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Effects of anisotropy on the transition to absolute instability in a

porous medium heated from below
M. Celli1, a) and A. Barletta1

1Alma Mater Studiorum Università di Bologna, Department of Industrial Engineering, Viale Risorgimento 2,

40136 Bologna, Italy

(Dated: 28 January 2022)

The emerging instability of a forced throughflow in a fluid saturated horizontal porous duct of rectangular

cross section is investigated. The duct is heated from below by assuming the horizontal boundaries to be at

different temperatures. Both the horizontal and the vertical boundaries are impermeable and the basic flow

is parallel to such boundaries. The porous medium is anisotropic with different permeabilities in the vertical

and horizontal directions. The effect of the anisotropy on the onset of the buoyancy driven modal instability

and absolute instability is analysed. The parametric conditions leading to the instability of the basic flow are

determined by employing an analytical dispersion relation. The different permeabilities in the vertical and

horizontal directions come out to play opposite roles in the onset of modal instability and in the transition to

absolute instability. It is shown that an increasing vertical permeability has a destabilising effect, while an

increasing horizontal permeability has a stabilising effect.

I. INTRODUCTION

The onset of convection in a horizontal porous layer

heated from below has widespread applications either in

engineering and geophysics. Such applications regard,

for instance, the dynamics of groundwater reservoirs, the

diffusion of pollutants in the soil, the CO2 sequestra-

tion and the thermal insulation of buildings. In several

cases, the porous media involved in these applications

are anisotropic.

The study reported in this paper contributes further

novel findings to the present knowledge on the buoyancy

driven instability in fluid saturated horizontal porous lay-

ers heated from below1. This is also well–known as

the Darcy–Bénard problem, or as the Horton–Rogers–

Lapwood (HRL) problem. In fact, the first investigations

on this topic were carried out by Horton and Rogers2, and

by Lapwood3. These authors considered a porous layer

infinitely wide in the horizontal directions and bounded

in the vertical direction by two impermeable boundaries

held at different temperatures, such that an upward ver-

tical temperature gradient is imposed. By assuming a

layer saturated with a motionless fluid, the threshold con-

ditions for the onset of modal instability were evaluated

finding that convective cells may arise when the Darcy–

Rayleigh number becomes greater than 4π2. When

Prats4 further developed the HRL problem by includ-

ing a basic horizontal throughflow, he found out that the

threshold for the onset of modal instability was not af-

fected by the mass flow rate.

a)corresponding author: michele.celli3@unibo.it

Barletta5 presents a survey of the recent research stud-

ies regarding both the modal instability and the transition

to the absolute instability for the Prats problem. While

the modal instability analysis is focussed on investigat-

ing the evolution in time of single Fourier modes perturb-

ing the whole basic state, the absolute instability analysis

deals with the evolution of perturbation wavepackets ex-

pressed by a Fourier integral over all possible wavenum-

bers. The latter type of instability is the one that is typ-

ically observed in the laboratory reference frame when

a localised disturbance spreads in space and travels in

the direction of the basic flow. For this reference frame,

amplified perturbations can be detected only when they

are not convected downstream by the basic throughflow.

By illustrating the transition to absolute instability for

the Prats problem, Barletta 5 points out that the threshold

value of the governing parameter, i.e. the Rayleigh num-

ber, is a monotonically increasing function of the basic

flow rate, parametrised through the Péclet number. By

increasing the flow rate, or the Péclet number, the unsta-

bly growing perturbation is more likely to be convected

downstream, so that the basic flow becomes more stable.

An interesting reformulation of the HRL problem ac-

counting for the anisotropy of the porous medium has

been performed in several papers6–13. These authors car-

ried out the modal stability analysis assuming the ther-

mophysical properties of the porous media to have con-

stant although different values along the three Carte-

sian directions. The anisotropy effect on the convec-

tion in porous media has been investigated also by Rees,

Storesletten, and Bassom 14 , Ennis-King, Preston, and

Paterson 15 , Nield and Kuznetsov 16 , De Paoli, Zonta,

and Soldati 17 .

