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Abstract: In this article, we present a five-step block method coupled with an existing fourth-order
symmetric compact finite difference scheme for solving time-dependent initial-boundary value partial
differential equations (PDEs) numerically. Firstly, a five-step block method has been designed to
solve a first-order system of ordinary differential equations that arise in the semi-discretisation of a
given initial boundary value PDE. The five-step block method is derived by utilising the theory of
interpolation and collocation approaches, resulting in a method with eighth-order accuracy. Further,
characteristics of the method have been analysed, and it is found that the block method possesses
A-stability properties. The block method is coupled with an existing fourth-order symmetric compact
finite difference scheme to solve a given PDE, resulting in an efficient combined numerical scheme.
The discretisation of spatial derivatives appearing in the given equation using symmetric compact
finite difference scheme results in a tridiagonal system of equations that can be solved by using any
computer algebra system to get the approximate values of the spatial derivatives at different grid
points. Two well-known test problems, namely the nonlinear Burgers equation and the FitzHugh-
Nagumo equation, have been considered to analyse the proposed scheme. Numerical experiments
reveal the good performance of the scheme considered in the article.

Keywords: PDEs; block methods; compact finite difference scheme; stability

1. Introduction

Nonlinear partial differential equations are used to model many important physical
phenomena that appear in real-world applications of sciences and engineering [1]. It is well-
known that the availability of analytical methods for solving nonlinear partial differential
equations is limited to a specific class of problems; considering numerical approximations
to the solution is one possible way to approach the given problem in this instance [2–7].
One ongoing objective in this field is to solve these problems by creating new, efficient
numerical schemes or modifying existing ones. Our work in this article examines the
approximate solution of time-dependent initial-boundary value PDEs of one dimension in
the following form

ut = F(x, t, u, ux, uxx), with a ≤ x ≤ b, t ≥ t0, (1)

with initial condition
u(x, t0) = ψ(x),

and boundary conditions as

u(a, t) = ϕ1(t), u(b, t) = ϕ2(t),
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where u represents the exact solution of the problem whereas x and t are space and time
variables, respectively. In this paper, we actually consider only a special type of Equation (1)
in which the second order partial derivative is linear. The spatial semi-discretisation of the
above problem (1) converts it into a system of first-order ordinary differential equations in
t as follows

dU
dt

= f (t, U) and U(t0) = U0, (2)

which can be solved by various existing time integration techniques, for instance, Runge–
Kutta or linear multi-step methods [8]. In this article, our focus is on employing a time-
marching numerical method of block nature to address the resulting system of first-order
ordinary differential equations (ODEs) (2). To assess its performance, we examine two
well-known nonlinear time-dependent partial differential equations (PDEs) found in the
scientific literature, each with numerous real-world applications. FitzHugh–Nagumo
and Burgers’ equations have been analysed numerically using a block approach with a
compact finite difference scheme. A nonlinear reaction-diffusion equation, the FitzHugh–
Nagumo equation originated in science and technology, particularly in neurophysiology
and population growth models, flame propagation, logistic population growth, nuclear
reactor theory and catalytic chemical reactions. Some researchers have looked at finite
difference and compact difference methods, as in [9–11], to obtain numerical solutions of
FitzHugh–Nagumo equations.

Another important nonlinear partial differential equation that primarily appears in
shock theory and turbulence modelling is the Burgers’ equation. Applications of the
Burgers’ equation can be found in many different domains, including quantum fields,
traffic flow, fluid dynamics, gas dynamics, shock theory, viscous flow and turbulence.
Numerous numerical techniques based on the finite element method, finite difference
method, compact finite difference method, MacCormack method, quadrature method,
Haar wavelet quasilinearisation approach, splitting methods, etc., have been used in the
past to study the Burgers’ equation [12–21].

Due to their smaller stencil size and increased accuracy, compact finite difference
schemes have been more widely used than standard finite difference schemes over the
past 50 years [22,23]. Firstly, we develop a five-step block method and combine it with a
fourth-order compact finite difference scheme to solve a given problem (1). Block methods
are good alternatives for linear multi-step methods that require no starting values to get
an approximate solution to a given problem. These methods are self-starting and were
first proposed by Milne [24]. With these techniques, multiple points can be approximated
simultaneously, saving computation time without sacrificing accuracy [25]. Here, we
want to increase the applicability of block methods for solving time-dependent PDEs by
combining them with compact finite difference schemes.

