.

Peter Selinger. A survey of graphical languages for monoidal categories. In New structures for
physics, pages 289-355. Springer, 2010. arXiv:0908.3347.

6:17

CSL 2023

https://doi.org/10.1145/1190216.1190269
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/S0304-3975(99)00050-X
http://www.cs.ox.ac.uk/files/4551/cqm-notes.pdf
http://www.cs.ox.ac.uk/files/4551/cqm-notes.pdf
http://arxiv.org/abs/0506521
https://doi.org/10.1007/978-3-030-45231-5_17
https://doi.org/10.1007/978-3-030-45231-5_17
https://doi.org/10.1145/96709.96711
https://doi.org/10.1016/S0304-3975(00)00198-5
https://doi.org/10.1007/11874683_1
https://doi.org/10.23638/LMCS-15(4:7)2019
https://doi.org/10.1145/1330017.1330018
https://doi.org/10.1016/S1571-0661(04)80090-2
https://doi.org/10.1016/S1571-0661(04)80090-2
http://arxiv.org/abs/0908.3347

6:18

Functorial String Diagrams for RAD

30
31
32

33

34
35

36

A

Michael Shulman. x-autonomous envelopes and 2-conservativity of duals. CoRR, 2020.
arXiv:2004.08487.

Jeffrey Mark Siskind and Barak A. Pearlmutter. Efficient implementation of a higher-order
language with built-in AD. CoRR, abs/1611.03416, 2016. arXiv:1611.03416.

Morten Heine Sgrensen and Pawel Urzyczyn. Lectures on the Curry-Howard isomorphism.
Elsevier, 2006.

Matthijs Vakar. Reverse AD at higher types: Pure, principled and denotationally correct. In
Nobuko Yoshida, editor, Programming Languages and Systems - 30th European Symposium on
Programming, ESOP 2021, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2021, Luzembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, volume 12648 of Lecture Notes in Computer Science, pages 607—634. Springer,
2021. doi:10.1007/978-3-030-72019-3_22.

Jamie Vicary and Antonin Delpeuch. Normalization for planar string diagrams and a quadratic
equivalence algorithm. Logical Methods in Computer Science, 18, 2022.

Jamie Vicary, Aleks Kissinger, and Krzysztof Bar. Globular: an online proof assistant for
higher-dimensional rewriting. Logical Methods in Computer Science, 14, 2018.

Fei Wang, Daniel Zheng, James M. Decker, Xilun Wu, Grégory M. Essertel, and Tiark Rompf.
Demystifying differentiable programming: shift/reset the penultimate backpropagator. Proc.
ACM Program. Lang., 3(ICFP):96:1-96:31, 2019. doi:10.1145/3341700.

Monoidal closed adjunctions, diagrammatically

Instantiated to the families of functors F'x, Gx of Section 2.3, the naturality and adjunction

equations are expressed in string diagrams as in Fig. 13. The counit of the adjunction is

normally called eval, and we call the unit coeval for the sake of symmetry in terminology
and by analogy with compact-closed categories.

B

A
A
X —-(A®X)

= A
A <
X —o(B®X)
= [®

X—o(B®X)

X-—oA

X—oA X = X—A X—o(ARX)
X —o
X

‘ X—oA

(b) Eval and coeval form an adjunction.

Figure 13 String diagram representation of MCC axioms.

Reverse differential categories

We present here the full definition of reverse differential categories. For a more exhaustive

treatment of these, containing a discussion of the intuition behind the axioms and many

useful properties of reverse differential categories, we refer to [12].

http://arxiv.org/abs/2004.08487
http://arxiv.org/abs/1611.03416
https://doi.org/10.1007/978-3-030-72019-3_22
https://doi.org/10.1145/3341700

M. Alvarez-Picallo, D. Ghica, D. Sprunger, and F. Zanasi

» Definition 18 ([12, Def. 13]). A reverse differential category is a cartesian left additive

category endowed with a combinator R sending each morphism f: X — Y to a morphism

R[f]: X x Y — X which satisfies the following conditions:

(RD].) R[Ox] =wx and R[+X] =wxxx X 0x,

(RD2) (ZdX X Oy); R[f] = w_)(;OX and (de X —l—y),R[f] = ((SX X idyXy); (ZdX X Yx)y X
idy); (RUf) x RIf))i +x.

