
10 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Huang B., Tang L., Baldacci R., Wang G., Sun D. (2023). A metaheuristic algorithm for a locomotive
routing problem arising in the steel industry. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 308(1),
385-399 [10.1016/j.ejor.2022.11.006].

Published Version:

A metaheuristic algorithm for a locomotive routing problem arising in the steel industry

Published:
DOI: http://doi.org/10.1016/j.ejor.2022.11.006

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/954736 since: 2024-01-31

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.ejor.2022.11.006
https://hdl.handle.net/11585/954736

A Metaheuristic Algorithm for a
Locomotive Routing Problem Arising in the Steel Industry

Baobin Huanga,b, Lixin Tanga,∗, Roberto Baldaccic, Gongshu Wangd, Defeng Sune

aNational Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang
110819, China

bKey Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, China
cDivision of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa

University, Qatar Foundation, Doha, Qatar
dLiaoning Engineering Laboratory of Data Analytics and Optimization for Smart Industry, Shenyang 110819, China

eLiaoning Key Laboratory of Manufacturing System and Logistics Optimization, Shenyang 110819, China

Abstract

In this study, we address the locomotive routing problem faced in the steel industry. During steel production,
locomotives are employed to move torpedo cars, which transport molten iron, between blast furnaces and
converters. The resulting complex pickup and delivery routing system which features multiple types of
practical constraints, such as hard time windows, incompatibility of requests, variable locomotives capacity,
and last-in-first-out constraints, constitutes this problem. Herein, three-index and modified group-based
formulations are described and an adaptive large neighborhood search (ALNS) algorithm is proposed as
a solution. The ALNS algorithm relies on both adapted and novel removal and insertion operators and a
feature-based local search procedure. The mathematical formulations and the ALNS algorithm are evaluated
on instances generated according to the actual production process. The results validate the effectiveness of
the algorithm. A comparison with the manual plan also verifies the quality of the solutions produced by the
algorithm.

Keywords: routing, steel industry, last-in-first-out constraints, local search, adaptive large neighborhood
search.

1. Introduction

The steel industry is characterized by large-scale production, high energy consumption, and high pollu-
tion. The transformation from iron ore to end products is characterized by several complex problems, such
as routing at mining areas (Moradi Afrapoli & Askari-Nasab, 2019), storage space allocation (Sun et al.,
2020a), and continuous casting and hot rolling (Tang et al., 2001, 2014; Tang & Meng, 2021). Here, the
problem was studied in the context of molten iron allocation and transportation. Among the stages involved
in the production of steel, iron-making and steel-making are two production processes consuming the largest
amounts of energy. Molten iron is transported from the iron-making facilities to the steel-making facilities
by a special type of thermally insulated container, called torpedo car (TPC). Therefore, with regard to the

∗Corresponding author
Email addresses: huangbaobinyc@163.com (Baobin Huang), lixintang@mail.neu.edu.cn (Lixin Tang),

rbaldacci@hbku.edu.qa (Roberto Baldacci), wanggongshu@ise.neu.edu.cn (Gongshu Wang),
sundefeng@ise.neu.edu.cn (Defeng Sun)

Preprint submitted to Elsevier October 6, 2022

Fig. 1. Layout of production facilities and railway transportation network.

steel industry, there exist a demand for efficient molten iron transportation scheduling solutions, in order to
guarantee continuous production and reduce the temperature loss related to energy consumption.

Fig.1 depicts the layout of the production facilities and the railway transportation network of the steel
company considered in our study. The reladling stations (RSs), part of the steel-making shops for unload-
ing the molten iron, and blast furnaces (BFs) are situated at different locations along the in-plant railroad
network. Between the BFs and RSs, there is a buffer area (BA), comprising several long rails (the red lines
01-06 in Fig.1) used for parking locomotives and TPCs. A TPC is not equipped with an engine and is in-
stead moved by a locomotive. Owing to the limited carrying capacity of locomotives, at most, two loaded or
four empty TPCs can be towed by one locomotive at a time. Moreover, according to operation rules, loaded
and empty TPCs cannot be towed by the same locomotive simultaneously. As shown in Fig.2, empty TPCs
are loaded with molten iron at BFs (referred to as loaded TPCs) and then picked up by locomotives and de-
livered to the RSs. After unloading at the RSs, the empty TPCs are picked up by locomotives and delivered
back to the BA and then to the BFs, where they wait for the next loading operation. There are four types of
transportation requests as follows:

(i) BF→BA: transportation of a loaded TPC from BF to BA.
(ii) BA→RS: transportation of a loaded TPC from BA to RS.

(iii) RS→BA: transportation of an empty TPC from RS to BA.
(iv) BA→BF: transportation of an empty TPC from BA to BF.

Based on the production schedule, restrictions pertaining to the pickup and delivery time (modeled through
suitable time windows, see Section 3) are imposed on each transportation request. Imposing time restric-
tions on the pickup and delivery of transportation requests ensures a continuous process and prevents con-
gestion at the BFs and RSs.

If a locomotive collects more than one TPC, the pickup operations are termed as coupling operations,
and the corresponding decoupling delivery operations must follow the last-in-first-out (LIFO) rule. More-
over, a pickup operation is forbidden for a locomotive once the decoupling delivery of any TPC has com-
menced, unless all the coupling TPCs have been delivered. These restrictions aim to reduce the complexity
of the transportation operations and, in particular, to reduce the risk of accidents through prevention.

A critical factor in molten iron transportation is the temperature drop. If the temperature falls below the
standard temperature required by the production process at RSs, an expensive reheating operation will be
necessary. Therefore, the loaded TPCs must be delivered to RSs within a predefined time window to ensure

2

Molten iron

Fig. 2. Transportation process of molten iron.

that the temperature of molten iron is above the standard temperature. In practice, the temperature of the
molten iron in a TPC reduces by approximately one degree Celsius per minute. Therefore, this temperature
variation (BA→RS) can be represented by the waiting time, which refers to the period of time from loading
completion to the arrival at the RS. Moreover, fuel consumption is related to the travel time of locomotives.

The problem addressed in this study is a variant of the pickup and delivery problem with time windows
(PDPTW) in which a homogeneous fleet of vehicles (locomotives) is available, with different start and end
locations for the vehicles, and a set of heterogeneous requests must be routed subject to time windows,
capacity, incompatibility, and LIFO constraints. The objective function minimizes the sum of the molten
iron waiting time of the loaded TPCs (associated with BA→RS requests) and the travel time of locomotives.

The contributions of this paper are as follows:

• We addressed a new problem, termed as the locomotive routing problem (LRP), in the steel industry.
Two mathematical formulations are presented herein for this problem: a three-index formulation and
a group-based formulation.
• To solve this practical problem, we designed an adaptive large neighborhood search (ALNS) algo-

rithm. New removal operators (based on block re-optimization) and insertion operators were pro-
posed, which can be beneficial for the diversification of neighborhood exploration and solution qual-
ity improvement. Moreover, a local search procedure, including adapted neighborhood structures
and greedy acceptance criterion based on special characteristics of the LRP, was designed to further
improve the solution quality.
• We also present extensive computational experiments based on actual data. The rule-based manual

scheduling method, currently used by the steel company considered in this study, is compared with
the ALNS algorithm. We also investigate the effectiveness of different ALNS components.

The remainder of this paper is organized as follows. The next section reviews the literature on related
problems. In Section 3, the problem addressed in this paper is formally described. Also in this section, two
mathematical formulations are introduced for the problem. Section 4 presents the ALNS algorithm. Section
5 reports the results of the computational study. Finally, Section 6 concludes the paper.

2. Literature Review

Despite its significance in practice, literature pertaining to molten iron transportation problems remains
scarce. Tang et al. (2007) proposed a branch-and-price algorithm for the molten iron allocation problem,

3

which focused on allocating virtual molten iron batches (evaluated as TPCs) to the production plans of steel-
making. Huang et al. (2011) studied a similar problem with several production processes and designed a
two-stage heuristic algorithm to solve it. Li et al. (2016a) proposed an improved discrete artificial bee
colony algorithm to solve this scheduling problem with dynamic operation skipping features.

For the TPC scheduling problem, which determines the cyclic usage of TPCs, Liu & Wang (2015)
studied a problem for designing optimal delivery routes to transport molten iron directly from the BFs to
RSs via a fleet of TPCs. Both heuristic and exact algorithms were designed for a more complex TPC
scheduling problem, where the pretreatment (desulfurization) before the unloading of the molten iron as
well as the buffer zone for parking the loaded TPCs (before the pretreatment) were considered (Kletzander
& Musliu, 2017; Geiger et al., 2019; Goldwaser & Schutt, 2018).

These previous studies assumed a sufficient number of locomotives to transport the TPCs. However,
in most steel companies, the number of locomotives is limited. Kikuchi et al. (2008) proposed a heuristic
algorithm for an integrated scheduling problem, including TPC scheduling, transfer request assignment,
and locomotive route planning. Deng et al. (2011) designed a modified ant colony optimization algorithm
for determining the optimal path for a locomotive in a steel company.

The transportation devices in the locomotive assignment problem (Piu et al., 2015; Xu et al., 2018) and
the LRP are identical, and both these problems utilize railroad objects; however, these two problems them-
selves are considerably different. This is attributed to the characteristics of the locomotives and transported
objects. Despite of the different origin and destination of locomotives, the incompatibility of requests, and
the different capacity of locomotive for transporting empty and loaded requests, the LRP is a variant of
the vehicle routing problem (VRP). More precisely, it is a variant of the pickup and delivery problem with
time windows and LIFO loading constraints (PDPTWL). Hence, we focus on the review of transportation
problems with loading constraints. Models and algorithms for the VRP and its variants, including exact and
heuristic algorithms, can be found in Berbeglia et al. (2007); Parragh et al. (2008); Baldacci et al. (2008);
Baldacci & Mingozzi (2009); Baldacci et al. (2012); Costa et al. (2019); Harbaoui Dridi et al. (2020).

Several works (Cordeau et al., 2010; Li et al., 2011; Pollaris et al., 2015; Wei et al., 2015; Veenstra
et al., 2017b) have investigated the pickup and delivery traveling salesman problems with loading sequence
constraints (TSPPDL). Cheang et al. (2012) studied the TSPPDL by considering multiple vehicles with
unlimited capacity but limited total travel distance. A two-stage approach was designed to minimize the total
distance and number of vehicles. Instead of the route length, Benavent et al. (2015) addressed the TSPPDL
for multiple capacitated vehicles and limited route duration (PDPLT). Both exact and heuristic algorithms
were proposed for solving this problem. The current state-of-art algorithm for solving the PDPLT is a
learning-based metric algorithm designed by Peng et al. (2020).

Cherkesly et al. (2015a) addressed a PDPTWL that ignored the limitation on route duration of PDPLT
but included time window constraints of the pickup and delivery operations. They proposed three branch-
and-cut-and-price algorithms for the PDPTWL to optimally solve instances containing 75 requests, within
one hour. To the best of our knowledge, the branch-and-cut algorithm designed by Alyasiry et al. (2019) for
the PDPTWL is the current state-of-the-art exact method, capable of solving up to 125 requests. Considering
the limitations of exact algorithms, heuristics were also designed to handle large-scale instances (Cherkesly
et al., 2015b; Liu et al., 2019). Cherkesly et al. (2016) addressed the need for an extension of the PDPTWL,
in which the vehicles have multiple stacks. They proposed two exact methods to solve instances with up to
75 requests and with 1-3 stacks to the optimum, within two hours. Additionally, by including the rehandling
operation of requests that are onboard, the complexity of routing problems with LIFO constraints will
increase, but a more flexible mode of transportation can be implemented (Battarra et al., 2010; Veenstra
et al., 2017a,b; Hornstra et al., 2020; Cherkesly & Gschwind, 2022).

4

The routing of locomotives at industrial in-plant railroads is closely related to our study. Lübbecke &
Zimmermann (2003) proposed a mixed integer formulation based on pre-generated patterns comprising re-
quests served (picked) together by locomotives. They also introduced a set partitioning model and designed
a branch-and-price algorithm to minimize the total working horizon of locomotives. Wang & Tang (2007)
studied a locomotive scheduling problem with a nonlinear objective function. A locomotive can, at most,
serve two TPCs simultaneously, and different request types cannot be transported together.

Here, we build on the research of Lübbecke & Zimmermann (2003) and Wang & Tang (2007). The LRP
studied is an extension of the problems addressed in these two studies, but with more realistic characteristics.
Specifically, we consider the following two new characteristics. First, the capacity of a locomotive for
transporting the empty TPCs varies from two to four. Second, we consider the operations in the buffer area;
this leads to additional types of pickup and delivery operations and more complicated hard time windows.

As shown by our computational experiments, the direct solution of the two IPs using a general MIP
solver is only effective for small-scale LRP instances. In practice, an algorithm that is capable of com-
puting high quality solutions in a short amount of time is needed for the LRP. The ALNS algorithm was
proposed by Ropke & Pisinger (2006a) for solving PDPTW. The ALNS algorithm is based on destruction
and reconstruction, performed using dynamically selected removal and insertion operators, respectively.
This metaheuristic is effective in solving different kinds of routing problems such as, the pollution-routing
problems (Demir et al., 2012; Franceschetti et al., 2016), the PDPTW with profits and reserved requests (Li
et al., 2016b), the VRP with simultaneous pickup and delivery and handling costs (Hornstra et al., 2020),
the VRPTW and delivery robots (Chen et al., 2021), and other variants of VRP (Pisinger & Ropke, 2007;
Gendreau & Potvin, 2019). Motivated by the success of this algorithm in solving various routing problems,
we adopt the ALNS algorithm to solve the LRP. According to the new characteristics of LRP, both adapted
and new operators were proposed, as well as a local search procedure with adapted neighborhood structures
and greedy acceptance criterion.

3. Problem description and mathematical formulations

The LRP can be formally described as follows. Let R = RE ∪ RL be a set of transportation requests,
where set RE is the transfer of empty TPCs (i.e., BA→BF or RS→BA) and set RL is the transfer of fully
loaded TPCs (i.e., BF→BA or BA→RS). RL1 ⊂ RL is the subset of transportation requests corresponding
to the loaded TPCs from BA to RS.

