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IDEAL SIMPLICIAL VOLUME

OF MANIFOLDS WITH BOUNDARY

R. FRIGERIO AND M. MORASCHINI

Abstract. We define the ideal simplicial volume for compact mani-
folds with boundary. Roughly speaking, the ideal simplicial volume of a
manifold M measures the minimal size of possibly ideal triangulations
of M “with real coefficients”, thus providing a variation of the ordinary
simplicial volume defined by Gromov in 1982, the main difference being
that ideal simplices are now allowed to appear in representatives of the
fundamental class.

We show that the ideal simplicial volume is bounded above by the
ordinary simplicial volume, and that it vanishes if and only if the ordi-
nary simplicial volume does. We show that, for manifolds with amenable
boundary, the ideal simplicial volume coincides with the classical one,
whereas for hyperbolic manifolds with geodesic boundary it can be
strictly smaller. We compute the ideal simplicial volume of an infi-
nite family of hyperbolic 3-manifolds with geodesic boundary, for which
the exact value of the classical simplicial volume is not known, and
we exhibit examples where the ideal simplicial volume provides sharper
bounds on mapping degrees than the classical simplicial volume.

Introduction

The simplicial volume is an invariant of manifolds introduced by Gromov
in his seminal paper [Gro82]. If M is a connected, compact, oriented man-
ifold with (possibly empty) boundary, then the simplicial volume of M is
the infimum of the sums of the absolute values of the coefficients over all
singular chains representing the real fundamental cycle of M (see Subsec-
tion 2.1). We will denote the simplicial volume of M by the symbol ‖M‖,
both when M is closed and when M has non-empty boundary.

If τ is a triangulation of M , then a suitable algebraic sum of the simplices
of τ provides a fundamental cycle for M . Hence the simplicial volume is
bounded above by the minimal number of simplices in any triangulation of
M , and it can be thought as the minimal size of triangulations of M “with
real coefficients” (even if this analogy is very loose: fundamental cycles of
manifolds can contain simplices which are very far from being embedded,
for example).

1991 Mathematics Subject Classification. 57N65, 55N10 (primary); 53C23, 57N16,
57M50, 20J06 (secondary).

Key words and phrases. bounded cohomology; amenable groups; hyperbolic manifolds;
hyperideal simplex; truncated tetrahedron.

1

ar
X

iv
:1

80
2.

05
22

3v
2 

 [
m

at
h.

G
T

] 
 1

1 
A

pr
 2

01
9



IDEAL SIMPLICIAL VOLUME OF MANIFOLDS WITH BOUNDARY 2

When dealing with manifolds with boundary, it is often useful to work
with ideal triangulations rather than with traditional ones (we refer the
reader to Section 2 for the precise definition of ideal triangulation). In-
deed, ideal triangulations are usually more manageable than classical ones,
and in many cases they are much more economical: for example, the small-
est cusped hyperbolic 3-manifold (which was constructed by Gieseking in
1912, and shown to have the smallest volume among non-compact hyper-
bolic 3-manifolds by Adams [Ada87]) can be triangulated using only one
ideal simplex, and the figure-eight knot complement, which doubly covers
the Gieseking manifold, admits an ideal triangulation with 2 ideal tetrahe-
dra.

In this paper we introduce and study the notion of ideal simplicial vol-
ume. To this aim, we first introduce a homology theory for manifolds with
boundary, called marked homology, in which ideal singular simplices are al-
lowed. We then show that marked homology is isomorphic to the singular
homology of the manifold relative to its boundary. This allows us to define
a fundamental class in the marked context, which will be called ideal fun-
damental class. We then define the ideal simplicial volume ‖M‖I of M as
the infimum of the `1-norms of the representatives of the ideal fundamental
class. We refer the reader to Section 2 for the precise definition. A crucial
fact is that the canonical isomorphism between marked homology and rel-
ative homology is not isometric: as discussed in Remark 2.3, a seemingly
reasonable definition of the ideal simplicial volume in the context of relative
homology would not lead to an interesting theory.

Fundamental properties of the ideal simplicial volume. For every
compact manifold with boundary M , let c(M) denote the complexity of
M , i.e. the minimal number of top-dimensional simplices in any ideal tri-
angulation of M . Just as the simplicial volume of M is bounded from
above by the number of top-dimensional simplices in a triangulation of M
(see e.g. [FFM12, Proposition 1.1]), the ideal complexity provides an upper
bound for the ideal simplicial volume:

Theorem 1. Let M be a compact manifold with boundary. Then

‖M‖I ≤ c(M) .

We also show that the ideal simplicial volume may be exploited to bound
the degree of maps between manifolds:

Theorem 2. Let f : (M,∂M) → (N, ∂N) be a map of pairs between com-
pact, connected and oriented manifolds of the same dimension. Then

‖M‖I ≥ |deg(f)| · ‖N‖I .

In particular, the ideal simplicial volume is a homotopy invariant of man-
ifolds with boundary (where homotopies are understood to be homotopies
of pairs).
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The ideal simplicial volume vanishes if and only if the ordinary simplicial
volume does:

Theorem 3. There exists a constant Kn only depending on n ∈ N such that,
for every n-dimensional compact manifold M , the following inequalities hold:

‖M‖I ≤ ‖M‖ ≤ Kn · ‖M‖I .

In particular, ‖M‖I = 0 if and only if ‖M‖ = 0.

Manifolds with amenable boundary. As Gromov himself pointed out
in his seminal paper [Gro82], in order to compute the simplicial volume it
is often useful to exploit the dual theory of bounded cohomology. One of
the peculiar features of (singular) bounded cohomology is that it vanishes
on spaces with amenable fundamental group. Via some elementary duality
results, this implies in turn that amenable spaces are somewhat invisible
when considering their simplicial volume: for example, closed manifolds with
amenable fundamental group have vanishing simplicial volume, and (under
some mild additional hypothesis) the simplicial volume of manifolds with
boundary is additive with respect to gluings along boundary components
with amenable fundamental group. In Section 4 we introduce the dual theory
to marked homology and, building on results from [BBF+14, Fri17], we
exploit duality to deduce the following:

Theorem 4. Let M be an n-dimensional compact manifold, and suppose
that the fundamental group of every boundary component of M is amenable.
Then

‖M‖I = ‖M‖ .

It is proved in [Löh07, KK15] that, under the assumptions of Theorem 4,
the simplicial volume ‖M‖ of M coincides with the simplicial volume of the
open manifold int(M) = M \ ∂M (which is defined in terms of the locally
finite homology of M \ ∂M [Gro82]), as well as with the Lipschitz simpli-
cial volume of int(M) (see [Gro82, LS09] for the definition). Therefore, for
manifolds whose boundary components have amenable fundamental group,
all these invariants also coincide with the ideal simplicial volume ‖M‖I of
M .

Let M be a complete finite-volume hyperbolic n-manifold. As usual, we
will denote by M also the natural compactification of M , which is a compact
manifold whose boundary components admit a flat Riemannian structure. A
celebrated result of Gromov and Thurston shows that the simplicial volume
of M is equal to the ratio vol(M)/vn, where vol(M) is the Riemannian
volume of M and vn is the volume of a regular ideal geodesic simplex in
hyperbolic n-space Hn (all such simplices are isometric to each other). Since
flat manifolds have virtually abelian (hence, amenable) fundamental group,
Theorem 4 implies the following:
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Corollary 5. Let M be (the natural compactification of) a complete finite-
volume hyperbolic n-manifold. Then

‖M‖I = ‖M‖ =
vol(M)

vn
.

In fact, Theorem 4 applies to a much bigger class of complete finite-volume
manifolds. Let M be an open complete manifold with finite volume and
pinched negative curvature. As above we still denote by M its natural com-
pactification. It is well known that the fundamental group of each boundary
component of M is virtually nilpotent, hence amenable (see e.g. [BGS85] or
[Bel16, Ex. 19.1]). Thus Theorem 4 implies the following:

Corollary 6. Let M be (the natural compactification of) an open complete
finite-volume negatively pinched n-manifold. Then

‖M‖I = ‖M‖.