2. Development of a Five-Step Block Method

We discretize the time domain [t0, t f ] with equal step size k = ti+1 − ti for finding
the approximate solution of a problem (2). The method for solving a scalar problem
u′ = f (t, u), u(t0) = u0 could be applied using a component implementation to solve a
system like the one in problem (2). Consider the following polynomial to provide the
approximate solution to this problem on an interval [tn, tn+5] as

u(t) ≈ p(t) =
n=8

∑
n=0

antn (3)

where an are the constants that must be determined. To differentiate (3) w.r.t.t two times,
we get

u′(t) ≈ p′(t) =
n=8

∑
n=1

nantn−1 (4)

and



Symmetry 2024, 16, 307 3 of 16

u′′(t) ≈ p′′(t) =
n=8

∑
n=2

n(n − 1)antn−2 (5)

where an are the unknown coefficients. To determine the values of nine unknown coeffi-
cients, the following interpolatory and collocation conditions are imposed

p(tn) = un, p′(tn) = fn, p′(tn+1) = fn+1, p′(tn+2) = fn+2

p′(tn+3) = fn+3, p′(tn+4) = fn+4, p′(tn+5) = fn+5

p′′(tn) = f ′n, p′′(tn+5) = f ′n+5

Here, un+j, fn+j and f ′n+j are respectively approximations to u(tn+j), u′(tn+j) and
u′′(tn+j). The above equations can be written in a matrix form as

1 tn t2
n t3

n t4
n t5

n t6
n t7

n t8
n

0 1 2tn 3t2
n 4t3

n 5t4
n 6t5

n 7t6
n 8t7

n
0 1 2tn+1 3t2

n+1 4t3
n+1 5t4

n+1 6t5
n+1 7t6

n+1 8t7
n+1

0 1 2tn+2 3t2
n+2 4t3

n+2 5t4
n+2 6t5

n+2 7t6
n+2 8t7

n+2
0 1 2tn+3 3t2

n+3 4t3
n+3 5t4

n+3 6t5
n+3 7t6

n+3 8t7
n+3

0 1 2tn+4 3t2
n+4 4t3

n+4 5t4
n+4 6t5

n+4 7t6
n+4 8t7

n+4
0 1 2tn+5 3t2

n+5 4t3
n+5 5t4

n+5 6t5
n+5 7t6

n+5 8t7
n+5

0 0 2 6tn 12t2
n 20t3

n 30t4
n 42t5

n 56t6
n

0 0 2 6tn+5 12t2
n+5 20t3

n+5 30t4
n+5 42t5

n+5 56t6
n+5





a0
a1
a2
a3
a4
a5
a6
a7
a8


=



un
fn

fn+1
fn+2
fn+3
fn+4
fn+5

f ′n
f ′n+5


Using the Mathematica system, the values of the nine unknowns that appear in

the above system of equations have been determined. By substituting these values and
changing the variable t to tn + mk, the polynomial in (3) can be re-written as

p(tn + mk) = b0un + k(b1 fn + b2 fn+1 + b3 fn+2 + b4 fn+3 + b5 fn+4 + b6 fn+5) + k2(b7 f ′n + b8 f ′n+5) (6)

where the coefficients b′js are continuous functions of variable m. After evaluating the
above polynomial for m = 1, 2, 3, 4, 5, we get a complete structure of the block method that
consists of the following five formulas

un+1 = un +
k

6, 048, 000
(3, 068, 391 fn + 3, 678, 525 fn+1 − 1, 128, 100 fn+2 + 663, 900 fn+3