For each request r ∈ R, the pickup and delivery locations are given by the pair (r+, r−), respectively,
where r+ and r− represent the possible locations associated with the BA, BFs, and RSs. Let R+(R−) denote
the corresponding pickup (delivery) location set of R, where R+ = {r+|r ∈ R}(R− = {r−|r ∈ R}). Let R+L (R+E)
and R−L (R−E) be the sets of the pickup and delivery locations of RL (RE), respectively. Additionally, R−L1

, a
subset of R−L , represents the set of loaded TPC (BA→RS) delivery locations. Each request BF→BA has an
associated request, BA→RS, representing the combined transportation of a loaded TPC from the BF to the
final RS. Additionally, each transportation request r ∈ RL1 is associated with a parameter, t fr, representing
the expected completion time of the TPC loading operation at BF. The temperature drop of the molten iron
is proportional to the difference between the arrival time at the RS (a decision variable) and the completion
time t fr. Each transportation request r ∈ R is also associated with the constant service times sr

+ and sr
− and

time windows [er
+, l

r
+] and [er

−, l
r
−] at the pickup and delivery locations, respectively. If a locomotive arrives

at the pickup (delivery) location of request r before time er
+ (er

−), it waits until time er
+ (er

−).
To service the transportation requests, a set of locomotives, L, are used. For each locomotive, ℓ ∈ L,

a start location ℓ+ (i.e., where it commences its service) and an end location ℓ− (i.e., where it terminates
its working day) is assigned. Let L+ (L−) denote the set of locomotive origin (destination), where L+ =

5

{ℓ+|ℓ ∈ L} (L− = {ℓ−|ℓ ∈ L}). For each locomotive ℓ ∈ L, a time window [etℓ, ltℓ] is defined, representing
the working period within the planning horizon [0,T]. The capacity of locomotives for transporting empty
and loaded requests ce and cl equals to four and two, respectively.

The underlying transportation network is represented by a graph G = (V, A) where the set of vertices
V = {r+, r−}r∈R ∪ {ℓ+, ℓ−}ℓ∈L represents the different locations and the set of arcs A represents the possible
links among the different vertices in V . Each arc, (i, j) ∈ A, is associated with a travel time ti j. Let T j be the
visiting time at the destination of an arc (i, j), then defining a function fi j(T j) to compute the arc cost (i, j)
is as follows.

fi j(T j) =

ti j + (T j − t fr), i f j = r− ∈ R−L1
,

ti j, otherwise.
(1)

Equation (1) express that, if the destination of an arc corresponds to the delivery location of transportation
request from BA to RS, the cost of an arc equals the sum of the locomotive travel time and the molten iron
waiting time. Otherwise, the cost of an arc equals the locomotive travel time.

We define P, a locomotive route or simply a route for a locomotive ℓ ∈ L, as a path in G starting from
vertex ℓ+ at etℓ and ending at vertex ℓ− no later than time ltℓ and servicing a subset P(R) ⊆ R of requests
within its pickup and delivery time windows. A locomotive route is divided into empty locomotive transfers,
where the locomotive moves between two locations without TPCs attached to it, and loaded transfers, where
the locomotive transports TPCs. The following constraints must be respected by a route P:

• Capacity constraints: A locomotive can simultaneously service two and four requests at the most
from set RL and set RE , respectively.
• Request incompatibility constraints: Due to stability constraints, the empty and loaded TPCs or

requests cannot be serviced simultaneously.
• LIFO loading constraints: To avoid unnecessary time or risk related to rearranging the TPCs at the

delivery locations, the last TPC picked up by a locomotive need not be moved until it reaches its
destination. Therefore, it will be the first TPC to be delivered along the path.

The cost of a route is defined as the sum of the arc costs traversed by the route. The LRP calls for the
design of |L| routes with the minimum total cost, including one route for each locomotive, such that each
transportation request in R is served by exactly one route.

Fig.3 illustrates an example of a LRP solution with three locomotives and six requests. The number as-
sociated with each arc is the traveling time between two nodes. ([e, l], t fr, pos, typ, ob j), a five-dimensional
vector, is used to illustrate the node information of a request (pickup and delivery nodes) or a locomotive
(origin and destination nodes). [e, l] represents the time window of a node, and a symbol “*” denotes that
the node is not a request from BA to RS. Term pos denotes its location, term typ indicates the node type,
where “+” and “-” are the origin and destination of a locomotive or request, respectively. Term ob j is the
relative objective value after the visit of a node.

The routes of ℓ1 and ℓ3 are loaded locomotive transfers while ℓ2 is an empty locomotive transfer. The
LIFO rule is used for requests r3 and r4.The transportation of loaded request r1 from BF to BA will only
increase the locomotive travel time. Nevertheless, besides the locomotive travel time (10 minutes) of loaded
request r6 delivered from BA to RS, an additional contribution to the ob j w.r.t. the molten iron waiting time
(58 minutes) is also included.

We introduce two mathematical formulations for the LRP: a three-index formulation and a group-based
formulation. In the group-based formulation, the LIFO rule is implicitly considered in the definition of the
decision variables and infeasible request combinations are also implicitly eliminated. However, the number
of decision variables increases dramatically as the number of requests increases. Therefore, we also propose

6

([0,T],*,10,-,82)([0,T],*,10,+,0)

([3,T],*,0,+,0)

([57,87],*,3,-,15)([57,87],*,10,+,9)

([57,87],*,3,-,15)([57,87],*,10,+,9)

([31,51],*,1,+,3)

([65,80],7,11,-,68)

([45,75],*,10,-,82)

([45,60],*,12,+,72)

([31,71],*,10,-,9)

([3,T],*,10,-,21)

3

6

0

0

6

0

6r2

r1

r3

r1

r3

r2

([45,60],*,12,+,72)

([45,75],*,10,-,82)

0

10+58

4

0

10

0

0

r4

r5

r6

([50,80],7,10,+,0)

r6

r5

r4

l3 l3

l1l1

([7,T],*,7,+,0) ([7,T],*,10,-,3)

3l2 l2

Fig. 3. Routes of a feasible solution.

an alternative arc-based three-index formulation. For the sake of the space, below we report the three-index
formulation whereas details of the group-based formulation are given in the Online Supplement.

Let n be the number of pickup locations, where n = |R+|. In the formulation, coefficient η is a large
constant. The service time of a node i ∈ V is denoted by si, which equals 0 if i ∈ L+ ∪ L−; otherwise, it
equals 2. Coefficient qi represents the quantity of node i ∈ V , which equals 2, if i ∈ R+L ; -2, if i ∈ R−L ; 1, if
i ∈ R+E; -1, if i ∈ R−E; and 0, if i ∈ L+ ∪ L−. The decision variables used in the three-index formulation are
as follows:

Ti: the service start time of the locomotive at node i ∈ V;
xℓi j ∈ {0, 1}: equals 1 if locomotive ℓ travels along arc (i, j) and 0, otherwise;
yℓi : the load of locomotive ℓ after visiting node i ∈ V .

The three-index formulation is as follows:

min
∑
ℓ∈L

∑
(i, j)∈A

xℓi j fi j(T j) (2)

s.t.
∑

i∈R+∪ℓ−
xℓℓ+i = 1,∀ℓ ∈ L (3)∑

i∈R−∪ℓ+
xℓiℓ− = 1,∀ℓ ∈ L (4)∑

ℓ∈L

∑
(i, j)∈A

xℓi j = 1,∀i ∈ R+ (5)∑
(i, j)∈A

xℓi j −
∑

(i+n, j)∈A

xℓi+n, j = 0,∀i ∈ R+, ℓ ∈ L (6)∑
(i, j)∈A

xℓi j −
∑

(j,i)∈A

xℓji = 0,∀i ∈ R+ ∪ R−, ℓ ∈ L (7)∑
j∈R−

xℓi j − xℓi,i+n = 0,∀i ∈ R+, ℓ ∈ L (8)

7

xℓi j − xℓj+n,i+n = 0,∀i, j ∈ R+, ℓ ∈ L (9)∑
j∈R+L

xℓi j +
∑
j∈R+L

xℓji = 0,∀i ∈ R+E , ℓ ∈ L (10)

Ti + si + ti j + (xl
i j − 1)η ≤ T j,∀(i, j) ∈ A, ℓ ∈ L (11)

yℓi − qi = yℓi+n,∀i ∈ R+, ℓ ∈ L (12)

yℓi + q j + (xℓi j − 1)η ≤ yℓj,∀(i, j) ∈ A, ℓ ∈ L (13)

yℓℓ+ + yℓℓ− = 0,∀ℓ ∈ L (14)

qi ≤ yℓi ≤ 4,∀i ∈ R+, ℓ ∈ L (15)

0 ≤ yℓi ≤ 4 + qi,∀i ∈ R−, ℓ ∈ L (16)

ei ≤ Ti ≤ li,∀i ∈ V. (17)

The objective function (2) minimizes the sum of the molten iron waiting time and the locomotive travel
time, whereby the calculation of fi j(T j) follows equation (1). Constraints (3) and (4) restrict the number and
type of arcs starting from the origin and reaching the destination of every locomotive. Constraints (5) ensure
that each pickup location of a request is visited by a locomotive exactly once. Additionally, constraints (6)
guarantee that the corresponding delivery location is visited by the same locomotive. Constraints (7) ensure
the flow conservation of the nodes in R+ ∪ R−. Constraints (8) and (9) define the LIFO rule: (8) state that
only the delivery location of a request can be visited directly after its pickup location, and (9) impose that the
visiting order of the two delivery locations is the reverse of the pickup locations. Constraints (10) guarantee
that requests of different type cannot be transported together. Constraints (11) impose the service start times
consistency for two successive nodes in a route. Equations (12) link the load of the locomotive at the pickup
and delivery nodes of a request. Constraints (13) impose the load consistency between consecutive nodes
visited by the locomotives. Constraints (14) impose that the load quantity at the origin and destination of
every locomotive is zero. The locomotive capacity constraint are then imposed by constraints (15)-(16).
Constraints (17) are the time window constraints of each node. Note that constraints (10) can be ignored by
eliminating two types of arcs (i, j) ∈ A. The first type of arc satisfies that i ∈ R+E and j ∈ R+L or i ∈ R+L and
j ∈ R+E . The second type of arc satisfies i ∈ R−E and j ∈ R−L or i ∈ R−L and j ∈ R−E .

4. An ALNS algorithm for the LRP

The framework of the proposed ALNS algorithm is presented in Algorithm 1. The ALNS algorithm
starts with an initial solution that is generated through the method introduced in Section 4.1. Then a new
solution is generated by using selected removal and insertion operators. Those operators are selected based
on its weights, which are adjusted based on its past performance as shown in Section 4.2. Considering the
LIFO rule, incompatibility of requests, and the variable locomotive capacity for loaded and empty requests,
a new method for insertion feasibility testing is introduced in Section 4.3. The details of removal and
insertion operators are presented in Section 4.4. When a new solution is generated, whether to accept it or
not should follow the criterion described in Section 4.5. For further improvement, a local search procedure
(see Section 4.6) is executed at the end of each iteration.

4.1. Initialization

The method used to create the initial solution is a combination of two heuristics. All requests are un-
served at the beginning of the proposed algorithm, and regret insertion operators (see Section 4.4.1 and

8

Algorithm 1: Framework of the proposed ALNS algorithm
Input: removal operatorsD, insertion operators I, initial temperature T org, cooling rate cr
Output: A solution Xbest

1 Generate an initial solution Xcur by using the method introduced in Section 4.1
2 Initialize probability for each d ∈ D and ι ∈ I, Xnew ← Xbest ← Xcur, T cur ← T org

3 Let θ be the iteration number counter initialized as θ ← 1
4 Let α be the segment iteration number counter initialized as α← 1
5 while θ ≤ NI do
6 Select a removal operator d ∈ D to destroy Xcur(Section 4.4.1)
7 Select an insertion operator ι ∈ I to reinsert requests in L to get Xnew(Section 4.4.2)
8 if ob j(Xnew) < ob j(Xcur) (Section 4.5) then
9 Xcur ← Xnew

10 if ob j(Xnew) < ob j(Xbest) then Xbest ← Xnew ;
11 else
12 Let ζ ← e−(ob j(Xnew)−ob j(Xcur))/T cur

13 Generate a random number ξ ∈ [0, 1]
14 if ξ < ζ then Xcur ← Xnew ;
15 end
16 Update the score and usage times of operators selected
17 if α = NIS then
18 Update the probabilities using adaptive weight adjustment procedure(Section 4.2)
19 Execute the local search procedure(Section 4.6)
20 Reinitialize α as α← 1
21 end
22 T cur ← T curcr
23 θ ← θ + 1, α← α + 1
24 end

9

Section 4.4.2) are used to construct the candidate solutions. Subsequently, the local search procedure pre-
sented in Section 4.6 is applied to further improve the quality of selected solution, which is the best one
among the candidate solutions.

4.2. Adaptive score and weight adjustment

Even though the removal and insertion operators are selected according to the roulette wheel selection
principle, an operator with a large weight is more likely to be chosen. If the operator weights remain fixed
until the end of the iterative process, certain operators may barely be used. Therefore, the weight adjustment
method is employed as follows. Let d ∈ D be a removal operator and ι ∈ I be an insertion operator, where
D and I are the sets of the removal and insertion operators, respectively. Let ωt

i be the weight value that is
reset after a fixed number of iterations (NIS), i.e., a segment of the algorithm.

Three parameters, π1, π2, and π3, denote the different score increments of the removal and insertion
operators in accordance with the new solution quality. If the new solution is better than the global best
solution, π1 is added to the score of the two operators used. If the new solution is better than the current
solution, the score increment is π2. If the new solution is worse than the current one but accepted, the score
increment is π3. Parameter ωt

i denotes the weight of operator i used during segment t and initialized as 1;
ωt

i is set according to ωt+1
i = ωt

i(1 − ρ) + ρκi/γi at the beginning of segment t + 1, where ρ = 0.1 is the
reaction factor of the roulette wheel selection algorithm. Parameters κi and γi are the score and usage times,
respectively, of operator i in the current finished segment. The probabilities Pt

i of a removal or insertion
operator being used in the operator selection in the t-th segment are calculated as follows:

Pt
i = ω

t
i/

|D|∑
d=1

ωt
d f or i ∈ D, Pt

i = ω
t
i/

|I|∑
ι=1

ωt
ι f or i ∈ I.

4.3. Feasibility of request insertion

Inserting a request r into a route includes the insertion of r+ and r−. According to the LIFO rule, the
candidate locations (Case 1-5) of inserting a request r in a route are shown in Fig.4. Request r− cannot be
inserted directly after r+, when r+ is between two pickup nodes (Case 3). Otherwise, the location after r+

will be taken into consideration. Three more aspects must be checked when inserting r : the violation of
time windows, locomotive capacity, and incompatibility of requests.

r+ r-Request

1+r+ 2+ 2- 1- l-l+ r-

1+r+ 2+ 2- 1- l-l+ r-

1+ r+ 2+ 2- 1- l-l+ r-

1+ r+2+ 2- 1- l-l+ r-

1+ r+2+ 2- 1- l-l+ r-

Case 1

Case 2

Case 3

Case 4

Case 5

Route 1+ 2+ 2- 1- l-l+

r

Fig. 4. Candidate locations for request insertion.

