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A Retrodictor-Corrector Filter

Dario Modenini,1 Marco Zannoni,2 and Paolo Tortora3

Università di Bologna, 47121 Forlì, Italy

I. Introduction

Nonlinear �ltering of dynamical systems is an extensively studied problem, usually tackled

extending the well-established optimality results existing for linear systems, i.e. the Kalman �lter,

in the realm of nonlinear functions. The approaches are numerous [1], starting from the early

developed linearized Kalman �lter and extended Kalman �lter (EKF), soon re�ned to attain better

performance in case of severe nonlinearities. Some methods retain higher order derivatives as with

the second order EKF, others rely on iterative linearization. This last concept was most often applied

to the measurement equation, leading to the iterated extended Kalman �lter (IEKF), which improves

upon the EKF by iterating the nonlinear measurement update equation through a re-linearization

about the updated state estimate, while retaining the time update step equal to the EKF one. The

application of the re-linearization technique to handle also nonlinear dynamics received apparently

less attention. An early example is represented by a single stage iterated �lter/smoother (SSIFS),

proposed by Wishner et al. in [2], which embeds a smoothing step within the �lter to improve

the past estimate when a new measurement is processed. The smoothed estimate is then used as

a starting point to re-linearize the prediction step for the �ltering stage. This concept was more

recently generalized and merged with a moving window batch �lter by Psiaki with his backward

smoothing extended Kalman �lter (BSEKF) [3], allowing the smoothing process to run into the

past for more than one stage. Such a combined �lter-smoother was shown to outperform both the

EKF and the unscented Kalman �lter (UKF) in a spacecraft attitude estimation problem. This
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was achieved at the expense of retaining at least 30 stages of smoothing window, resulting in more

than 100 times the computational burden of a standard EKF, thus con�ning such a �lter mainly to

o�-line applications.

As an alternative to the above methods, a quite di�erent, yet very e�ective, approach was

the one developed through the so-called Sigma-points �lters [4], based on the concept of statistical

linearization [1], the most popular of which is probably the UKF [5]. Among the advantages of the

Sigma-points �lters, is the absence of Jacobian matrices to be computed.

The algorithm investigated in this Note, which we call the retrodictor-corrector �lter (RCF),

belongs to the �rst family of �lters and consists of a single-stage recursive scheme, based upon a

generalization of the iterated extended Kalman �lter. The motivating idea stems from recognizing

an approximation shared by the nonlinear recursive methods cited above, which is inherent to their

predictor-corrector structure. Having obtained estimates for the state and error covariance matrix at

a certain time instant, say k−1, the estimate at the subsequent measurement instant k is computed

through two steps: �rst, the forward time propagation of both the state vector and error covariance

matrix (predictor step) and then by incorporating the information coming from the measurements

(corrector step). Despite its intuitive nature, the predictor step can be performed exactly only in

the linear �ltering problem, leading to the well-celebrated KF, while its extension to the nonlinear

case gives rise to a certain degree of approximation, due to the fact that one needs to propagate

through a nonlinear transformation the �rst and second moment of a random variable.

In the attempt of mitigating the problems associated with the nonlinear prediction step, we

will take the perspective of recursive �ltering as the result of cost function minimization, following

a wide literature on this (e.g. [6, pp. 361�482], [7]), with the cost function re�ecting the balance

between the measurement residuals and the so-called a-priori residuals. These last are usually built

upon the one-step ahead prediction of the estimate obtained at the previous measurement time, and

weighted using the inverse predicted error covariance. Here instead, we will employ as a source of

a-priori information the previous estimate directly, to which the current state shall be retro�tted.

With such formulation, a novel concept is brought forward, named the backward equivalent process

noise. Its role is to account for the uncertainty in the retro�t of the current estimate due to the
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stochastic nature of the governing di�erential equation, as will be thoroughly discussed in Section

II. The nonlinear minimization problem which leads to the desired estimate will be tackled using

an iterative di�erential correction scheme.

In this work, we address �rst the basic mathematical speci�cation of the retrodictor-corrector

�lter. Then a solution method is shown, which allows to highlight several similarities with already

existing �lters. The performance of the algorithm is tested through numerical simulations involving

the gyroless angular velocity estimation problem for a tumbling spacecraft.