Hyperbolic manifolds with geodesic boundary. The computation of
the simplicial volume of manifolds whose boundary components have non-
amenable fundamental groups is a very challenging task. Indeed, the only
exact values of the simplicial volume of such manifolds are known for 3-
dimensional handlebodies (and, more in general, for manifolds obtained by
attaching 1-handles to Seifert manifolds) and for the product of a surface
with the closed interval [BFP15]. In particular, the exact value of the or-
dinary simplicial volume is not known for any hyperbolic 3-manifold with
geodesic boundary (and the only available estimates seem quite far from
being sharp, see [BFP17]). On the contrary, in Section 5 we compute the
exact value of the ideal simplicial volume for an infinite family of hyperbolic
3-manifolds with geodesic boundary (see Theorem 9 below).

In the closed case, Gromov’s and Thurston’s strategy to obtain lower
bounds on the classical simplicial volume of hyperbolic manifolds is based on
two facts: fundamental cycles may be represented by linear combinations of
geodesic simplices, and the volume of geodesic simplices in hyperbolic space
is uniformly bounded. When dealing with manifolds with geodesic boundary,
the most natural building blocks turn out to be the so-called (partially)
truncated simplices. By mimicking Gromov’s and Thurston’s strategy, here
we exploit upper bounds on the volume of truncated simplices to obtain
lower bounds on the ideal simplicial volume of hyperbolic manifolds with
geodesic boundary.

If M is a compact hyperbolic manifold with geodesic boundary, then the
smallest return length `(M) of M is the length of the shortest path with
both endpoints on ∂M which intersects ∂M orthogonally at each of its end-
points. Equivalently, it is the smallest distance between distinct boundary
components of the universal covering of M .
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Theorem 7. Let M be a compact n-dimensional hyperbolic manifold with
geodesic boundary. Then

‖M‖I ≥
vol(M)

V n
`(M)

,

where V n
` is the supremum of the volumes of n-dimensional fully truncated

simplices whose edge lengths are not smaller than ` (see Definition 5.3).

It is well known (see for example [Ush06]) that, in dimension 3, the supre-
mum of the volumes of all truncated tetrahedra is given by the volume
v8 ≈ 3.664 of the regular ideal octahedron, so Theorem 7 implies the follow-
ing:

Corollary 8. Let M be a compact hyperbolic 3-manifold with geodesic bound-
ary. Then

‖M‖I ≥
vol(M)

v8
.

It has been recently proved that, if ` is sufficiently small, then the constant
V 3
` coincides with the volume of the regular truncated tetrahedron of edge

length ` [FM]. Together with Theorem 7, this fact allows us to compute the
exact value of the ideal simplicial volume of an infinite family of hyperbolic
3-manifolds with geodesic boundary.

For every g ≥ 2 letMg be the set of hyperbolic 3-manifolds M with con-
nected geodesic boundary such that χ(∂M) = 2− 2g (so ∂M , if orientable,
is the closed orientable surface of genus g). Recall that for every 3-manifold
with boundary M the equality χ(∂M) = 2χ(M) holds, and in particular
χ(∂M) is even. Therefore, the union

⋃
g≥2Mg coincides with the set of

hyperbolic 3-manifolds with connected geodesic boundary.
For every g ≥ 2 we denote byMg the set of 3-manifolds M with boundary

that admit an ideal triangulation by g tetrahedra and have Euler charac-
teristic χ(M) = 1 − g. Every element of Mg has connected boundary and
supports a hyperbolic structure with geodesic boundary (which is unique by
Mostow rigidity), henceMg ⊆Mg (see [FMP03]). Furthermore, Miyamoto
proved in [Miy94] that elements of Mg are exactly the ones having the

smallest volume among the elements ofMg. In particular,Mg is nonempty
for every g ≥ 2. The eight elements of M2 are exactly the smallest hyper-
bolic manifolds with nonempty geodesic boundary [KM91, Miy94]. Some
estimates on the ordinary simplicial volume of elements inMg can be found
in [BFP17]. Here we prove the following:

Theorem 9. Let M ∈Mg. Then

‖M‖I ≥ g
and

‖M‖I = g

if and only if M ∈Mg.
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Corollary 10. The hyperbolic 3-manifolds with geodesic boundary having
the smallest ideal simplicial volume are exactly the elements of M2.

As a consequence of the previous corollary, among hyperbolic 3-manifolds
with geodesic boundary, the minimum of the Riemannian volume is attained
exactly at those manifolds which also realize the minimum of the ideal sim-
plicial volume. The same result with ideal simplicial volume replaced by
ordinary simplicial volume was conjectured in [BFP15].

A direct consequence of Theorems 2 and 9 is the following:

Corollary 11. Take elements M ∈ Mg and M ′ ∈ Mg′, where g ≥ g′, and
let

f : (M,∂M)→ (M ′, ∂M ′)

be a map of pairs. Then

deg(f) ≤ g

g′
.

As discussed in Subsection 5.7, in some cases the bound provided by
Corollary 11 is sharp. Moreover, it is strictly sharper than the bounds
one can obtain by exploiting the ordinary simplicial volume to study the
restriction of f to ∂M or the extension of f to the double of M .

Plan of the paper. In Section 1 we define marked spaces and marked
homology. Moreover, we prove some fundamental results about marked ho-
mology that are needed for the definition of the ideal simplicial volume. In
Section 2 we define the ideal simplicial volume and we prove Theorem 1 (in
Subsection 2.3), Theorem 2 (in Subsection 2.5) and Theorem 3 (in Subsec-
tion 2.4). We also introduce marked bounded cohomology, and establish an
elementary but fundamental duality result which will be exploited in the
proofs of Theorems 4 and 7.

In Section 3 we introduce the universal covering of marked spaces, while
Section 4 is devoted to the proof of Theorem 4. Finally, in Section 5 we
focus on hyperbolic manifolds, and we prove Theorem 7, Theorem 9 and
Corollary 11.

1. Marked homology of marked spaces

Before defining the ideal simplicial volume of manifolds with boundary we
need to introduce and develop the theory of marked homology for marked
spaces. If M is a manifold with boundary, one can consider the quotient
space X obtained by separately collapsing the connected components of
∂M . Such a space X provides the motivating example for our theory, and
the ideal simplicial volume of M will be defined in Section 2 just as the
`1-seminorm of the real fundamental class in the marked homology of X.
This section is mainly devoted to collecting the fundamental properties of
marked homology, and to preparing the ground for the precise definition of
the fundamental class in the context of marked homology.
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We begin by introducing a slight generalization of the notion of topological
cone.

Definition 1.1. Let B be a topological space and let b be a point of B. We
say that B is a quasicone with apex b if the following condition holds: there
exists a homotopy

H : B × [0, 1]→ B

between the identity and the constant map at b with the following additional
properties: H(b, t) = b for every t ∈ [0, 1] (i.e. the homotopy is relative to
{b}), and for every x ∈ B \ {b} the path H(x, ·) : [0, 1) → B does not
pass through b. In other words, we ask that the homotopy H is such that
H(x, 0) = x for every x ∈ B, and

H−1({b}) = ({b} × [0, 1]) ∪ (B × {1}) .

A topological cone is obviously a quasicone, and in order to define the
ideal simplicial volume of compact manifolds with boundary it would be
sufficient to deal with usual cones. Nevertheless, when constructing cover-
ings of marked spaces it will be useful to work in a slightly more general
context.

The following definition singles out the fundamental objects we will be
dealing with.

Definition 1.2. A marked space (X,B) is a topological pair satisfying the
following properties:

(1) B is closed in X.
(2) For every b ∈ B there exists a closed neighbourhood Fb of b in X

such that Fb is a quasicone with apex b. Moreover, the Fb, b ∈ B,
may be chosen to be pairwise disjoint.

As a consequence of the definition, the subset B is discrete. Moreover, if

FB =
⋃
b∈B

Fb ,

then the Fb, b ∈ B, are exactly the path connected components of FB.

Definition 1.3. A map f : (X,B) → (X ′, B′) between marked spaces is
admissible if and only if it is continuous and such that f−1(B′) = B.