10

Algorithm 2: Feasibility check of request insertion
Input: Request r ∈ RL(RE), New route of a locomotive ℓ
Output: Insertion Feasibility

1 I Calculate m1, m2, and m3

2 if m1 = 0 then
3 if r+p is ℓ+ then
4 if m3 = 0 then Goto II;
5 else if m2 < cl(ce) & m3 = 2m2 & r+s ∈ R

+
L(R+E) then Goto II;

6 else Return false;
7 else
8 if m3 = 0 & r−s is ℓ− then Goto II;
9 else if m3 = 0 & r−s ∈ R

+ then Goto II;
10 else if m2 < cl(ce) & m3 = 2m2 & r+s ∈ R

+
L(R+E) then Goto II;

11 else Return false;
12 end
13 else
14 if r+p ∈ R

+
L(R+E) & m1 + m2 < cl(ce) then

15 if m2 + m3 = 0 then Goto II;
16 else if m2 > 0 & m3 = 2m2 then Goto II;
17 else Return false;
18 else Return false;
19 end
20 II Check the time window feasibility as follows
21 if No violation of time windows then Return true ;
22 else Return false;

In the new route, let m1 and m2 be the number of pickup requests directly before and after r+, respec-
tively. Let m3 denote the total number of pickup and delivery operations between r+ and r−. Let r+p (r−p)
and r+s (r−s) denote the predecessor and successor of r+ (r−), respectively. Clearly, the location of r− in the
new route must be after r+ and before ℓ−. Details pertaining to the insertion feasibility check are shown in
Algorithm 2.

4.4. Removal and insertion operators

There are nine removal operators and seven insertion operators can be used for the destruction and
reconstruction of the ALNS algorithm. In each iteration, a removal operator is selected to destroy the
current solution by removing q requests. Those removed requests are added into the removal list L. After
the destruction, an insertion operators is used to repair the destroyed solution. Each time, a request in L
will be chosen and reinserted based on the selected insertion operator. This process will continue until L is
empty.

4.4.1. Removal operators
A total of nine request removal operators are explained in this section. The first five of removal op-

erators are commonly used in the literature (Ropke & Pisinger, 2006a,b; Pisinger & Ropke, 2007; Demir
et al., 2012; Sun et al., 2020b). A new component is added in shaw removal operator, considering the
incompatibility of empty and loaded requests. We define a new function to calculate the adjacent cost of
a request using the historical knowledge removal operator. In the LRP, sometimes transporting requests
together may produce a better solution (see the example in Section 4.6.2). Notably, only requests of the
same type and with small time window differences that can be transported together. Hence, we introduce

11

four new operators to perform block re-optimization by removing requests from the same time block. The
specific descriptions of operators are as follows.

Random Removal (RR) All the requests are sorted randomly, and the first q requests are selected. Those
selected requests will be removed from the current solution and added to L. This operator is proposed to
diversify the search.

Worst Removal (WR) This operator relocates the request that causes the largest objective value decre-
ment of the current solution, which may result in a potentially superior new solution. Let fr and f−r be
the objective values of the current solution and its corresponding solution after the removal of request r,
r ∈ R, respectively. Let f ∗ = max{ fr − f−r |r ∈ R} denote the largest objective value reduction. This operator
calculates f ∗ and adds the corresponding request to the removal list until |L| = q. Note that f ∗ must be
recomputed before a new round of removal request selection.

Single Route Removal (SRR) In order to obtain a significant variant of the current solution, this operator
removes all requests belonging to a randomly chosen route.

Shaw Removal (SR) The purpose of this operator is to remove requests with similarities. The relatedness
R(r, r′), used for measuring the similarity between two requests, i.e., r and r′, is calculated as follows:
R(r, r′) = ϕ1(|er

+−er′
+ |+|e

r
−−er′

− |)+ϕ2(|lr+−lr
′

+ |+|l
r
−−lr

′

− |)+ϕ3((|Tr+−Tr′+ |+|Tr−−Tr′− |))+ϕ4(tr+r′++tr−r′−)+ϕ5B,
where ϕ1, ϕ2, ϕ3, ϕ4, and ϕ5 are the weights of different components of relatedness. Coefficient B equals
one, if r and r′ are of different types; otherwise, it equals zero. The remaining components of relatedness

are normalized such that R(r, r′) ∈ [0,
5∑

i=1
ϕi]. If this operator is chosen, a request r is first selected randomly

and inserted into L. Thereafter, the last added request r′ ∈ L is selected; the request in the current solution
has minimum relatedness to r′ is removed and added to L, until |L| = q.

Historical Knowledge Removal (HKR) This operator intends to move requests according to the cumu-
lative historical information based on the previous iterations. Let Cr = tr+p r+ + tr+r+s + tr−p r− + tr−r−s be the
adjacent cost of request r (the sum of the adjacent costs of r+ and r−), where subscripts p and s indicate
the predecessor and successor of r+ or r−, respectively. Let Copt

r be the smallest recorded adjacent cost of
r, which is updated when any change in its linked edges leads to a reduced adjacent cost. A request r with
maximum adjacent cost deviation from its best record, i.e., r = argmaxr∈R{Cr−C

opt
r }, is removed and added

to L.
Time Oriented Removal (TOR) Let length denote a time length used for the request. A request r is

randomly selected in this operator. If request r′ satisfies |er
+ − er′

+ | ≤ length or |lr+ − lr
′

+ | ≤ length, remove r′

and add it to L. Continue this process until |L| = q. If |L| < q and no candidate request exists, enlarge length
as length = length + 10 and perform the selection again.

Cost Oriented Removal (COR) This operator combines the WR and TOR operators. The request having
the largest objective value decrement of the current solution, is first added to L. The remaining q−1 requests
are selected by the method used in TOR.

Delay Oriented Removal (DOR) This operator stipulates the removal of a delayed request and other
requests with similar service start time. A route is randomly selected and then the first request r that does
not commence its service at the earliest time is removed and added to L. If L remains empty after the
searching of all routes, a request will be randomly removed and added to L. The time interval [Tlb,Tub]
is calculated according to request r, where Tlb = max{Tr+ − length, 0} and Tub = min{Tr+ + length,T }.
Requests that are picked within the time interval [Tlb,Tub] are added to L. If |L| ≥ q, stop and choose the
first q requests in L for removal. Otherwise, enlarge length as length = length+10 and perform the selection
again.

Extend Delay Oriented Removal (EDOR) This operator is similar to the previous one. However, the
content first added to L does not only include the delayed request but also the preceding group of requests

12

served, as shown in Fig.5. Suppose r is the delayed request that has been selected, its preceding group
(1+, 2+, 2−, 1−) will be removed and all requests in this group are added in L at the same time. This
operator can be treated as a supplement to DOR that emphasizes the rescheduling of the delayed requests
and their predecessors.

1+ r+2+ 2- 1- l-l+ r-Route

r+ r-
Delayed

request

Fig. 5. Request selection example of extend delay oriented removal operator.

4.4.2. Insertion operators
After the execution of selected removal operator, an insertion operator is used to repair the destroyed

solution. Here, we present seven operators based on previous studies. The first six operators are commonly
used in the literature (Ropke & Pisinger, 2006a; Franceschetti et al., 2016; Hornstra et al., 2020). The last
operator is inspired by the greedy insertion operator.

Greedy Insertion (GI) This operator entails a simple iterative process. In each iteration, the objective
value increment of inserting a request into every feasible position is calculated for requests in L. Then the
insertion of a request corresponding to the smallest objective value increment will be executed.

Regret Insertion (RI) This is a class of k-regret insertion operators, where k ∈ {2, 3, 4, 7} in this study.
The different k values represent the number of routes with the first k minimum insertion cost. The RI
takes the corresponding objective value increments of the different insertion positions into account to avoid
myopic insertion.

Random Sequence Insertion (RSI) This operator randomly selects a request from L which is then inserted
into the best position. This operator is quite faster than the GI operator because it only needs to compute
the best insertion position for the selected request.

First Fit Insertion (FFI) This operator aims to expand the neighborhood search and it is beneficial to
diversify the search over the search space. The difference between this operator and operator GI is that, for
each request in L, the exploration of insertion locations stops whenever the insertion is feasible. Then, the
request in L having the smallest objective value increment is inserted into the corresponding location.

Insertion operators are randomized by applying noise to their objective functions. This is realized by
adding a term tmax

i j wϵ to the insertion objective value, where tmax
i j is the largest travel time of all the arcs, w

is a randomly generated number within [−1, 1], and ϵ is a noise-controlling parameter. Since the selected
request is only inserted into a feasible position, we will not apply noise to FFI.

4.5. Acceptance and stopping criteria

Similarly to the corresponding component in standard ALNS algorithm, the acceptance criterion used in
our algorithm employs features of Simulated Annealing (SA) algorithms to avoid the trap of local optimum.
Let T cur denote the current temperature, which is initialized by the original temperature T org. Let cr denote
the cooling rate, where cr ∈ (0, 1). T cur and cr are settings that make it possible to accept a solution that is
worse than the current one. As T cur decreases according to cr, T cur = T cur ∗ cr, the probability of accepting
a worse solution also decreases. Finally, when T cur = 0, only the solution without a deterioration in the
objective value can be accepted. Let Xcur and Xnew denote the current and new (not generated previously)
solutions, respectively. Let ob j(X) denote the objective value of solution X. If ob j(Xnew) < ob j(Xcur), Xnew

13

is accepted; otherwise, Xnew is accepted with the probability e−(ob j(Xnew)−ob j(Xcur))/T cur
. This algorithm stops

after a fixed number of iterations (NI).

4.6. Local Search
The proposed local search procedure consists of a greedy acceptance criterion and six neighborhood

structures Ni, where i ∈ {1, . . . , 6}. N1 − N4 are adapted from the neighborhood structures introduced by
Cherkesly et al. (2015b). Those neighborhood structures have been redesigned according to the special
LIFO constraints of the LRP. Neighborhood structures N5 and N6 are adapted from the 2 − opt∗ exchange
heuristic proposed by Potvin & Rousseau (1995). To speed up the computation, the local search procedure
is used only at the end of each segment of iterations of the ALNS algorithm.

Souza et al. (2010) determined that a fixed exploration order of neighborhood structures cannot always
be effective for instances of different types. Enhanced results can be produced by a random neighbor-
hood structure exploration sequence (Subramanian et al., 2010), i.e., the randomized variable neighborhood
descent (RVND). In the RVND, an index setNL is initialized as {2, . . . , 6}. Then, a neighborhoodNi is ran-
domly selected and explored, where i ∈ {2, . . . , 6}. Following the searching for Ni, if the resulting solution
is better than the current one, thenN1 of the new solution is searched and resetNL = {2, . . . , 6}. Otherwise,
i is eliminated from NL and another element of NL is selected randomly. The RVND is terminated when
NL = ∅.

4.6.1. Intra-route neighborhood structure
This intra-route neighborhood exploits the relocation of a single request to reduce the objective value

of every route. According to the special LIFO constraint, the relocation of a pickup node and the related
delivery node cannot use the relocation moves introduced by Cherkesly et al. (2015b) directly.

Intra-route Single Request Relocation (SRR) Searching this neighborhood aims to improve the request
scheduling for every route via request relocation. The relocation of a request r includes removing the
request from current route and reinserting it into the best position. For each candidate location of r+, there
may exist more than one candidate locations of r− which should be checked, as shown in Fig.4. The best
relocation of requests in a route are recorded and, among them, the relocation corresponding to the largest
objective value decrement will be implemented. The search will continue until no objective value reduction
can be found by relocating requests for each route.

4.6.2. Inter-route neighborhood structures
There are five inter-route neighborhood structures, the relocation of a single request or group, the reloca-

tion of multiple groups, the partial routes cross, and the route reassignment. The following two acceptance
criteria are frequently used: the first improvement and best improvement. The first one stops the search as
soon as a better solution is found, whereas the second explores the entire neighborhood and accepts the
best neighbor. Let RVND-I and RVND-II denote the RVND algorithms associated with the two aforemen-
tioned criteria. If we choose best improvement as the acceptance criterion for an inter-route neighborhood
search, useful information will be dropped when several feasible improvements exist after searching Ni,
i ∈ {2, . . . , 5}. However, a better solution may not be generated by accepting all those moves w.r.t those
neighbors.

Let R = {r1, r2} and L = {ℓ1, ℓ2} denote the request and locomotive sets, respectively. To simplify the
description, we assume that r1 and r2 are identical empty requests and ℓ1 and ℓ2 are identical locomotives.
The current solution consists of transporting r1 by ℓ1 and r2 by ℓ2, respectively. Six conditions are satisfied:
(1) etℓ + tℓ+r+ < er

+, r ∈ R, ℓ ∈ L; (2) er
+ + 2sr+ < lr+, r ∈ R, ℓ ∈ L; (3) lr+ + tr+r− < er

−, r ∈ R, ℓ ∈ L; (4) er
− +

2sr− < lr−, r ∈ R, ℓ ∈ L; (5) lr−+2sr−+tr−ℓ− < ltℓ, r ∈ R, ℓ ∈ L; and (6) tℓ+1 r+1
+tr+1 r−1

+tr−1 ℓ−1 −tℓ+1 ℓ−1 > 0. (1)-(5) are

14

sufficient conditions that ensure the feasibility of transporting r1 and r2 together. Condition (6) ensures that
transporting r1 and r2 together will result in a better solution than the current one. Clearly, if r1 is removed
from ℓ1 and reinserted int ℓ2, there are two best neighbors. The first one is (ℓ1+, r1+, r2+, r2−, r1−, ℓ1−)
and (ℓ2+, ℓ2−), while the other one is to transport r1 and r2 in reverse order. Similarly, another two best
neighbors can be generated through the relocation of r2. If we accept two moves corresponding to the best
neighbor of r1 and r2, the new solution will transport r1 by ℓ2 and r2 by ℓ1. However, the new solution has
an equal objective value when compared to the current solution.

To avoid this situation, a greedy acceptance criterion as shown in Algorithm 3 is used to generate a new
solution for Ni, i ∈ {2, . . . , 5}. Let mℓℓ′ denote the objective value variation of a neighbor corresponding to
the best move between ℓ and ℓ′, where mℓℓ′ ∈ M|L|×|L| and ℓ, ℓ′ ∈ L. mℓℓ′ is initialized as +∞ if ℓ , ℓ′,
and 0 if ℓ = ℓ′. A locomotive set L′ is initialized as L. Each time, the smallest mℓℓ′ ∈ M|L|×|L| is selected,
where ℓ, ℓ′ ∈ L′. Then, the move corresponding to the selected neighbor is executed and ℓ, ℓ′ are removed
from L′. This process will continue until L′ is empty.

Algorithm 3: Greedy acceptance criterion
Input: Solution X, one of Ni, i ∈ {2, . . . , 5}
Output: New solution Xnew

1 Initialize Xnew ← X, L′ ← L, mℓℓ′ ← +∞, mℓℓ ← 0, ℓ, ℓ′ ∈ L
2 Explore Ni of X and updateM|L|×|L|

3 while |L′| > 0 do
4 Find the smallest mℓℓ′ inM|L|×|L|, ℓ, ℓ′ ∈ L′

5 Execute the corresponded operation of mℓℓ′ on Xnew

6 mℓℓ′ ← +∞
7 if ℓ = ℓ′ then L′ ← L′/{ℓ};
8 else L′ ← L′/{ℓ, ℓ′};
9 end

Inter-route Single Request Relocation (ISRR) An exploration of this neighborhood aims to decrease the
objective value of the current solution via the relocation of requests. Unlike the S RR, the removed request
is reinserted into another route. For all requests served by locomotive ℓ, the relocation of it from ℓ to ℓ′ are
checked, where ℓ, ℓ′ ∈ L. Then, the best relocation is recorded as a candidate neighbor and theM|L|×|L| is
updated accordingly. The new solution can be generated through Algorithm 3.