II. Basic speci�cation of the nonlinear estimator

We consider the problem of a dynamic state vector evolving in time according to the nonlinear

di�erential equation:

ẋ(t) = f(x, t) + G(t)w(t) (1)

where f is an m-dimensional nonlinear functions of the state vector x(t), G is a m×p matrix whose

entries are in general time dependent, and w(t) is a p-dimensional zero-mean, white random process

with known autocovariance E[w(t)wT (t− τ)] = Q(t)δ(τ). We further assume that the observation

zk with dimension n approximately tracks this process as in:

zk = hk(xk) + vk (2)

where hk is the nonlinear observation function and vk is a zero-mean, white, random noise vector

of known covariance matrix Rk.

Given the time series of data z1, z2, . . . , zn, an a-priori state vector estimate x̃0 and associated

error covariance matrix P 0, we generate the sequence of optimal state estimates x̃k, k = 1, 2, ...n by

recursively minimizing a cost functional de�ned as:

ε̃k
∆
= ‖x̃k−1 − x̃k−1,k‖2P−1

k−1,k

+ ‖zk − hk(x̃k)‖2R−1

k

(3)

In Eq.(3), x̃k−1,k and P k−1,k are, respectively, the retrodicted estimate and error covariance

at tk−1 starting from tk [15]. The former is usually computed through numerical integration of

the noise free version of Eq.(1) starting from the current estimate [16], unless an exact solution
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is available. To de�ne P k−1,k, we �rst recognize that we are considering the previous estimate,

x̃k−1, as an additional measurement, and the system dynamic, integrated backward in time, as the

corresponding measurement function. Such additional measurement is corrupted by a noise vector,

ek−1,k
∆
= x̃k−1 − xk−1,k, which di�ers from the estimation error at the previous time step, ek−1,

because of the random process a�ecting the system dynamic.

Indeed, we may formally de�ne a discrete noise, uk−1,k, which maps the e�ects of the continuous

random process w(t) backward in time from instant k to k − 1, through integration of Eq.(1):

xk−1 = xk +

∫ tk−1

tk

f(x, τ)dτ +

∫ tk−1

tk

G(τ)w(τ)dτ = xk−1,k + uk−1,k (4)

That is:

uk−1,k =

∫ tk−1

tk

G(τ)w(τ)dτ (5)

which is a zero-mean Wiener process. Its covariance is:

Qk−1,k =

∫ tk−1

tk

G(τ)Q(τ)GT (τ)dτ (6)

whose evaluation reduces to a quadrature problem, which can be computed with desired accuracy.

Then, by substituting xk−1,k from Eq.(4) into the de�nition of ek−1,k, one retrieves:

ek−1,k = ek−1 + uk−1,k (7)

The net e�ect of the backward process noise is thus an in�ation of the e�ective noise when

trying to retro�t the current estimate to the previous one, similarly as what happens with the KF

projection ahead step. The a-priori covariance matrix to be employed in the cost function follows

as:

P k−1,k
∆
= E[ek−1,ke

T
k−1,k] = E[ek−1e

T
k−1] + E[uk−1,ku

T
k−1,k] = P k−1 + Qk−1,k (8)

which holds under the assumption of ek−1 uncorrelated with uk−1,k.

Note that P k−1,k can be regarded as the true covariance of ek−1,k noise, and for its computa-

tion we did not resort to any approximation: nonlinear transformations of the state error are not

involved in the derivation, as it happens when projecting ahead the covariance matrix in a nonlinear

prediction step.
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III. Solution to the nonlinear minimization problem

Suppose that a nominal guess for x̃k, denoted with x̄k, is available. Then a solution to the

minimization of Eq.(3) can be obtained with the iterated Gauss-Newton method [8], in terms of the

residuals:

δx̃k−1 = x̃k−1 − x̄k−1,k

δzk = zk − hk(x̄k)

(9)

and of the their partial derivatives with respect to the unknown state:

Hk =
∂h

∂x

∣∣∣∣
x̄k

Φk−1,k =
∂xk−1,k

∂x

∣∣∣∣
x̄k

(10)

The state transition matrix, Φ, can also be obtained by integrating the linearized state dynamics

according to:

dΦ(t, τ)

dt
= F (t)Φ(t, τ) Φ(τ, τ) = I (11)

with F (t) =
∂f
∂x

∣∣∣
x̄(t)

.