− 353, 475 fn+4 + 118, 759 fn+5) +
60k2

6, 048, 000
(7899 f ′n − 731 f ′n+5)

un+2 = un +
k

189, 000
(844, 431 fn + 214, 650 fn+1 + 85, 900 fn+2 − 8600 fn+3

+ 2025 fn+4 − 418 fn+5) +
k2

189, 000
(11, 220 f ′n + 120 f ′n+5)

un+3 = un +
k

224, 000
(106, 213 fn + 231, 975 fn+1 + 230, 100 fn+2 + 118, 100 fn+3

− 20, 025 fn+4 + 5637 fn+5) +
k2

224, 000
(15, 420 f ′n − 1980 f ′n+5)

un+4 = un +
k

23, 625
(10, 686 fn + 26, 100 fn+1 + 20, 600 fn+2 + 27, 600 fn+3

+ 10, 350 fn+4 − 836 fn+5) +
240k2

23, 625
(6 f ′n + f ′n+5)

un+5 = un +
k

48, 384
(22, 835 fn + 50, 625 fn+1 + 47, 500 fn+2 + 47, 500 fn+3

+ 50, 625 fn+4 + 22, 835 fn+5) +
3300k2

48, 384
( f ′n − f ′n+5)

(7)
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The above method is a five-step second derivative block method that will simultane-
ously yield approximations of solutions to the initial-value problems (2) at the nodal points
tn+1, tn+2, tn+3, tn+4 and tn+5.

3. Basic Characteristics of the Method and Stability Analysis

This section discusses various characteristics of the block method (7).

3.1. Order of Accuracy and Consistency

Consider a difference operator Lj related to the five-step block method given by (7)

L[u(t), k] = u(t + jk)−

Fj[k, u(t), u′(t), u′(t + k), u′(t + 2k), u′(t + 3k), u′(t + 4k), u′(t + 5k), u′′(t), u′′(t + 5k)] (8)

with j = 1, 2, 3, 4, 5 and Fj is the corresponding right-hand side of each formula. Expanding
the expression (8) using Taylor’s series about the point t and combining the like terms in k,
the local truncation errors of each formula given in (7) are obtained as

LT E1 =
−3061u9(t)k9

6350400
+ O(k10)

LT E2 =
−113u9(t)k9

1587600
+ O(k10)

LT E3 =
−33u9(t)k9

78400
+ O(k10)

LT E4 =
−u9(t)k9

9925
+ O(k10)

LT E5 =
−125u9(t)k9

254016
+ O(k10)

The above expressions for local truncation errors conclude that the proposed method
has eighth-order accuracy, implying that the proposed block method is consistent.

3.2. Zero Stability

The block method (7) is said to be zero-stable if the roots of its first characteristic
equation ρ(λ) = 0 have modulus <1, and the roots of modulus one must be simple. By con-
sidering the limit as k tends to zero, from the method (7), we get

IUn − RUn−1 = 0

where Un = (Un+1, Un+2, Un+3, Un+4, Un+5)
T and Un−1 = (Un−4, Un−3, Un−2, Un−1, Un)T

R =


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1


and I is the identity matrix of order five. The characteristic equation for the above method
is ρ(λ) = det(R − λI) = λ4(1 − λ) = 0. The roots are {0, 0, 0, 0, 1}. It implies that the
five-step block method is zero-stable.

3.3. Linear Stability Analysis

The linear stability analysis of a numerical scheme is carried out by applying it to
Dahlquist’s test equation
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u′ = λu, Re(λ) < 0. (9)

As t approaches ∞, any true solution ceλt to the above Equation (9) will decay. For the
numerical method to be stable, the behaviour of the numerical solution should match the
nature of the true solution. After substituting λk = k̄ and appying the proposed block
method to Equation (9), we obtain a difference system in matrix form as

L


un+1
un+2
un+3
un+4
un+5

 = M


un−4
un−3
un−2
un−1

un


where matrices L and M are respectively given as

L =


1 − 3678525k̄

6048000
1128100k̄
6048000

−663900k̄
6048000

353475k̄
6048000

418k̄+43860k̄2

6048000
−214650k̄

189000 1 − 85900k̄
189000

8600k̄
189000

−2025k̄
189000

418k̄−120k̄2

189000
−231975k̄

224000
−230100k̄

224000 1 − 118100k̄
224000

20025k̄
224000

−5637k̄+1980k̄2

224000
−26100k̄

23625
−20600k̄

23625
−27600k̄

23625 1 − 10350k̄
23625

836k̄−240k̄2

23625
−50625k̄

48384
−47500k̄

48384
−47500k̄

48384
−50625k̄

48384 1 + −22835k̄+3300k̄2

48384



M =


0 0 0 0 1 + 3068391k̄+3068391k̄2

6048000
0 0 0 0 1 + 84443k̄+11220k̄2

189000
0 0 0 0 1 + 106213k̄+15420k̄2

224000
0 0 0 0 1 + 10686k̄+240k̄2

23625
0 0 0 0 1 + 22835k̄+3300k̄2

48384


Thus, we have 

un+1
un+2
un+3
un+4
un+5

 = N(k̄)


un−4
un−3
un−2
un−1

un


where the matrix N(k̄) = L−1M is the stability matrix. To find out the stability characteris-
tics of the block method, we consider the spectral of the stability matrix {0, 0, 0, 0, P(k̄)}
where