The analysis presented in this paper is focussed on the



investigation of both modal and absolute instabilities for

the Prats problem where an anisotropic porous duct, with

a rectangular cross section, is considered. In particular,

the porous medium is characterised by two different uni-

form values of permeability: a value for the permeability

in the horizontal directions and a value for the perme-

ability in the vertical direction. This work fills a gap in

the literature since, to the best of authors’ knowledge,

the absolute instability analysis for the anisotropic Prats’

problem in a rectangular duct has not been investigated

to date.

II. MATHEMATICAL MODEL

A fluid saturated horizontal porous duct of rectangular

cross section with height H and width W is considered.

This duct is assumed to be unbounded in the x direction,

while it is bounded by impermeable walls in the y and

z directions. The duct is heated from below with the

horizontal boundaries having different temperatures: the

boundary at z = 0 is held at temperature T0 +∆T , with

∆T > 0, while the boundary at z = H is held at tempera-

ture T0, see Fig. 1.

The momentum transport is formulated by employing

Darcy’s law together with the Oberbeck-Boussinesq ap-

proximation. The energy transport is modelled by as-

suming a negligible viscous dissipation and local ther-

mal equilibrium between the fluid and solid phases. A

scaling is used for the non–dimensional formulation,

x

H
→ x,

χ

H2
t → t,

H

χ
u → u,

Kz

χ µ
p → p,

T −T0

∆T
→ T. (1)

Thus, the governing balance equations, in dimensionless

form, are given by

∇ ·u = 0,

u =−a
∂ p

∂x
,

v =−a
∂ p

∂y
,

aw =−a
∂ p

∂ z
+RT,

σ
∂T

∂ t
+u ·∇T = ∇2T, (2)

with the boundary conditions

y = 0,s : v = 0,
∂T

∂y
= 0,

z = 0 : w = 0, T = 1,

z = 1 : w = 0, T = 0. (3)

In Eqs. (1)–(3), p denotes the local difference between

the pressure and the hydrostatic pressure (hereafter, p

is just called pressure for the sake of brevity), (x,y,z)
are the Cartesian components of the position vector x,

(u,v,w) are the Cartesian components of the seepage

velocity vector u, t is the time, T is the temperature,

s =W/H is the aspect ratio of the duct and σ is the heat

capacity ratio, namely the ratio between the heat capacity

per unit volume of the saturated porous medium and the

heat capacity per unit volume of the fluid1. Furthermore,

the Darcy–Rayleigh number R is defined as

R =
ρ gβ Kh H ∆T

µ χ
, (4)

where ρ is the fluid density at the reference temperature

T0, g is the modulus of the gravitational acceleration g,

β is the thermal expansion coefficient of the fluid, µ is

the dynamic viscosity of the fluid and χ is the average

thermal diffusivity of the fluid saturated porous medium.

We defined R using the horizontal permeability Kh in-

stead of the vertical, Kz, because the definition (4) simpli-

fies the interpretation of the results obtained by the forth-

coming absolute instability analysis. We mention that

Storesletten 9 defines the Darcy–Rayleigh number differ-

ently by employing Kz instead of Kh.

The quantity χ is defined as the ratio between the av-

erage thermal conductivity of the fluid saturated porous

medium and the volumetric heat capacity of the fluid,

i.e., the product ρ c, where c is the specific heat of the

fluid. Following the reasoning presented by Beckermann

and Viskanta 18 and by Vafai and Kim 19 , the thermal dis-

persion effects have been implicitly taken into account in

the average thermal diffusivity χ .

The parameter a is the ratio between the permeability

of the porous medium in the horizontal directions, Kh,

and the permeability in the vertical direction, Kz, namely

a =
Kh

Kz

. (5)

Since Darcy’s law is employed to model the momen-

tum transport, the values of Kh and Kz have to be small

enough. This constraint implies that the limiting case

a → 0 has to be obtained by assuming Kh ≪ Kz with Kz

yet sufficiently small in compliance with Darcy’s law.

2



FIG. 1. Sketch of the porous duct geometry and boundary conditions.

