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ABSTRACT
Energetic feedback from star clusters plays a pivotal role in shaping the dynamical evolution of
giant molecular clouds (GMCs). To study the effects of stellar feedback on the star formation
efficiency of the clouds and the dynamical response of embedded star clusters, we perform
a suite of isolated GMC simulations with star formation and momentum feedback subgrid
models using the moving-mesh hydrodynamics code AREPO. The properties of our simulated
GMCs span a wide range of initial mass, radius, and velocity configurations. We find that
the ratio of the final stellar mass to the total cloud mass, εint, scales strongly with the initial
cloud surface density and momentum feedback strength. This correlation is explained by an
analytic model that considers force balancing between gravity and momentum feedback. For
all simulated GMCs, the stellar density profiles are systematically steeper than that of the
gas at the epochs of the peaks of star formation, suggesting a centrally concentrated stellar
distribution. We also find that star clusters are always in a sub-virial state with a virial parameter
∼0.6 prior to gas expulsion. Both the sub-virial dynamical state and steeper stellar density
profiles prevent clusters from dispersal during the gas removal phase of their evolution. The
final cluster bound fraction is a continuously increasing function of εint. GMCs with star
formation efficiency smaller than 0.5 are still able to form clusters with large bound fractions.

Key words: methods: numerical – stars: formation – stars: kinematics and dynamics –
galaxies: star clusters: general.

1 I N T RO D U C T I O N

Most, if not all, stars are formed in clusters (Lada & Lada 2003),
which emerged from giant molecular clouds (GMCs; Shu, Adams &
Lizano 1987; Scoville & Good 1989; McKee & Ostriker 2007;
Krumholz, McKee & Bland-Hawthorn 2018). Due to the complex
interplay of gravity, supersonic turbulence, and stellar feedback
from massive stars, the dynamical evolution and cluster formation
activities in GMCs are still highly debatable (e.g. Krumholz &
McKee 2005; Ballesteros-Paredes & Hartmann 2007; Heitsch,
Ballesteros-Paredes & Hartmann 2009; Hennebelle & Chabrier
2011; Padoan & Nordlund 2011; Federrath & Klessen 2012;
Burkert & Hartmann 2013; Traficante et al. 2018). One of the key
observables that can be used to constrain various physical process
is the star formation efficiency (SFE) in star-forming regions.

It is well known that star formation is inefficient on galactic
scales. The observed linear correlation between molecular gas
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surface density and star formation rate (SFR) surface density in
normal star-forming galaxies suggests a nearly constant gas deple-
tion time-scale around ∼2 Gyr, much longer than the dynamical
time-scale of galactic discs (Kennicutt 1989; Bigiel et al. 2008;
Saintonge et al. 2011; Leroy et al. 2013; Genzel et al. 2015; Tacconi
et al. 2018). In contrast, the SFE on GMC scales shows a large
variation ranging from less than a few per cent to nearly unity
(Zuckerman & Evans 1974; Krumholz & Tan 2007; Wu et al.
2010; Evans, Heiderman & Vutisalchavakul 2014; Heyer et al.
2016; Lee, Miville-Deschênes & Murray 2016; Vutisalchavakul,
Evans & Heyer 2016). The origin of this large scatter is usually
explained as a combination of the time variability of the SFR
during the course of cloud evolution and intrinsic scatter of SFEs
due to the diversity of GMC properties (Feldmann & Gnedin
2011; Kruijssen & Longmore 2014; Lee et al. 2016; Grudić et al.
2018a; Kruijssen et al. 2018). For example, recent theoretical
models and high-resolution magneto-hydrodynamics simulations
suggest that the SFE depends on the local virial parameters of
the cloud controlled by large-scale turbulence (e.g. Krumholz &
McKee 2005; Padoan, Haugbølle & Nordlund 2012). However, it
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has recently been recognized that large-scale turbulence can only
account for an ∼0.3 dex scatter, which is not sufficient to explain
the observed SFE variations (Lee et al. 2016). Another source of
variation comes from different stellar feedback channels that alter
the dynamical states of the GMCs (Fall, Krumholz & Matzner
2010; Murray, Quataert & Thompson 2010; Dale et al. 2014; Myers
et al. 2014; Raskutti, Ostriker & Skinner 2016; Kim et al. 2017;
Grudić et al. 2018b). Previous studies found that GMC simulations
adopting different stellar feedback mechanisms (stellar winds,
ionizing radiation, or supernovae) lead to dramatically different final
SFEs. The problem has recently been recognized to be more subtle
than previously thought, since even small differences in numerical
treatments, such as different radiative transfer schemes, massive
star sampling, and momentum and energy deposition algorithms,
can lead to drastic changes for the final SFE (Dale et al. 2005;
Roškar et al. 2014; Raskutti et al. 2016; Grudić et al. 2018b; Kim,
Kim & Ostriker 2018). Therefore, how the SFE depends on GMC
properties and the strength of stellar feedback remains an open
question.

Stellar feedback not only changes the efficiency of star formation
within GMCs, but also alters the dynamical state of star clusters by
dispersing the cloud. The process of star cluster disruption due to
rapid gas expulsion shortly after the cluster emerges from its natal
cloud is believed to be the main culprit of the ‘infant mortality’ of
star clusters – a sharp decrease in the number of young star clusters
with the increase of cluster age in local star-forming regions (e.g.
Lada & Lada 2003). A simple virial analysis suggests that a star
cluster that is initially in virial equilibrium will dissociate if more
than half of the mass is instantaneously lost (Hills 1980; Mathieu
1983). However, this statement does not take into account the highly
non-linear star formation and stellar feedback process in realistic
self-gravitating turbulent environments. For example, embedded
clusters in star-forming regions are not necessarily in virial equi-
librium. Recent hydrodynamical simulations suggest that the stellar
velocity dispersions are in general much smaller than that of the gas,
suggesting a sub-virial dynamical state of star clusters within GMCs
(e.g. Offner, Hansen & Krumholz 2009). Moreover, stars are usually
not well mixed with gas but instead formed in the densest part of
the cloud. The difference between the gas and stellar distribution
can strongly affect the dynamical response of star clusters to gas
dispersal (e.g. Kruijssen et al. 2012a; Shukirgaliyev et al. 2018).
Most importantly, GMCs are highly substructured. Stars are formed
at the intersections of gas filaments and assembled into different
subclusters hierarchically. Previous works have explored some of
the above complications using different physical and numerical
methods, including analytical models (Hills 1980; Mathieu 1983;
Adams 2000; Boily & Kroupa 2003a; Kruijssen 2012; Parmentier &
Pfalzner 2013), pure N-body simulations (Tutukov 1978; Lada,
Margulis & Dearborn 1984; Boily & Kroupa 2003b; Goodwin &
Bastian 2006; Baumgardt & Kroupa 2007; Smith et al. 2011; Farias
et al. 2018), and hydrodynamic simulations (Bonnell et al. 2011;
Girichidis et al. 2012; Moeckel et al. 2012; Fujii & Portegies
Zwart 2016; Gavagnin et al. 2017). Recent efforts have been made
to include various relevant physical processes in hydrodynamic
simulations (e.g. Parker, Dale & Ercolano 2015; Gavagnin et al.
2017); however, due to the high computational costs, they usually
focus on a handful of less massive GMCs.

In this paper, we perform a suite of hydrodynamic simulations
of turbulent GMCs employed with a simple star formation and
stellar feedback models in the moving-mesh code AREPO. We survey
GMCs with a broad range of mass, size, and velocity configurations
to investigate the physical origin of the intrinsic variations of SFEs

and the properties of surviving star clusters. The structure of this
paper is as follows. In Section 2, we describe the simulation setup,
star formation and momentum stellar feedback implementations,
and the design of initial conditions. In Section 3, we examine the
dependence of the integrated SFE of GMCs on cloud mass, size,
and momentum feedback intensity. In Section 4, we describe the
subsequent dynamical evolution of star clusters after the residual
gas is completely expelled and investigate the relationship between
SFE and cluster bound fraction. We summarize our conclusions in
Section 5.

2 M E T H O D S

2.1 Simulation setup

The simulations in this work are performed with AREPO (Springel
2010), a moving-mesh, finite-volume hydrodynamic code em-
ploying a second-order unsplit Godunov scheme. The control
volumes are discretized by a Voronoi tessellation, which is gen-
erated from its dual Delaunay tessellation determined by a set
of mesh-generating points. These points can move freely within
the simulation domain and follow gas flows in a quasi-Lagrangian
fashion. Therefore, AREPO captures the advantages of both grid-
and particle-based hydrodynamic methods and has already been
applied to various astrophysical problems (e.g. Kereš et al. 2012;
Torrey et al. 2012; Vogelsberger et al. 2012, 2014; Springel et al.
2018). Our simulations include hydrodynamics, self-gravity, radia-
tive cooling, star formation, and momentum feedback from stellar
winds.