It is immediate to check that there exists a well-defined category having
marked spaces as objects and admissible maps as morphisms. The notion
of homotopic maps admits an obvious admissible version:

Definition 1.4. Let f, g : (X,B) → (X ′, B′) be admissible maps between
marked spaces. An admissible homotopy between f and g is an ordi-
nary homotopy H : X × [0, 1] → X ′ between f and g such that the map
H(·, t) : X → X ′ is admissible for every t ∈ [0, 1] or, equivalently, such that
H−1(B′) = B× [0, 1]. Observe that, since B′ is discrete, for every b ∈ B the
map t 7→ H(t, b) is constant: in particular, f(b) = g(b) for every b ∈ B.
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1.1. The marked space associated to a manifold with boundary.
Let (M,∂M) be an n-manifold with boundary. We associate to (M,∂M)
the marked space (X,B) which is defined as follows: X is the topological
quotient obtained from M by separately collapsing every connected compo-
nent of ∂M , while B ⊆ X is the subset of X given by the classes associated
to the components of ∂M . Using that the boundary of M admits a collar
in M , it is immediate to check that (X,B) is indeed a marked space in the
sense of Definition 1.2. We will refer to the pair (X,B) as the marked space
associated to M , and the quotient map p : (M,∂M)→ (X,B) will be called
the natural projection.

1.2. Marked homology. As explained in the introduction, the ideal sim-
plicial volume measures the `1-seminorm of the ideal fundamental class,
which in turn provides a representative of the fundamental class possibly
containing (partially) ideal singular simplices. The following definition gives
a precise meaning to the notion of partially ideal singular simplices.

Definition 1.5. Let (X,B) be a marked space. A singular simplex σ : ∆n →
X is admissible if σ−1(B) is a subcomplex of ∆n, i.e. a (possibly empty)
union of (not necessarily proper) faces of ∆n. For example, every constant
singular simplex is admissible, and any bijective parametrization σ : ∆n →
X of a top-dimensional simplex in an ideal triangulation of a manifold with
associated marked space (X,B) is admissible, since σ−1(B) is equal to the
set of vertices of ∆n.

Let now R be a ring with unity. It is immediate to check that the re-
striction of an admissible singular simplex to any of its faces is still admis-
sible (where we understand that each face of ∆n is identified with ∆n−1

via the unique affine isomorphism which preserves the order of the ver-
tices). This readily implies that admissible simplices define a subcomplex

ĈM∗ (X,B;R) of the usual singular complex C∗(X;R). Of course, the com-

plex ĈM∗ (X,B;R) contains the subcomplex C∗(B;R) (which, given that B
is discrete, in each degree n only consists of the free R-module over the
constant n-simplices with values in B).

We are now ready to introduce the definition of the chain complex that
computes the marked homology of marked spaces.

Definition 1.6. Let (X,B) be a marked space. The marked chain complex
of (X,B) over the coefficient ring R is the quotient complex

CM∗ (X,B;R) = ĈM∗ (X,B;R)
/
C∗(B;R) ,

endowed with the differential induced by the usual differential on C∗(X;R).
The marked homology of (X,B) (with coefficients in R) is the homol-

ogy of the marked chain complex CM∗ (X,B;R), and will be denoted by
HM∗ (X,B;R).

The composition of an admissible singular simplex with an admissible
map is still an admissible singular simplex. Using this one can easily check
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that marked homology indeed provides a functor on the category of marked
spaces. We will see later that it is in fact a homotopy functor, i.e. that
admissibly homotopic maps induce the same morphism on marked homology.

Let i∗ : CM∗ (X,B;R) → C∗(X,B;R) be the inclusion of marked chains
into ordinary relative chains. The main result of this section is the following:

Theorem 1.7. For every n ∈ N, the inclusion

in : CMn (X,B;R)→ Cn(X,B;R)

induces an isomorphism

Hn(in) : HMn (X,B;R)→ Hn(X,B;R)

between the marked homology and the ordinary relative homology of the pair
(X,B) with coefficients in R.

This section will be mainly devoted to the proof of Theorem 1.7, which
will be concluded in Subsection 1.6.

1.3. The homotopy invariance of marked homology. Recall that an
admissible homotopy between admissible maps f, g : (X,B) → (X ′, B′) is
an ordinary homotopy H : X × [0, 1] → X ′ between f and g such that
H−1(B′) = B × [0, 1].

As anticipated above, marked homology is a homotopy functor:

Theorem 1.8. Let f, g : (X,B)→ (X ′, B′) be admissibly homotopic admis-
sible maps. Then the induced homomorphisms

HMn (f), HMn (g) : HMn (X,B;R)→ HMn (X ′, B′;R)

coincide for every n ∈ N.

Proof. The proof is a slight modification of the one for ordinary singular
homology (see for instance [Hat02, Thm. 2.10]). As in the classical case, we
subdivide the prism ∆n × I into (n + 1)-dimensional simplices as follows.
For every i = 0, . . . , n we set vi = (ei, 0), wi = (ei, 1), where ei is the i-th
vertex of ∆n. We then denote by σi : ∆n+1 → ∆n×I the affine isomorphism
sending the vertices of ∆n+1 to the vertices v0, · · · , vi, wi, · · · , wn of ∆n× I.

Let H : X × I → X ′ be an admissible homotopy between f and g. Then
the usual homotopy operator Tn : Cn(X;R) → Cn+1(X ′;R) is the unique
R-linear map such that, for every singular simplex σ : ∆n → X,

Tn(σ) =

n∑
i=0

(−1)iH ◦ (σ × 1) ◦ σi .

It is clear that Tn sends Cn(B;R) to Cn+1(B′;R), so in order to conclude

the proof it is sufficient to show that Tn(σ) ∈ ĈMn+1(X ′, B;R) provided that
σ : ∆n → X is admissible.

Let us denote byKi ⊆ ∆n×I the image of the affine embedding σi : ∆n+1 →
∆n × I, and observe that ∆n × I admits a structure of simplicial complex
whose top-dimensional simplices are exactly the Ki. Let S = σ−1(B) ⊆ ∆n.
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Since σ is admissible, the subset S is a subcomplex of ∆n. From the very
definition of admissible homotopy it follows that (H ◦(σ×I))−1(B′) = S×I,
so the pair (

∆n+1, (H ◦ (σ × 1) ◦ σi)−1 (B′)
)

is affinely isomorphic (via σi) to the pair (Ki, (S × I) ∩Ki). But S × I is a
subcomplex of ∆n × I (with respect to the structure of simplicial complex
described above), so (S×I)∩Ki is a subcomplex of Ki, and this implies that
the singular simplex H ◦ (σ × 1) ◦ σi : ∆n+1 → X ′ is admissible. We have
thus proved that the homotopy operator T∗ induces a well-defined homotopy
operator

T ′∗ : CM∗ (X,B;R)→ CM∗+1(X ′, B′;R) .

Now the conclusion follows from the very same argument for ordinary sin-
gular homology (see e.g. [Hat02, Thm. 2.10]). �

An admissible map f : (X,B)→ (X ′, B′) is an admissible homotopy equiv-
alence if there exists an admissible map g : (X ′, B′)→ (X,B) such that g◦f
and f◦g are admissibly homotopic to the identity maps Id(X,B) and Id(X′,B′),
respectively. If this is the case, then f restricts to a bijection between B
and B′. Moreover, Theorem 1.8 immediately implies the following:

Corollary 1.9. Let f : (X,B)→ (X ′, B′) be an admissible homotopy equiv-
alence. Then the induced map f∗ : H∗(X,B;R) → H∗(X

′, B′;R) is an iso-
morphism in every degree.

1.4. Marked homology of quasicones. An important ingredient in our
proof of Theorem 1.7 is the vanishing of marked homology of quasicones.

Proposition 1.10. Let F be a quasicone with apex b ∈ F . Then

HMn (F, {b};R) = 0

for every n ≥ 0 and every coefficient ring R.

Proof. Unfortunately, in order to prove the proposition we are not allowed
to apply the homotopy invariance of marked homology to the contracting
homotopy which retracts F onto b: indeed, such a homotopy is not admissi-
ble, and even the constant map F → F sending every point of the cone to b
is not admissible. Nevertheless, the obvious algebraic contracting homotopy
for singular chains on F takes admissible chains to admissible chains, thus
yielding the desired vanishing of marked homology for quasicones.

Let us now give some details. Recall that by definition of quasicone there
exists a homotopy

H : F × [0, 1]→ F

between the identity and the constant map at b which satisfies

H−1(b) = ({b} × I) ∪ (F × {1}) .

Let σi : ∆n+1 → ∆n × I, i = 0, . . . , n, be the affine parametrizations
of the top-dimensional simplices of the decomposition of ∆n × I described
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in the proof of Theorem 1.8. We consider as before the usual homotopy
operator Tn : Cn(F ;R)→ Cn+1(F ;R) such that, for every singular simplex
σ : ∆n → F ,

Tn(σ) =
n∑
i=0

(−1)iH ◦ (σ × 1) ◦ σi .