A Gauss-Newton step, δx̃k, towards the minimization of Eq.(3) reads:

δx̃k =
[
ΦT

k−1,kP
−1
k−1,kΦk−1,k + HT

kR
−1
k Hk

]−1

[
ΦT

k−1,kP
−1
k−1,kδx̃k−1 + HT

kR
−1
k δzk

] (12)

A more familiar form of the solution step above can be retrieved as follows. First we de�ne the

matrix P k,k−1 by forward mapping of P k−1,k:

P k,k−1
∆
= Φk,k−1P k−1,kΦT

k,k−1 (13)

which closely resembles the a-priori covariance matrix P k|k−1 from (E)KF. Then we let:

P−1
k = ΦT

k−1,kP
−1
k−1,kΦk−1,k + HT

kR
−1
k Hk = P−1

k,k−1 + HT
kR
−1
k Hk (14)

Substituting into Eq.(12) yields to:

δx̃k = P k

[
P−1

k,k−1Φk,k−1δx̃k−1 + HT
kR
−1
k δzk

]
(15)

Then, by adding and subtracting the product HT
kR
−1
k HkΦk,k−1δx̃k−1 to the right hand side of

Eq.(15) and by making use of Eq.(14), we obtain:

δx̃
(n+1)
k = Φk,k−1δx̃k−1 + Kk [δzk −HkΦk,k−1δx̃k−1] (16)
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where we have introduced the gain Kk = P kH
T
kR
−1
k .

This �nal form highlights the retrodictor-corrector structure of the proposed estimator: the

retrodicted state vector residual δx̃k−1 is mapped at current time and then corrected with the new

available data through the innovation term [δzk −HkΦk,k−1δx̃k−1].

A reasonable choice to start the iteration is by forward propagation of the previous estimate,

i.e. by setting x̄
(0)
k = x̃k|k−1. This way, δx̃k−1 is null, and the update equation reduces to:

x̃k = x̃k|k−1 + Kk

[
zk − hk(x̃k|k−1)

]
(17)

which is the popular EKF update formula.

The iterative solution scheme can be cycled by setting: x̄
(n+1)
k = x̄

(n)
k + δx̃

(n)
k , re-evaluating the

residuals and partial derivatives, Eqs.(9)-(10). Note that, in a standard IEKF, only the measurement

matrixHk is updated along iterations, while here the transition matrix as well. The iterations should

be stopped upon convergence, i.e. whenever the relative decrease in the cost function ceases to be

signi�cant: then, the computational burden required to run the entire algorithm will be comparable

to the one of an EKF times the number of iterations performed.

IV. Reduction to limiting cases

We will now show some properties of the proposed scheme emerging under some simpli�cations

or limiting cases, to highlight its connections with other classic algorithms.

A. The linear case

First we consider the fully linear estimation problem: the �lter speci�cation runs in paral-

lel, upon substitution of the functions (f ,G) with the state and process noise transition matrices

(Φk,Γk) and of the function h with the observation matrix Hk. Then the cost function to be

minimized reads:

ε̃k = ‖x̃k−1 −Φk−1,kx̃k‖2P−1

k−1,k

+ ‖zk −Hkx̃k‖2R−1

k

(18)

which shall be compared with the cost function minimized by the linear KF [6, pp. 466�470]:

ε̃k = ‖Φk,k−1x̃k−1 − x̃k‖2P−1

k|k−1

+ ‖zk −Hkx̃k‖2R−1

k

(19)
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The a-priori covariance P−1
k|k−1 in the linear case is equivalent to P−1

k,k−1 as de�ned in Eq.(13) (see

Appendix). It is then quite straightforward to show that the �rst terms at the right hand sides of

Eqs. (18) and (19) (i.e. the a-priori residuals) are actually the same. That is, in the linear case only,

the prediction and the retrodiction perspectives are equivalent, thus showing complete consistency

of the least square criterion proposed in Eq.(3) with KF.