We use an adaptive softening scheme for gas cells so that the
gravitational forces are resolved all the way down to the size of each
cell. We employ a quasi-Lagrangian refinement scheme that keeps
the mass of gas cells close to a target mass determined by initial
conditions. In addition, we refine a cell if its volume is more than
32 times larger than the minimum volume of all its face-touching
neighbours. This volume-limited refinement scheme prevents large
volume contrast between adjacent cells and helps to better re-
solve the regions that experience fast expansion due to stellar
feedback.

Since radiative cooling is responsible for gas fragmentation and
subsequent star formation in GMCs, it is important to follow the
cooling process explicitly over a large range of temperatures. Instead
of adopting isothermal or effective equations of state, which have
been used in many previous GMC simulations (e.g. Dale et al. 2005;
Raskutti et al. 2016; Kim et al. 2018), we explicitly include radiative
cooling from multiple channels: a network implementing hydrogen
and helium cooling and heating processes due to collisions, re-
combinations, free–free emission, and photoionization from UV
background radiation; high-temperature (T > 104 K) metal-line
cooling that is added to the hydrogen and helium network following
Vogelsberger et al. (2013); low-temperature (T < 104 K), metal-
line, fine-structure, and molecular cooling implemented as a fitting
function, depending on temperature, density, and gas metallicity,
to CLOUDY calculations presented in Hopkins et al. (2018) and
Marinacci et al. (in prep). We set the metallicity of the GMCs to
solar abundance when evaluating the cooling rates from metals. One
caveat is that the adopted cooling curves are based on the CLOUDY

model calculations under the spatially uniform ultraviolet (UV)
background used for galaxy formation simulations. The cooling
rate calculated based on this uniform UV background may not be
accurate for GMC simulations, especially in close proximity of
massive stars.
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2.2 Star formation

During each simulation time-step, we identify all star-forming
cells and convert them to stellar particles probabilistically. Star-
forming cells are defined as gas cells that are cold (Tcell < 100 K),
contracting (∇ · v < 0), and self-gravitating (|∇ · v|2 + |∇ × v|2 <

2Gρ), where v and ρ are the velocity and density of the cells,
respectively. We also employ a density threshold for star forma-
tion, ncell > 105 cm−3, to avoid rare situations where some self-
gravitating clumps are formed in the very low density outskirt of the
cloud.

A given star-forming cell is converted to stellar particles with a
constant probability p = �t/τ ff(ρ) at a given time-step �t, where
τ ff = (3π/32Gρ)1/2 is the free-fall time of the cell. The cells that
are converted to stellar particles are removed and the volume of
these cells is claimed by their neighbours. The mass, position, and
velocity of the newly formed stellar particles are inherited from their
parent gas cells. Therefore, the mass distribution of stars is similar
to that of the gas particles, which is around the target mass of the
simulations. After the stellar particles are created, they are treated as
collisionless particles with a Plummer-equivalent softening length
fixed to 10−4 of the initial diameter of the GMC.

2.3 Momentum stellar feedback

The overall evolution of GMCs depends strongly on the strength of
stellar feedback. Unfortunately, the exact amount of feedback that is
associated with massive stars in the simulations is still debated. As
has already been noticed in previous studies, GMC simulations with
different stellar feedback sources (stellar winds, ionizing radiation,
or supernovae) show dramatically different gas evolution and star
formation efficiencies (Dale et al. 2005; Roškar et al. 2014; Raskutti
et al. 2016; Grudić & Hopkins 2018; Kim et al. 2018). Moreover,
it has recently been recognized that, even some small changes
in numerical implementations, such as radiation hydrodynamic
methods (Kim et al. 2018), sampling of massive star formation
(Grudić et al. 2018a), and momentum/energy deposition algorithms
(Hopkins et al. 2018), can contribute noticeable variation to the
star formation efficiencies of the clouds. Since exploring accurate
feedback implementation from various sources is not the main focus
of this paper, we simply treat stellar feedback by depositing mass
and momentum fluxes from stellar particles to their neighbouring
gas cells.

We set the fiducial mass-loss and momentum deposition rate to
the initial mass function (IMF)-averaged values of stellar winds
from a single stellar population with a Kroupa initial mass function
(Kroupa 2001). Following Hopkins et al. (2018), the mass-loss rate
per unit stellar mass is

ṁw

Gyr−1
=

⎧⎪⎨
⎪⎩

4.763(0.01 + Z/Z�) t6 < 1

4.763(0.01 + Z/Z�)t1.45+0.8 ln (Z/Z�)
6 1 < t6 < 3.5

29.4(t6/3.5)−3.25 + 0.0042 3.5 < t6 < 100

(1)

where Z is the metallicity and t6 is the age of stellar particles in unit
of Myr. The kinetic luminosity of winds per unit stellar mass is

lw =
[

5.94 × 104

1 + (t6/2.5)1.4 + (t6/10)5
+ 4.83

]
× 1012ṁw erg g−1, (2)

for t6 < 100. Winds from stellar particles older than t6 > 100 are
irrelevant here since the dynamical time-scales of our model GMCs
are much shorter than 100 Myr.

The mass-loss and wind momentum are deposited to the gas cells
around each stellar particle in the following way: For a given stellar
particle of mass m∗ at time-step �t, the total mass-loss is �m =
ṁwm∗�t and wind momentum is �p = √

2lwṁwfboostm∗�t ,
where fboost is a boosting factor to the fiducial wind momentum to
mimic the feedback intensity from different feedback sources. The
mass and momentum fluxes from a stellar particle are distributed
to its nearest 32 neighbouring gas cells in a weighted fashion so
that cell i with weight wi receives mass �mi = (wi/�jwj)�m and
momentum � pi = (wi/�jwj )�pr i/|r i |, where r i is the vector
from the position of the stellar particle to the mesh-generating point
of cell i. The weight can be chosen to be any physical quantities of
the cells, such as volume, mass, or solid angle opened to the stellar
particle. To test the robustness of the feedback implementation, we
perform a series of numerical tests of wind-blowing bubbles created
by a stellar particle with constant mass-loss rate ṁ = 10−5 M� yr−1

and wind velocity vw = 500 km s−1 (see Appendix A). We find that
the expansion history and the internal structure of the bubble are
consistent with analytical solutions in Weaver et al. (1977). We also
test the sensitivity of the star formation history of one GMC using
different weighting methods (see Appendix B). To make consistent
investigation across all GMCs, in the rest of the paper, we use solid
angle as the weight to deposit mass and momentum.

2.4 Initial conditions

We set up the initial condition of GMCs as gas spheres of uniform
density with initial turbulent velocity fields. The mass, radius, and
other physical parameters of the initial conditions are listed in
Table 1. We choose the initial mass (MGMC) and radius (RGMC)
of the GMCs so that all ‘RHO’ runs have the same initial volume
density (ρ0 = MGMC/( 4

3πR3
GMC) ≈ 24 M�pc−3) and all ‘SIGMA’

runs have the same initial surface density (�0 = MGMC/πR2
GMC ≈

318 M�pc−2). The goal of this experimental design is to determine
whether SFE depends on volume density or surface density.

The initial velocity field is initialized as a combination of
turbulent motions and rigid rotation along the z-axis. We assign
the rotational velocity field as

vR
x (x, y, z) = −�iy; vR

y (x, y, z) = �ix; vR
z (x, y, z) = 0, (3)

where vR
x , vR

y , vR
z are the three components of the rotation velocities

with circular frequency �i. For each run listed in Table 1, we
construct two separate initial conditions: rotation-supported (‘R’)
and turbulent-supported (‘T’) runs. The virial parameter contributed
from rotation αR

0 ≡ 2Erot/|EG| = 0.1/0.9 is used to calculate �i for
the corresponding ‘T’/‘R’ runs, where Erot and EG are the rotational
energy and gravitational energy of the cloud.

The turbulent velocity field is first initialized as a Gaussian
random field in the Fourier space with the variance of the field
determined by a given power spectrum, P(k). Each dimension of
the turbulent velocity field is treated independently and the result
is a natural mixture of solenoidal and compressive turbulence. In
order to rearrange the turbulent field into arbitrary solenoidal and
compressive components, we perform a Helmholtz decomposition
in k-space by applying the projection operator to the field (Federrath
et al. 2010)

Hij (k) = ηcompH‖
ij (k) + (1 − ηcomp)H⊥

ij (k), (4)

where H‖
ij (k) = kikj /k

2 and H⊥
ij (k) = δij − kikj /k

2 are the com-
pressive and solenoidal operators, respectively, and δij is the Kro-
necker delta function. ηcomp is the contribution from the compressive
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Table 1. Model parameters.