Of course Tn sends Cn({b};R) to Cn+1({b};R), and we need to check

that Tn(σ) ∈ ĈMn+1(F, {b};R) provided that σ : ∆n → F is admissible.

Let Ki ⊆ ∆n×I be the image of the affine embedding σi : ∆n+1 → ∆n×I,
and recall that ∆n × I admits a structure of simplicial complex whose top-
dimensional simplices are exactly the Ki. Let S = σ−1(B) ⊆ ∆n. Since
σ is admissible, the subset S is a subcomplex of ∆n. From the fact that
H−1({b}) = ({b} × I) ∪ (F × {1}) it follows that (H ◦ (σ × I))−1({b}) =
(F × I) ∪ (∆n × {1}), so the pair(

∆n+1, (H ◦ (σ × 1) ◦ σi)−1 ({b})
)

is affinely isomorphic (via σi) to the pair (Ki, ((F × I)∪ (∆n × {1}))∩Ki).
This implies that the singular simplex H ◦ (σ × 1) ◦ σi : ∆n+1 → X ′ is
admissible. We have thus proved that the homotopy operator T∗ induces a
well-defined homotopy operator

T ′∗ : CM∗ (F, {b};R)→ CM∗+1(F, {b};R)

between the identity (since H(·, 0) is the identity of F ) and the zero map
(since H(·, 1) is the constant map at b, and simplices supported in {b} are
null in the marked chain complex). This concludes the proof. �

1.5. Small Marked Homology. A key fact in the proof of the Excision
Property (or of the Mayer-Vietoris sequence) for ordinary singular homol-
ogy is that singular homology may be computed by simplices which are
supported in the elements of an open cover. In this subsection we show that
the same property holds for marked homology.

Definition 1.11. Let (X,B) be a marked space and let U be a family of
subsets of X such that

X ⊆
⋃
U∈U

int(U) ,

where int(U) denotes the biggest open set contained in U . We say that a(n
admissible) singular simplex σ : ∆n → X is U-small if its image lies entirely

in some U ∈ U . We denote by CU∗ (X,B;R) (resp. CU ,M∗ (X,B;R)) the
submodule of C∗(X,B;R) (resp. of CM∗ (X,B;R)) generated by the classes
of U-small simplices (resp. U-small admissible simplices).

Then CU∗ (X,B;R) (resp. CU ,M∗ (X,B;R)) is a subcomplex of C∗(X,B;R)
(resp. of CM∗ (X,B;R)), whose homology is denoted by HU∗ (X,B;R) (resp.

HU ,M∗ (X,B;R)).
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The following theorem extends a fundamental result about ordinary sin-
gular homology to marked homology:

Theorem 1.12. Let s∗ : CU ,Mn (X,B;R)→ CMn (X,B;R) be the obvious in-

clusion. Then, there exists a chain map ρ∗ : CM∗ (X,B;R)→ CU ,M∗ (X,B;R)
such that the compositions s∗ ◦ ρ∗ and ρ∗ ◦ s∗ are both chain homotopic to
the identity.

Proof. The proof for ordinary singular homology (see e.g. [Hat02, Prop.
2.21]) works also in the context of marked homology. Here below we fo-
cus our attention on some subtleties that arise in the context of marked
homology.

Let S∗ : C∗(X;R) → C∗(X;R) be the usual barycentric subdivision op-
erator. We would like to prove that S∗ induces a well-defined operator
SM∗ : CM∗ (X,B;R) → CM∗ (X,B;R) on marked chains. The fact that S∗
sends chains supported in B to chains supported in B is obvious, so we need
to show that S∗(σ) is an admissible chain provided that the singular simplex
σ is admissible. To this aim, observe that a singular simplex σ : ∆n → X is
admissible if and only if the following condition holds: let p ∈ ∆n and let
D(p) ⊆ ∆n be the unique open face of ∆n containing p (such a face may
have any dimension between 0, when p is a vertex of ∆n, and n, when p lies
in the interior of ∆n); if σ(p) ∈ B, then σ(D(p)) ⊂ B.

Suppose now that σ : ∆n → X is admissible, let K ⊆ ∆n be a geomet-
ric n-simplex appearing in the barycentric decomposition of ∆n, and let
τ : ∆n → K be an affine parametrization of K. In order to show that S∗(σ)
is an admissible chain it is sufficient to prove that σ ◦ τ is an admissible
singular simplex. However, let p ∈ ∆n be such that σ(τ(p)) ∈ B. Let D(p)
(resp. D(τ(p))) be the unique open face of ∆n containing p (resp. τ(p)), and

observe that τ(D(p)) ⊆ D(τ(p)). Thus, if σ(τ(p)) ∈ B, then by admissi-

bility of σ we have σ(D(τ(p))) ⊆ B, hence σ(τ(D(p))) ⊆ B. This proves
that σ ◦ τ is admissible, thus showing that the operator SM∗ is indeed well
defined.

In order to prove the theorem we also need to show that the operator SM∗
is homotopic to the identity. To this aim, let T∗ : C∗(X;R)→ C∗+1(X;R) be
the standard homotopy between S∗ and the identity of C∗(X;R) (as defined
e.g. in [Hat02, Prop. 2.21]). As usual we need to prove that T∗ preserves
admissible chains. To this aim we first describe the geometric meaning of
T∗. We inductively triangulate the prism ∆n × I by taking the cone of the
whole triangulated boundary (∆n × {0})

⋃
(∂∆n × I) with respect to the

barycenter of ∆n×{1}. We also fix an arbitrary top-dimensional simplex K
of the triangulation of ∆n × I just described, and an affine parametrization
τ : ∆n+1 → K of K.

Let now σ : ∆n → X be an admissible simplex, and let π : ∆n × I → ∆n

be the projection onto the first factor. In order to prove that T∗ preserves
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admissible chains, it is sufficient to show that the singular simplex

σ ◦ π ◦ τ : ∆n+1 → X

is admissible. As before, for every p ∈ ∆n+1 we let D(p) be the smallest
open face of ∆n+1 containing p. Moreover, for every q ∈ ∆n × I we define
C(q) as the smallest open cell containing q in the product cell structure of
∆n × I (where we understand that ∆n and I are endowed with the cellular
structure induced by their simplicial structure). Then it is easy to check

that τ(D(p)) ⊆ C(τ(p)). As a consequence, if σ(π(τ(p))) ∈ B, then by

admissibility of σ we have σ(D(π(τ(p)))) ⊆ B, hence σ(π(C(τ(p)))) ⊆ B.

But this implies in turn that σ(π(τ(D(p)))) ⊆ B, i.e. that σ◦τ is admissible.
We have thus proved that the homotopy operator T∗ induces an operator

TM∗ : CM∗ (X,B;R) → CM∗+1(X,B;R) which realizes a homotopy between

SM∗ and the identity of CM∗ (X,B;R). Now the conclusion follows from the
very same arguments described in [Hat02, Prop. 2.21] for ordinary singular
homology. �

Corollary 1.13. The inclusion s∗ : CU ,Mn (X,B;R) → CMn (X,B;R) in-
duces an isomorphism

HMn (sn) : HU ,Mn (X,B;R)→ HMn (X,B;R)

in every degree n ∈ N.

We are now ready to provide the proof of Theorem 1.7, which states that
the inclusion

in : CMn (X,B;R)→ Cn(X,B;R)

induces an isomorphism

Hn(in) : HMn (X,B;R)→ Hn(X,B;R)

for every n ∈ N.

1.6. Proof of Theorem 1.7. Let (X,B) be a marked space, and let

FB =
⋃
b∈B

Fb

be the union of disjoint quasiconical closed neighbourhoods of the points in
b. We also fix the cover U = {FB, X \ B} of X, and we observe that the
interiors of the elements of U still cover the whole of X. The marked chain
complex CU ,M∗ (FB, B;R) is naturally a subcomplex of CU ,M∗ (X,B;R), so
we can consider the short exact sequence of complexes

CU ,M∗ (FB, B;R) // CU ,M∗ (X,B;R)
(πE)∗ // E∗ ,

where
E∗ = CU ,M∗ (X,B;R)/CU ,M∗ (FB, B;R) .