B. Relations to the Iterated Extended Kalman Filter

Next we may inspect the relation existing between the RCF and the IEKF. The cost functions

minimized by the IEKF reads [6, pp. 440�442]:

ε̃k =
∥∥x̃k − x̃k|k−1

∥∥2

P−1

k|k−1
+ ‖zk − hk(x̃k)‖2R−1

k

(20)

which shall be compared to Eq.(3).

The solutions in terms of Gauss-Newton iterations are given by Eq.(15) and, for the IEKF as:

δx̃
(n+1)
k = P k

[
P−1

k|k−1δx̃k + HT
kR
−1
k δzk

]
(21)

The di�erence between the IEKF and the RCF relies in the di�erent de�nition of the a-priori

residuals in Eqs.(20) and (3): the IEKF employs an a-priori estimate which is derived through a

forward prediction of the mean and covariance of the previous estimate. This di�erence is re�ected

also in the solution scheme: in Eq.(21) the a-priori covariance matrix P k|k−1 is not updated through

the iteration cycles, since the transition matrix used for the forward mapping is assumed constant,

being obtained from a past estimate. Conversely, for the proposed �lter P k,k−1 is recomputed at

each cycle, being mapped using a transition matrix which is obtained from the current estimate. It

can be further shown that the outcome of Eq.(15) and Eq.(21) are equivalent at the �rst iteration

only, when both are initialized with the forward map of x̃k−1. In that situation, as previously noted,

P k,k−1 is equivalent to the a-priori covariance of the standard EKF formulation.

A similar argument holds also for the UKF, whose measurement update equation is derived

according to the Bayesian linear minimum mean-squared error estimator [5]. It makes use of the

predicted mean x̃k|k−1 and predicted error covariance P k|k−1 as well, but di�ers from the EKF

in the method used to generate such predictions, which typically achieves better accuracy. This,
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however, does not eliminate the approximation intrinsic in the nonlinear predictor step.

C. The Deterministic Case

Up to know we have considered systems whose dynamic is driven by a white random process.

Nevertheless, KF proved to work e�ectively also in many practical �ltering applications where the

unknown external disturbances and/or model uncertainties cannot be regarded as random processes.

In such cases, one may rather conceive the estimation problem in a purely deterministic setting [6,

pp. 303�314] and try to �t the current estimate to all the available data, as in:

εk(x̃k) =

k∑
h=0

(zk−h − hk−h(x̃k−h,k))
T
R−1

k−h (zk−h − hk−h(x̃k−h,k)) (22)

In a deterministic framework, compensation of modeling errors is achieved by reducing the �lter

memory length and/or applying a fading factor which progressively de-weights older residuals in the

build-up of the cost function [9]. Such a technique was proven to work e�ectively in a linear height

estimation problem [10].

Eq.(22) can be rewritten as a one-step recursion:

εk(x̃k) = ε∗k−1(x̃k) + (zk − hk(x̃k))
T
R−1

k (zk − hk(x̃k)) (23)

Note that ε∗k−1(x̃k) 6= εk−1(x̃k−1). It is now easy to show that the retrodictor-corrector �ltering

scheme with Q(t) = 0 provides an approximate solution to the minimization of Eq.(22). First we

recognize that in the deterministic case P k−1,k reduces to P k−1. Then, the �rst term in Eq.(3) (i.e.

the a-priori residual) can be seen as a Taylor expansion of ε∗k−1(x̃k) around εk−1(x̃k−1) [3] which,

up to second order, leads to:

ε∗k−1(x̃k) ≈ (x̃k−1 − x̃k−1,k)
T
P−1

k−1 (x̃k−1 − x̃k−1,k) + const. (24)

In the equation above the �rst order term is not present since the gradient of the cost function at

minimization is null and the ≈ sign is due to the fact that P−1
k−1 is only an approximation of the

Hessian of εk−1(x̃k−1).
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V. Numerical Results: gyroless rate estimation for a tumbling spacecraft

In this Section �lter validation is addressed by implementing the proposed algorithm within a

simulated test case. The proposed RCF will be compared to the EKF and the UKF. This latter

requires three tunable parameters to control the spread of the sigma-points used for the statistical

linearization: in this work we used values which are considered standard good �rst guesses [17],

without seeking for complicated multidimensional tuning procedures. This is one of the reasons

why we will not make any absolute claim about the relative merits between our �lter and the UKF.