P(k̄) =
3360 + 8400k̄ + 9600k̄2 + 6500k̄3 + 2798k̄4 + 745k̄5 + 100k̄6

3360 − 8400k̄ + 9600k̄2 − 6500k̄3 + 2798k̄4 − 745k̄5 + 100k̄6

The region of absolute stability [26] is given by

S = {k̄ ∈ C : |P(k̄)| < 1}

The given method (7) is said to be A-stable if the left half of the complex plane is
contained within S. In Figure 1, the absolute stability region of method (7) has been plotted,
indicating its A-stability.
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Figure 1. Stability region for the proposed block method. It shows that the method is A-stable.

4. Symmetric Compact Finite Difference Scheme

To discretise the spatial derivatives appearing in a given PDE (1), we have used
symmetric compact finite difference schemes rather than conventional finite difference
approximations to spatial derivatives—the reason for considering this because due to their
better accuracy and smaller stencils compared to the traditional finite difference scheme.
Note that discretisation of spatial derivatives present in the given PDE using symmetric
compact finite difference schemes results in a tridiagonal system of equations that can
be easily handled by Mathematica software. Many researchers have developed compact
schemes with various boundary conditions and different orders, as in [27,28].

Discretise the space variable a < x < b into N subintervals of equal length h = xi+1 − xi
where i = 1, 2, 3....., N + 1.

Consider a fourth-order compact finite difference scheme for discretising the first-
order spatial derivative appearing in (1) at the interior nodes i = 2, 3, 4......., N.

1
4

u′
i−1 + u′

i +
1
4

u′
i+1 =

3
4h

(ui+1 − ui−1)

where the prime denotes the derivative concerning the space variable and the following
one-sided boundary scheme to obtain approximations at boundary points given
for i = 1

u′
1 + 3u′

2 =
1
h

(
−17

6
u1 +

3
2

u2 +
3
2

u3 −
1
6

u4

)
and for i = N + 1

u′
N+1 + 3u′

N =
1
h

(
17
6

uN+1 −
3
2

uN − 3
2

uN−1 +
1
6

uN−2

)
.

The above equations can be written in a matrix form given by

A1U′ = B1U (10)
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A1 =



1 3 0 0 · · · 0 0
1/4 1 1/4 0 · · · 0 0

0 1/4 1 1/4 · · · 0 0
...

. . . . . . . . . . . . 0 0
0 0 0 0 · · · 1/4 0
0 0 0 0 · · · 1 1/4
0 0 0 0 · · · 3 1


(N+1)×(N+1)

B1 =
1

2h



17/3 3 3 −1/3 0 · · · 0 0
−3/2 0 3/2 0 0 · · · 0 0

0 −3/2 0 3/2 0 · · · 0 0
...

. . . . . . . . . . . . . . . 0 0
0 0 0 · · · −3/2 0 3/2 0
0 0 0 · · · 0 −3/2 0 3/2
0 0 0 · · · 1/3 −3 −3 −17/3


(N+1)×(N+1)

U =



U1
U2
U3
.
.
.

UN
UN+1


(N+1)×1

Solving the above system of equations, we can obtain approximations to first-order space
derivatives at the discrete points of interest.

Similarly, to approximate the second spatial derivative appearing in the equation, we
consider the following fourth-order compact finite difference scheme for interior nodes
i = 2, 3, ....N given by

1
10

u′′
i−1 + u′′

i +
1

10
u′′

i+1 =
6

5h2 (ui+1 − 2ui + ui−1).