Inter-route Single Group Relocation (ISGR) This neighborhood is similar to the former one, except that
it works on a group of requests that are transported together in the current solution. Fig.6(a) illustrates the
relocation of a group (2+, 3+, 2−, 3−). Besides, the insertion of selected group must not destroy any group
in new route. Since every sub-path corresponding to a given group of requests has determined in current
solution, the IS GR neighborhood operation can save the time required to check the feasibility of the LIFO
rule, locomotive capacity, and incompatibility of requests. This can greatly improve the search efficiency at
the cost of losing partial search space.

Inter-route Multi-group Relocation (IMGR) The direct exchange of two groups in two routes will mostly
lead to infeasible solution. Therefore, this neighborhood entails removing one group from two routes and
relocating each group into the best position of another route. Fig.6(b) provides an example of the exchange
of two groups (2+, 5+, 5−, 2−) and (3+, 3−) as well as the relocation of (2+, 5+, 5−, 2−) in new routes. As
mentioned above, when compared with using requests as operation objects, the search space is reduced to
enable a reduction in computation time.

Inter-route Cross (IC) If we use the 2 − opt∗ exchange heuristic directly, the large number of candidate
partial paths will result in a considerably long computation time. Moreover, most exchanges will be infea-

15

1+ 1- l1-l1+Route 1

3+ 4-3- 4+ l2-l2+Route 2

1+ 1- l1-l1+New route 1

2+ 2- l2-l2+New route 2

3+

4-

3-

4+

(b)

1+ 2+ 2-1-Route

(a)

3+ 3-

New route

l1+

l2+

l1-

l2-

5-5+

2+ 2-5-5+

2+ 2-3+ 3- 4-4+

Fig. 6. Group relocation examples of inter-route neighborhood structures.

sible, owing to the violation of transportation constraints. Hence, we only check a restricted arc set of each
route, i.e., the arcs from a delivery node to a pickup node. Two routes corresponding to ℓ and ℓ′ are selected
(ℓ, ℓ′ ∈ L), each of them is broken into two sub-paths by removing an arc. The broken four sub-paths are
recombined as two new routes and then the destinations of two new routes are exchanged. As shown in
Fig.7, two arcs (1−, 2+) and (4−, 5+) are first selected and removed. Then two sub-paths (2+, . . . , l1−) and
(5+, . . . , l2−) are exchanged. Finally the end of the routes are exchanged to make sure that the origin and
destination of each route belong to the same locomotive.

1+ 2+ 3-1- l1-l1+Route 1 2-

4-

3+

4+ l2-l2+Route 2

1+ 1- l1-l1+New route 1

2+ 3- l2-l2+New route 2 2-

5-

3+

5+

4-4+

5+ 5-

Fig. 7. Example of the inter − route cross neighborhood structure.

Inter-route Route Reassignment (IRR) The aim of this operator is to redefine the assignment of locomo-
tives to the routes of a solution to reduce the total solution cost. Let p be the number of routes composing the
solution and q be the number of locomotives. For each route i, i = 1, . . . , p, and each potential locomotive
j, j = 1, . . . , q, we compute the route cost, say ci j, resulting from assigning locomotive j to route i. If the
resulting route is infeasible, cost ci j is set equal to infinity, i.e., ci j = +∞. Given the resulting cost matrix
[ci j], we then solve the corresponding assignment problem using the Hungarian algorithm to compute the
optimal assignment of the locomotives to the routes.

5. Computational experiments

Computational experiments were conducted to test the effectiveness and efficiency of the proposed
models and algorithms, using a 64-bit Windows 10 system with an Intel Core i7 3.40-GHz CPU and 16-GB
RAM. All the algorithms were implemented using the C++ programming language, and the IPs were solved
using CPLEX 12.10, with the default parameter settings.

16

5.1. Experimental data

The main characteristics of the production environment and actual transportation data used are summa-
rized as follows. The steel company that we studied has three BFs and two RSs. The four tapholes of each
BF are tapped in turn. Each RS can handle no more than two loaded TPCs at a time. The different BFs and
RSs are connected via tracks which are used by locomotives to tow the TPCs to their specified destinations.
Here, seven locomotives are available to transport TPCs. In practice, the routing decision for locomotives
is shift dependent. Generally, the three BFs tap the molten iron approximately 30 times per shift. For each
tapping, four transportation requests are generated: empty TPC from BA to BF, loaded TPC from BF to
BA, and from BA to RS, and empty TPC from RS to BA. Thus, the locomotives serve approximately 120
transportation requests per shift. The travel time between the BA and RS is approximately 10 minutes and
that between the BA and the three BFs is 3 to 20 minutes. For each transportation request, the service time
at the pickup and delivery locations is 2 minutes, and the time window at the pickup or delivery location
ranges from 15 to 20 minutes.

According to the actual data features mentioned above and the mathematical formulations, the main
factors affecting the complexity of the problem include the length of the scheduling horizon and the number
of transportation requests and locomotives. The data from the steel company were collected across 21 shifts,
over a period of one week. The number of requests during each shift ranges from 109 to 142. To further test
the performance robustness of the proposed ALNS algorithm, we generated random test datasets with more
diverse parameter configurations than those of the case study. For consistency with the actual scheduling,
the number of locomotives was set equal to seven for all the datasets. For one shift, we generated three
datasets LRP-Ks, with the number of requests K equal to 100, 120, and 150. Similarly, three datasets LRP-
Ks (K = 200, 240, and 300) and two datasets LRP-Ks (K = 360 and 450) were generated for two and three
shifts accordingly. To evaluate the extent to which the ALNS solution differs from the optimal one, five
relatively small datasets LRP-Ks (K = 20, 30, 40, 50, and 80) were also generated, some of which could be
optimally solved by CPLEX. For each dataset, 10 instances were randomly generated based on the actual
data. For the tuning of parameters, 11 instances indexed by LRP K# were additionally generated, where K
(20-450) is the number of requests.

5.2. Parameters tuning

There are 15 main user-controlled parameters of the ALNS algorithm, classified into three classes
(Demir et al., 2012; Sun et al., 2020b), as summarized in Table 1. The parameters in class I control the
selection of operators, whereas the class II parameters are related to the SA algorithm. Class III contains
the remaining parameters used in the removal and insertion operators. The parameter ce in Class IV is
the locomotive capacity when transporting empty requests together, while cl is the capacity for transport-
ing loaded requests together. The parameter-tuning method introduced by Ropke & Pisinger (2006a) was
adopted in this study. It modifies the parameter classes sequentially and individually to inspect their impact
on the quality of solutions, while maintaining the setting affording the best trade-off between solution qual-
ity and computational time. The ALNS algorithm was run ten times without the local search procedure for
each instance with one specific parameter combination. Note that the final choice in the parameter values
here may not be the optimal ones but can result in a good overall performance in these test runs.

The control parameters, π1, π2, and π3, of the first parameter class used in the roulette wheel mechanism
were tuned according to the settings introduced by Sun et al. (2020b). There are seven value combinations of
π1, π2, and π3. Here (1, 5, 3) was the best option, among the different combinations. This setting contradicts
the expectation that π1 ≥ π2 ≥ π3, which rewards the finding of the new best solution the most. However,
it can diversify the search of the ALNS algorithm. Fig.8 shows the behavior of the ALNS algorithm (with

17

Table 1
Values of parameters.

Class Notation Description Tuned value

I NI Total number of iterations 25000
NIS Number of iterations in a segment 100
π1 Score of finding a new best solution 1
π2 Score of finding a new solution better than the current solution 5
π3 Score of accepting a new solution worse than the current solution 3
ρ Roulette wheel mechanism parameter 0.1

II T org Initial temperature 100
cr Cooling rate 0.999

III ϕ1 First Shaw parameter 4
ϕ2 Second Shaw parameter 4
ϕ3 Third Shaw parameter 1
ϕ4 Fourth Shaw parameter 1
ϕ5 Fifth Shaw parameter 3
µ Destroy rate for removal operators 0.1
ϵ noise parameter 0.025

IV ce Locomotive capacity for transporting empty requests 4
cl Locomotive capacity for transporting loaded requests 2

local search procedure embedded) when solving LRP 200 01. On this instance, the objective value of the
best known solution (BKS) computed by the algorithm over 10 runs is equal to 5694. The variations of the
best, current, and new solutions over 25000 iterations are depicted in this figure.

Interestingly, for small-scale instances with 20 requests, the ALNS algorithm does not remain stable
when determining the optimal solution under the setting of µ (=0.1), However, it can determine the optimal
solution in each run when µ is increased. But for large-scale instances, e.g., instances with 450 requests, the
solution quality decreases along with an increment in µ. This confirms that it is not necessary to remove a
larger number of requests during the destroy solution phase (Ropke & Pisinger, 2006a). Detailed parameter-
tuning results are presented in Table 5 to Table 9, in the Online Supplement.

5.3. Performance of operators and the local search procedure

The detailed results of the ALNS algorithm and the local search procedure under various settings are
shown in Table 10 to Table 13, in the Online Supplement. Table 10 reports the performance of all the
removal operators during a single run of the ALNS algorithm for all test instances in LRP K#. For each
type of settings in Table 11 to Table 13, the ALNS algorithm or the local search procedure were run ten
times for all the test instances in LRP K#.

There are five rows in Table 10, i.e., S ingle, S um, Number, Best, Better, and Worse, denoting the time
taken for a single run, the total running time, the number of times the operator is selected, the number of
times the best solution is found, the number of times a better solution is found, and the number of times
a worse solution is found and accepted. Statistically, EDOR and RR perform the best in improving the
best solution and the current solution, respectively. As for the insertion operators, RS I exhibits the worst
performance. By contrast, the RI operators perform well but are time consuming. The operator FFI also
performs well in improving the best solution according to the computation time, as compared with RI 2.

To evaluate the performance of the removal and insertion operators, a setting was applied to the ALNS
algorithm, whereby one operator was disabled each time. As shown in Table 11, the ALNS algorithm
without an adaptive mechanism (LNS) is the fastest but featured the worst solution quality. The ALNS
algorithm with full machinery (FM) shows the opposite result. Evidently, the S R has the largest influence

18

5680

5690

5700

5710

5720

5730

5740

5750

5760

5770

5780

5790

5800

5810

5820

5830

5840

5850

5860
O

bj
ec

tiv
e

va
lu

es

Selected iterations

Best solution New solution Current solution BKS

Fig. 8. Objective values found by the ALNS algorithm for a 200-request instance.

on the solution quality, as compared with the other operators. Moreover, the operators proposed for block
re-optimization, from TOR to COR, also performs well. With regard to the insertion operators, RI 2 exhibits
largest influence on solution quality.

The performance of the local search procedure under various settings is reported in Table 12. For each
computation, a neighborhood structure is forbidden. Clearly, the IS RR has the largest influence on solution
quality, whereas IRR has the smallest influence on calculation time. Additionally, the local search procedure
with full machinery (column FM) performs the best in improving the objective value.

The performance of the local search procedure when using different neighbor acceptance criteria is
reported in Table 13. It describes the relative computational results of the ALNS algorithm without a
local search procedure, with RVND-I, with RVND-II, and with the local search procedure embedded, i.e.,
NONE, LS I , LS II , and LS new, respectively. The following results are reported: the best objective value
(Best), average objective value (Aver), average running time (Time), and deviations (DB(%) and DA(%))
compared to the best-known-solution (BKS).

The ALNS algorithm without a local search procedure has the shortest computation time but the worst
solution quality, with DB(%) and DA(%) of 0.16% and 0.38%, respectively. The ALNS algorithm with the
local search procedure embedded clearly performs the best. The average increment of calculation time is
approximately 10 s, whereas the aforementioned two deviations decrease to 0.01% and 0.09%, respectively.
Thus, it can be concluded that a good trade-off between solution quality and computation time is achieved
by the local search procedure.

19

Table 2
Results on actual data of 21 shifts.

Day |R| |RL| |RE |
OV WT MI TT L

TimeCPLEXLB ALNS A Gap(%) MM ALNS A Imp(%) MM ALNS A Imp(%)
1st 128 62 66 2810.00 3171.8 11.41 2451 2334.0 4.77 1439 837.8 41.78 21.71

134 67 67 3078.59 3307.2 6.91 2553 2437.8 4.51 1567 869.4 44.52 22.47
109 56 53 2353.47 2640.9 10.88 2001 1914.0 4.35 1206 726.9 39.73 14.60

2nd 142 70 72 3200.45 3489.9 8.29 2692 2578.0 4.23 1605 911.9 43.18 28.04
113 56 57 2737.12 2990.4 8.47 2374 2252.0 5.14 1370 738.4 46.10 17.00
118 59 59 2801.75 3028.7 7.49 2382 2299.0 3.48 1369 729.7 46.70 17.09

3rd 112 56 56 2282.97 2530.8 9.79 1888 1789.0 5.24 1237 741.8 40.03 17.26
135 67 68 2936.15 3218.5 8.77 2459 2331.0 5.21 1519 887.5 41.57 24.91
126 64 62 3419.61 3561.0 3.97 2787 2637.0 5.38 1563 924.0 40.88 22.07

4th 123 61 62 2844.77 3088.4 7.89 2438 2326.4 4.58 1378 762.0 44.70 19.96
130 65 65 2870.30 3144.9 8.73 2387 2291.0 4.02 1551 853.9 44.95 25.35
121 62 59 2740.84 2958.1 7.34 2284 2170.0 4.99 1315 788.1 40.07 20.82

5th 114 57 57 2466.82 2693.6 8.42 1968 1958.0 0.51 1327 735.6 44.57 16.04
128 64 64 3492.45 3571.0 2.20 2805 2691.0 4.06 1548 880.0 43.15 23.86
141 70 71 3580.59 3839.1 6.73 2846 2812.0 1.19 1891 1027.1 45.68 29.50

6th 129 66 63 3153.22 3265.4 3.44 2471 2335.8 5.47 1609 929.6 42.22 24.04
131 65 66 3801.94 3985.6 4.61 3676 3100.0 15.67 1508 885.6 41.27 25.38
124 62 62 2535.31 2843.2 10.83 2142 2019.0 5.74 1427 824.2 42.24 22.36

7th 123 61 62 2836.97 3062.5 7.36 2352 2242.0 4.68 1382 820.5 40.63 19.41
121 60 61 3325.76 3431.7 3.09 2715 2585.0 4.79 1504 846.7 43.70 21.31
120 58 62 2491.72 2801.8 11.07 2105 2009.0 4.56 1401 792.8 43.41 20.09

Average 125 62 63 2940.99 3172.6 7.30 2466 2338.6 4.89 1463 834.0 42.91 21.58

5.4. Computational results for actual instances

To verify the effectiveness of the proposed ALNS algorithm in practice, we conducted a set of experi-
ments based on the actual datasets collected from a large steel company in China. The results are compared
with the rule-based manual scheduling method (denoted as MM), currently used by the steel company that
motivated our study. This method is a type of greedy procedure. First, it sorts all the transportation requests
in a non-increasing order, according to the earliest pickup time at the pickup locations. Then, it allocates the
transportation requests sequentially to the earliest available locomotive. Table 2 shows the computational
results of the actual datasets, including the problem structure (the number of total requests |R|, the number
of loaded TPC requests |RL|, and the number of empty TPC requests |RE |), objective values OV , molten iron
waiting time of loaded TPCs (WT MI), and travel time of locomotives (TT L). The lower bounds found by
CPLEX based on three-index formulation are reported in the column CPLEXLB. It also presents the solu-
tions obtained via the ALNS algorithm (the average out of ten runs, i.e., ALNS A). It indicates the optimal
gap (Gap(%)) between the ALNS solution and the lower bound found by CPLEX. And the improvements
(Imp(%)) in waiting time of molten iron and travel time of locomotives when using the ALNS algorithm,
as compared to the manual method. Additionally, it reports the computation time of the ALNS algorithm.