Name MGMC( M�) R (pc) αR
0 τ ff (Myr) mres ( M�) lsoft (10−3 pc)

(i) (ii) (iii) (iv) (v) (vi) (vii)

RHO5 T/R 1.25 × 104 5 0.1/0.9 1.6 6.0 × 10−3 1
RHO10 105 10 0.1/0.9 1.6 4.8 × 10−2 2
RHO20 8 × 105 20 0.1/0.9 1.6 0.38 4
RHO40 6.4 × 106 40 0.1/0.9 1.6 3.1 8
RHO80 5.12 × 107 80 0.1/0.9 1.6 24.4 16
SIGMA5 2.5 × 104 5 0.1/0.9 1.13 1.2 × 10−2 1
SIGMA20 4 × 105 20 0.1/0.9 2.26 0.19 4
SIGMA40 1.6 × 106 40 0.1/0.9 3.2 0.76 8

Note. Column information: (i) model name, (ii) initial GMC mass, (iii) initial GMC radius, (iv) initial virial parameter
for the rotational components: αR

0 = 2Erot/|EG| (see Section 2.4 in detail), (v) initial free-fall time, (vi) target mass for
gas cells, (vii) gravitational softening length of stellar particles.

mode ranging from 0 to 1. ηcomp = 1 means a purely compressive
turbulence field and ηcomp = 0 means a purely solenoidal. Varying
ηcomp would lead to a different density structure of the clouds.
For simplicity, we use ηcomp = 1/3 so that the ratio of kinetic
energy of the compressive mode to that of the solenoid mode is
2:1 to mimic the natural mixture of the two turbulent modes. After
projection, the turbulence field in k space is Fourier-transformed to
real space and is then interpolated to the position of gas cells within
the sphere. The field is renormalized so that the virial parameter
due to turbulence is αT

0 ≡ 2Eturb/|EG|. We adopt a power-law
power spectrum P(k) ∝ k−4, which is similar to the turbulence
properties of GMCs (e.g. Dobbs et al. 2014). We assume the cloud
is initially in virial equilibrium so that the virial parameter of the
cloud α0 = αR

0 + αT
0 = 1.

The gas temperature is initialized to 10 K, which is commonly
used for GMC simulations (Dale et al. 2014; Raskutti et al. 2016).
The choice of the initial temperature does not change the evolution
of the gas and star of the GMCs because of the short cooling
time-scale compared to the dynamical time-scale of the clouds.
For each initial condition, we perform five simulations with a
different momentum boosting factor, fboost = 0.5, 1, 2, 4, 10, to
test the effects of the strength of momentum feedback on the
global evolution of GMCs and star clusters. GMCs are initially
resolved by 1283 equal-mass gas cells, which sets the target mass
mres ≈ MGMC/1283. We perform a convergence test for the RHO20T
run with fboost = 2 by varying the number of resolution elements
from 643 to 2563 and find that the star formation histories are not
sensitive to mass resolutions. The final star formation efficiencies
in runs with different resolutions vary by only a few per cent.

2.5 Caveats of the sub-grid models

The sub-grid model used in this paper samples star particles prob-
abilistically with star formation criteria described in Section 2.2.
This is different from the more realistic sink particle approach
that follows the accretion history of individual stars. We adopt
this simplified star formation algorithm since the goal of this paper
is to investigate the global properties of GMCs and star clusters
but not to study the origin of the IMF or the detailed formation
of single stellar objects. We interpret each star particle as a single
stellar population, whose feedback intensity is estimated in an IMF-
averaged fashion (see Section 2.3). For the most massive GMCs in
our simulations, this IMF-averaged approach captures the overall
energy budget of stellar feedback (see also Grudić et al. 2018b).
However, it unavoidably underestimates the large variation of star
formation efficiency in low-mass clouds, where a few massive stars

can dominate the feedback process. In addition, the star particles in
our simulations with a fixed gravitational softening length only trace
the overall mass distribution of star clusters. Therefore, the detailed
dynamical evolution could in principle depend on the choice of
softening length (e.g. Bate, Bonnell & Bromm 2003; Bate 2012). To
fully capture the collisional process between star particles requires
simulations that resolve the formation of individual stars over the
whole mass spectrum and a more accurate gravity integrator, such
as NBODY6 (Aarseth 1999). Recent efforts have been made towards
this direction (e.g. Parker et al. 2015; Gavagnin et al. 2017; Wall
et al. 2019); however, due to the high computational cost, these
simulations mainly focused on less massive GMCs and cannot
explore the dynamical evolution of GMCs over a large parameter
space.

Another main caveat is that we only take into account the mo-
mentum feedback from stellar winds, whose intensity is controlled
by fboost. A larger fboost is used to mimic stellar feedback from
multiple feedback sources, such as stellar winds, ionizing radiation,
and supernovae. However, in reality, different feedback mechanisms
operate on different time-scales, at different locations, and through
different physical processes. For example, ionizing radiation from
massive stars strongly alters the ionizing state of the gas around
massive stars and deposits both internal and kinetic energy to the
surrounding medium. Moreover, for some of our simulations with
very long tff, for example SIGMA40, at the late stage of the cloud
evolution when the age of the massive stars is longer than their
main-sequence lifetime, core-collapse supernovae can deposit an
enormous energy to the cloud and violently disrupt it. The combined
effects of various feedback mechanisms will be investigated in an
upcoming paper.

3 I NTEGRATED STAR FORMATI ON
EFFI CI ENCY

In total, we have performed 80 GMC simulations with different
masses, radii, velocity configurations, and feedback boosting fac-
tors. For all runs, we stop the hydrodynamical simulations when
99 per cent of the gas mass is expelled from the initial spherical
regions by momentum feedback. Although different GMCs show
quantitative different star formation histories and final efficiencies,
the general evolutionary stages of the clouds are very similar. Here
we use the RHO20T run with fboost = 2 as an example to describe
the general pattern of GMC evolution.

Fig. 1 shows the gas density projection of this run at four
different epochs. The cloud evolution is initially governed by
the turbulent velocity field, which creates complex filamentary
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Figure 1. Gas density projection plots for RHO20T run with fboost = 2 at four epochs: t = 0.9, 1.5, 2.1, and 2.6 Myr. The colour range for gas surface density
is from �gas = 50 M� pc−2 to 106 M� pc−2 and a length scale of 5 pc is labelled on the lower right corners in each panel. Stellar particles are presented by
white dots.

structures (upper left). After ∼0.3τ ff, a roughly lognormal density
distribution is established due to the supersonic turbulence. As
turbulent energy dissipates by supersonic compression, the cloud
starts to experience global contraction under self-gravity. Many
subclusters are formed at the intersection of the filaments where
dense gas clumps experience local runaway collapse (upper right).
These subclusters move along the filaments, merge with each
other frequently, and eventually form more massive subclusters.
Due to momentum feedback, some gas mass is channelled out-
wards through low-density regions. In contrast, the high-density
regions are compressed further and form young stars subsequently
(lower left). When the central star cluster is massive enough so
that its momentum feedback is able to counteract gravitational
contraction, the majority of the gas mass is expelled from the

cloud centre, causing the formation of giant wind-blowing bubbles
(lower right).

3.1 Time evolution of cloud properties

In Fig. 2, we quantify the time evolution of various physical
quantities of the cloud for the same run shown in Fig. 1. Panel
(a) shows the star formation history of the cloud until it is fully
disrupted. After the first group of stars forms at ∼0.3τ ff, the SFR
rises dramatically and peaks at around t50 ∼ τ ff. As momentum
feedback from stellar particles clears some gas mass from the cloud
centre, the SFR drops gradually. Although the whole star formation
activity spans over ∼2τ ff, the majority of the stellar mass is formed
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Figure 2. Time evolution of various physical quantities for RHO20T run
with fboost = 2: (a) SFR, (b) gas and stellar masses, (c) virial parameters
for gas and stars, (d) half-mass radii for gas and stars, and (e) LSF within
one and two half-stellar mass radii. The three vertical dashed lines from
left to right represent the epochs at t10, t50, and t90, which are the epochs
when 10 per cent, 50 per cent, and 90 per cent of the final stellar mass is
assembled, respectively. The x-axis is normalized by the initial free-fall
time of the cloud, τ ff = 1.6 Myr.

around the epoch of the star formation peak. The central 80 per cent
of the stellar mass is assembled within 0.6–1.4τ ff.

The cumulative version of panel (a), the stellar mass growth
history, is shown in panel (b), together with the evolution of gas
mass. We split all gas mass into bound and outflow components.
The bound gas is defined as the total mass of gas cells with
negative (kinetic+potential) energy, while the outflow is defined
as the unbound gas cells that are outside twice the initial GMC
radius. It is clear that the decrease of bound gas mass is partly
due to gas consumption by star formation and partly due to the
increase of feedback-driven outflows. The final stellar mass reaches
∼60 per cent of the initial cloud mass, which is defined as the
integrated SFE, εint.