We consider the method presented in [11] for fast estimation of the angular rate of a tumbling

spacecraft from sequential readings of the Earth's magnetic �eld. This same application was also

used in [12] to explore the self-tuning properties of a recursive fading memory �lter. Here we use this

same test case since it easily allows to investigate the e�ects of a variable �degree of nonlinearity� of

the system dynamic on the �lters' performances, by changing the magnitude of the initial angular

rate vector. If the external disturbance torques are approximated as a zero mean stationary process,

ζ(t), the vector stochastic di�erential equation representing the dynamic model is given by:

J ω̇ = ω × Jω + ζ (25)

where ω is the SC angular rate vector and J is the matrix of inertia. The observation model is

based on the equation

db

dt
− ∂b

∂t
= ω × b (26)

where ω is the spacecraft angular rate vector, b is the Earth's magnetic �eld vector, ∂b/∂t is the

temporal derivative of the magnetic �eld vector, taken in the body-�xed frame, and db/dt is the

(total) temporal derivative taken in an inertial reference frame. During detumbling, and for most

orbits, this last is negligible, which yields

∂b

∂t
≈ −ω × b ≡ [b×] ω (27)

where [b×] is the cross-product matrix corresponding to the magnetic �eld vector.

The Three-Axis Magnetometer (TAM) reading at time tk is related to the true magnetic �eld via

b̂k = bk + nk, where the TAM stationary measurement noise is distributed as nk ∼ N (0,RTAM),
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with known covariance RTAM . The body-referenced temporal derivative is approximated using

a �rst-order backward �nite di�erence, computed using two successive TAM readings, assumed

sampled at 50 Hz. The observation equation is then written as

zk = Hk xk + vk (28)

where Hk =
[
b̂k×

]
∆t is the time varying observation matrix, zk = b̂k − b̂k−1 is the e�ective

measurement vector, and vk is the e�ective measurement noise.

The di�erencing of TAM readings, which is performed to generate the �lter measurement zk,

makes the e�ective measurement noise colored and state-dependent. For the sake of simplicity, the

procedure proposed in [11] to handle colored noise is not implemented here. Rather, the synthetic

measurements fed to the �lters are obtained in simulation by di�erencing punctual magnetometer

readings; the outcome is then corrupted by an additive zero-mean white Gaussian noise.

The performance of the three algorithms are compared through simulation, for a spacecraft

traveling on a circular orbit with a radius of 6 905 km, an inclination of 97 deg, and a period of

5 710 s. The real attitude motion is numerically integrated in the presence of a driving process

noise with power spectral density equal to Q = 10−14 · I3 N2m2, and a diagonal inertia matrix

with entries [2.1, 2.05, 1.5] kgm2. The simulated noise-free TAM readings are generated from a

tenth-order International Geomagnetic Reference Field model. Once di�erenced, a zero-mean white

Gaussian noise with covariance RMAG = I3 · 10−13 T2 is added. The �lter is run at 0.5 Hz, with

initial estimate set to x̃0 = [0, 0, 0]
T
rad/s and the covariance matrix is initialized with P 0 = I3

rad2/s2.

The performance of the predictor-corrector algorithm are compared with the EKF and UKF by

running an ensemble of 100 Monte Carlo simulations, with the S/C initial angular rate vector having

a random direction given a �xed magnitude. Three set of simulations were performed, for angular

rate magnitudes of 20 deg/s, 30 deg/s, and 40 deg/s: the corresponding root mean square (rms)

error histories, averaged over the Monte Carlo runs, are shown in Figures 1, 2 and 3. These highlight

the bene�ts of the retrodictor-corrector formulation for handling the nonlinear system dynamics.