III. BASIC STATE

A steady state solution of Eqs. (2) and (3) is given by

a uniform velocity profile, with value Pe, in the x direc-

tion and a uniform negative temperature gradient in the z

direction, namely

ub = Pe, vb = wb = 0, Tb = 1− z,

∂ pb

∂x
=−Pe

a
,

∂ pb

∂y
= 0,

∂ pb

∂ z
=

R

a
(1− z), (6)

where the subscript “b” indicates that Eq. (6) defines the

basic state. The basic state (6) yields a pure conduction

regime with the heat flux parallel to the z direction. In

Eq. (6), Pe is the Péclet number defined as

Pe =
u0 H

χ
, (7)

and u0 is the dimensional basic velocity (see Fig. 1).

IV. LINEAR STABILITY ANALYSIS

Equations (2) and (3) may be conveniently rewrit-

ten according to a pressure–temperature formulation,

namely

a
∂ 2 p

∂x2
+a

∂ 2 p

∂y2
+

∂ 2 p

∂ z2
− R

a

∂T

∂ z
= 0,

σ
∂T

∂ t
−a

∂ p

∂x

∂T

∂x
−a

∂ p

∂y

∂T

∂y

+

(

R

a
T − ∂ p

∂ z

)

∂T

∂ z
= ∇2T,

y = 0,s :
∂ p

∂y
= 0,

∂T

∂y
= 0,

z = 0 :
∂ p

∂ z
=

R

a
, T = 1,

z = 1 :
∂ p

∂ z
= 0, T = 0, (8)

where the impermeability condition in Eq. (3) have been

reformulated in terms of the pressure by employing the

modified Darcy’s law, Eq. (2). The stability of the ba-

sic state (6) is analysed by employing small–amplitude

perturbations, i.e.,

p(x,y,z, t) = pb(x,z)+ ε P(x,y,z, t),

T (x,y,z, t) = Tb(z)+ ε Θ(x,y,z, t), (9)

where ε ≪ 1 is a positive perturbation parameter. The

linearisation of the governing equations is carried out

by substituting Eq. (9) into Eq. (8) and by neglecting

terms O(ε2). We thus obtain the governing equations

3



and boundary conditions for the disturbances, namely

a
∂ 2P

∂x2
+a

∂ 2P

∂y2
+

∂ 2P

∂ z2
− R

a

∂Θ

∂ z
= 0,

σ
∂Θ

∂ t
+Pe

∂Θ

∂x
− R

a
Θ+

∂P

∂ z

=
∂ 2Θ

∂x2
+

∂ 2Θ

∂y2
+

∂ 2Θ

∂ z2
,

y = 0,s :
∂P

∂y
= 0,

∂Θ

∂y
= 0,

z = 0,1 :
∂P

∂ z
= 0, Θ = 0. (10)

Let us now employ the Fourier transforms

P̃(k,y,z, t) =
1√
2π

∫ ∞

−∞
P(x,y,z, t)e−i kx dx,

Θ̃(k,y,z, t) =
1√
2π

∫ ∞

−∞
Θ(x,y,z, t)e−i kx dx, (11)

in Eq. (10). Then, we obtain a problem where the depen-

dence on the x coordinate is superseded by a parametric

dependence on the wavenumber k, namely

a
∂ 2P̃

∂y2
+

∂ 2P̃

∂ z2
−ak2 P̃− R

a

∂ Θ̃

∂ z
= 0,

σ
∂ Θ̃

∂ t
+

(

k2 − R

a
+ i k Pe

)

Θ̃+
∂ P̃

∂ z

=
∂ 2Θ̃

∂y2
+

∂ 2Θ̃

∂ z2
,

y = 0,s :
∂ P̃

∂y
= 0,

∂ Θ̃

∂y
= 0,

z = 0,1 :
∂ P̃

∂ z
= 0, Θ̃ = 0. (12)

The inverse Fourier transforms are reported here for con-

venience,

P(x,y,z, t) =
1√
2π

∫ ∞

−∞
P̃(k,y,z, t)ei kx dk,

Θ(x,y,z, t) =
1√
2π

∫ ∞

−∞
Θ̃(k,y,z, t)ei kx dk. (13)