As shown in Table 2, the average of the optimal gap is 7.30%. Even though the running time of CPLEX
was set to 24 hours, no feasible solution was obtained based on the three-index formulation. Besides that,
CPLEX cannot find any lower bound or feasible solution when using the group-based formulation. The
ALNS algorithm can, on average, improve the waiting time of molten iron in loaded TPCs by 4.89% and
the locomotive travel time by 42.91%. The decreased waiting time of the molten iron in loaded TPCs
implies that the temperature loss is reduced, which, in turn, reduces the energy consumption. The reduction
of locomotive travel time also implies an improvement in the locomotive operation efficiency. Moreover,
the computation time of the ALNS algorithm is less than 30 s, for all the instances; by contrast, the manual
method typically requires over an hour to generate a feasible solution. This implies that the proposed
algorithm is advantageous in terms of work efficiency.

20

5.5. Computational results for extensive instances

To evaluate the deviation between the ALNS solution and the optimal one, the ALNS algorithm and
CPLEX were tested on instances with sizes ranging from 20 to 100. We have mentioned earlier that the
planner of a steel company takes more than an hour to make a transportation plan for one shift. Therefore,
the upper bound 7200s was chosen as the running time limit of CPLEX. Additionally, the ALNS algorithm
was tested on large instances, as a performance evaluation. All the instances were solved ten times using
the ALNS algorithm. CPLEX cannot compute the lower bounds, based on the three-index and group-based
formulations, for several instances involving more than 100 requests. We, therefore, report the lower bounds
values only for instances involving up to 100 requests.

Table 3
Computational results for instances containing 20-50 requests.

Inst MM
CPLEXI CPLEXII ALNS f Imp(%)

Gap(%)
UB LB Time UB LB Time Best Aver T ime ImpM ImpC

LRP 20 01 678 605 605 453.30 605 605 2112.86 605 605 1.45 10.77 * *
LRP 20 02 868 836 836 227.23 836 836 224.39 836 836 1.56 3.69 * *
LRP 20 03 649 579 579 4245.75 579 579 1288.50 579 579 1.33 10.79 * *
LRP 20 04 732 645 645 5426.22 645 645 120.13 645 645 1.37 11.89 * *
LRP 20 05 657 598 598 2911.14 598 598 3711.64 598 598 1.34 8.98 * *
LRP 20 06 609 581 581 586.41 581 581 3614.59 581 581 1.39 4.60 * *
LRP 20 07 633 574 574 331.45 574 574 1322.08 574 574 1.35 9.32 * *
LRP 20 08 936 866 866 197.14 866 866 209.09 866 866 1.33 7.48 * *
LRP 20 09 802 709 709 265.78 709 709 1422.59 709 709 1.54 11.60 * *
LRP 20 10 615 528 528 514.13 528 528 2068.73 528 528 1.31 14.15 * *

Average 717.9 652.1 652.1 1515.86 652.1 652.1 1609.46 652.1 652.1 1.40 9.32 * *
LRP 30 01 1054 942 932.38 7200* 941 937.23 7200* 941 941 1.85 10.72 * 0.40
LRP 30 02 1176 1011 1003.00 7200* 1011 1011.00 3289.55 1011 1011 1.94 14.03 * *
LRP 30 03 1037 864 859.00 7200* 888 860.00 7200* 864 864 1.92 16.68 * 0.46
LRP 30 04 1017 919 904.00 7200* 919 897.00 7200* 919 919 1.93 9.64 * 1.63
LRP 30 05 1154 955 955.00 5972.34 955 955.00 4883.25 955 955 1.80 17.24 * *
LRP 30 06 1107 946 938.50 7200* 946 946.00 6294.23 946 946 2.05 14.54 * *
LRP 30 07 1089 971 971.00 692.45 971 971.00 699.28 971 971 1.78 10.84 * *
LRP 30 08 1318 1204 1204.00 5304.55 1204 1204.00 717.05 1204 1204 2.17 8.65 * *
LRP 30 09 988 826 826.00 1400.66 826 826.00 1288.95 826 826 1.87 16.40 * *
LRP 30 10 981 881 876.00 7200* 887 875.07 7200* 881 881 2.09 10.19 * 0.57

Average 1092.1 951.9 946.89 5657 954.8 948.23 4597.23 951.8 951.8 1.94 12.89 * 0.29
LRP 40 01 1206 1071 1071.00 4975.14 1071 1070.92 1935.17 1071 1071 3.45 11.19 * *
LRP 40 02 1402 1188 1081.01 7200* — 1156.50 7200* 1176 1176 3.10 16.12 1.01 1.66
LRP 40 03 1270 1050 1035.00 7200* 1084 1041.00 7200* 1050 1050 3.38 17.32 * 0.86
LRP 40 04 1526 1312 1300.50 7200* 1312 1290.50 7200* 1312 1312 2.97 14.02 * 0.88
LRP 40 05 1318 1171 1169.00 7200* 1171 1171.00 7119.02 1171 1171 3.05 11.15 * *
LRP 40 06 1333 1117 1105.56 7200* — 1110.00 7200* 1117 1117 3.19 16.20 * 0.63
LRP 40 07 1273 1057 1051.00 7200* — 1036.67 7200* 1057 1057 3.09 16.97 * 0.57
LRP 40 08 1320 1226 1222.00 7200* 1226 1225.89 2737.41 1226 1226 3.30 7.12 * *
LRP 40 09 1544 1259 1254.40 7200* 1259 1242.00 7200* 1259 1259 3.54 18.46 * 0.37
LRP 40 10 1184 1025 1008.15 7200* 1023 1020.00 7200* 1023 1023 3.19 13.60 * 0.29

Average 1337.6 1147.6 1129.76 6977.51 1163.71 1136.15 6219.16 1146.2 1146.2 3.23 14.22 0.10 0.53
LRP 50 01 1706 1460 1413.17 7200* — 1432.50 7200* 1458 1458.1 4.21 14.53 0.13 1.76
LRP 50 02 1718 1486 1367.24 7200* — 1421.00 7200* 1434 1435.9 3.89 16.42 3.37 1.04
LRP 50 03 1812 — 1399.36 7200* 1477 1440.50 7200* 1454 1454.4 4.55 19.74 1.53 0.96
LRP 50 04 1655 1328 1257.88 7200* 1320 1291.21 7200* 1305 1305.6 4.36 21.11 1.09 1.10
LRP 50 05 1547 1338 1288.59 7200* — 1308.50 7200* 1331 1331.5 4.49 13.93 0.49 1.73
LRP 50 06 1695 1405 1325.69 7200* — 1319.00 7200* 1388 1388.0 4.53 18.11 1.21 4.49
LRP 50 07 1541 1343 1201.66 7200* — — 7200* 1285 1285.2 3.90 16.60 4.30 6.50
LRP 50 08 1569 — 1233.41 7200* 1310 1292.00 7200* 1302 1302.5 3.81 16.99 0.57 0.81
LRP 50 09 1704 1475 1438.08 7200* 1465 1446.00 7200* 1465 1465.0 4.03 14.03 0.00 1.30
LRP 50 10 1649 1310 1262.25 7200* — 1294.33 7200* 1303 1303.7 4.32 20.94 0.48 0.72

Average 1659.6 1393.1 1318.73 7200* 1393.0 1360.56 7200* 1372.5 1373.0 4.21 17.24 1.32 2.01

Table 3 and Table 4 report the comparison between the proposed algorithm (ALNS f) and CPLEX
in solving instances with 20-50 and 80-100 requests, respectively. Columns ImpM and ImpC in Table
3 report the percentage improvements of the ALNS solution compared to the manual method (MM) and
the best upper bound (UB) of CPLEX, which are respectively calculated as 100(MM − Aver)/MM and
100(UB−Aver)/UB. To further investigate the solution quality of the proposed algorithm, the optimal gaps
of the ALNS solution compared to the lower bounds (LB) computed by CPLEX are presented in column

21

Gap(%), calculated as 100(Best−LB)/Best. Since CPLEX cannot determine any upper bound for instances
with sizes larger than 50, only the optimal gaps are reported in Table 4. These bounds found via CPLEX are
based on the three-index (CPLEXI) and group-based formulation (CPLEXII). Note that the lower or upper
bound used for comparison is the better one of bounds found by CPLEX, based on those two formulations.

The results presented in Table 3 indicate that both the ALNS algorithm and CPLEX can optimally
solve instances with 20 requests. However, the average computation time for the ALNS algorithm, i.e.,
1.4 s, is negligible when compared to that for CPLEX. CPLEX cannot solve to optimality all instances of
groups LRP 30 and LRP 40, and for those instances that can be optimally solved by CPLEX, the ALNS
algorithm can also find corresponding optimal solutions. Significantly, deviations between the best and
average objective values of instances with sizes less than 50 are equal. Moreover, there is no guarantee that
CPLEX can determine a feasible solution within 7200 s for instances with 50 requests. Further, the solution
quality of the ALNS algorithm is better than that of CPLEX, based on the percentage improvements of
1.32%. As shown in Table 3 and Table 4, compared to the manual method, with the increment of instance
scale, the improvement upon solution quality of the ALNS algorithm gradually raises and tends to be stable.

Table 4
Computational results for instances containing 80 and 100 requests.

Inst MM
CPLEXI CPLEXII ALNS f Gap(%) ImpM

UB LB Time UB LB Time Best Aver T ime
LRP 80 01 2947 — 2475.49 7200* — — 7200* 2551 2553.2 9.98 3.04 13.44
LRP 80 02 2962 — 2300.87 7200* — — 7200* 2439 2440.2 10.47 5.71 17.66
LRP 80 03 2610 — 1915.97 7200* — — 7200* 2122 2124.3 9.48 9.81 18.70
LRP 80 04 2850 — 2281.60 7200* — 2347.0 7200* 2398 2399.1 9.71 2.17 15.86
LRP 80 05 2775 — 2167.97 7200* — — 7200* 2323 2324.0 10.60 6.71 16.29
LRP 80 06 2550 — 1901.70 7200* — 2077.5 7200* 2090 2090.3 10.03 0.61 18.04
LRP 80 07 2705 — 1969.30 7200* — — 7200* 2177 2178.6 9.32 9.61 19.52
LRP 80 08 2818 — 2110.86 7200* — — 7200* 2287 2288.6 10.09 7.77 18.84
LRP 80 09 2699 — 2147.26 7200* — — 7200* 2328 2329.3 9.91 7.82 13.75
LRP 80 10 2800 — 2349.75 7200* — — 7200* 2458 2458.1 9.47 4.41 12.21

Average 2771.6 — 2162.08 7200* — 2212.3 7200* 2317.3 2318.6 9.91 5.77 16.43
LRP 100 01 3566 — 2520.57 7200* — — 7200* 2829 2831.6 16.44 10.98 20.67
LRP 100 02 3602 — 2623.43 7200* — — 7200* 2884 2884.8 15.36 9.06 19.93
LRP 100 03 3627 — 2658.36 7200* — — 7200* 2973 2973.2 15.81 10.59 18.03
LRP 100 04 3362 — 2571.30 7200* — 2824 7200* 2838 2838.0 15.48 0.49 15.59
LRP 100 05 3393 — 2514.79 7200* — — 7200* 2796 2800.6 13.61 10.21 17.60
LRP 100 06 3624 — 2675.63 7200* — — 7200* 2973 2974.8 15.92 10.06 17.96
LRP 100 07 3351 — 2455.83 7200* — — 7200* 2665 2666.7 13.60 7.91 20.47
LRP 100 08 3499 — 2695.33 7200* — — 7200* 2977 2978.8 15.56 9.52 14.92
LRP 100 09 3238 — 2482.97 7200* — — 7200* 2704 2710.1 13.49 8.38 16.49
LRP 100 10 3806 — 2785.31 7200* — — 7200* 3081 3083.8 15.65 9.68 19.05

Average 3506.8 — 2598.35 7200* — 2824 7200* 2872 2874.2 15.09 8.69 18.07

Table 3 and Table 4 show that the lower bound of the group-based formulation, thanks to the definition
of its decision variables, is generally better than the one from the three-index formulation, especially for
instances with requests more than 40 requests. However, due to the larger size of the group-based formula-
tion, CPLEX cannot always compute lower bounds for instances with more than 40 requests. Table 3 shows
that the ALNS solved to optimality several instances involving up to 40 requests and that the maximum
average optimality gap of the ALNS is equal to about 2.0 per cent, hereby certifying its effectiveness.

The results of Table 4 shows that more significant optimality gaps are computed on instances involving
80 and 100 requests, with the maximum average optimality gap equal to 8.7 per cent. This is probably due
to the deterioration of the lower bound computed by CPLEX on larger instances, for which CPLEX reached
the imposed time limit for all the instances.

To further evaluate the stability and performance of the ALNS algorithm, we tested instances with sizes

22

ranging from 120 to 450. Detailed computational results of the ALNS algorithm, including instances with
sizes ranging from 50 to 100, are reported in Table 14 of the Online Supplement. Deviations between the
best and average objective values vary from 0-0.23% as shown in column D(%). Moreover, the value of
0.06%, i.e., the average of the deviations, is significantly small and thus verifies the stability of the proposed
algorithm.

6. Conclusions

Herein, we studied a new locomotive routing problem in which a homogeneous fleet of locomotives with
different start and end locations is available, and a set of heterogeneous requests must be routed subject to
time windows, capacity, incompatibility, and LIFO constraints. Both three-index and group-based formula-
tions were established for this problem. An ALNS algorithm that includes adapted and novel operators was
designed to generate high-quality solutions. Besides, a local search procedure equipped with adapted neigh-
borhood structures and greedy acceptance criterion was designed to further improve the solution quality of
the ALNS algorithm.