Panel (c) shows the evolution of virial parameters for both gas
(αgas) and stars (αstar). By construction, gas is initially in virial
equilibrium with α0 = 1. As the turbulent energy dissipates, the
kinetic energy of the cloud decreases and the system collapses,
which leads to a slight decrease of αgas. The momentum feedback
from stars adds kinetic energy to the gas cells and helps to increase
αgas after t ∼ 1.3τ ff. Eventually, the virial parameter comes back to
unity. Yet momentum feedback cannot keep the cloud in a quasi-
equilibrium state. αgas keeps rising and becomes much larger than
unity very quickly until the majority of the gas mass is removed from
the central region of the cloud. Interestingly, the virial parameter
of stars, αstar, is always smaller than unity, suggesting that the
model star cluster is sub-virial. As we will show later, this sub-
virial dynamical state before gas expulsion has a dramatic effect on
the formation of bound clusters in GMCs.

In panel (d), we present the evolution of the half-mass radius of the
gas and stellar components of the GMC. The evolution of the half-
mass radius of the gas tightly follows the evolution of its dynamical
state as is described in panel (c). The size of the gas cloud first
shrinks slightly due to the dissipation of the initial turbulent energy
until stellar momentum feedback puffs it up. The evolution of the
half-mass radius of the star cluster is more complicated. At first, stars
are formed in dense gas clumps distributed over a large volume of the
cloud, which leads to a relatively large initial stellar radius. As the
cloud contracts, star formation activities concentrate more towards
the central region and the stellar half-mass radius decreases until t50.
Later, as gas removal shallows the overall gravitational potential,
the star cluster expands dynamically to reach a new equilibrium
state.

Many theoretical works on gas expulsion and the formation of a
bound fraction suggest that, rather than εint, the local stellar fraction
(LSF) is considered as an effective SFE to better probe the bound
fraction of the cluster after gas expulsion (Goodwin 2009; Smith
et al. 2011, 2013; Farias et al. 2018). The LSF is defined as the
mass fraction of stellar mass within the stellar half-mass radius
right before the gas expulsion:

LSF = M∗(< rh)

M∗(< rh) + Mgas(< rh)
. (5)

In panel (e), we show the evolution of the LSF in the simulations.
Since neither the formation of stars nor the dispersion of gas happens
instantaneously, the LSF changes dramatically during the course of
GMC evolution. By definition, the LSF is initially zero. As star
formation continues, the gas is gradually consumed and expelled
from the central region, causing the increase of stellar mass and
decrease of gas mass. Therefore, the LSF increases monotonically
as a function of time until it reaches unity.

3.2 Effects of fboost on the star formation history

Fig. 3 shows the star formation histories of the RHO20T run with
different fboost. During the early stages, the total mass of young stars
is so small that momentum feedback is not enough to affect the
dynamical state of the cloud. Therefore, the effects of fboost on the
SFR is not visible and all lines overlap with each other until the
SFR reaches its peak. During this period of time, the SFR presents
a linear increase with time, SFR ∝ t. This linear time dependence
is consistent with previous theoretical and numerical prediction of
turbulent self-gravitating cloud with virial parameters close to unity
(Lee, Chang & Murray 2015; Murray & Chang 2015; Murray et al.
2017).
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Figure 3. Star formation histories of RHO20T runs with five different fboost:
0.5, 1, 2, 4, 10. The SFR is not affected by the choice of fboost during the
early phase of GMC evolution. During this phase, the SFR increases linearly
with time, which is shown as the dashed line: SFR ∝ t. Clouds start to be
disrupted by stellar feedback after the SFR reaches its peak. The epoch of
the peaks of star formation as well as the final SFE decreases with increasing
fboost.

When a sufficient fraction of gas mass is converted to stars, the
momentum feedback is able to alter the overall dynamical state of
the cloud (see Section 3.1), and eventually reverts the increasing
trend of the SFR. The exact epoch of the turning point and, in turn,
the final εint, is determined by the balance between the feedback
intensity and gravitational contraction, which will be discussed in
the next section.

3.3 Surface density-dependent SFE

For all 80 runs, we obtain the total stellar mass at the end of the
hydrodynamical simulations and calculate the integrated SFE, εint.
Fig. 4 shows εint as a function of the cloud initial surface density, �0,
for all 80 runs. We find a positive correlation between εint and �0, for
a given value of fboost. In contrast, we do not find clear correlations
of εint with either the initial mass, radius, or volume density of the
clouds. For the same GMC, runs with larger fboost produce less stars
and smaller εint, consistent with the results described in Section 3.2.
Moreover, we find that rotation-supported (‘R’) runs in general show
a slightly higher εint than the corresponding turbulence-supported
(‘T’) runs, especially when a large fboost is employed. This can
be explained as follows. Because of the initial rotational velocity,
GMCs in the ‘R’ runs first collapse to a disc-like structure whose
scale height is typically smaller than the cloud radius. The formation
of the thin disc allows momentum feedback to escape easier than
that of the ‘T’ runs, where the spherical shape of cloud is roughly
maintained. This geometric effect leads to a difference of εint by
about 10–20 per cent.

We next build an analytical model to explain the correlation
between εint and �0 by considering the force balance between
gravitational contraction and gas expulsion by momentum feedback.
We assume, when the balance is achieved, the residual gas forms

Figure 4. Integrated SFE, εint, of all 80 runs as a function of initial gas
surface densities, �0. The solid points represent all 40 rotation-supported
‘R’ runs while the crosses represent all 40 turbulent-supported ‘T’ runs.
Different colours represent runs using different fboost (see legend for details).
In general, we find that εint increases with increasing �0 and decreasing
fboost. This trend is explained by a physical model that considers force
balancing between gravitational collapse and momentum feedback. The
solid lines represent the result of the physical model with best-fit parameters
β = 1.83 and ṗw = 3.32 × 10−9cm s−2 using equation (11).

a thin spherical shell with a radius rs. For gravitational forces, we
consider the contribution from both the central star cluster of mass
M∗ and self-gravity of the gas shell of mass Msh = MGMC − M∗.
The gravitational force per unit area of the shell from the cluster is
evaluated as

Fsh,∗ = GM∗Msh

r2
s As

= GM∗�sh

r2
s

, (6)

while self-gravity of the gas shell is

Fsh = βGM2
sh

r2
s As

= βGMsh�sh

r2
s

, (7)

where As = 4πr2
s is the surface area of the shell, �sh = Msh/4πr2

s ,
and β is the geometric factor that takes into account the anisotropic
distribution of the gas shell. Note that �sh is the surface density
of the spherical shell seen from the central cluster, different from
�0, the cloud column density, by a factor of 4: �0 = 4�sh. For a
uniform-density gas distribution, β = 0.5. The expel force per unit
area exerted on to the gas shell by momentum feedback is

Fp = M∗ṗ
4πr2

s

, (8)

where ṗ is the momentum deposition rate per unit stellar mass. As
described in Section 2.3, we use an IMF-averaged wind injection
as the default setup for feedback with a boosting factor, fboost. In
equation (2), the deposition rate evolves as the stellar population
ages. For simplicity, in this analytical model we assume a constant
momentum deposition rate per unit mass ṗ = fboostṗw, where ṗw

is the IMF- and time-averaged value.
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Force balancing between gravitational collapse and the
momentum-driven wind, Fsh,∗ + Fsh = Fp, gives

M∗ṗ
4πr2

s

= GM∗�sh

r2
s

+ βGMsh�sh

r2
s

. (9)

By defining variables �crit ≡ ṗ/πG and � ≡ �sh/�crit =
πG�0/4fboostṗw and assuming rs = RGMC, the above equation can
be simplified to

(1 − εint)

(
β

εint
− β + 1

)
= 1

�
. (10)

Finally, εint can be solved as

εint =
√

�2 + (4β − 2)� + 1 − (2β − 1)� − 1

2(1 − β)�
. (11)

For a uniform-density gas shell, equation (11) reduces to

εint =
√

�2 + 1 − 1

�
. (12)

For clouds with high surface density, � 
 1, equation (11) is
reduced to εint ≈ 1 − 1/�, which suggests that almost all gas mass
is converted to stars before the gravitational collapse is balanced
by momentum feedback. Since the mass of the gas shell is much
smaller than the mass of the central star cluster, self-gravity of the
gas shell is negligible and therefore εint is independent of β. For
� � 1, on the other hand, the gravitational force is dominated by
the self-gravity of the shell and equation (11) can be simplified
to εint ≈ β�, which shows a clear β dependence. In this case,
εint depends linearly on the cloud surface density divided by the
momentum deposition rate, �0/fboostṗw.

We fit the value of εint for all 80 GMC simulations using equa-
tion (11), and obtain the best-fit parameters with 1σ uncertainty:
β = 1.83 ± 0.89 and ṗw = (3.32 ± 0.64) × 10−9cm s−2. As can be
seen in Fig. 4, the analytical model is in good agreement with the
simulated εint over a large range of �0 and fboost. We notice that the
analytical model overestimates εint for runs with fboost = 10. This is
possibly because clouds are disrupted earlier in fboost = 10 runs than
other runs and the time-averaged ṗ is systematically higher due to
the decreasing wind kinetic luminosity used in the simulations (see
equation 2).