Double Fourier series are employed to formulate the de-

pendence on both y and z for (P̃, Θ̃), namely

P̃ =
∞

∑
n=0

∞

∑
m=1

Acos
(nπy

s

)

cos(mπz) eλ t ,

Θ̃ =
∞

∑
n=0

∞

∑
m=1

Bcos
(nπy

s

)

sin(mπz) eλ t , (14)

where λ is a complex parameter: the real part of λ
is the growth rate of the given Fourier mode while the

imaginary part of λ coincides with −ω , where ω is

the angular frequency of the given Fourier mode. With

Eq. (14), (P̃,Θ̃) identically satisfy the boundary condi-

tions reported in Eq. (12). By substituting Eq. (14) into

Eq. (12), we obtain two algebraic equations which lead

us to an explicit dispersion relation,

σ λ =
R
(

k2 + r2
)

a(k2 + r2)+π2m2

−(k2 + r2 +π2m2 + ikPe), (15)

where r = nπ/s is a real non–negative parameter.

V. MODAL INSTABILITY

The determination of the threshold value of R for the

onset of modal, or convective, instability is accomplished

through the study the long time behaviour of each single

Fourier mode. This is the reason for the term “modal

instability”. Thus, the condition of zero growth rate is

imposed, i.e. λ = −iω . One may define a rescaled an-

gular frequency ξ = ω − k Pe/σ , where ξ is the angular

frequency in the reference frame comoving with the ba-

sic flow, so that Eq. (15) yields

R =

(

k2 + r2 +π2m2 − iξ
)[

a
(

k2 + r2
)

+π2m2
]

k2 + r2
. (16)

Since R is real, also the right hand side of Eq. (16) must

be real. Then, we conclude that ξ = 0: the angular

frequency in the comoving reference frame of the basic

flow is zero and, for this reference frame, the principle

of exchange of stabilities holds. Moreover, the Darcy–

Rayleigh number simplifies to

R =

(

k2 + r2 +π2m2
)[

a
(

k2 + r2
)

+π2m2
]

k2 + r2
. (17)

It is worth noting that Eq. (17) agrees with the neu-

tral stability condition reported in the literature9, when

the Darcy–Rayleigh number is defined by employing the

vertical permeability Kz instead of the horizontal perme-

ability Kh. We mention that Storesletten 9 discusses the

stability analysis of the motionless basic state (Pe = 0).
We emphasise that, exactly as for the Prats’ problem in

an isotropic medium4, the threshold value for the onset

of the modal instability is not affected by the presence of

a basic throughflow. This conclusion is easily gathered

from Eq. (17).

The neutrally stable Darcy–Rayleigh number R in

Eq. (17) is a monotonic increasing function of m. There-

fore, for the evaluation of the critical value of R, we can

4
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FIG. 2. Threshold value for the onset of modal instability Rc

versus a as coincident with the threshold value for the onset of

absolute instability Ra for the limiting case Pe → 0.

set m at its lowest, namely m = 1. Then, the minimum of

the function R(ζ ), where ζ =
√

k2 + r2, yields the critical

values of R and ζ for the onset of the modal instability,

Rc = π2
(√

a+1
)2
, ζc =

π

a1/4
. (18)

The critical values reported in Eq. (18) coincide with

those obtained by Castinel and Combarnous 6 and re-

ported by Nield and Bejan 1 by considering a vanishing

throughflow. For the limiting case of an isotropic porous

medium, a = 1, Eq. (18) yields the critical values ob-

tained by Prats4, Rc = 4π2 and ζc = π . The critical val-

ues of R as a function of the parameter a are reported in

Fig. 2.

Figure 3 shows the streamlines and isotherms of the

perturbation normal modes at critical conditions for a =
2, m = 1 and r = 0. These contour plots reveal that the

cells are symmetric with respect to the midplane z= 1/2.

Compared with the isotropic Darcy–Bénard problem, the

shape of the cells is rectangular instead of square. This

feature is a consequence of kc being equal to π/a1/4.