The comparison results show that the proposed algorithm significantly outperforms CPLEX in both
computational time and solution quality. The ALNS algorithm takes less than one percent of the time to
obtain higher quality solutions compared with the current method used by steel companies. The stability of
our algorithm was verified by the small deviations between the best and average objective values, for all the
test instances.

It should be noted that real-world locomotive routing poses several challenging extensions to this prob-
lem. The steel company mentioned herein does not involve a pretreatment process. However, in other
companies, a pretreatment referred to as desulfurization may be conducted before unloading the molten
iron. Integrating this additional constraint would render the studied LRP as a more challenging one. Our
future work will, therefore, be directed toward considering these extensions and the other important features
associated with this class of problems.

Acknowledgments

This work was supported by the Major Program of National Natural Science Foundation of China
(72192830, 72192835), the National Natural Science Foundation of China (72102034, 71672032), and
the 111 Project (B16009). The authors are also grateful to associate editor and three anonymous referees
for their meticulous reviews, which have greatly improved the content and presentation of this paper.

References

Alyasiry, A. M., Forbes, M., & Bulmer, M. (2019). An Exact Algorithm for the Pickup and Delivery Problem with Time Windows
and Last-in-First-out Loading. Transportation Science, 53, 1695–1705. doi:10.1287/trsc.2019.0905.

Baldacci, R., Battarra, M., & Vigo, D. (2008). Routing a Heterogeneous Fleet of Vehicles. In B. Golden, S. Raghavan, &
E. Wasil (Eds.), The Vehicle Routing Problem: Latest Advances and New Challenges (pp. 3–27). Boston, MA: Springer US
volume 43. URL: http://link.springer.com/10.1007/978-0-387-77778-8_1. doi:10.1007/978-0-387-77778-8_
1 iSSN: 1387-666X Series Title: Operations Research/Computer Science Interfaces.

Baldacci, R., & Mingozzi, A. (2009). A unified exact method for solving different classes of vehicle routing problems. Mathemat-
ical Programming, 120, 347–380. doi:10.1007/s10107-008-0218-9.

Baldacci, R., Mingozzi, A., & Roberti, R. (2012). Recent exact algorithms for solving the vehicle routing problem under capacity
and time window constraints. European Journal of Operational Research, 218, 1–6. URL: https://linkinghub.elsevier.
com/retrieve/pii/S0377221711006692. doi:10.1016/j.ejor.2011.07.037.

23

http://dx.doi.org/10.1287/trsc.2019.0905
http://link.springer.com/10.1007/978-0-387-77778-8_1
http://dx.doi.org/10.1007/978-0-387-77778-8_1
http://dx.doi.org/10.1007/978-0-387-77778-8_1
http://dx.doi.org/10.1007/s10107-008-0218-9
https://linkinghub.elsevier.com/retrieve/pii/S0377221711006692
https://linkinghub.elsevier.com/retrieve/pii/S0377221711006692
http://dx.doi.org/10.1016/j.ejor.2011.07.037

Battarra, M., Erdoǧan, G., Laporte, G., & Vigo, D. (2010). The Traveling Salesman Problem with Pickups, Deliveries, and
Handling Costs. Transportation Science, 44, 383–399. doi:10.1287/trsc.1100.0316.

Benavent, E., Landete, M., Mota, E., & Tirado, G. (2015). The multiple vehicle pickup and delivery problem with LIFO constraints.
European Journal of Operational Research, 243, 752–762. doi:10.1016/j.ejor.2014.12.029.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., & Laporte, G. (2007). Static pickup and delivery problems: a classification scheme
and survey. TOP, 15, 1–31. doi:10.1007/s11750-007-0009-0.

Cheang, B., Gao, X., Lim, A., Qin, H., & Zhu, W. (2012). Multiple pickup and delivery traveling salesman problem with last-
in-first-out loading and distance constraints. European Journal of Operational Research, 223, 60–75. doi:10.1016/j.ejor.
2012.06.019.

Chen, C., Demir, E., & Huang, Y. (2021). An adaptive large neighborhood search heuristic for the vehicle routing problem with
time windows and delivery robots. European Journal of Operational Research, 294, 1164–1180. doi:10.1016/j.ejor.2021.
02.027.

Cherkesly, M., Desaulniers, G., Irnich, S., & Laporte, G. (2016). Branch-price-and-cut algorithms for the pickup and delivery
problem with time windows and multiple stacks. European Journal of Operational Research, 250, 782–793. doi:10.1016/j.
ejor.2015.10.046.

Cherkesly, M., Desaulniers, G., & Laporte, G. (2015a). Branch-Price-and-Cut Algorithms for the Pickup and Delivery Problem
with Time Windows and Last-in-First-Out Loading. Transportation Science, 49, 752–766. doi:10.1287/trsc.2014.0535.

Cherkesly, M., Desaulniers, G., & Laporte, G. (2015b). A population-based metaheuristic for the pickup and delivery problem
with time windows and LIFO loading. Computers & Operations Research, 62, 23–35. doi:10.1016/j.cor.2015.04.002.

Cherkesly, M., & Gschwind, T. (2022). The pickup and delivery problem with time windows, multiple stacks, and handling
operations. European Journal of Operational Research, 301(2), 647–666. doi:10.1016/j.ejor.2021.11.021.

Cordeau, J.-F., Iori, M., Laporte, G., & Salazar González, J. J. (2010). A branch-and-cut algorithm for the pickup and delivery
traveling salesman problem with LIFO loading. Networks, 55, 46–59. doi:10.1002/net.20312.

Costa, L., Contardo, C., & Desaulniers, G. (2019). Exact Branch-Price-and-Cut Algorithms for Vehicle Routing. Transportation
Science, 53, 946–985. doi:10.1287/trsc.2018.0878.

Demir, E., Bektaş, T., & Laporte, G. (2012). An adaptive large neighborhood search heuristic for the Pollution-Routing Problem.
European Journal of Operational Research, 223, 346–359. doi:10.1016/j.ejor.2012.06.044.

Deng, M., Inoue, A., & Kawakami, S. (2011). Optimal path planning for material and products transfer in steel works using aco.
In The 2011 International Conference on Advanced Mechatronic Systems (pp. 47–50). Zhengzhou, China: IEEE.

Franceschetti, A., Demir, E., Honhon, D., Van Woensel, T., Laporte, G., & Stobbe, M. (2016). A metaheuristic for the time-
dependent pollution-routing problem. European Journal of Operational Research, 259(3), 972–991.

Geiger, M. J., Kletzander, L., & Musliu, N. (2019). Solving the Torpedo Scheduling Problem. Journal of Artificial Intelligence
Research, 66, 1–32. doi:10.1613/jair.1.11303.

Gendreau, M., & Potvin, J.-Y. (Eds.) (2019). Handbook of Metaheuristics volume 272 of International Series in Operations
Research & Management Science. Cham: Springer International Publishing. doi:10.1007/978-3-319-91086-4.

Goldwaser, A., & Schutt, A. (2018). Optimal Torpedo Scheduling. Journal of Artificial Intelligence Research, 63, 955–986.
doi:10.1613/jair.1.11268.

Harbaoui Dridi, I., Ben Alaı̈a, E., Borne, P., & Bouchriha, H. (2020). Optimisation of the multi-depots pick-up and delivery
problems with time windows and multi-vehicles using PSO algorithm. International Journal of Production Research, 58,
4201–4214. doi:10.1080/00207543.2019.1650975.

Hornstra, R. P., Silva, A., Roodbergen, K. J., & Coelho, L. C. (2020). The vehicle routing problem with simultaneous pickup and
delivery and handling costs. Computers & Operations Research, 115, 104858. doi:10.1016/j.cor.2019.104858.

Huang, H., Chai, T., Luo, X., Zheng, B., & Wang, H. (2011). Two-Stage Method and Application for Molten Iron Scheduling
Problem between Iron-Making Plants and Steel-Making Plants. IFAC Proceedings Volumes, 44, 9476–9481. doi:10.3182/
20110828-6-IT-1002.01373.

Kikuchi, J., Konishi, M., & Imai, J. (2008). Transfer planning of molten metals in steel worksby decentralized agent. Memoirs of
the Faculty of Engineering, Okayama University, 42, 60–70.

Kletzander, L., & Musliu, N. (2017). A Multi-stage Simulated Annealing Algorithm for the Torpedo Scheduling Problem. In
D. Salvagnin, & M. Lombardi (Eds.), International Conference on AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (pp. 344–358). Padua, Italy: Springer, Cham. doi:10.1007/978-3-319-59776-8_28.

Li, J.-q., Pan, Q.-k., & Duan, P.-y. (2016a). An Improved Artificial Bee Colony Algorithm for Solving Hybrid Flexible Flowshop
With Dynamic Operation Skipping. IEEE Transactions on Cybernetics, 46, 1311–1324. doi:10.1109/TCYB.2015.2444383.

Li, Y., Chen, H., & Prins, C. (2016b). Adaptive large neighborhood search for the pickup and delivery problem with time windows,
profits, and reserved requests. European Journal of Operational Research, 252, 27–38. doi:doi:10.1016/j.ejor.2015.12.
032.

Li, Y., Lim, A., Oon, W.-C., Qin, H., & Tu, D. (2011). The tree representation for the pickup and delivery traveling salesman

24

http://dx.doi.org/10.1287/trsc.1100.0316
http://dx.doi.org/10.1016/j.ejor.2014.12.029
http://dx.doi.org/10.1007/s11750-007-0009-0
http://dx.doi.org/10.1016/j.ejor.2012.06.019
http://dx.doi.org/10.1016/j.ejor.2012.06.019
http://dx.doi.org/10.1016/j.ejor.2021.02.027
http://dx.doi.org/10.1016/j.ejor.2021.02.027
http://dx.doi.org/10.1016/j.ejor.2015.10.046
http://dx.doi.org/10.1016/j.ejor.2015.10.046
http://dx.doi.org/10.1287/trsc.2014.0535
http://dx.doi.org/10.1016/j.cor.2015.04.002
http://dx.doi.org/10.1016/j.ejor.2021.11.021
http://dx.doi.org/10.1002/net.20312
http://dx.doi.org/10.1287/trsc.2018.0878
http://dx.doi.org/10.1016/j.ejor.2012.06.044
http://dx.doi.org/10.1613/jair.1.11303
http://dx.doi.org/10.1007/978-3-319-91086-4
http://dx.doi.org/10.1613/jair.1.11268
http://dx.doi.org/10.1080/00207543.2019.1650975
http://dx.doi.org/10.1016/j.cor.2019.104858
http://dx.doi.org/10.3182/20110828-6-IT-1002.01373
http://dx.doi.org/10.3182/20110828-6-IT-1002.01373
http://dx.doi.org/10.1007/978-3-319-59776-8_28
http://dx.doi.org/10.1109/TCYB.2015.2444383
http://dx.doi.org/doi:10.1016/j.ejor.2015.12.032
http://dx.doi.org/doi:10.1016/j.ejor.2015.12.032

problem with LIFO loading. European Journal of Operational Research, 212, 482–496. doi:10.1016/j.ejor.2011.02.008.
Liu, F., Gui, M., Yi, C., & Lan, Y. (2019). A Fast Decomposition and Reconstruction Framework for the Pickup and Delivery

Problem With Time Windows and LIFO Loading. IEEE Access, 7, 71813–71826. doi:10.1109/ACCESS.2019.2920444.
Liu, Y., & Wang, G. (2015). The Mix Integer Programming Model for Torpedo Car Scheduling in Iron and Steel Industry:.

Bangkok, Thailand. doi:10.2991/cisia-15.2015.199.
Lübbecke, M. E., & Zimmermann, U. T. (2003). Engine Routing and Scheduling at Industrial In-Plant Railroads. Transportation

Science, 37, 183–197. doi:10.1287/trsc.37.2.183.15251.
Moradi Afrapoli, A., & Askari-Nasab, H. (2019). Mining fleet management systems: a review of models and algorithms. Interna-

tional Journal of Mining, Reclamation and Environment, 33, 42–60. doi:10.1080/17480930.2017.1336607.
Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008). A survey on pickup and delivery problems: Part I: Transportation between

customers and depot. Journal für Betriebswirtschaft, 58, 21–51. doi:10.1007/s11301-008-0033-7.
Peng, B., Zhang, Y., Lü, Z., Cheng, T., & Glover, F. (2020). A learning-based memetic algorithm for the multiple vehicle pickup and

delivery problem with LIFO loading. Computers & Industrial Engineering, 142, 106241. doi:10.1016/j.cie.2019.106241.
Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers & Operations Research, 34,

2403–2435. doi:10.1016/j.cor.2005.09.012.
Piu, F., Prem Kumar, V., Bierlaire, M., & Speranza, M. (2015). Introducing a preliminary consists selection in the locomotive

assignment problem. Transportation Research Part E: Logistics and Transportation Review, 82, 217–237. doi:10.1016/j.
tre.2015.07.003.

Pollaris, H., Braekers, K., Caris, A., Janssens, G. K., & Limbourg, S. (2015). Vehicle routing problems with loading constraints:
state-of-the-art and future directions. OR Spectrum, 37, 297–330. doi:10.1007/s00291-014-0386-3.

Potvin, J.-Y., & Rousseau, J.-M. (1995). An exchange heuristic for routeing problems with time windows. Journal of the Opera-
tional Research Society, 46, 1433–1446. doi:https://doi.org/10.1057/jors.1995.204.

Ropke, S., & Pisinger, D. (2006a). An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with
Time Windows. Transportation Science, 40, 455–472. doi:10.1287/trsc.1050.0135.

Ropke, S., & Pisinger, D. (2006b). A unified heuristic for a large class of Vehicle Routing Problems with Backhauls. European
Journal of Operational Research, 171, 750–775. doi:10.1016/j.ejor.2004.09.004.

Souza, M., Coelho, I., Ribas, S., Santos, H., & Merschmann, L. (2010). A hybrid heuristic algorithm for the open-pit-mining
operational planning problem. European Journal of Operational Research, 207, 1041–1051. doi:10.1016/j.ejor.2010.05.
031.

Subramanian, A., Drummond, L., Bentes, C., Ochi, L., & Farias, R. (2010). A parallel heuristic for the Vehicle Routing Problem
with Simultaneous Pickup and Delivery. Computers & Operations Research, 37, 1899–1911. doi:10.1016/j.cor.2009.10.
011.

Sun, D., Meng, Y., Tang, L., Liu, J., Huang, B., & Yang, J. (2020a). Storage space allocation problem at inland bulk material
stockyard. Transportation Research Part E: Logistics and Transportation Review, 134, 101856. doi:10.1016/j.tre.2020.
101856.

Sun, P., Veelenturf, L. P., Hewitt, M., & Van Woensel, T. (2020b). Adaptive large neighborhood search for the time-dependent
profitable pickup and delivery problem with time windows. Transportation Research Part E: Logistics and Transportation
Review, 138, 101942. doi:10.1016/j.tre.2020.101942.