3.4 Star formation time-scales

As described in Sections 3.2 and 3.3, stronger momentum feedback
changes the epoch of the peak of star formation to earlier times and
reduces the final SFE. How important is the strength of feedback to
the overall star formation time-scales? Can feedback be the main
energy source to support the cloud and maintain a quasi-equilibrium
state? We investigate these questions here by defining several
relevant time-scales that characterize the star formation activities
for the simulated GMCs. First, we define the initial free-fall time of
the cloud as

τff =
√

3π

32Gρ0
≈ 1.6 Myr

(
M

105 M�

)−1/2 (
RGMC

10 pc

)3/2

, (13)

where ρ0 = 3MGMC/4πR3
GMC is the initial volume density of the

GMC. The free-fall times of all GMCs are listed in Table 1. We
define the star formation duration as the time-scale during which
the clouds form the central 80 per cent of their stars: τ dur = t90 − t10.
Following Li, Gnedin & Gnedin (2018) and Grudić et al. (2018b),
we also define an age spread of star cluster as the ratio between the

Figure 5. Relevant time-scales, t50 (upper), τ dur (middle), and τ spread

(lower), as a function of the initial free-fall time of the GMCs for all 80 runs.
t50 roughly represents the epochs of star formation peaks, while τ dur and
τ spread are different definitions of overall star formation durations. The same
as Fig. 4, different colours and markers show runs with five different fboost

and ‘R’/‘T’ runs. In the middle panel, the best-fit linear relation between τ ff

and τ dur for runs with different fboost is shown as solid lines.

final stellar mass M∗ and the mass-weighted SFR:

τspread ≡ M∗
< Ṁ >

= M∗∫
Ṁ2∗ dt/M∗

, (14)

where Ṁ∗ is the instantaneous SFR. For a Gaussian-like star
formation history with standard deviation σ ∗, the age spread is
approximated τspread ≈ 2

√
πσ∗.

In Fig. 5, we show the central star formation epoch (t50), star
formation duration (τ dur), and age spread (τ spread) as a function of
initial free-fall time (τ ff) for all 80 GMCs. In the top panel, we find a
clear linear correlation between t50 and τ ff. We know that t50 roughly
represents the epoch of the peak of star formation because of the
Gaussian-like shape of the star formation history (see Section 3.1).
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Figure 6. Compilation of gas (blue) and stellar (yellow) density profiles
for all 80 runs. The profiles are normalized to the central stellar density.
Individual profiles are shown as background transparent lines, while the
median and 25–75 per cent interquartile range are shown as solid lines and
shaded regions, respectively. The inset figure shows the distribution of the
best-fit power-law slopes of the gas and stellar density profiles. The vertical
dashed lines are the median of distribution of the slopes for gas and stellar
profiles, respectively.

In fact, t50 is close to τ ff for clouds that are turbulence-supported (‘T’
runs). For ‘T’ runs, the initial turbulent energy dissipates within the
turbulence crossing time, which is shorter than the free-fall time of
the cloud. The peak of star formation is determined by gravitational
collapse of the whole cloud and is therefore similar to the free-
fall time. The ‘R’ runs, on the other hand, show a systematically
larger t50 than the corresponding ‘T’ runs. This is because the
rotation-supported cloud first collapses along the rotational axis
and form a gaseous disc. The rotating disc contains more coherent
motions whose kinetic energy dissipates over a longer time-scale
than turbulent motions. Interestingly, as shown in the middle and
bottom panels, the star formation duration and age spread for ‘T’
and ‘R’ runs do not show clear difference, which suggests that once
the runaway collapse starts, the details of the initial configuration
of the gas motion do not affect the subsequent star formation
process.

Similar to t50, τ dur and τ spread also correlate linearly with τ ff.
We perform a linear fit to the correlation between τ ff and τ dur

and find that runs with different fboost show similar scalings but
with different normalizations. Although the normalization of the
relations shows an anticorrelation to fboost, increasing fboost by a
factor of 20 from 0.5 to 10 only shortens the time-scale by a factor
of 3 to 4. Quantitatively, this weak dependence of the momentum
feedback intensity on the star formation duration can be understood
as follows. In Section 3.2, we find a linearly increasing SFR from
t10 to ∼t50 regardless the choice of fboost. Here we define SFR =
A(t − t10), where A is an arbitrary normalization. Therefore, the ap-
proximated total stellar mass is M∗,linear = 5/2

∫ t50
t10

A(t − t10)dt =
5/4A(t50 − t10)2 ∼ 5/16Aτ 2

dur ∝ τ 2
dur, assuming τ dur = 2(t50 − t10).

We also obtained a correlation between εint and �0 from equa-
tion (11), which gives the final stellar mass as M∗ = εintM0.

For clouds with �0 < <�crit, the above expression can be sim-
plified as M∗ ≈ β�MGMC = πGβ�0MGMC/8fboostṗwind ∝ f −1

boost.
Equating M∗,linear and M∗ gives a scaling τdur ∝ f

−1/2
boost . For high-

surface-density clouds when �0 > >�crit, εint ≈ 1 − 1/� and
therefore τ dur is almost independent of fboost. Indeed, we find that
the correlation between τ dur and fboost in the simulations scales
between τdur ∝ f

−1/2
boost and τdur ∝ f 0

boost, with a median power-law
slope around −1/4. The weak dependence of star formation duration
to the strength of momentum feedback suggests that the cluster
formation time-scale is mainly determined by gravitational runaway
collapse. Keep in mind that the turbulent velocity fields used in our
simulations are initialized at the very beginning of the simulations.
No subsequent turbulence driving is applied to feed in the kinetic
energy after turbulence dissipation. Understanding how turbulent
motions cascade from large-scale environments to the local star-
forming regions and affect the long-term star formation activities
requires simulations of GMCs in realistic galactic environments,
which will be investigated in a future work.

4 B O U N D F R AC T I O N O F M O D E L C L U S T E R S

As discussed in previous sections, momentum feedback from young
stars disrupts star-forming regions, reduces the SFE, and shortens
star formation time-scales. The gas expulsion and cloud disruption
flatten the gravitational potential and inevitably leave some imprint
on the dynamical state of the star clusters formed at the centre of
the clouds. Previous works have studied extensively the effects of
gas removal on the dynamical evolution of star clusters. A simple
virial analysis shows that if more than 50 per cent of the mass is
instantaneously removed from a virialized system, the remaining
mass will become gravitationally unbound (Hills 1980; Mathieu
1983). This conclusion is based on several assumptions: (1) The
system is initially in virial equilibrium; (2) the removed mass
is initially well mixed with the residual mass; (3) the mass-loss
time-scale is much shorter than the dynamical time-scale of the
system. In realistic star-forming environments, all of the above
assumptions are not strictly applicable. The star-forming regions
are not necessarily in virial equilibrium (e.g. Offner et al. 2009).
Stars are not randomly distributed within the GMCs, but are formed
hierarchically within the densest molecular cores at the intersections
of the gas filaments (e.g. Smith et al. 2011, 2013; Farias et al. 2015;
Lee & Goodwin 2016; Farias et al. 2018). The non-star-forming gas
is expelled outward gradually rather than instantaneously (Geyer &
Burkert 2001; Smith et al. 2013) and is preferentially channelled
through low-density holes and tunnels rather than being removed
homogeneously. Here, we explore these factors in our simulations
and investigate how gas expulsion affects the bound fraction of star
clusters.

4.1 Stellar and gas distribution at t50

Fig. 6. shows the density profiles for both gas and stars at t50 for
all 80 runs. The profiles are centred at the location of the deepest
gravitational potential, which is usually the centre of the central
star clusters. Both the gas and stellar profiles are normalized to the
central stellar density of the corresponding run. We find that, for
most of the runs, the stellar central density is systematically higher
than that of the gas, suggesting that a large fraction of gas mass
in the central region of the GMCs has already been converted to
stars at t50. As a result, the gravitational potential is dominated by
stars rather than gas within ∼0.1RGMC. We fit both the gas and
stellar density profiles with a power-law shape, ρ(r) ∝ r−γ , and
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show the distribution of the power-law slopes γ in the inset of
the figure. The gas density profiles shows a roughly isothermal
profile with a median power-law slope γ ∼ 1.9. It is interesting
that the gas distribution for all runs converges to quasi-isothermal
profiles regardless of the fact that the initial conditions are uniform-
density spheres. This isothermal gas density profile is consistent
with the observed radial profiles of star-forming molecular clumps
(Mueller et al. 2002; Palau et al. 2014; Wyrowski et al. 2016;
Csengeri et al. 2017) and is thought to be a natural consequence
of scale-free gravitational collapse (e.g. Larson 1969; Penston
1969; Naranjo-Romero, Vázquez-Semadeni & Loughnane 2015;
Donkov & Stefanov 2018; Li 2018). The stellar density profiles, on
the other hand, are systematically steeper than that of the gas with
slopes centred around 2.8 with a large variation. The steeper stellar
density profiles imply more centrally concentrated star formation
activities.