We note that, for sufficiently large values of r, the

minimum value of the neutrally stable R does not co-

incide with Rc given by Eq. (18). The reason is that,

with r > π/a1/4, the condition k2 + r2 = ζ 2
c cannot be

achieved with a real k.

FIG. 3. Streamlines and isotherms for the critical modes with

a = 2, m = 1 and r = 0.

VI. ABSOLUTE INSTABILITY

The investigation of the threshold values for the on-

set of absolute instability aims to study the evolution in

time of a wavepacket of Fourier modes, as defined by

the inverse Fourier transforms in Eq. (13). This evalu-

ation is carried out by employing the steepest–descent

approximation5. By using this approximation, the long

time behaviour of the integrals in Eq. (13) is determined

by the sign of the real part of λ , Eq. (15). More pre-

cisely, the condition ℜ{λ (k0)}= 0, where k0 is a saddle

point, i.e., a complex zero of equation ∂λ/∂k = 0, iden-

tifies the threshold for the onset of absolute instability.

For details on this technique, we refer the reader to the

book by Barletta 5 . The necessary condition to obtain

the correct saddle point for the evaluation of the thresh-

old to absolute instability is the so–called holomorphy

requirement. The real k axis can be continuously de-

formed in the complex k plane to obtain an integration

path which crosses the saddle point through a direction of

steepest descent. Thus, the region of the complex k plane

confined between the deformed integration path and the

real k axis cannot include a singularity of λ (k)5. Equa-

5



tion (15) yields

σ λ =
R
(

k2 + r2
)

a(k2 + r2)+π2m2

−(k2 + r2 +π2m2 + ikPe),

σ
∂λ

∂k
=

2k m2π2R

[a(k2 + r2)+m2π2]2
−2k− iPe. (19)

The function λ (k) has the singularities

k =±i

√

m2π2 +ar2

a
. (20)

A. The limiting case Pe → 0

For the limiting case of motionless basic state, Pe→ 0,

no unstable Fourier mode can be convected away by the

basic flow as the flow rate is zero. The possibility that

the basic flow drives away a perturbation growing in

time, so that its growth cannot be actually observed by

a local measurement of the flow properties, is the phys-

ical basis of the distinction between modal and absolute

instability20. As a consequence, if Pe → 0, we expect

that the threshold value of the Darcy–Rayleigh number

for the onset of absolute instability, Ra, coincides with

the critical value, Rc. Therefore, among all the possible

saddle points k0 with ℜ{λ (k0)} = 0, we look for that

matching the critical values displayed in Eq. (18). By

setting m = 1 and r = 0, we expect to find a purely real

value of k0 equal to π/a1/4. For the case of Pe → 0, the

condition ∂λ/∂k = 0 yields the following saddle points:

k1 = 0, k2 =±i

√

π2 +π
√

R

a
,

k3 =±i

√

π2 −π
√

R

a
. (21)

Because of the singularities reported in Eq. (20), we can

exclude the saddle points k2. We can exclude also k1

since it does not match the critical values reported in

Eq. (18). By substituting k3 into the relation λ (k) = 0,

we obtain

Ra = π2
(√

a+1
)2
, (22)

that is what we obtained for the modal stability analy-

sis, as displayed in Eq. (18). By substituting Eq. (22) in

Eq. (21) we also obtain k3 = π/a1/4, as expected.

For values of the vertical permeability much higher

than the values of the horizontal permeability, Kz ≫ Kh,

i.e. for a ≪ 1, Eq. (22) yields Ra → π2. On the other

-2 -1 0 1 2

0

1

2

3

4

5

kr

k
i

FIG. 4. Holomorphy requirement check in the complex k plane

for a = 0.5, m = 1, r = 0 and Pe = 10, at the absolute instability

threshold R = Ra = 29.2327. The blue dot denotes the saddle

point, while the red dot denotes the singularity of λ (k). The

blue lines identify the ℜ{λ} = 0 condition, while the black

(green) lines are drawn for different positive (negative) values

of ℜ{λ}.

hand, for a ≫ 1 and thus for values of horizontal per-

meability higher than the values of vertical permeability,

Kh ≫ Kz, Eq. (22) yields Ra → ∞. We can interpret the

condition a< 1 as one where the vertical flow is favoured

so that the buoyancy driven cellular flow onset may hap-

pen with smaller values of R. The opposite behaviour is

detected when a > 1 resulting in a stabilisation of the ba-

sic state. In Fig. 2, the threshold value of R for the onset

of absolute instability is plotted versus a, for the limiting

case Pe → 0. As already mentioned, this threshold value,

Ra, coincides with the critical value, Rc, in this case.