Tang, L., Liu, J., Rong, A., & Yang, Z. (2001). A review of planning and scheduling systems and methods for integrated steel
production. European Journal of Operational Research, 133, 1–20. doi:10.1016/S0377-2217(00)00240-X.

Tang, L., & Meng, Y. (2021). Data analytics and optimization for smart industry. Frontiers of Engineering Management, 8,
157–171. doi:https://doi.org/10.1007/s42524-020-0126-0.

Tang, L., Wang, G., & Liu, J. (2007). A branch-and-price algorithm to solve the molten iron allocation problem in iron and steel
industry. Computers & Operations Research, 34, 3001–3015. doi:10.1016/j.cor.2005.11.010.

Tang, L., Zhao, Y., & Liu, J. (2014). An Improved Differential Evolution Algorithm for Practical Dynamic Scheduling in
Steelmaking-Continuous Casting Production. IEEE Transactions on Evolutionary Computation, 18, 209–225. doi:10.1109/
TEVC.2013.2250977.

Veenstra, M., Cherkesly, M., Desaulniers, G., & Laporte, G. (2017a). The pickup and delivery problem with time windows and
handling operations. Computers & Operations Research, 77, 127–140. doi:10.1016/j.cor.2016.07.014.

Veenstra, M., Roodbergen, K. J., Vis, I. F., & Coelho, L. C. (2017b). The pickup and delivery traveling salesman problem with
handling costs. European Journal of Operational Research, 257, 118–132. doi:10.1016/j.ejor.2016.07.009.

Wang, G., & Tang, L. (2007). A Column Generation for Locomotive Scheduling Problem in Molten Iron Transportation. In 2007
IEEE International Conference on Automation and Logistics (pp. 2227–2233). Jinan, China: IEEE. doi:10.1109/ICAL.2007.
4338946.

Wei, L., Qin, H., Zhu, W., & Wan, L. (2015). A study of perturbation operators for the pickup and delivery traveling salesman
problem with LIFO or FIFO loading. Journal of Heuristics, 21, 617–639. doi:10.1007/s10732-015-9293-2.

25

http://dx.doi.org/10.1016/j.ejor.2011.02.008
http://dx.doi.org/10.1109/ACCESS.2019.2920444
http://dx.doi.org/10.2991/cisia-15.2015.199
http://dx.doi.org/10.1287/trsc.37.2.183.15251
http://dx.doi.org/10.1080/17480930.2017.1336607
http://dx.doi.org/10.1007/s11301-008-0033-7
http://dx.doi.org/10.1016/j.cie.2019.106241
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.1016/j.tre.2015.07.003
http://dx.doi.org/10.1016/j.tre.2015.07.003
http://dx.doi.org/10.1007/s00291-014-0386-3
http://dx.doi.org/https://doi.org/10.1057/jors.1995.204
http://dx.doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/10.1016/j.ejor.2004.09.004
http://dx.doi.org/10.1016/j.ejor.2010.05.031
http://dx.doi.org/10.1016/j.ejor.2010.05.031
http://dx.doi.org/10.1016/j.cor.2009.10.011
http://dx.doi.org/10.1016/j.cor.2009.10.011
http://dx.doi.org/10.1016/j.tre.2020.101856
http://dx.doi.org/10.1016/j.tre.2020.101856
http://dx.doi.org/10.1016/j.tre.2020.101942
http://dx.doi.org/10.1016/S0377-2217(00)00240-X
http://dx.doi.org/https://doi.org/10.1007/s42524-020-0126-0
http://dx.doi.org/10.1016/j.cor.2005.11.010
http://dx.doi.org/10.1109/TEVC.2013.2250977
http://dx.doi.org/10.1109/TEVC.2013.2250977
http://dx.doi.org/10.1016/j.cor.2016.07.014
http://dx.doi.org/10.1016/j.ejor.2016.07.009
http://dx.doi.org/10.1109/ICAL.2007.4338946
http://dx.doi.org/10.1109/ICAL.2007.4338946
http://dx.doi.org/10.1007/s10732-015-9293-2

Xu, X., Li, C.-L., & Xu, Z. (2018). Integrated train timetabling and locomotive assignment. Transportation Research Part B:
Methodological, 117, 573–593. doi:10.1016/j.trb.2018.09.015.

Online Supplement Material

I. Group-based mathematical formulation

The group-based formulation is adapted from the pattern or group-based formulation (Lübbecke & Zim-
mermann (2003) and Wang & Tang (2007)). By adding to the principle of group generation, the adapted
model differs from the previous ones in terms of its objective function and the operation time window con-
straints for requests in a group. The latter is caused by a variation of the locomotive capacity for transporting
requests of different types. The new notions used in this formulation are introduced, as follows.

Let g ∈ G denote a group of requests (of one request or more) that can be transported together by a
locomotive. G is the set of all feasible groups and includes four subsets, Gm, where m ∈ M and M =

{1, 2, 3, 4}. The subscript m indicates the number of requests included in an element of the related group
set. Evidently, if a group g contains three or four requests, then ∀r ∈ g, r ∈ RE . Each request r ∈ R is
assigned a group set Gr with every element containing r. A feasible group must satisfy the condition that
a locomotive exists, such that it can execute all pickup and delivery operations without violating the time
window constraints. Furthermore, the capacity constraints, the incompatibility constraints, and the LIFO
rule should be satisfied by each group. Each group g ∈ G is associated with a set ϑ+g (ϑ−g), where the element
in ϑ+g (ϑ−g) is the request group or the locomotive origin (or destination), which can be a feasible predecessor
(or successor) of g. Incidentally, the successor (predecessor) set of ℓ+ (ℓ−) is ϑ−ℓ+ (ϑ+ℓ−). The service time of
the ith operation (pickup or delivery) in group g is denoted by sgi . Let [egi , lgi] be the time window of the
ith operation in group g.

Note that the sum of the travel time between the ordered pickup and the delivery locations of group g
is a constant, Dg. Hence, a route consisting of groups can be converted into a route in graph G. Therefore,
the calculation of the molten iron waiting time is the same as in the three-index formulation. Considering
the service start time of a group of requests (BA→RS), once the visiting time of the delivery locations are
known, the total molten iron waiting time of this group can be calculated using equation (1), as described
in Section 3. Here, W(Tg1) is the molten iron waiting time of group g, where Tg1 is the service start time of
g, which determines the visiting time of the delivery locations.

The decision variables used in the group-based formulation are as follows:

Tgi : the service start time of the ith operation in group g;
xℓgd ∈ {0, 1}: equals 1 if ℓ visits group g and group d successively and 0, otherwise;
xℓ
ℓ+g ∈ {0, 1}: equals 1 if g is the first group visited by ℓ and 0, otherwise;

xℓgℓ− ∈ {0, 1}: equals 1 if g is the last group visited by ℓ and 0, otherwise;
W(Tg1): the total molten iron waiting time of group g with respect to its service start time Tg1 .

The group-based formulation is then obtained as follows.

min
∑
ℓ∈L

∑
r∈RL1

∑
g∈Gr

∑
d∈ϑ−g

xℓgdW(Tg1) +
∑
ℓ∈L

∑
g∈G

∑
d∈ϑ−g

xℓgdDg +
∑
ℓ∈L

∑
g∈G∪ℓ+

∑
d∈G∪ℓ−

xℓgdtgd (18)

s.t.
∑

g∈G∪ℓ−
xℓℓ+g =

∑
g∈G∪ℓ+

xℓgℓ− = 1,∀ℓ ∈ L (19)∑
d∈ϑ+g

xℓdg −
∑
d∈ϑ−g

xℓgd = 0,∀g ∈ G, ℓ ∈ L (20)

26

http://dx.doi.org/10.1016/j.trb.2018.09.015

∑
ℓ∈L

∑
g∈Gr

∑
d∈ϑ−g

xℓgd = 1,∀r ∈ R (21)

Tgi + sgi + tgigi+1 + (
∑
d∈ϑ−g

xℓgd − 1)η ≤ Tgi+1 ,∀g ∈ Gm,m ∈ M, i = 1, . . . , 2m − 1, ℓ ∈ L (22)

Tg2m + sg2m + tg2md1 + η(xℓgd − 1) ≤ Td1 ,∀g ∈ Gm,m ∈ M, d ∈ {ϑ−g /ℓ
−}, ℓ ∈ L (23)

Tℓ+ + tℓ+d1 + (xℓℓ+d − 1)η ≤ Td1 ,∀d ∈ {ϑ−ℓ+/ℓ
−}, ℓ ∈ L (24)

Tg2m + sg2m + tg2mℓ− + (xℓgℓ− − 1)η ≤ Tℓ− ,∀g ∈ {ϑ+ℓ−/ℓ
+} ∩ Gm,m ∈ M, ℓ ∈ L (25)

Tℓ+ + tℓ+ℓ− + (xℓℓ+ℓ− − 1)η ≤ Tℓ− , ℓ ∈ L (26)

egi ≤ Tgi ≤ lgi ,∀g ∈ Gm,m ∈ M, i = 1, . . . , 2m (27)

etℓ ≤ Tk ≤ ltℓ,∀k ∈ {ℓ− ∪ ℓ+}, ℓ ∈ L (28)

The objective function (18) minimizes the sum of the molten iron waiting time and the travel time of
locomotives. The locomotive travel time consists of an inner group (visited) travel time, the travel time
between the origin of locomotive and the first visited group, the travel time between the groups in route, and
the travel time between the last visited group and the destination of locomotive. Note that, if a locomotive
ℓ has no group to serve, then the contribution of this route to the objective value, is the travel time from ℓ+

to ℓ−. Constraints (19) ensure that each locomotive commences at its origin and finishes at its destination.
(20) are the flow conservation constraints. Constraints (21) guarantee that each request is served by only
one locomotive. (22) are the constraints for computing the service start time of the operations in group. (23)
denote the constraints for computing the service start time of a group succeeding another group, and (24)
provide the constraints for the locomotive origin. Constraints (25) are used for computing the finishing time
of a route that is not empty. Constraints (26) reflect the relationship between start and end time of an empty
locomotive transfer. (27) are the time window constraints for the inner operations of a group. (28) are the
time window constraints for the start time and the finish time of a route. Note that, in the first part of (18),
RL1 denotes the set of loaded TPC requests transported from BA to RS.

II. Detailed computational results

Table 5 to Table 9 show the detailed tuning results of parameters, as described in Section 5.2. Table
10 to Table 13 show the detailed performance of the ALNS algorithm and the local search procedure under
various settings, as described in Section 5.3. The detailed computational results of the ALNS algorithm
from solving extensive instances are reported in Table 14, as described in Section 5.5. As shown in Table 3,
deviations between the best and average objective values of instances with sizes less than 50 are zero. Note
that the ALNS algorithm can optimally solve the instances with 20 requests. Therefore, the corresponding
results will not be presented in Table 14.

27

Table 5
Tuning results of roulette wheel mechanism parameters.

Inst
(π1, π2, π3)

(1,5,3) (1,3,5) (3,5,1) (3,1,5) (5,3,1) (5,1,3) (1,1,1)
LRP 20# 653.4 656.6 654.3 655.1 656.6 654.6 655.4
LRP 50# 1403.4 1402.8 1404.1 1404.0 1403.9 1404.6 1402.2
LRP 80# 2255.5 2261.8 2259.7 2256.2 2258.8 2261.6 2258.0
LRP 100# 2858.9 2856.1 2857.0 2860.1 2860.2 2857.0 2855.7
LRP 120# 3287.5 3287.5 3285.6 3292.1 3287.5 3292.0 3297.8
LRP 150# 4218.4 4217.3 4217.3 4218.8 4219.1 4218.8 4218.5
LRP 200# 5309.7 5312.6 5314.4 5307.9 5310.7 5315.7 5307.1
LRP 240# 7219.9 7222.4 7217.0 7219.4 7215.0 7217.2 7215.0
LRP 300# 8770.5 8774.6 8779.2 8774.0 8774.7 8769.3 8773.2
LRP 360# 11493.1 11488.7 11491.3 11492.0 11493.8 11487.8 11492.7
LRP 450# 14286.4 14283.2 14279.6 14282.5 14279.4 14285.5 14287.7
Average 5614.25 5614.87 5614.50 5614.74 5614.52 5614.92 5614.85

Table 6
Tuning results of temperature.

Inst
T org =200 T org =150 T org =100

Best Aver T ime Best Aver T ime Best Aver T ime
LRP 20# 649 653.4 1.09 649 654.5 1.06 649 653.8 1.13
LRP 50# 1399 1403.4 3.63 1397 1400.5 3.63 1399 1403.7 3.80
LRP 80# 2250 2255.5 8.59 2250 2260.7 8.73 2244 2258.1 8.67
LRP 100# 2851 2858.9 13.18 2847 2855.1 13.18 2847 2859.6 13.45
LRP 120# 3277 3287.5 17.04 3280 3284.5 16.65 3278 3286.0 16.99
LRP 150# 4213 4218.4 32.04 4211 4223.2 32.27 4210 4219.6 32.61
LRP 200# 5300 5309.7 58.96 5300 5314.1 59.13 5307 5313.4 55.98
LRP 240# 7209 7219.9 101.80 7215 7220.8 104.31 7208 7218.6 102.95
LRP 300# 8763 8770.5 174.79 8757 8778.5 172.96 8766 8777.3 180.74
LRP 360# 11477 11493.1 353.52 11478 11496.2 360.13 11473 11482.7 354.61
LRP 450# 14264 14286.4 647.47 14267 14277.5 650.77 14268 14283.1 637.63
Average 5604.73 5614.25 128.37 5604.64 5615.05 129.35 5604.45 5614.17 128.05

Table 7
Tuning results of cooling rate parameter.

Inst
cr

0.95 0.97 0.99 0.995 0.997 0.999 0.99975
LRP 20# 653.8 654.3 655.0 652.0 653.0 650.0 649.2
LRP 50# 1403.7 1401.4 1404.3 1403.4 1403.5 1401.0 1401.0
LRP 80# 2258.1 2253.1 2260.0 2257.1 2255.8 2255.8 2254.5
LRP 100# 2859.6 2856.2 2853.3 2856.1 2856.5 2851.9 2852.6
LRP 120# 3286.0 3287.4 3288.0 3292.5 3289.9 3289.6 3290.2
LRP 150# 4219.6 4221.2 4220.9 4218.1 4221.8 4221.5 4222.0
LRP 200# 5313.4 5315.2 5317.4 5325.3 5313.6 5316.5 5321.1
LRP 240# 7218.6 7216.9 7223.2 7215.4 7215.7 7212.6 7216.3
LRP 300# 8777.3 8774.2 8773.5 8775.5 8773.5 8773.6 8778.9
LRP 360# 11482.7 11492.4 11489.0 11494.9 11496.3 11487.2 11494.6
LRP 450# 14283.1 14285.3 14283.1 14276.5 14287.5 14291.9 14289.3
Average 5614.17 5614.33 5615.25 5615.16 5615.19 5613.78 5615.43

28

Table 8
Tuning results of destroy rate parameter.