4.2 Virial state of star clusters at the peak of star formation

In panel (c) of Fig. 2, we showed the evolution of the virial parameter
of stars in the RHO20T run with fboost = 2. We found that the model
star cluster is in a sub-virial state (αvir,∗ < 1) during the course
of gas expulsion from t50 to texp. Here we calculate αvir,∗ at t50

for all 80 GMCs in order to quantify the dynamical state of the
star clusters before gas expulsion. We find that αvir,∗ has a median
value around 0.61 with a 25–75 per cent interquartile range 0.55–
0.65, which suggests a systematic sub-virial dynamical state. This
finding is qualitatively consistent with previous simulations, such
as Offner et al. (2009), who suggest a sub-virial stellar velocity
dispersion even in virialized GMCs. This is possibly because stars
are preferentially formed in the densest molecular cores which on
average have less velocity dispersion than the rest of the cloud.
Moreover, as discussed in Section 4.1, the stellar distribution is
much more compact than that of the gas, which also helps the
central cluster to remain gravitationally bound. As will be shown
later, the sub-virial state has a dramatic effect on the final boundness
of star clusters after gas expulsion.

4.3 Gas expulsion time-scales versus dynamical time-scales

The dynamical response of star clusters to gas expulsion is a com-
petition between the flattening of the gas potential that happened
over the gas expulsion time-scale and the energy exchange among
stars that happened over the dynamical time-scale of the clusters.
Previous N-body simulations mimic the gas expulsion process by
gradually reducing the background gas potential over a given period
of time (e.g. Geyer & Burkert 2001; Baumgardt & Kroupa 2007).
However, in realistic star-forming regions, star formation and gas
expulsion happen at the same time and there is no clear separation
between the two processes.

Here we define the gas expulsion time-scale as the duration from
the peak of star formation to the epoch when the contribution of
the gravitational potential energy from gas mass within twice the
half-mass radius of the star cluster is less than 10 per cent, τ exp =
texp − t50. We also modified the potential energy threshold from 1
to 10 per cent and find the expulsion time-scale is not sensitive to
the choice of this value. Similar to the star formation duration, we
find that texp depends strongly on the initial free-fall time of the
GMC, suggesting that gas expulsion associates well with the end of
star formation. It also suggests that gas expulsion happens neither
instantaneously nor much longer than the dynamical time-scale of
the clouds.

4.4 Calculating the bound fraction of star clusters

The final efficiency of star formation and all relevant time-scales
investigated above are determined once the majority of the gas mass
is removed from the central region of the clouds. Right after gas
removal, the dynamical state of star clusters will readjust according
to the changes of gravitational potential for the next couple of
dynamical time-scales. Therefore, after momentum feedback expels
more than 99 per cent of the gas mass out of twice the stellar half-
mass radius, we stop the hydro runs, remove residual gas cells, and
continue evolving the star clusters in a gravity-only mode with the
same softening length of stellar particles as the corresponding hydro
runs. The simulations keep running for another two free-fall times
of the GMC, τ ff. We analyse the cluster bound fraction from N-
body snapshots at different epochs and find that the bound fraction
usually becomes stable after only ∼0.5τ ff.

We adopt two methods to estimate the bound fraction from the
last snapshot of the N-body runs. The first and simplest way is
to calculate the mass fraction of all stellar particles with negative
energies. This method gives accurate results for clusters that have
large bound fractions. However, for clusters with a low bound
fraction, simply summing up stellar particles with negative energy
overestimates the bound fraction. Stars with negative energy are
not guaranteed to be bound to the cluster since removing all
stars with positive energy shallows the gravitational potential.
Therefore, we design a new method that removes stellar particles
with positive energies and updates gravitational energies for the
remaining stars iteratively. The iteration stops when all remaining
stars have negative energies and the bound mass fraction of the
clusters, fbound, is obtained.

The second method is to use the ‘Lagrangian radius’, Rlag, defined
as a series of radii within which the star cluster contains a sequence
of fractions of stellar mass. Brinkmann et al. (2017) suggest to use
the evolution of the Lagrangian radii to determine the structural
changes of the star cluster during gas expulsion. The bound fraction
after gas expulsion is determined by the outermost Lagrange radius
that shows a core collapse. Fig. 7 shows the time evolution of the
Lagrangian radii for the RHO20T run with fboost = 2. We find that
the Lagrangian radii of all mass fractions decrease during the first
couple of τ ff due to the same reason of the decrease of the stellar half-
mass radius, as mentioned in Section 3.1. After the majority of stars
are formed after τ ff, Rlag starts to increase in response to gas removal
and the decrease of the total gravitational potential. The Rlag of
small mass fractions shows a turnover when the central component
recollapses to form the central bound clusters. The evolution of
Rlag for mass fraction the same as the bound fraction determined
by the iterative method is highlighted in the same figure. We find
that the evolution of this Rlag is indeed approximately the outermost
Lagrange radius that shows a turnover. We have performed the same
analysis for all 80 runs and find that the iterative and ‘Lagrangian
radius’ methods give consistent results, confirming the eligibility
of both methods. Because the outermost Lagrangian radius with
turnover is determined somewhat subjectively while the iterative
method always converges to an accurate result, we will only report
the bound fraction that is determined by iterative methods in later
sections.

4.5 Bound fraction as a function of εint

Fig. 8 shows a compilation of bound fractions for all 80 GMCs as
a function of εint. The bound fractions are calculated from the last
output of the N-body runs using the iterative method described in

MNRAS 487, 364–380 (2019)



374 H. Li et al.

Figure 7. Evolution of Lagrangian radius of star clusters formed with
GMCs during gas expulsion for RHO20T run with fboost = 2. The Rlag

of different mass fractions are shown as lines with different colours. Lines
with less transparency are for mass fractions at every 10 per cent. The Rlag

for the mass fraction that corresponds to the bound fraction estimated by
the iterative method described in Section 4.4 is shown as a thick dashed
line.

Figure 8. Bound fraction as a function of integrated SFE for all 80 GMCs.
The colour and marker styles are the same as those used in Fig. 4. The solid
line is the best-fit model with fsat = 0.95 and α∗ = 0.48 using equation (17).
For reference, the relationship between εint and fbound derived from the
semi-analytical model in Adams (2000) is shown by the dotted line. The
sub-grid star cluster formation model used to estimate bound cluster mass
in cosmological hydrodynamical simulations in Li et al. (2018) is shown by
the dot–dashed line.

Section 4.4. We find that there exists a broad range of fbound, from
almost completely bound to almost completely disruptive. There
is an increasing trend of fbound as a function of εint. Interestingly,
several runs with εint < 0.5 show large fbound, deviating from the
simple virial analysis. For some runs with εint ∼ 0.2, they still
form star clusters with large fbound > 0.5. The emergence of bound
clusters in low-SFE clouds is actually in line with the findings
in previous hydrodynamic simulations of GMCs (e.g. Parker et al.
2015; Gavagnin et al. 2017; Farias et al. 2018), although the detailed
relationship between εint and fbound shows subtle differences.

Here, we present a simple one-zone cluster model to explain
the relationship between εint and fbound. Assuming stars in clusters
always follow a Maxwellian velocity distribution

f (v)dv ≡ f (x)dx =
√

2

π
x2 exp (−x2/2)dx, (15)

where x ≡ √
3v/vrms, vrms = √

3kT /m, and m and T are the average
mass and ‘temperature’ of the cluster. Before gas expulsion, a
cluster with mass M∗ and radius r∗ has a virial parameter α∗ =
−2T∗,0/�∗,0, where the kinetic energy of stars T∗,0 = M∗v2

rms/2 and
�∗,0 = −GMGMCM∗/r∗. Instantaneous gas expulsion flattens the
gravitational potential but does not change the kinetic energy of the
stars. Therefore, the potential energy of stars after gas expulsion
drops according to the SFE, �∗,1 = −GM∗M∗/r∗ = εint�∗,0, while
the kinetic energy does not change, T∗,1 = T∗,0 = M∗v2

rms/2. The
escape velocity of the cluster after gas expulsion is

vesc =
√

−2�∗,1

M∗
=

√
2εint

α∗
vrms. (16)

Assuming stars keep their Maxwellian distribution after gas
expulsion, the bound fraction fbound can be estimated as the fraction
of stars that have velocities below vesc:

fbound = fsat

∫ vesc

0
f (v)dv

= fsat

∫ √
3vesc/vrms

0
f (x)dx

=
[

erf

(√
3εint

α∗

)
−

√
12εint

πα∗
exp

(
−3εint

α∗

)]
fsat, (17)

where fsat is the saturation of bound fractions. This saturation is
probably due to some small fraction of substructures that are formed
with low local star formation efficiencies and do not merge into the
central cluster.