B. Non vanishing flow rate

When the Péclet number is nonzero and a flow rate is

present inside the duct, looking for an analytical solution

is not a convenient option. The threshold value of the

Darcy–Rayleigh number, Ra, is thus obtained by solving

numerically the system of algebraic equations

ℜ{λ}= 0, ℜ

{

∂λ

∂k

}

= 0, ℑ

{

∂λ

∂k

}

= 0. (23)

6
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FIG. 5. Holomorphy requirement check in the complex k plane

for m = 1, r = 0, Pe = 10 and a = 100, with R = Ra = 1545.47.

The blue dots denote the saddle points, while the red dots

denote the singularities of λ (k). The blue lines identify the

ℜ{λ} = 0 condition, while the black (green) lines are iso-

lines of ℜ{λ} drawn for different positive (negative) values

of ℜ{λ}. The steepest descent paths are identified with purple

dotted lines.

For each fixed value of the parameter set (a,m,Pe,r),
there are typically multiple solutions of system (23). We

look for the lowest value of Ra constrained by the con-

dition Ra > Rc (absolute instability can arise only if at

least one Fourier mode becomes unstable). We also ex-

clude those solutions that require a deformation of the

integration path that encloses the singularities reported

in Eq. (20). This occurs when the saddle point is purely

imaginary, kr = 0, and the absolute value of the imag-

inary part, ki, is greater than the absolute value of k

evaluated by employing Eq. (20). In these conditions,

the singularity is included inside the deformed integra-

tion path and, hence, such a solution has to be rejected.

Furthermore, some solutions have to be excluded when

the steepest–descent path crosses one of the singulari-

ties (20). Such a behaviour is illustrated in Fig. 4 for

a = 0.5, m = 1, r = 0, Pe = 10 at the absolute insta-

bility threshold R = Ra = 29.2327. This figure displays

the singularity with a red dot and the saddle point with a

blue dot. The saddle point is located at the intersection

of the two blue lines which identify the locus ℜ{λ}= 0.

The green solid lines are isolines of ℜ{λ} with negative

values, while the black solid lines are isolines of ℜ{λ}
with positive values. Thus, the paths of steepest descent

departing from the saddle point coincide with the axis

kr = 0, so that the upward steepest-descent path crosses

the singularity. Such a situation means that the holomor-

phy requirement is not satisfied.

We present another check of the holomorphy require-

ment in Fig. 5. It is a case characterised by m = 1,

r = 0, Pe = 10 and by a = 100. The value of R is the

threshold to absolute instability, which is Ra = 1545.47.

Figure 5 displays the singularities of λ (k) as red dots

(k =± iπ/
√

a =± iπ/10) and the saddle points as blue

dots. The blue, green and black lines have the same

meaning as in Fig. 4. The steepest descent paths are de-

noted as purple dotted lines. Both frames of Fig. 5 report

cases where no singularity is to be encircled within the

deformed integration paths locally coincident with the

steepest–descent paths. Thus, the holomorphy check is

to be considered as satisfied.

Figure 6 displays Ra versus Pe for different values of

m, r and a. The solid lines denote the modes with m = 1,

while the dotted lines are relative to m = 2. Solid and

dotted lines are drawn for different values of the param-

eter r, namely r = 0,2,5,10. Each frame is relative to

a different a: a → 0, a = 1, a = 2 and a = 4. In the

frame relative to the limit a → 0, Ra is independent of Pe

and r. Moreover, as a consequence of Eq. (17), Ra co-

incides with m2π2. In general, we can conclude that Ra

is a monotonically increasing function of both m and r.