Recall now from Proposition 1.10 that the marked homology of the pair
(FB, B) vanishes in every degree. Therefore, by looking at the long exact
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sequence associated to the short exact sequence above we conclude that the
quotient map induces an isomorphism

Hn(πE) : HU ,Mn (X,B;R)→ Hn(E∗)

for every n ∈ N.
The usual relative chain complex C∗(FB, B;R) is naturally a subcomplex

of CU∗ (X,B;R), so we can consider the quotient map

(πD)∗ : CU∗ (X,B;R)→ D∗ = CU∗ (X,B;R)/C∗(FB, B;R) .

Since B is a strong deformation retract of FB we have Hn(FB, B;R) = 0 for
every n ∈ N, so arguing as above we deduce that the induced map

Hn(πD) : HUn (X,B;R)→ Hn(D∗)

is an isomorphism for every n ∈ N.
Observe that the set of (the classes of) singular simplices which are sup-

ported in X \B but not entirely contained in FB \B provides a basis both of

E∗ and of D∗, so the inclusion iU∗ : CU ,M∗ (X,B;R) ↪→ CU∗ (X,B;R) induces
an isomorphism

α∗ : E∗ → D∗ .

Since Hn(πE), Hn(πD), Hn(α) are all isomorphisms, from the commuta-
tive diagram

HU ,Mn (X,B;R)
Hn(πE) //

Hn(iU∗ )
��

Hn(E∗)

Hn(α)

��
HUn (X,B;R)

Hn(πD)
// Hn(D∗)

we deduce that the map

Hn(iU∗ ) : HU ,Mn (X,B;R)→ HUn (X,B;R)

is an isomorphism for every n ∈ N.
Let us now fix n ∈ N and consider the commutative diagram

HU ,Mn (X,B;R) //

Hn(iU∗ )
��

HMn (X,B;R)

Hn(i∗)

��
HUn (X,B;R) // Hn(X,B;R) ,

where the horizontal arrows are induced by the inclusions of small chains
into generic chains. Theorem 1.12 and [Hat02, Prop. 2.21] ensure that the
horizontal arrows are isomorphism, and we have just proved that also the
map Hn(iU∗ ) is an isomorphism. It follows that the map Hn(i∗) is also an
isomorphism, and this concludes the proof of Theorem 1.7.
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2. Ideal simplicial volume

In order to define the ideal simplicial volume we need to introduce an
`1-seminorm on marked homology. Henceforth, unless otherwise stated, we
will deal only with chains and classes with real coefficients. Therefore, when
this does not create ambiguities, we will omit to specify the coefficients we
are working with. The reader will understand that, unless otherwise stated,
all the homology (and cohomology) modules will have real coefficients.

2.1. `1-(semi)norms and simplicial volumes. Let us first recall the def-
inition of the `1-(semi)norm on ordinary singular homology. If (X,Y ) is

a topological pair, then for every singular chain c =
∑k

i=1 aiσi ∈ Cn(X,Y )
written in reduced form (i.e. such that σi 6= σj if i 6= j and no σi is supported
in Y ⊆ X) we set

‖c‖1 =
k∑
i=1

|ai| ∈ R .

The norm ‖ · ‖1 restricts to a norm on the space of relative cycles Zi(X,Y ),
which defines in turn a quotient seminorm (still denoted by ‖ · ‖1) on the
homology module Hi(X,Y ). If M is a compact oriented n-manifold with
boundary, then Hn(M,∂M) ∼= R admits a preferred generator, called real
fundamental class, which is the image via the change of coefficient map of
the generator of Hn(M,∂M ;Z) ∼= Z corresponding to the orientation of M .
If [M,∂M ] ∈ Hn(M,∂M) denotes the real fundamental class of M , then the
simplicial volume ‖M‖ of M is defined by

‖M‖ = ‖[M,∂M ]‖1 .
If (X,B) is a marked space, then the `1-norm on the relative chain com-

plex C∗(X,B) restricts to an `1-norm on CM∗ (X,B), which induces in turn
a seminorm on the homology modules HM∗ (X,B). We will denote these
(semi)norms again with the symbol ‖ · ‖1.

Let now (M,∂M) be a compact oriented n-manifold with boundary, and
denote by (X,B) the associated marked space as defined in Subsection 1.1,
and by p : M → X the natural projection. Since ∂M is a strong deformation
retract of an open neighboourhood of ∂M , the quotient map p′ : (M,∂M)→
(M/∂M, [∂M ]) induces an isomorphism

Hk(p
′) : Hk(M,∂M)→ Hk(M/∂M, [∂M ])

for every k ∈ N (see e.g. [Hat02, Prop. 2.22]). For the same reason, also the
obvious quotient map q : (X,B)→ (M/∂M, [∂M ]) induces isomorphisms on
relative homology in every degree, so from the commutative diagram

Hk(M,∂M)
Hk(p′) //

Hk(p)

''

Hk(M/∂M, [∂M ])

Hk(X,B)

Hk(q)
66
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we can deduce that also the map Hk(p) : Hk(M,∂M)→ Hk(X,B) is an iso-
morphism in every degreee k ∈ N. By composing this map with the inverse
of the isomorphism Hk(i∗) : HMk (X,B)→ Hk(X,B) (see Theorem 1.7), we
thus obtain, for every k ∈ N, the isomorphism

ψk : Hk(M,∂M)→ HMk (X,B) .

Definition 2.1. The ideal fundamental class of M is the element

[M,∂M ]M = ψn([M,∂M ]) ∈ HMn (X,B) ,

and the ideal simplicial volume of M is defined by

‖M‖I = ‖[M,∂M ]M‖1 .
Observe that both the classical and the ideal simplicial volume of an ori-

ented manifold do not depend on its orientation and that it is straightforward
to extend the definition also to nonorientable or disconnected manifolds: if
M is connected and nonorientable, then its simplicial volumes are equal
to one half of the corresponding simplicial volumes of its orientable dou-
ble covering, and the simplicial volumes of any manifold is the sum of the
corresponding simplicial volumes of its connected components.

Henceforth, every manifold will be assumed to be compact, connected
and oriented.

Remark 2.2. Let us describe a characterization of ideal fundamental cycles
that will prove useful in the sequel.

Let (Z,Z ′) be a topological pair such that Z\Z ′ is an oriented n-manifold,
and let α be a relative cycle in Cn(Z,Z ′). Recall that for every x ∈ Z \
Z ′ one may define the local degree of α at x as the real number d(α)(x)
corresponding to the element defined by α in Hn(Z,Z\{x}) via the canonical
identification between Hn(Z,Z \ {x}) and R induced by the orientation of
Z \ Z ′. In fact, the number d(α)(x) is independent of x ∈ Z \ Z ′.

Let now M be an n-dimensional compact oriented manifold with associ-
ated marked space (X,B). By definition, a marked cycle z ∈ CMn (X,B) is
an ideal fundamental cycle if and only if, when considered as a cycle in the
relative chain module Cn(X,B), it defines the same homology class as the
image via the natural projection of the classical fundamental class of M .
Now the fundamental class of M may be characterized as the unique class
α ∈ Hn(M,∂M) having local degree equal to 1 at every point p ∈M \ ∂M .
As a consequence, z is an ideal fundamental cycle if and only if it has local
degree equal to 1 at every point x ∈ X \B.

Remark 2.3. One may wonder why we do not define the ideal simplicial vol-
ume just by taking the `1-seminorm of the image of [M,∂M ] in the relative
homology module Hn(X,B), where (X,B) is the marked space associated
to M . The following example shows that this choice would not lead to any
meaningful invariant. Let M be the (natural compactification) of the com-
plement of a hyperbolic knot in the 3-sphere S3. Since the fundamental
group of ∂M is abelian, hence amenable, we have ‖M‖I = ‖M‖ > 0 (see
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Corollary 5). On the other hand, it is not difficult to show that X is simply
connected (indeed, the Wirtinger presentation of π1(M) shows that π1(M)
is generated by meridian loops, all of which are killed in X). As a conse-
quence, the bounded cohomology (with real coefficients) of the pair (X,B)
vanishes in every positive degree [Gro82], and by a standard duality argu-
ment this implies in turn that the `1-seminorm of any element in H3(X,B)
vanishes [Löh08].