We fit the simulated fbound using the above relationship with two
parameters, α∗ and fsat. The best-fit values and their corresponding
1σ confidence intervals are α ∗ = 0.48 ± 0.02 and fsat = 0.94 ± 0.03.
The best-fit α ∗ is consistent with the measured virial parameters at
t50 (see Section 4.2), suggesting that the sub-virial dynamical state
of model clusters is the main driver to prevent clusters from being
dissociated by gas expulsion.

We compare our best-fit relation with the semi-analytical
model developed by Adams (2000), who evaluates the dynamical
response of star clusters to instantaneous gas expulsion based on an
equilibrium cluster model with different stellar and gas density
profiles. The analytical fit to his isotropic velocity distribution
model gives fbound = (2ε̃ − ε̃2)2/3, where ε̃ ≡ (10εint − 1)/9. We
find that this model is roughly consistent with our simulation
result but slightly underestimates fbound for εint < 0.5. Moreover,
we also show the εint–fbound relation used in our previous cosmo-
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Figure 9. Stellar projection plot for RHO20T run with fboost = 2 at four different evolution epochs: 1, 2, 3, and 4τ ff. All plots are in the same 20 × 20 pc box
centred at the centre-of-mass of the most massive subcluster. All subclusters are identified by the SUBFIND algorithm and the ones that are resolved by more
than 200 stellar particles are labelled as red circles, whose radius represents the half-mass radius of the corresponding subclusters.

logical hydrodynamic simulations of a Milky Way-sized galaxy.
In these simulations, a continuous cluster formation prescription
is used to model the formation of individual star clusters from
dense clumps resolved by parsec-scale resolutions (Li et al. 2017).
The adopted εint–fbound relation, fbound = min(2εint, 1), determines
the final bound mass of model clusters and in turn affects the
cluster initial mass function, cluster formation efficiency, and
properties of evolved cluster populations (Li et al. 2018; Li &
Gnedin 2019). The piecewise function used in those cosmological

simulations is in general agreement with the relationship found
here.

Note that the bound fractions obtained above take into account
the total bound stellar mass from not only the central star cluster but
also all other surrounding substructures, which are not necessarily
bound to the central cluster. In the following section, we will identify
individual subclusters in the simulations, estimate the bound mass
of central star clusters, and quantify its relationship to the total
bound mass.
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4.6 Properties of substructures

Previous studies on the bound fraction of star clusters after gas
expulsion usually assume an initial spherical gas and stellar distri-
bution. However, recent observational and theoretical works suggest
a hierarchical star formation scenario due to the turbulent nature of
GMCs (e.g. Elmegreen & Elmegreen 2001; Bonnell, Bate & Vine
2003; Allen et al. 2007; Bate 2009; Gutermuth et al. 2009; Bressert
et al. 2010; Girichidis et al. 2011; Maury et al. 2011). In Fig. 9,
we show the stellar particle distributions in the x–y plane for the
RHO20T run with fboost = 2 at four different epochs. At t = τ ff,
the stellar distribution follows well with the gas distribution and
subclusters are distributed along the filamentary structures. At t =
2τ ff when the majority of the gas mass has already been pushed out
of the central region, we find that some subclusters spiral into the
centre of the GMCs due to gravitational attraction and, at the same
time, merge with each other, and form more massive subclusters.
Some of the most massive subclusters show a non-spherical shape
because of recent mergers. At t = 3–4τ ff, dynamical evolution
after gas expulsion and violent relaxation during mergers erase the
memory of the turbulent configurations of the gas cloud and help
circularize the central star clusters. Some small substructures with
high bulk velocities escape from the central region and never return
to the central cluster.

To fully analyse the behaviour of subclusters and quantify the
central cluster properties, we identify bound substructures in the
N-body simulations by adopting the SUBFIND algorithm (Springel
et al. 2001). The star particles are first linked into friends-of-friends
(FOF) groups with separation less than 0.17 of the mean particle
separation. For each FOF group, the SUBFIND algorithm is applied
to identify all bound subclusters. We report bound substructures
that are resolved by at least 200 stellar particles and assign the
most massive bound subcluster as the central cluster. In most cases,
the central cluster sits very close to the centre of the GMC and is
surrounded by other less massive subclusters.

We find that the number of subclusters in the ‘R’ runs is sys-
tematically larger than that in the corresponding ‘T’ runs, although
the total bound stellar masses are similar. In Fig. 10, we examine
the relationship between the bound fraction, fbound, and the ratio
of the mass of the central cluster to the total stellar mass, fcentral.
In most cases, the central clusters dominate the total bound mass
of the system. We also find that fcentral is systematically higher for
‘T’ runs than for ‘R’ runs. Statistically, more than 50 per cent of the
bound stellar mass is contributed by the central clusters for ‘T’ runs.
This fraction is smaller for ‘R’ runs but it exhibits a large scatter.
As we discussed in the previous sections, GMCs in the ‘R’ runs
first collapse along the z-axis and form a gas disc. Therefore, many
subclusters that are formed in the dense clumps within the disc
obtain a similar bulk rotational velocity and are less likely to merge
with each other than those formed in the ‘T’ runs. The large number
of subclusters in the ‘R’ runs also implies that the stellar mass is
distributed more broadly across different subclusters. Therefore,
the central clusters in the ‘R’ runs are less massive than those in
the corresponding ‘T’ runs. The exact hierarchical structure of the
subclusters in the ‘R’ runs depends strongly on the initial setup of
the turbulent velocity fields, making the prediction of the mass of
central star clusters less promising. This difficulty is reflected in the
very large scatter of fcentral for clouds with fbound > 0.8.

It should be noted that recent observations of cluster formation
efficiency, defined as the fraction of stars formed in bound clusters,
identify centrally concentrated clusters of spherical shape as bound
clusters (e.g. Adamo et al. 2015). This cluster selection method

Figure 10. Mass fraction of central cluster, fcentral, as a function of bound
fraction, fbound, for all 80 simulated GMCs. fcentral is defined as the ratio of
the mass of the most massive subcluster to the total stellar mass in the GMC.
The colour and marker styles are the same as those used in Fig. 8. The solid
and dashed lines show the 1:1 and 2:1 ratio between fbound and fcentral.

suggests that only the central clusters (and maybe other most
massive subclusters) formed in GMCs are identified as bound
star clusters when estimating cluster formation efficiencies from
given galaxy patches. When interpreting the relevant observational
correlations, such as the positive correlation between the SFR
surface density and the cluster formation efficiency, through physics
models (Kruijssen et al. 2012b; Li et al. 2018; Li & Gnedin 2019),
the effect of substructures that are not bound to the central star
clusters needs to be considered and taken with caution.

5 SU M M A RY

We have performed a suite of three-dimensional hydrodynamic
simulations of turbulent GMCs using the moving-mesh code AREPO

with self-gravity, explicit cooling, star formation, and momentum
stellar feedback. We survey a large range of GMC masses and
radii, and investigate the physical origin of the large variation of
intrinsic SFE, εint. After the gas clouds are fully disrupted by stellar
feedback, we follow the subsequent dynamical evolution of star
clusters formed within the GMCs with N-body simulations. Below,
we summarize our key conclusions.

(i) All simulated GMCs follow an initial linear increasing SFR
before stellar momentum feedback disperses the whole cloud. The
accelerating star formation activity leads to a superlinear stellar
mass growth with time, M∗ ∝ t2. This superlinearity is consistent
with previous theoretical expectations of the gravitational runaway
collapse of turbulent clouds.

(ii) Momentum feedback from stellar particles adds kinetic
energy to their ambient gas cells, inflates the virial parameters and
radius of the clouds, drives outflows through low-density regions,
and finally creates a large cavity at the centre of the clouds. The
peak epoch and final efficiencies of star formation decrease with
increasing strength of momentum feedback.
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(iii) εint does not depend on the initial mass or radii of the clouds,
but depends strongly on initial cloud surface density. This depen-
dence is successfully explained by an analytical model that consid-
ers force balancing between gravitational collapse and momentum
output from stellar particles. The model predicts εint ≈ 1 − �crit/�0

for clouds with high surface density while εint ∝ �0/fboostṗw for
clouds with low surface density.

(iv) The duration of star formation in simulated GMCs is close
to the initial free-fall time of the clouds, suggesting that the cluster
formation time-scale is mainly determined by gravitational runaway
collapse. The duration decreases with increasing feedback intensity,
although the dependence is weak: τdur ∝ f

−1/4
boost .

(v) The model star clusters are assembled hierarchically. Sub-
clusters are formed at the many density peaks across the GMCs
controlled by the initial turbulence configuration. The subclusters
move along the filamentary structures and merge with each other
frequently. About 50 per cent of the mass of subclusters is merged
to form the most massive central clusters, but there are always a
small fraction of subclusters that are unbound to the system and fly
apart from the central clusters.