Thus, the transition to absolute instability happens with

the lowest possible values of m and r, that is m = 1 and

r = 0.

The most unstable branches of Ra versus Pe (with

m = 1 and r = 0) are plotted in Fig. 7, for different values

of the parameter a. For the asymptotic case a → 0, Fig. 7

shows that Ra is equal to π2 for every Pe. The dotted

line refers to the isotropic case, a = 1, and it matches

the results obtained by Barletta 5 . We point out that

Ra increases with a, for every Pe. This means that the

anisotropic permeability of the porous medium implies

a destabilisation when a < 1 and a stabilisation when

a > 1. In fact, the destabilising effect of the anisotropy

emerges when the permeability in the vertical direction

is larger than in the horizontal direction, so that the ver-

tical buoyant flow is favoured. On the other hand, for

every fixed a, the threshold Ra is a monotonic increas-

ing function of Pe, exactly as it happens for an isotropic

medium5. Furthermore, one may note that the depen-

dence on Pe becomes weaker and weaker as a decreases.

As already pointed out, in the limit a → 0, Ra becomes

independent of Pe.
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FIG. 6. Threshold values Ra versus Pe for the transition to absolute instability with different values of m, r and a. The solid lines

are relative to m = 1, while the dotted lines refer to the case m = 2. In each frame, the values of r are 0,2,5,10. The four frames

correspond to a → 0, a = 1, a = 2 and a = 4.

VII. CONCLUSIONS

The linear instability of the fluid flow in a saturated

horizontal porous duct heated from below has been in-

vestigated. Both the onset of the modal instability and

its transition to the absolute instability have been stud-

ied. The duct has a rectangular cross–section. A basic

horizontal throughflow occurs with a dimensionless ve-

locity equal to the Péclet number, Pe. The porous duct

considered in the analysis is anisotropic: two different

values of permeability, one for the horizontal directions

and one for the vertical direction, are assumed. The ef-

fect of the anisotropy on the onset of absolute instabil-

ity has been assessed. The governing parameter that de-

fines the threshold value for the onset of convection is

the Darcy–Rayleigh number, R. An exhaustive analysis

of the threshold conditions for the onset of modal and
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The lines are drawn for the most unstable set of the parameters

(m,r) = (1,0). The dotted line refer to the isotropic case a = 1.

absolute instability has been carried out leading to the

following conclusions:

• As for the Prats problem, the threshold for the on-

set of modal instability is not affected by the pres-

ence of a horizontal throughflow: the critical val-

ues for the onset of modal instability match those

reported in the literature for the Horton–Rogers–

Lapwood problem within an anisotropic porous

medium.

• The principle of exchange of stabilities holds

for the reference frame comoving with the basic

throughflow.

• The threshold value of the Darcy–Rayleigh num-

ber for the transition to absolute instability is a

monotonic increasing function of the Péclet num-

ber. Thus, the basic throughflow turns out to dis-

play a stabilising effect when it comes to absolute

instability.

• In the transition to absolute instability, the thresh-

old value of the Darcy–Rayleigh number, Ra, is

a monotonic increasing function of the ratio be-

tween the value of the permeability for the hori-

zontal plane and the value of the permeability for

the vertical direction. In other words, the vertical

permeability has a destabilising effect on the basic

state while the horizontal permeability has a sta-

bilising effect.

• The lowest possible value of the Darcy–Rayleigh

number for the onset of absolute instability is

Ra → π2, and it is attained when the ratio between

the horizontal permeability and the vertical perme-

ability tends to zero.

The analysis carried out in this paper accounts for

the simplest situation where anisotropy emerges. There

are more general cases where there can be two different

horizontal permeabilities, or the three principal axes of

the permeability tensor can be inclined to the horizontal.

In such cases, there are more dimensionless parameters

governing the anisotropy and, hence, the transition to ab-

solute instability. Despite the increased difficulty, such

a generalised scenario can be quite interesting for prac-

tical applications regarding, especially, the dynamics of

hot groundwater and it will be definitely an opportunity

for future research in this field.
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