For boundary points, we have:
for i = 1,

u′′
1 + 10u′′

2 =
1
h2

(
145
12

u1 −
76
3

u2 +
29
2

u3 −
4
3

u4 +
1

12
u5

)
and for i = N + 1

u′′
N+1 + 10u′′

N =
1
h2

(
145
12

uN+1 −
76
3

uN +
29
2

uN−1 −
4
3

uN−2 +
1

12
uN−3

)
The complete matrix system for the tridiagonal fourth-order compact scheme for approxi-
mating the second derivative can be written as follows

A2U′′ = B2U (11)
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A2 =



1 10 0 0 · · · 0 0
1/10 1 1/10 0 · · · 0 0

0 1/10 1 1/10 · · · 0 0
...

. . . . . . . . . . . . 0 0
0 0 0 0 · · · 1/10 0
0 0 0 0 · · · 1 1/10
0 0 0 0 · · · 10 1


(N+1)×(N+1)

B2 =
1
h2



145/12 −76/3 29/2 −4/3 1/12 0 · · · 0 0
6/5 −12/5 6/5 0 0 0 · · · 0 0

0 6/5 −12/5 6/5 0 0 · · · 0 0
...

. . . . . . . . . . . . . . . . . . 0 0
0 0 0 0 · · · 6/5 −12/5 6/5 0
0 0 0 0 0 · · · 6/5 −12/5 6/5
0 0 0 · · · 1/12 −4/3 29/2 −76/3 145/12


(N+1)×(N+1)

U =



U1
U2
U3
.
.
.

UN
UN+1


(N+1)×1

Solving the above system of equations, one can get an approximation to the second-
order space derivatives appearing in the equation at the discrete points of interest.

5. Test Problems

The two well-known nonlinear problems, Burgers’ and FitzHugh–Nagumo equations,
will be solved using the above combined numerical scheme based on the block method in
conjunction with a compact finite difference scheme. Additionally, special consideration
has been given to the stability of the resulting differential systems.

5.1. Burgers’ Equation

Consider the one-dimensional Burgers’ equation:

ut + uux = vuxx (12a)

with the initial condition
u(x, 0) = ψ(x); a ≤ x ≤ b, (12b)

and two boundary conditions are given as

u(a, t) = ϕ1(t) = u1(t) and u(b, t) = ϕ2(t) = uN+1(t), t ≥ 0. (12c)

where u represents fluid’s velocity, v is the kinematic viscosity and xandt are the space and
time variables, respectively. The system of first-order ODEs derived from (12a)–(12c) can
be expressed as follows after semi-discretisation:

u′
1

u′
2

. . .
u′

N
u′

N+1

 = v(A−1
2 B2)


u1
u2
. . .
uN

uN+1

−


u1
u2
. . .
uN

uN+1

 ◦ (A−1
1 B1)


u1
u2
. . .
uN

uN+1
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where “◦” indicates the elementwise product of two matrices of the same dimensions. The
above system can be expressed in a compact form as

U′ = CU + D (13)

where C = v(A−1
2 B2) is an (N + 1) times(N + 1) matrix and the D matrix contains non-

linear terms.

5.2. FitzHugh–Nagumo Equation

Consider the FitzHugh–Nagumo equation:

ut = uxx + u(1 − u)(u − µ) (14a)

with initial condition
u(x, 0) = ψ(x); a ≤ x ≤ b, (14b)

and boundary conditions

u(a, t) = ϕ1(t) = u1(t) and u(b, t) = ϕ2(t) = uN+1(t), t ≥ 0. (14c)

where x and t are space and time variables, respectively. The spatial derivatives in this
equation will be approximated using a fourth-order compact finite difference scheme.
After semi-discretisation, the system of first-order ODEs obtained from (14a)–(14c) can be
expressed as follows

u′
1

u′
2

. . .
u′

N
u′

N+1

 = (A−1
2 B2 − µI)


u1
u2
. . .
uN

uN+1

+ (1 + µ)


u2

1
u2

2
. . .
u2

N
u2

N+1

−


u3

1
u3

2
. . .
u3

N
u3

N+1


The above system can be written as

U′ = CU + D (15)

where C = (A−1
2 B2 − µI) is an (N + 1)× (N + 1) matrix and the D matrix contains non-

linear terms.