(RD3) R[de] =wyx X idy, R[wx] =wx X 0x, and R[(Sx} =wx X +x

(RD5) R[f;g] = (6x x idz); (idx x f x idz); (idx x R[g]); R[f]

(RDG) (Z.dXXy X OX><X X idy); Rg[f], (WXXY X de) = (de X wy X idy); R[f]

(RD7) (ZdX X Oy X idX X Oxxy X Z'dX X Oy X idx);R4[f]; (WXXYXXXX X Zdy) = (ZdX X
vx,x X idx); (Z'dX X Oy X Z'dX X 0X><Y X idX X Oy X idx); R4[f]; (UJXxYxXxX X idy)

forallg:Y - Z andh:Z — W.

The careful reader will note that our formulation of these axioms differ from the
formulation given by Cockett et al., but the two systems are equivalent and essentially
result from our different formulation of left additive structure.

In words, RD1 and RD3 tell us the derivatives of the basic structural morphisms in a
cartesian left additive category: RD1 gives the derivatives of the left additive structure, and

RD3 gives the derivatives of the cartesian category. These are in some sense the base cases.

Axioms RD4 and RD5 give induction steps, spelling out how the derivatives of morphisms
composed in parallel (RD4) or in sequence (RD5) are constructed from the derivatives of its
components. In particular, RD5 can be seen as a “reverse-mode chain rule.” The remaining
axioms are not as important for our purposes, but RD2 states that the reverse derivative is
additive in its small-change argument, RD6 broadly states that the reverse derivative of any
map is linear in its second argument (in the sense that it coincides with its own derivative)
and RD7 states that partial (reverse) derivatives commute.

All of these axioms admit corresponding graphical presentations in terms of string
diagrams, as can be found in Fig. 14. We only present here diagrams for the axioms that do
not involve second derivatives, as they are the only ones relevant to our AD algorithm, but
axioms RD6 and RD7 admit equally straightforward diagrammatic formulations.

» Lemma 19. Suppose X is an operational signature and suppose that for every operation
g: X =Y in X4, there is a well-defined reverse derivative Rlg] morphism in Ay, satisfying
RD2, RD6, and RD7. Then Ay, is a reverse differential category.

In such a case, we will call ¥ a differentiable signature.

Proof. Asnoted previously, the RD axioms specify the derivatives of the structural morphisms
from Ay, and the derivatives of composites. It is easy to check that RD2, RD6, and RD7 hold
for the derivatives of these structural morphisms. Then this reduces to the (straightforward)
check that when two composable morphisms satisfy RD2, RD6, and RD7 then their composite
does as well. <

6:19

CSL 2023

6:20

Functorial String Diagrams for RAD

o IR 1] l]
| M x) =
==
:l = R m—v
R * R \ \
R . N .
(a) RD1. (b) RD2.

%
%
%
— %
— %
B
*
]

el

B3
Il
*—— x
P
Il
o
x— o=l
I
PR
i
]
el
I
}
Il

(c) RD3.

Figure 14 RDC axioms as string diagrams.

	1 Introduction
	2 Hierarchical string diagrams
	2.1 Functorial string diagrams
	2.2 String diagrams for monoidal categories
	2.3 Hierarchical string diagrams

	3 Foliations and reverse differentiation
	3.1 Freely generated categories
	3.2 Foliations
	3.3 Reverse differential categories
	3.4 Optimizing RAD string diagrams

	4 A diagrammatic AD algorithm
	4.1 Rewrite rules on string diagrams
	4.2 Correctness

	5 Related work
	5.1 String diagrams
	5.2 Automatic differentiation

	6 Conclusion and further work
	A Monoidal closed adjunctions, diagrammatically
	B Reverse differential categories