Another possible definition of ideal simplicial volume would arise from
defining admissible simplices as those singular simplices σ : ∆n → X such
that σ−1(B) coincides with the set of vertices of ∆n. On the one hand, this
choice would lead to ideal fundamental cycles which are closer in spirit to
ideal triangulations. On the other hand, with this choice the whole theory
would be much more complicated: for example, showing that admissibly
homotopic maps induce the same morphism on marked homology would be
much more difficult; the simplices obtained by subdividing an admissible
one would not be admissible; and even the fact that the ordinary simplicial
volume bounds from above the ideal one, if true, would not be obvious at all.
However, by Proposition 2.9 the ideal simplicial volume can be computed
by looking only at ideal fundamental cycles whose simplices have all their
vertices in B.

2.2. (Marked) bounded cohomology and duality. As anticipated in
the introduction, in order to compute the (marked) simplicial volume it is
often useful to switch from the study of singular chains to the dual theory
of (bounded) singular cochains.

Recall that the chain modules Ci(M,∂M) and CMi (X,B) are endowed
with `1-norms, both denoted by the symbol ‖·‖1. We denote by Cib(M,∂M)

(resp. CiM(X,B)) the topological dual of Ci(M,∂M) (resp. of CMi (X,B)),
i.e. the space of bounded linear functionals on Ci(M,∂M) (resp. on CMi (X,B)),
endowed with the operator norm ‖ · ‖∞ dual to ‖ · ‖1.

In the case of ordinary (relative) singular (co)chains, the modules C∗b (M,∂M)
define a subcomplex of the ordinary singular chain complex Ci(M,∂M), and
are called the bounded cochains modules of the pair (M,∂M). The `∞-norm
of a cochain α ∈ Cib(M,∂M) is equal to the supremum of the values taken by
α on single singular i-simplices with values in M (and not supported in ∂M).
The cohomology of the complex C∗b (M,∂M) is the bounded cohomology of
the pair (M,∂M), and it is denoted by H∗b (M,∂M). The `∞-norm on each
Cib(M,∂M) restricts to the subspace of cocycles, and induces a seminorm
(still denoted by ‖ · ‖∞) on H i

b(M,∂M), for every i ∈ N.
An analogous characterization holds also for the `∞-norm on CiM(X,B):

indeed, for every ϕ ∈ CiM(X,B),

‖ϕ‖∞ = sup{|ϕ(σ)| |σ admissible singular i-simplex not supported in B} .

Just as in the ordinary case, the boundary map ∂i : C
M
i (X,B)→ CMi−1(X,B)

is bounded with respect to the `1-norm, hence it induces a bounded dual
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map δi−1 : Ci−1
M (X,B)→ CiM(X,B), which endows (C∗M(X,B), δ∗) with the

structure of a normed complex. We denote by H∗M(X,B) the cohomology
of the complex (C∗M(X,B), δ∗), and we endow each H i

M(X,B), i ∈ N, with
the seminorm induced by ‖ · ‖∞, which will still be denoted by ‖ · ‖∞.

The obvious pairings between Cib(M,∂M) and Ci(M,∂M) and between

CiM(X,B) and CMi (X,B) induce pairings

〈·, ·〉 : H i
b(M,∂M)×Hi(M,∂M)→ R ,

〈·, ·〉 : H i
M(X,B)×HMi (X,B)→ R .

The following duality result is proved e.g. in [Löh08], and will be used in
the proofs of Theorem 4 and 7.

Proposition 2.4. Let α ∈ HMi (X,B). Then

‖α‖1 = max{〈ϕ, α〉 |ϕ ∈ H i
M(X,B), ‖ϕ‖∞ ≤ 1} .

2.3. Ideal simplicial volume vs. complexity. Recall that a ∆-complex
is a topological space obtained by gluing a family of copies of the standard
simplex along affine diffeomorphisms of some of their faces. Therefore, ∆-
complexes provide a mild generalization of (geometric realizations of) sim-
plicial complexes, the only differences being that simplices in ∆-complexes
need not be embedded (since identifications between pairs of faces of the
same simplex are allowed), and that distinct simplices in ∆-complexes may
share more than one face.

Definition 2.5. Let (M,∂M) be a compact n-manifold with boundary with
associated marked space (X,B). An ideal triangulation of M is a realization
of (X,B) as a ∆-complex whose set of vertices is equal to B. The complexity
c(M) of M is defined as the minimal number of n-dimensional simplices in
any ideal triangulation of M .

Let us now prove that the complexity bounds the ideal simplicial volume
from above. Let M be an n-manifold with boundary with c(M) = m, and
let (X,B) be the marked space associated to M . By definition of complexity,
there exists an ideal triangulation of M with m top-dimensional simplices,
i.e. a realization of X as a ∆-complex with the following properties: X is
obtained by gluing m copies ∆n

1 , . . . ,∆
n
m of the standard simplex ∆n; the

set of vertices of the resulting ∆-complex is equal to B. Recall that M
is oriented, so for every j = 1, . . . ,m we can fix an orientation-preserving
affine identification σj : ∆n → ∆n

j . It is not quite true that the sum of the
σj defines a marked cycle. Nevertheless, in order to obtain a cycle out of
the σj it is sufficient to alternate them as follows.

Let Sn+1 be the group of permutations of the set {0, . . . , n}, and denote
by e0, . . . , en the vertices of the standard simplex ∆n. For every τ ∈ Sn+1

we denote by τ the unique affine automorphism τ : ∆n → ∆n such that
τ(ei) = eτ(i) for every i = 0, . . . , n. Observe now that for each j = 0, . . . ,m



IDEAL SIMPLICIAL VOLUME OF MANIFOLDS WITH BOUNDARY 19

and every τ ∈ Sn+1 the set (σj ◦ τ)−1(B) is equal to the set of vertices of
∆n, so σj ◦ τ is admissible. We may thus define the marked chain

z =
1

(n+ 1)!

m∑
j=1

∑
τ∈Sn+1

ε(τ)σj ◦ τ ∈ CMn (X,B) ,

where ε(τ) ∈ {1,−1} denotes the sign of τ .
It is now easy to check that z is indeed a cycle. Moreover, the local degree

of z at any point in X \ B is equal to one, so Remark 2.2 implies that the
class [z]M of z in HMn (X,B) is the ideal fundamental class of M . Finally,
we have ‖z‖1 = m, hence

‖M‖I = ‖[M,∂M ]M‖1 ≤ ‖z‖1 = m = c(M) .

This concludes the proof of Theorem 1.

2.4. Ideal simplicial volume vs. classical simplicial volume. Let σ : ∆i →
M be a singular simplex, and recall that p : (M,∂M)→ (X,B) is the natu-
ral projection. We say that σ is admissible if p◦σ is admissible as a simplex
with values in the marked space (X,B), i.e. if σ−1(∂M) is a subcomplex of
∆i. Moreover, a chain c ∈ C∗(M,∂M) is admissible if it is (the class of) a
linear combination of admissible simplices. The following lemma provides
the key step in the proof of the inequality ‖M‖I ≤ ‖M‖, and will be useful
also in the proof of Theorem 2.

Lemma 2.6. Let M be a manifold with boundary, and let A′ be a closed
subspace of a perfectly normal topological space A. Let also f : (A,A′) →
(M,∂M) be a map of pairs. Then f is homotopic (as a map of pairs) to a
map g : (A,A′)→ (M,∂M) such that g−1(∂M) = A′.

Proof. A classical result in general topology ensures that ∂M admits a closed
collar C in M . More precisely, there exists a subset C ⊂ M containing ∂M
such that the pair (C, ∂M) is homeomorphic to the pair (∂M × [0, 1], ∂M ×
{0}). Henceforth we fix an identification C ∼= ∂M × [0, 1] induced by such a
homeomorphism.

Since f is a map of pairs, we already know that f−1(∂M) ⊇ A′, and we
need to perturb f in order to push out of ∂M all points not belonging to
A′. Since A is perfectly normal, there exists a continuous map h : A→ [0, 1]
such that h−1(0) = A′. Moreover, for every x ∈ f−1(C) we have

f(x) = (m(x), d(x)) ∈ ∂M × [0, 1] ,

where m : f−1(C) → ∂M and d : f−1(C) → [0, 1] are continuous functions.