5.3. Stability of Differential System

To examine the stability of the differential systems for the considered PDEs, semidis-
cretise the problem by applying a compact finite difference scheme to the spatial derivatives
in the Equation (1). This will result in a system of ODEs of the form

U′ = CU + D (16)

where C is an (N + 1) square matrix and D is an (N + 1)× 1 vector containing nonhomo-
geneous parts.

The matrix for the Burgers’ equation can be written as

C = vC2

and the matrix for the FitzHugh–Nagumo equation is

C = (C2 − µI)

For both of the PDEs, the matrix C2 is given by C2 = A−1
2 B2.
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To find out the stability of differential system (16), we linearise the non-linear terms
appearing in both PDEs by assuming the value of u(x, t) = Uj is constant. Thus, the stability
of the ensuing linear differential system will imply the stability of the non-linear differential
system. The stability of the differential system is related to the eigenvalues of matrix C. It
is said to be stable if the real part of each eigenvalue is either zero or negative. This has
been validated for the two differential systems under investigation for the various spatial
grid points depicted in Figures 2 and 3. The differential system is stable in both cases.

50 100 150 200
N

-2500

-2000

-1500

-1000

-500

Real part

N=200

N=100

N=50

Figure 2. Real part of eigenvalues for Burgers’ equation with v = 0.01.

Out[126]=

50 100 150 200
N

-250000

-200000

-150000

-100000

-50000

Real part

N=200

N=100

N=50,

,

,

,

,,,

Figure 3. Real part of eigenvalues for FitzHugh–Nagumo equation using µ = 0.75.

6. Numerical Experiments

In this section, some numerical experiments have been presented to illustrate the
performance of the block method in conjunction with a compact finite difference scheme.
We have used Wolfram Mathematicaversion 11.0 for performing numerical computations.
The standard formulas are utilized to compute the L∞ and Lrms errors [29,30]

L∞ = max
1≤i≤N+1

|ei|

Lrms =

(
N+1

∑
i=1

e2
i

N + 1

)1/2

where
ei = u(xi, t)− U(xi, t).
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Here, u(xi, t) and U(xi, t) represent the analytical and numerical solutions at the point
(xi, t), respectively.

6.1. Nonlinear Burgers’ Equation
6.1.1. Example 1

We consider the initial and boundary conditions for the Burgers’ equation in (12a)
given by

u(x, 0) = sin(πx), 0 ≤ x ≤ 1

u(0, t) = u(1, t) = 0, t > 0

The exact solution is given as [16]

u(x, t) = 2vπ
∑∞

n=1 anexp(−n2π2vt)n sin nπx
a0 + ∑∞

n=1 exp(−n2π2vt) cos nπx

with the Fourier coefficients

a0 =
∫ 1

0
exp(−2vπ)−1[1 − cos(πx)] dx

an = 2
∫ 1

0
exp(−2vπ)−1[1 − cos(πx)] cos nπx dx, n = 1, 2, 3...

In Figure 4, we have plotted the exact solution of the given PDE and its numerical
solution obtained by the proposed method for a specific value of time t = 0.5 by considering
various grid points as x = 0.1, 0.3, 0.5, 0.7, 0.9 with N = 100, k = 0.001 and v = 0.01. It
shows that the physical behavior of both solutions is similar.

Numerical solution

Analytical solution

0.2 0.4 0.6 0.8
x

0.2

0.4

0.6

0.8

u

Figure 4. Numerical solution v/s Analytical solution at t = 0.5.

6.1.2. Example 2

Consider the test problem (12a) taking v = 0.01 and a = 2 subject to the initial and
boundary conditions given by

u(x, 0) =
2vπ sin(πx)
a + cos(πx)

, 0 ≤ x ≤ 1

u(0, t) = u(1, t) = 0, t > 0
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gives the exact solution to the problem [20]

u(x, t) =
2vπ sin(πx) exp−π2vt

a + cos(πx) exp−π2vt

Table 1 presents absolute errors for t = 0.1 by applying the proposed scheme for
N = 20, k = 0.001. It demonstrates that the proposed scheme integrates the given prob-
lem accurately.