Inst
µ =0.07 µ =0.1 µ =0.2 µ =0.3 µ =0.4

Aver T ime Aver T ime Aver T ime Aver T ime Aver T ime
LRP 20# 651.0 1.03 650.0 1.07 649.0 1.83 649.0 2.62 649.0 3.05
LRP 50# 1403.9 2.78 1401.0 4.26 1399.6 6.86 1398.8 10.53 1397.4 12.56
LRP 80# 2261.8 5.73 2255.8 9.87 2252.0 16.71 2252.4 78.22 2247.2 37.92
LRP 100# 2856.6 9.88 2851.9 13.52 2847.8 28.41 2848.4 41.39 2848.6 44.91
LRP 120# 3296.7 12.10 3289.6 17.23 3287.0 37.39 3287.2 58.71 3284.8 81.16
LRP 150# 4223.6 21.65 4221.5 33.36 4215.8 73.39 4219.0 115.48 4222.8 172.03
LRP 200# 5324.9 38.00 5316.5 56.43 5309.0 143.43 5307.0 221.43 5316.0 278.45
LRP 240# 7217.3 64.42 7212.6 106.87 7214.2 268.76 7210.6 428.04 7217.0 535.79
LRP 300# 8784.5 112.05 8773.6 172.21 8771.4 445.44 8768.0 645.04 8795.6 844.82
LRP 360# 11498.6 223.42 11487.2 349.71 11500.6 851.36 11524.6 1441.65 11584.4 1880.26
LRP 450# 14293.6 403.48 14291.9 656.32 14319.6 1286.60 14309.0 2181.44 14383.2 2455.65
Average 5619.32 81.32 5613.78 129.17 5615.09 287.29 5615.82 474.96 5631.45 576.96

Table 9
Tuning results of the noise parameter.

ϵ Best Aver T ime ϵ Best Aver T ime
0.000 5600.82 5613.78 129.17 0.100 5603.00 5610.25 128.05
0.025 5601.00 5610.36 128.14 0.150 5603.27 5611.80 128.26
0.050 5602.27 5610.97 128.37 0.200 5603.09 5612.97 128.50
0.070 5602.00 5611.15 129.35 0.300 5604.73 5611.90 128.74

Table 10
Average performance of each removal or insertion operator for all the test instances.

Item
Insertion operators

— — RS I FFI GI RI 2 RI 3 RI 4 RI 7
S ingle — — 3.2E-03 2.4E-03 4.5E-03 5.1E-03 5.2E-03 5.3E-03 5.3E-03

S um — — 8.46 2.76 18.31 23.43 22.98 21.40 22.07
Number — — 2760.75 1906.21 3822.86 4404.42 4205.69 3938.31 3961.75

Best — — 0.96 1.35 2.12 2.47 2.05 1.95 1.77
Better — — 8.00 36.31 70.84 88.86 76.96 73.38 72.21
Worse — — 879.63 565.85 1767.74 2157.34 1974.26 1839.30 1854.52

Item
Removal operators

RR WR S RR S R TOR DOR EDOR COR HKR
S ingle 1.7E-05 1.2E-03 9.2E-06 9.9E-04 2.9E-05 2.4E-05 1.8E-05 9.5E-04 1.5E-05

S um 0.07 3.79 0.00 2.48 0.11 0.05 0.07 2.94 0.03
Number 4120.92 3596.72 594.73 3304.18 4178.79 1673.05 3553.87 2370.18 1607.55

Best 1.82 1.50 0.35 1.98 1.93 0.88 1.99 1.61 0.63
Better 73.19 64.57 13.92 59.04 69.97 34.53 71.92 62.90 4.95
Worse 1913.70 1548.15 93.37 1230.86 1909.76 531.92 2278.09 1048.76 484.01

Table 11
Average performance of the ALNS algorithm under various settings.

S ettings Best Aver T ime S ettings Best Aver T ime

RR 5601.91 5611.55 132.77 RS I 5601.73 5611.30 129.18
WR 5602.82 5610.36 132.47 FFI 5602.09 5610.85 130.60

S RR 5601.73 5610.43 128.82 GI 5601.64 5611.43 127.42
S R 5603.64 5615.57 131.68 RI 2 5602.00 5611.58 124.23

TOR 5603.18 5610.88 136.06 RI 3 5602.36 5610.79 126.20
DOR 5602.55 5611.15 130.30 RI 4 5602.18 5610.55 127.40

EDOR 5602.55 5611.94 127.64 RI 7 5602.00 5610.30 126.88
COR 5602.27 5610.94 126.87 FM 5601.00 5610.36 128.14
HKR 5601.18 5611.02 129.25 LNS 5608.09 5618.75 119.18

29

Table 12
Average performance of the local search procedure under various settings.

Item Initialization FM Disabled neighborhood structure
S RR IS RR IS GR IMGR IC IRR

Time 0.18 0.51 0.48 0.29 0.35 0.31 0.48 0.50
Best 5877.00 5670.18 5686.91 5792.09 5680.45 5774.09 5681.82 5674.55
Aver 5877.00 5683.41 5704.29 5801.96 5700.05 5786.01 5706.96 5697.72

Table 13
Detailed comparison results for different neighbor acceptance criteria.

Inst BKS
LS I LS II

Best Aver T ime DB(%) DA(%) Best Aver T ime DB(%) DA(%)
LRP 20# 649 649 649.0 1.27 0.00 0.00 649 649.0 1.33 0.00 0.00
LRP 50# 1397 1397 1398.0 4.45 0.00 0.07 1397 1398.4 4.69 0.00 0.10
LRP 80# 2241 2242 2244.9 11.00 0.04 0.17 2241 2243.8 10.56 0.00 0.12
LRP 100# 2841 2841 2844.1 16.87 0.00 0.11 2841 2841.9 15.68 0.00 0.03
LRP 120# 3276 3277 3279.0 21.13 0.03 0.09 3276 3278.6 22.03 0.00 0.08
LRP 150# 4204 4205 4208.1 41.31 0.02 0.10 4204 4208.8 40.24 0.00 0.11
LRP 200# 5287 5291 5295.0 70.02 0.08 0.15 5290 5294.4 69.48 0.06 0.14
LRP 240# 7174 7203 7207.6 135.65 0.40 0.47 7203 7208.0 124.96 0.40 0.47
LRP 300# 8736 8736 8747.7 207.44 0.00 0.13 8739 8750.2 206.00 0.03 0.16
LRP 360# 11446 11449 11455.9 427.47 0.03 0.09 11448 11455.2 423.82 0.02 0.08
LRP 450# 14230 14230 14239.5 738.34 0.00 0.07 14230 14240.1 747.00 0.00 0.07
Average 5589.18 5592.73 5597.16 152.27 0.06 0.13 5592.55 5597.13 151.44 0.05 0.13

Inst BKS
NONE LS new

Best Aver T ime DB(%) DA(%) Best Aver T ime DB(%) DA(%)
LRP 20# 649 649 650.4 1.08 0.00 0.22 649 649.0 1.25 0.00 0.00
LRP 50# 1397 1397 1398.5 3.76 0.00 0.11 1397 1397.2 4.01 0.00 0.01
LRP 80# 2241 2244 2252.1 8.55 0.13 0.50 2241 2243.4 9.79 0.00 0.11
LRP 100# 2841 2843 2854.2 13.04 0.07 0.46 2841 2841.8 15.10 0.00 0.03
LRP 120# 3276 3279 3292.6 17.28 0.09 0.51 3276 3277.2 19.57 0.00 0.04
LRP 150# 4204 4212 4218.1 32.48 0.19 0.34 4205 4207.7 36.69 0.02 0.09
LRP 200# 5287 5301 5311.9 58.47 0.26 0.47 5287 5292.8 64.61 0.00 0.11
LRP 240# 7174 7207 7212.6 103.15 0.46 0.54 7174 7200.3 115.53 0.00 0.37
LRP 300# 8736 8756 8773.2 176.23 0.23 0.43 8737 8744.3 187.88 0.01 0.10
LRP 360# 11446 11471 11481.4 351.04 0.22 0.31 11446 11451.1 387.99 0.00 0.04
LRP 450# 14230 14252 14269.0 644.40 0.15 0.27 14231 14239.4 680.63 0.01 0.07
Average 5589.18 5601.00 5610.36 128.14 0.16 0.38 5589.45 5594.93 138.46 0.01 0.09

30

Table 14
Computational results for all the instances.

Inst Best Aver T ime D(%) Inst Best Aver T ime D(%)
LRP 50 01 1458 1458.1 4.21 0.01 LRP 80 01 2551 2553.2 9.98 0.09
LRP 50 02 1434 1435.9 3.89 0.13 LRP 80 02 2439 2440.2 10.47 0.05
LRP 50 03 1454 1454.4 4.55 0.03 LRP 80 03 2122 2124.3 9.48 0.11
LRP 50 04 1305 1305.6 4.36 0.05 LRP 80 04 2398 2399.1 9.71 0.05
LRP 50 05 1331 1331.5 4.49 0.04 LRP 80 05 2323 2324.0 10.60 0.04
LRP 50 06 1388 1388.0 4.53 0.00 LRP 80 06 2090 2090.3 10.03 0.01
LRP 50 07 1285 1285.2 3.90 0.02 LRP 80 07 2177 2178.6 9.32 0.07
LRP 50 08 1302 1306.5 3.81 0.35 LRP 80 08 2287 2288.6 10.09 0.07
LRP 50 09 1465 1465.0 4.03 0.00 LRP 80 09 2328 2329.3 9.91 0.06
LRP 50 10 1303 1303.7 4.32 0.05 LRP 80 10 2458 2458.1 9.47 0.00

LRP 100 01 2829 2831.6 16.44 0.09 LRP 120 01 3446 3448.3 23.69 0.07
LRP 100 02 2884 2884.8 15.36 0.03 LRP 120 02 3632 3633.0 22.47 0.03
LRP 100 03 2973 2973.2 15.81 0.01 LRP 120 03 3673 3673.6 22.71 0.02
LRP 100 04 2838 2838.0 15.48 0.00 LRP 120 04 3417 3421.0 19.76 0.12
LRP 100 05 2796 2800.6 13.61 0.16 LRP 120 05 3495 3498.2 23.04 0.09
LRP 100 06 2973 2974.8 15.92 0.06 LRP 120 06 3507 3509.0 22.96 0.06
LRP 100 07 2665 2666.7 13.60 0.06 LRP 120 07 3587 3589.0 21.23 0.06
LRP 100 08 2977 2978.8 15.56 0.06 LRP 120 08 3787 3789.2 22.57 0.06
LRP 100 09 2704 2710.1 13.49 0.23 LRP 120 09 4066 4070.1 23.63 0.10
LRP 100 10 3081 3083.8 15.65 0.09 LRP 120 10 3315 3317.7 20.44 0.08
LRP 150 01 4319 4322.0 36.01 0.07 LRP 200 01 5694 5700.6 71.09 0.12
LRP 150 02 4322 4323.7 35.97 0.04 LRP 200 02 5785 5792.4 69.82 0.13
LRP 150 03 4614 4619.0 38.09 0.11 LRP 200 03 5321 5326.8 70.56 0.11
LRP 150 04 4371 4375.5 39.17 0.10 LRP 200 04 5550 5554.5 74.99 0.08
LRP 150 05 4560 4561.4 37.90 0.03 LRP 200 05 5720 5722.4 67.78 0.04
LRP 150 06 4299 4303.5 38.49 0.10 LRP 200 06 5667 5671.8 76.26 0.08
LRP 150 07 4556 4560.8 39.49 0.11 LRP 200 07 5787 5788.1 67.97 0.02
LRP 150 08 4628 4631.3 34.82 0.07 LRP 200 08 5465 5468.7 73.12 0.07
LRP 150 09 4631 4634.8 38.29 0.08 LRP 200 09 5990 5992.9 74.36 0.05
LRP 150 10 4407 4409.6 36.48 0.06 LRP 200 10 5543 5545.3 74.68 0.04
LRP 240 01 6944 6948.1 119.40 0.06 LRP 300 01 9092 9097.5 215.09 0.06
LRP 240 02 7062 7066.5 122.92 0.06 LRP 300 02 9365 9371.7 201.85 0.07
LRP 240 03 7045 7050.6 118.98 0.08 LRP 300 03 9323 9329.8 223.52 0.07
LRP 240 04 7101 7109.4 114.08 0.12 LRP 300 04 8543 8547.7 182.16 0.06
LRP 240 05 7096 7100.3 121.05 0.06 LRP 300 05 8877 8881.4 219.82 0.05
LRP 240 06 6715 6718.8 117.22 0.06 LRP 300 06 8995 9000.8 212.74 0.06
LRP 240 07 7288 7290.9 121.87 0.04 LRP 300 07 9127 9131.3 226.56 0.05
LRP 240 08 6963 6968.3 114.45 0.08 LRP 300 08 9327 9331.0 197.52 0.04
LRP 240 09 6915 6919.0 115.01 0.06 LRP 300 09 9302 9308.6 231.26 0.07
LRP 240 10 6854 6857.3 120.92 0.05 LRP 300 10 8830 8836.8 213.69 0.08
LRP 360 01 10411 10416.3 364.22 0.05 LRP 450 01 13560 13566.0 731.94 0.04
LRP 360 02 10041 10049.5 388.97 0.08 LRP 450 02 13792 13798.9 640.24 0.05
LRP 360 03 11252 11256.9 374.66 0.04 LRP 450 03 13508 13512.3 750.52 0.03
LRP 360 04 10766 10770.6 404.36 0.04 LRP 450 04 14255 14263.3 738.84 0.06
LRP 360 05 10290 10298.5 392.71 0.08 LRP 450 05 13938 13948.9 784.85 0.08
LRP 360 06 10784 10789.2 398.49 0.05 LRP 450 06 13274 13280.9 694.45 0.05
LRP 360 07 10149 10157.3 334.55 0.08 LRP 450 07 14114 14129.7 673.84 0.11
LRP 360 08 10563 10574.7 332.54 0.11 LRP 450 08 13406 13412.4 748.43 0.05
LRP 360 09 10965 10976.1 331.85 0.10 LRP 450 09 13777 13791.0 672.94 0.10
LRP 360 10 11854 11876.2 329.54 0.19 LRP 450 10 14126 14135.1 747.34 0.06

Average 5589.84 5593.66 143.36 0.06

31

	Introduction
	Literature Review
	Problem description and mathematical formulations
	An ALNS algorithm for the LRP
	Initialization
	Adaptive score and weight adjustment
	Feasibility of request insertion
	Removal and insertion operators
	Removal operators
	Insertion operators

	Acceptance and stopping criteria
	Local Search
	Intra-route neighborhood structure
	Inter-route neighborhood structures

	Computational experiments
	Experimental data
	Parameters tuning
	Performance of operators and the local search procedure
	Computational results for actual instances
	Computational results for extensive instances

	Conclusions
	Group-based mathematical formulation
	Detailed computational results