Let us now define a map H : A× [0, 1]→ M as follows. If x ∈ f−1(M \ C),
then H(x, t) = f(x) for every t ∈ [0, 1]. If x ∈ f−1(C), then

H(x, t) = (m(x),min{d(x) + th(x), 1}) .
First observe that, if x ∈ f−1(M \ C) ∩ f−1(C), then necessarily f(x) =
(m(x), 1), and this readily implies that the map H is well defined, hence
continuous. Moreover, if x ∈ A′, then d(x) = h(x) = 0, so H(x, t) =
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f(x) ∈ ∂M for every t ∈ [0, 1], i.e. the maps f = H(·, 0) and g = H(·, 1)
are homotopic as map of pairs. Finally, we have g(x) ∈ ∂M if and only if
f(x) ∈ C and d(x) = h(x) = 0, i.e. if and only if x ∈ A′, as desired. �

We are now ready to prove that the ideal simplicial volume is bounded
from above by the classical simplicial volume:

Theorem 2.7. Let (M,∂M) be an orientable compact manifold with bound-
ary. Then

‖M‖I ≤ ‖M‖ .

Proof. Let ε > 0 be given, and let z ∈ Cn(M,∂M) be a fundamental cycle
such that ‖z‖1 ≤ ‖M‖ + ε. We would like to modify z into an admissible
fundamental cycle without increasing its `1-norm. To this aim, we briefly
discuss a well-known geometric description of cycles in singular homology,
also described in [Fri17, Section 13.2]. We refer the reader to [Löh16, Section
5.1] for an alternative approach to this construction.

Let z =
∑k

i=1 aiσi, and assume that σi 6= σj for i 6= j. One can construct
a ∆-complex P associated to z by gluing k distinct copies ∆n

1 , . . . ,∆
n
k of

the standard n-simplex ∆n as follows. For every i we fix an identification
between ∆n

i and ∆n, so that we may consider σi as defined on ∆n
i . For

every i = 1, . . . , k, j = 0, . . . , n, we denote by F ij the j-th face of ∆n
i , and

by ∂ij : ∆n−1 → F ij ⊆ ∆n
i the usual face inclusion. We say that the faces

F ij and F i
′
j′ are equivalent if σi|F ij = σi′ |F i′

j′
, or, more formally, if ∂ij ◦ σi =

∂i
′
j′ ◦ σi′ . We now define a ∆-complex P as follows. The simplices of P are

∆n
1 , . . . ,∆

n
k , and, if F ji , F j

′

i′ are equivalent, then we identify them via the

affine diffeomorphism ∂j
′

i′ ◦ (∂ji )
−1 : F ji → F j

′

i′ . By construction, the maps
σ1, . . . , σk glue up to a well-defined continuous map f : P → M . We also
define the boundary ∂P of P as the subcomplex of P given by all the (n−1)-
faces of P which are sent by f entirely into ∂M . By definition, the map f
is a map of pairs from (P, ∂P ) to (M,∂M).

For every i = 1, . . . , k, let σ̂i : ∆n → P be the singular simplex obtained
by composing the identification ∆n ∼= ∆n

i with the quotient map with values

in P , and let us consider the singular chain zP =
∑k

i=1 aiσ̂i ∈ Cn(P ). By
construction, zP is a relative cycle in Cn(P, ∂P ), and the push-forward of
zP via f is equal to z. Moreover, ‖zP ‖1 = ‖z‖1.

By applying Lemma 2.6 to the map f : (P, ∂P )→ (M,∂M) we now obtain
a map g : (P, ∂P )→ (M,∂M) such that g−1(∂M) = ∂P . We now set

z′ = g∗(zP ) ∈ C∗(M,∂M) .

Since g is homotopic to f as a map of pairs, the chain z′ is a relative
fundamental cycle for M . Moreover, we have

‖z′‖1 = ‖g∗(zP )‖1 ≤ ‖zP ‖1 = ‖z‖1 ≤ ‖M‖+ ε .
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Finally, if σ′i : ∆n →M is a singular simplex appearing in z′, then σ−1(∂M)
is a (possibly empty) union of (n− 1)-faces of ∆n, hence it is admissible.

Let p : (M,∂M) → (X,B) be the natural projection of M onto its asso-
ciated marked space. Since z′ is admissible, we have p∗(z

′) ∈ CM(X,B).
Moreover, since z′ is a relative fundamental cycle for M , the chain p∗(z

′) is
an ideal fundamental cycle for M . Thus

‖M‖I = ‖[p∗(z′)]‖1 ≤ ‖p∗(z′)‖1 ≤ ‖z′‖1 ≤ ‖M‖+ ε .

Since ε is arbitrary, this concludes the proof. �

In order to conclude the proof of Theorem 3 we now need to show the
following:

Proposition 2.8. There exists a constant Kn > 0 such that

‖M‖ ≤ Kn · ‖M‖I
for every n-dimensional manifold M .

Proof. Let (X,B) be the marked space associated to M , let π : M → X be

the natural projection, and let zM =
∑k

i=1 aiσi ∈ CM∗ (X,B) be an ideal
fundamental cycle for M . We are going to truncate the singular simplices
σi to obtain a realization of the relative fundamental class of M via singular
polytopes. We will then triangulate these polytopes to get a classical relative
fundamental cycle, at the cost of the multiplicative constant Kn mentioned
in the statement.

Let us begin with a general definition. Let Q be an m-dimensional poly-
tope (i.e. the convex hull of a finite number of points which span an m-
dimensional affine space in some Euclidean space), m ≤ n. We inductively
define the notion of fundamental cycle for Q as follows. If m = 0, then Q is a
point, and we set zQ = σ ∈ C0(Q), where σ is the constant singular simplex
at Q. If 0 < m ≤ n, we say that a chain zQ ∈ Cm(Q) is a fundamental
cycle for Q if the following conditions hold: the class of zQ in Hm(Q, ∂Q) is
indeed a relative fundamental cycle for (Q, ∂Q) ∼= (Dm, ∂Dm); if F1, . . . , Fk
are the facets of Q (i.e. the codimension-1 faces of Q), then ∂zQ =

∑k
i=1 ci,

where ci is a fundamental cycle for Fi for every i = 1, . . . , k.
We now fix 0 < ε < 1/(n + 1) and, for every 0 ≤ m ≤ n, we define a

family Ω(m, ε) of oriented polytopes which are obtained by truncating the
standard simplex

∆m = {(t0, . . . , tm) ∈ Rm+1 |
m∑
i=0

ti = 1}

around some of its faces. Namely, we say that a polytope Q belongs to
Ω(m, ε) if there exists a subcomplex K ⊆ ∆m such that

Q = {(t0, . . . , tm) ∈ ∆m |
∑
i∈A

ti ≤ 1− ε whenever A is the set of indices

corresponding to a face in K} .
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P

Q

S

R

Figure 1. On the left, a standard simplex. On the
right, the truncated simplex obtained by removing
neighbourhoods of the edge PQ and of the vertices R
and S.

In other words, Q is obtained by removing from ∆m a neighbourhood of
K (see Fig. 1). We endow Q with the orientation induced by ∆m, and
every facet of Q will also be oriented as (a subset of) the boundary of Q.
The condition ε < 1/(n + 1) ensures that Q has nonempty interior unless
K = ∆m. If Q lies in Ω(m, ε), then every facet of Q is affinely isomorphic
to an element of Ω(m− 1, ε).

We now claim that for every 0 ≤ m ≤ n and for every Q ∈ Ω(m, ε) there
exists a fundamental cycle zQ for Q such that the following conditions hold:

(1) ‖zQ‖1 ≤ Km, where Km is a constant only depending on m;

(2) let F1, . . . , Fk be the facets of Q and let ∂zQ =
∑k

i=1 ci, where ci
is a fundamental cycle for Fi for every i = 1, . . . , k. If ϕ : Fi → Q′

is any orientation-preserving affine isomorphism between Fi and an
element Q′ ∈ Ω(m− 1, ε), then ϕ∗(ci) = zQ′ ;

(3) if ϕ : Q→ Q is an affine isomorphism, then ϕ∗(zQ) = τ(ϕ)zQ, where
τ(ϕ) = ±1 is positive if ϕ is orientation-preserving, and negative
otherwise.