Table 1. Absolute error at t = 0.1.

x Absolute Error

0.1 4.6342 × 10−9

0.2 1.4033 × 10−10

0.3 1.9936 × 10−9

0.4 1.2330 × 10−10

0.5 4.9473 × 10−9

0.6 2.3491 × 10−8

0.7 3.8157 × 10−8

0.8 6.0069 × 10−8

0.9 1.5378 × 10−8

In Tables 2 and 3, absolute error of the proposed scheme has been compared with [20]
and [31] for various values of v and t = 0.001. We use the same number of time steps as
in [20]. It shows that the proposed scheme offers better results.

Table 2. Comparison of results with v = 1 and N = 40.

x Absolute Error
(Asai [31])

Absolute Error
(Mittal [20])

Absolute Error
(The Proposed

Scheme)

0.1 4.50 × 10−5 7.40 × 10−5 3.84 × 10−8

0.2 7.70 × 10−5 6.00 × 10−6 5.45 × 10−9

0.3 1.21 × 10−4 1.20 × 10−5 6.79 × 10−9

0.4 2.40 × 10−5 1.78 × 10−4 1.23 × 10−9

0.5 2.53 × 10−4 3.90 × 10−5 4.41 × 10−8

0.6 3.56 × 10−4 4.40 × 10−5 1.63 × 10−7

0.7 4.84 × 10−4 1.00 × 10−5 2.53 × 10−7

0.8 3.32 × 10−4 7.40 × 10−5 3.48 × 10−7

0.9 4.17 × 10−4 2.81 × 10−4 7.86 × 10−7

Table 3. Comparison of results with v = 0.5 and N = 40.

x Absolute Error
(Asai [31])

Absolute Error
(Mittal [20])

Absolute Error
(The Proposed

Scheme)

0.1 4.00 × 10−6 0.000000 5.76 × 10−10

0.2 9.00 × 10−6 2.00 × 10−6 1.47 × 10−9

0.3 1.40 × 10−5 3.00 × 10−6 1.96 × 10−9

0.4 2.20 × 10−5 6.00 × 10−6 2.82 × 10−10

0.5 3.20 × 10−5 1.00 × 10−5 9.95 × 10−9

0.6 4.90 × 10−5 1.20 × 10−5 4.02 × 10−9

0.7 7.50 × 10−5 7.50 × 10−5 6.72 × 10−9

0.8 4.50 × 10−5 1.00 × 10−4 1.58 × 10−9

0.9 8.10 × 10−5 7.40 × 10−5 3.35 × 10−7
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Table 4 shows the Rate of Convergence (ROC) of the proposed scheme in the spatial
direction for the values v = 0.01, t = 0.001 and k = 0.0001. It can be observed from Table 4
that the ROC agrees with the theoretical order of convergence of the proposed scheme in
the spatial direction.

Table 4. L∞-error and ROC.

N L∞-Error ROC

40 8.08777 × 10−9

80 9.97993 × 10−10 3.0186
160 3.83759 × 10−11 4.7008
320 1.69230 × 10−12 4.5031

6.2. Non-Linear FitzHugh–Nagumo Equation
6.2.1. Example 1

Consider the test problem (14a) using µ = 0.75 along with initial condition as

u(x, 0) =
1
2
+

1
2

tanh
(

x
2
√

2

)
, −10 ≤ x ≤ 10.

The exact solution to the problem is [9]

u(x, t) =
1
2
+

1
2

tanh
(

x
2
√

2
− (2µ− 1)t

4

)
Table 5 compares the L∞ error norm using the proposed scheme with some available

data from Akkoyunlu [9] for different values of N at time t = 0.2. With the proposed
scheme, we have almost the same or even better accuracy in the numerical approximation
after just four applications, while the scheme presented in Akkoyunlu [9] has reached
similar accuracy after 20 time steps. As a result, the proposed scheme produced similar
errors in fewer iterations, saving computational effort.

Table 5. Comparison of L∞-error norm at time t = 0.2.

N L∞-Error with CPU (sec.)
(The Proposed Scheme)

L∞ (Method in
Akkoyunlu [9])

12 6.3673 × 10−4 3.9857 × 10−4

(0.65)
24 4.7712 × 10−5 2.3475 × 10−5

(2.34)
48 8.0504 × 10−6 8.3749 × 10−6

(9.60)
64 4.7818 × 10−6 5.9363 × 10−6

(17.75)
No. of iterations 4 20

In Table 6, we have compared the Lrms error for this problem using the proposed
scheme with the results from Ahmad et al. [32] and Jiwari et al. [11] for N = 100 and
v = 0.75 at different values of time. It must be mentioned here that the proposed scheme
integrates the given problem with a large time step size and produces similar accuracy in
just four iterations. In contrast, the approaches presented in [11,32] achieve similar accuracy
with smaller time steps resulting in many iterations. Thus, the proposed method provides
better or equal results for fewer iterations.
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Table 6. Comparison with different approaches for Example1 with µ = 0.75 and N = 100.