In particular, Figure 1 shows that for the lower angular rate magnitude, the three �lters provide

practically the same accuracy. However, when the initial rate raises, the EKF performs worse both
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during the initial transient and at steady state, with a di�erence becoming increasingly evident at

|ω| = 40 deg/s (see Figure 3), while the RCF and the UKF remains on par. Note that tumbling

rates of such magnitude, though not common, have been encountered during actual missions [13],

[14].
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Figure 1 Estimated angular velocity rms error for initial S/C angular speed of 20 deg/s.

VI. Conclusions

In this Note, a nonlinear �ltering scheme based on a set of recursive equations was analyzed. The

algorithm, named retrodictor-corrector �lter (RCF), is similar to existing variants of the Kalman

�lter, but it is derived under di�erent assumptions, aimed at mitigating the approximation intrinsic

to the nonlinear predictor step common to many recursive �lters.

The estimation is expressed as a weighted least squares problem, where the cost function re�ects

the balance between a minimization of the measurement and a-priori residuals. However, rather

than �tting the current estimate to a previous one being projected-ahead, as done in the standard

predictor-corrector scheme, here we seek to retro�t the current estimate to the previous one. This

way, the concept of successive linearization is applied not only to the measurement function, but
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Figure 2 Estimated angular velocity rms error for initial S/C angular speed of 30 deg/s.

also to the dynamic equation. As a consequence, the proposed algorithm e�ectively handles systems

having strongly nonlinear dynamics, without resorting to a smoothing stage. A solution scheme was

presented, based on the iterative di�erential correction method, which was shown to lead at the �rst

iteration to the extended Kalman �lter (EKF).

A numerical example was discussed involving the angular rate estimation of a tumbling satellite

from magnetometer readings. Results obtained with the proposed algorithm were compared to the

ones from an unscented Kalman Filter (UKF) and the EKF: the retrodictor-corrector �lter proved

to work very well under severe nonlinearities, with performance analogous to the UKF ones.

We do not pretend to break new ground here with this work, since the �lter collects and put

under a di�erent perspective some existing concepts, nor we argue that the improvement gain with

respect to an EKF is necessary in the majority of applications encountered in practice. Nevertheless,

the mathematical formulation and the physical interpretation proposed herein prove to be e�ective

in real-time estimation problems. The proposed solution algorithm requires very few modi�cations

with respect to a standard EKF implementation and, in addition, the iteration procedure can easily
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Figure 3 Estimated angular velocity rms error for initial S/C angular speed of 40 deg/s.

self recognize whether or not the problem at hand requires further iterations beyond the EKF one,

by simply checking the behaviour of the cost function between successive iterations.

Appendix. Equivalence of the predicted and retrodicted a-priori residuals for linear

dynamics

If the system dynamic can be described through:

xk = Φk,k−1xk−1 + Γk−1wk−1 (29)

Then it follows:

xk−1 = Φk−1,kxk −Φk−1,kΓk−1wk−1 (30)

Therefore, the backward process noise reads:

uk−1,k = Φk−1,kΓk−1wk−1 (31)

The e�ective covariance to be used to weight the retrodicted a-priori follows as:

P k−1,k = P k−1 + Φk−1,kΓk−1Qk−1Γ
T
k−1Φ

T
k−1,k (32)
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which is a backward propagation of the familiar a-priori covariance in the prediction framework:

P k|k−1 = Φk,k−1P k−1Φ
T
k,k−1 + Γk−1Qk−1Γ

T
k−1 = Φk,k−1P k−1,kΦT

k,k−1 (33)

Now the equivalence of the �rst terms in the right hand sides of Eqs. (18) and (19) follows as:

‖x̃k−1 −Φk−1,kx̃k‖2P−1

k−1,k

=

‖x̃k−1 −Φk−1,kx̃k‖2ΦT

k,k−1Φ
−T

k,k−1P
−1

k−1,kΦ
−1

k,k−1Φk,k−1
=

‖x̃k−1 −Φk−1,kx̃k‖2ΦT

k,k−1

(
Φk,k−1P k−1,kΦ

T

k,k−1

)−1
Φk,k−1

=

‖x̃k−1 −Φk−1,kx̃k‖2ΦT

k,k−1P
−1

k|k−1Φk,k−1
= ‖Φk,k−1x̃k−1 − x̃k‖2P−1

k|k−1

(34)
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