(vi) The gas density distribution rearranges from an initial
uniform-density sphere to an isothermal profile with a power-law
slope γ ∼ 2. At the peak of star formation, the stellar density profiles
are systematically steeper than that of the gas with a power-law slope
γ ∼ 2.8. The steeper stellar profiles suggest a fast conversion of gas
to stars and gas expulsion by stellar feedback at the centre of GMCs.

(vii) The model star clusters are always in a sub-virial state with
a gradually increasing virial parameter as star formation continues.
Interestingly, right before gas expulsion, the virial parameters of all
simulated star clusters show a consistent value around αvir,∗ ≈ 0.6.

(viii) Due to the steep density profiles and sub-virial dynamical
state of model clusters, clouds with low εint (0.2–0.4) are still able
to form clusters with relatively high bound fractions (0.3–0.8). The
bound fraction of model clusters, fbound, is a continuously increasing
function of the integrated SFE, εint. This relation is explained by
a physical model that takes into account the mass fraction of stars
with velocities below the escape velocity of a sub-virial system that
obeys Maxwellian velocity distribution. The best-fit virial parameter
of this model is around 0.5, consistent with the values obtained
directly from the simulations.
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Lee E. J., Miville-Deschênes M.-A., Murray N. W., 2016, ApJ, 833, 229
Leroy A. K. et al., 2013, AJ, 146, 19
Li G.-X., 2018, MNRAS, 477, 4951
Li H., Gnedin O. Y., 2019, MNRAS, 486, 4030
Li H., Gnedin O. Y., Gnedin N. Y., Meng X., Semenov V. A., Kravtsov A.

V., 2017, ApJ, 834, 69
Li H., Gnedin O. Y., Gnedin N. Y., 2018, ApJ, 861, 107
Mathieu R. D., 1983, ApJ, 267, L97
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APPENDI X A: TESTS OF WI ND-BLOWI NG
BUBBLES

We test the momentum deposition algorithm used in this paper by
performing idealized simulations of wind-blowing bubbles. In this
test, a stellar particle is located at the centre of a uniform density
box with size 20 pc and total gas mass 320 M�. The gas mass is
initially resolved by 1283 gas cells. The central star deposits its
wind material with a constant mass-loss rate ṁw = 10−5 M� yr−1

at a fixed velocity vw = 500 km s−1. No self-gravity or cooling is
used in this test in order to compare to analytical solutions of the
evolution and internal structure of the wind-blowing bubble derived
by Weaver et al. (1977).

The bubble first experiences free expansion with constant wind
velocity until the mass of the swept-up material, 4

3π(vwt)3ρ0, is
comparable to the mass of the wind ejecta, ṁwt . The initial free
expansion phase only lasts for several hundred years and is followed
by an adiabatic expansion phase. The time evolution of the bubble
is Rbubble ≈ 0.88(ṁvv

2
w/2ρ0)1/5 (see equation 5 in Weaver et al.

1977). Fig. A1 shows the time evolution of the wind-blowing bubble
from the numerical test. The edge of the bubble is identified as
the densest gas shell surrounding the stellar particles. The radius
of the bubble is calculated as the mass-weighted shell radius. In

Figure A1. Time evolution of the radius of wind-blowing bubble from the
test simulation (red dots). The analytical solution derived from Weaver et al.
(1977) is overplotted as a blue solid line for comparison.
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Figure A2. Velocity (black), density (red), and pressure (blue) profiles
within the wind-blowing bubble. All physical quantities, v, ρ, P, are
normalized to the values at the shock front for convenience. The x-axis
is normalized to the outer shock radius R2. The simulation result is shown
as dotted lines, while the analytical expression from Weaver et al. (1977) is
shown in solid lines for comparison.

addition to the time evolution of the gas shell, we also examine
the internal structure of the bubble. Fig. A2 shows the density,
velocity, and pressure profiles of the shocked interstellar gas at t =
0.2 Myr. All profiles are normalized to the values at the outer shock
of radius R2. The analytical solution of the self-similar adiabatic
flow within the shocked medium is obtained by numerically solving
equations (6)–(8) in Weaver et al. (1977). We confirm that the
momentum deposition algorithm used in our simulations reproduces
the analytical time evolution and internal structure of the wind-
blowing bubble with high precision.

A P P E N D I X B : C O N V E R G E N C E TO
M O M E N T U M D E P O S I T I O N M E T H O D S

In Section 2.3, we describe various algorithms for wind deposition to
the ambient medium. Here, we test how different algorithms affect
the star formation activities of the GMCs. The test runs use an
identical simulation setup as the main GMC simulations described
in Section 2, except wind feedback. We use three different weights
to deposit momentum flux to neighbouring cells: volume, mass, and
solid angle from star particles. We also test an alternative algorithm
that injects stellar winds in the form of pure thermal energy, rather
than momentum.

In the upper panel of Fig. B1, we show the star formation histories
of the GMCs using different wind deposition algorithms from the
same initial condition RHO20T with fboost = 2. We find that wind
feedback in pure energy form is not able to disrupt the cloud
and the star formation history is almost the same as that of the
run without wind feedback. The failure of this energy deposition
algorithm seems inconsistent with the result found in Rogers &
Pittard (2013), who used thermal energy injection to simulate wind
feedback and obtained significant gas outflows from the central

Figure B1. (Upper panel) SFH of GMCs with different wind feedback
mechanisms: without feedback (blue); energy feedback (purple); and mo-
mentum feedback with weights of solid angle (orange), cell volume (green),
and cell mass (red). (Lower panel) The SFH of GMCs with different mass
resolutions (lower). The blue, orange, and green lines show the simulations
with the number of resolution elements 643, 1283, and 2563, respectively.

turbulent cloud. Note that, in their simulations, self-gravity is not
included and the turbulent cloud never collapses to higher density.
The maximum number density reached in their simulations is about
∼104 cm−3. In contrast, our simulations track gravitational runaway
collapse of dense clumps until they are converted to stars. In fact, our
simulations always form much higher density clumps, >1010 cm−3.
The thermal energies deposited into these dense environments
suffer significant radiative cooling and therefore make the energy
deposition inefficient. To capture the correct thermal dynamics
of the adiabatic phase of the wind-blowing bubbles, the cooling
radius needs to be resolved: Rcool ∝ n−3/7l2/7

w (Cioffi, McKee &
Bertschinger 1988; Thornton et al. 1998). Since the highest density
in our simulations is about six orders of magnitudes higher than
that in Rogers & Pittard (2013), our simulations require about
three orders of magnitude finer spatial resolution than in Rogers &
Pittard (2013) to resolve the wind energy feedback, which is
computationally prohibitive. We conclude that under the current
simulation setup, wind feedback through thermal energy deposition
is not appropriate. Alternatively, wind feedback through momentum
deposition can efficiently shut off star formation activities within 2τ

ff. We find that using volume- or solid-angle-weighted schemes for
momentum deposition leads to faster cloud disruption than using
a mass-weighted scheme. The reason is that the majority of the
momentum is deposited to the densest clumps in a mass-weighted
scheme and is therefore not able to channel gas out through low-
density regions (see also Smith, Sijacki & Shen 2018). In reality,
wind momentum should be deposited isotropically around star
particles. It is more physically plausible to use volume and solid
angle as weights.
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A P P E N D I X C : C O N V E R G E N C E TO
N U M E R I C A L R E S O L U T I O N S

Hydrodynamic simulations discretize continuous space into a finite
number of resolution elements. The choice of optimal numerical
resolution is to achieve a balance between scientific accuracy and
computational costs. To study the convergence of the simulation
outcomes to numerical resolutions, we perform GMC simulations
of RHO20T runs with fboost = 2 with different numbers of initial gas
elements, 643, 1283, and 2563, corresponding to target cell masses
around 0.191, 2.38 × 10−2, and 2.98 × 10−3 M�. The test runs are
performed following the same physics as the production runs in the
main text (see Section 2).

We find that the integral star formation efficiencies for the 643,
1283, and 2563 runs are εint = 0.612, 0.610, and 0.615, respectively.
This consistency suggests that εint is not sensitive to mass resolutions
but is solely controlled by the force balance between gravitational

collapse and gas expulsion by momentum stellar feedback. As
shown in the lower panel of Fig. B1, the star formation histories of
the three runs are also in general agreement with each other. The star
formation first rises dramatically and peaks at around the free-fall
time of the cloud. The only noticeable difference comes from the
643 run. This run shows a narrower star formation history than the
other two runs, suggesting delayed star formation at the beginning
and an earlier gas removal process after a majority of the stellar mass
is formed. The 1283 and 2563 runs present a more consistent star
formation history across the course of GMC evolution. Therefore,
for all production runs present in the main text, we choose 1283 as
the default number of resolution elements.
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