Ahmad [32] Jiwari [11] The Proposed
Scheme

t Lrms-Error Lrms-Error Lrms-Error
with CPU (sec.)

0.2 2.1960 × 10−7 1.5880 × 10−5 4.0099 × 10−7

(47.89)
0.5 1.5696 × 10−6 3.8433 × 10−5 2.8629 × 10−6

(125.23)
1.0 7.1449 × 10−6 8.1870 × 10−5 1.3175 × 10−5

(268.56)
1.5 1.7262 × 10−5 1.3387 × 10−4 3.2282 × 10−5

(395.18)
2 3.1857 × 10−5 1.9433 × 10−4 6.1114 × 10−5

(527.95)
time step-size(k) 0.0001 0.001 0.01

6.2.2. Example 2

Consider the test problem given by (14a) taking µ = 0.5 along with the initial condi-
tion as

u(x, 0) =
1

1 + exp(−x√
2
)

, 0 ≤ x ≤ 1.

where the exact solution is given by [33].
Table 7 compares errors produced by the proposed scheme and the approaches given

in [33]. The errors produced by the schemes in Inan et al. [33] called ANM and ExpFDM
are bigger than those obtained using the proposed scheme. Also, note that the proposed
scheme uses only one iteration to integrate the problem.

Table 7. Comparison of maximum absolute error for Example 2 with µ = 0.5 and t = 0.04.

x The Proposed
Scheme ExpFDM [33] ANM [33]

0.2 2.5011 × 10−7 3.00 × 10−6 2.00 × 10−7

0.4 3.5686 ×10−7 1.00 ×10−5 5.00 × 10−7

0.6 1.0422 × 10−7 2.00 × 10−5 7.00 × 10−7

0.8 9.7036 × 10−7 4.00 × 10−5 6.00 × 10−7

No. of iterations 1 8 8

6.3. PDE with Manufactured Solution

Consider the PDE
ut − uxx − u2 = f (x, t) (17)

whose exact solution will be manufactured. We will formulate its solution with the help of
a technique called Method of manufactured solutions (MMS). In this method, we choose
a function u(x, t), which satisfies the initial and two boundary conditions. For the above
PDE, one choice is u(x, t) = x sin t + 1 − x2. So, we substitute this value into the above
differential equation to find f (x, t).

Thus, we have the exact solution u(x, t) = x sin t+ 1− x2 to the initial-boundary value
problem:

ut − uxx − u2 = x cos t + 2 + x2 sin2 t + (1 − x2)2 + 2x(1 − x2) sin t 0 ≤ t ≤ T, 0 < x < 1 (18)

with initial condition
u(x, 0) = 1 − x2
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and boundary conditions
u(0, t) = 1, u(1, t) = sin t.

In Figure 5, we have plotted the manufactured solution of the given PDE and its nu-
merical solution obtained by the proposed method, demonstrating the proposed method’s
good performance.

Numerical solution

Analytical solution

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

u

Figure 5. Numerical solution v/s Analytical solution for (17). We have plotted the numerical solution
against the exact solution for the values N = 20, k = 0.0001, t = 0.01. It shows that the physical
behavior of both the solutions is similar.

7. Conclusions

This article considers a five-step block method coupled with a compact finite differ-
ence scheme for numerically integrating time-dependent initial-boundary value PDEs.
Theoretical development of the block method and its basic characteristics have been pre-
sented. The block method has very good stability characteristics with eighth-order accuracy.
Further, a combined numerical scheme is obtained by coupling the block method with a
compact finite difference scheme. The effectiveness of the presented approach has been
demonstrated by applying it to two well-known test problems: Burgers’ equation and
FitzHugh–Nagumo equation. The approach considered in this article is a good alternative
for solving the types of problems considered in the article.
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