The existence of the claimed family of fundamental cycles may be proved
by induction as follows. If m = 0, then either Q = ∅ or Q is a point, and
in both cases the conclusion easily follows. Suppose now that the desired
fundamental cycles have been constructed for every i = 0, . . . ,m − 1, and
let Q ∈ Ω(m, ε). For every facet F of Q we have an orientation-preserving
affine isomorphism ϕ : F → Q′ for some Q′ ∈ Ω(m − 1, ε), and we set
zF = ϕ−1

∗ (zF ) ∈ Cm−1(F ) ⊆ Cm(Q). By (3) (applied to the polytope Q′)
the chain zF does not depend on the chosen affine isomorphism. Let us now
consider the cycle z∂ =

∑
F zF . Using (2) and (3) it is immediate to check

that ∂z∂ = 0, and this readily implies that z∂ is a classical fundamental
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cycle for ∂Q. We can then fill z∂ thus obtaining a chain z′Q ∈ Cm(Q) such

that ∂z′Q = z∂ . If G is the group of the affine isomorphisms of Q into itself,

we then set zQ = (1/|G|)
∑

g∈G τ(g)g∗(z
′
Q). Using that each zF satisfies (3)

we easily see that ∂zQ = ∂z′Q, and this readily implies that zQ satisfies (2)

and (3). In order to get (1), we only need to observe that Ω(m, ε) is finite, so
we may set Km = max{‖zQ‖1 |Q ∈ Ω(m, ε)}. Indeed, if ε′ 6= ε, then there
exists an obvious bijection between Ω(m, ε) and Ω(m, ε′), and fundamental
cycles for elements of Ω(m, ε′) may be chosen to have exactly the same `1-
norm as the ones for the corresponding elements of Ω(m, ε). This concludes
the proof of the claim.

We can now proceed with the proof of the proposition. Let zM =∑s
i=1 aiσi ∈ CM(X,B) be an ideal fundamental cycle for M . For every

b ∈ B denote by Fb a closed quasiconical neighbourhood of b such that
X \

⊔
b∈B int(Fb) is homeomorphic to M . We also set FB =

⊔
b∈B Fb

and we denote by ∂FB the topological boundary of FB in X, so that
(X \ int(FB), ∂FB) is homeomorphic to (M,∂M).

By continuity, there exists ε0 > 0 such that the following condition holds:
for every i = 1, . . . , s, ifKi = σ−1

i (B), then σi(∆
n\int(Qi)) ⊆ int(FB), where

Qi ∈ Ω(n, ε0) is obtained as above by removing from ∆n a neighbourhood
of Ki. For every i = 1, . . . , s let now zQi be the fundamental cycle for Qi
defined above, and set

zi = (σi)∗(zQi) ∈ Cn(X \B) , z =
s∑
i=1

aizi .

Using that zM is a marked cycle and the properties of the zQi it is not
difficult to show that ∂z ∈ Cn (FB \B). In particular, z is a relative cycle
in Cn (X \B,FB \B). By retracting each Fb\{b} onto ∂Fb we can construct
a homotopy equivalence of pairs

r : (X \B,FB \B)→ (X \ int(FB), ∂FB) ∼= (M,∂M) .

We claim that the chain r∗(z) is a relative fundamental cycle for M . Indeed,
zM is an ideal fundamental cycle, so its image in Hn(X,B) has local degree
equal to one at every point x ∈ X \B (see Remark 2.2). Using this and the
fact that every zQi is a relative fundamental cycle for Qi, we deduce that
also z has local degree equal to one at every point x ∈ X \ FB. Then, the
same holds true for r∗(z), and this shows that r∗(z) is a fundamental class
for M . Therefore,

‖M‖ ≤ ‖r∗(z)‖1 ≤ ‖z‖1 =

∥∥∥∥∥
s∑
i=1

ai(σi)∗(zQi)

∥∥∥∥∥
1

≤
s∑
i=1

|ai| · ‖zQi‖1 ≤ Kn

s∑
i=1

|ai| = Kn · ‖zM‖1
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By taking the infimum over all possible ideal fundamental cycles we get

‖M‖ ≤ Kn‖M‖I ,

which concludes the proof. �

By exploiting the techinques introduced in the proof of Theorem 2.7 we
may show that the `1-norm of a marked homology class can be computed
by looking only at marked chains whose simplices have all their vertices in
B:

Proposition 2.9. Let (X,B) be a marked space such that H0(X,B) = 0
(i.e. B intersects every path connected component of X), and let i ∈ N.
Then, for every α ∈ HMi (X,B) and every ε > 0 there exists a marked cycle
z ∈ CMi (X,B) satisfying the following properties:

(1) [z] = α in HMi (X,B) and ‖c‖1 ≤ ‖α‖1 + ε;
(2) all the vertices of every singular simplex appearing in z lie in B.

Proof. Let z ∈ CMi (X,B) be an admissible cycle. In order to prove the
proposition, it is sufficient to show that z is homologous to an admissible
cycle z′ ∈ CMi (X,B) such that ‖z′‖1 ≤ ‖z‖1 and all the vertices of every
singular simplex appearing in z′ lie in B.

Let z =
∑k

j=1 ajσj . We exploit the notation introduced in the proof of

Theorem 2.7 (with (M,∂M) replaced by (X,B)), and we denote by P the ∆-
complex associated to z (which is obtained by gluing k copies of the standard
simplex ∆i), and by f : P → X the continuous map obtained by gluing the
maps σ1, · · · , σk. Moreover, we denote by σ̂j : ∆i → P the characteristic
map of the j-th copy of ∆i in P (see the proof of Theorem 2.7), and we set

zP =
∑k

j=1 aj σ̂j ∈ Ci(P ).

By construction, zP is a relative cycle in Ci(P, f
−1(B)), and z = f∗(zP ).

Moreover, since every σj is admissible, the subset f−1(B) ⊆ P is a subcom-
plex of P .

We now aim to construct a homotopy of pairs H : (P, f−1(B)) × I →
(X,B) between f and a map g such that every singular simplex appearing
in z′ = g∗(zP ) is admissible and has all its vertices in B. We will then have
[z′] = [z] in Hi(X,B), hence in HMi (X,B) thanks to Theorem 1.7. Then
the proposition will follow from the inequality

‖z′‖1 = ‖g∗(zP )‖1 ≤ ‖zP ‖1 = ‖z‖1 .

Let v ∈ P 0 \ f−1(B) be a vertex of P which is not sent to B by f .
Since H0(X,B) = 0, there exists a continuous path γv : [0, 1] → X joining
v with a point in B. Moreover, since every point of B has a quasiconical
neighbourhood in X, we can safely assume that γ−1

v (B) = {1}, i.e. the path
γv hits B only at its endpoint. Let us now consider the homotopy

Ĥ : (f−1(B) ∪ P 0)× I → X ,
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Ĥ(x, t) =

{
f(x) if x ∈ f−1(B)

γx(t) if x ∈ P 0 \ f−1(B)

(Ĥ is indeed continuous since both f−1(B) and P 0\f−1(B) are closed in P ).
Since f−1(B)∪P 0 is a subcomplex of P , thanks to the Homotopy Extension

Property for CW-pairs (see [Hat02, Proposition 0.16]) we can extend Ĥ to

a homotopy H : P → X. Moreover, since the homotopy Ĥ is relative to
f−1(B), we may assume that H is also relative to f−1(B). In particular, H
also defines a homotopy of pairs H : (P, f−1(B))× I → (X,B). We then set
g = H(·, 1), and we are left to show that every singular simplex appearing
in z′ = g∗(zP ) is admissible and has all its vertices in B.

The fact that every singular simplex appearing in z′ has all its vertices
in B readily follows from the construction of g. Moreover, in order to prove
that each singular simplex appearing in z′ is admissible it is sufficient to
show that g−1(B) is a subcomplex of P . However, from the definition of

Ĥ and from the explicit description of its extension H given in [Hat02,
Proposition 0.16] we deduce that g−1(B) = f−1(B)∪P 0. Since f−1(B) is a
subcomplex of P , this concludes the proof. �

2.5. Bounding mapping degrees. Let us now turn to the proof of Theo-
rem 2. Let f : (M,∂M)→ (N, ∂N) be a map of pairs between n-dimensional
manifolds with boundary. We denote by (XM , BM ) (resp. (XN , BN )) the
marked space associated to M (resp. to N).

By Lemma 2.6, the map f is homotopic (as a map of pair) to a map
g : (M,∂M) → (N, ∂N) such that g−1(∂N) = ∂M . This condition ensures
that the map g : (XM , BM ) → (XN , BN ) induced by g is admissible. By
looking at the commutative diagram

Hn(M,∂M)
Hn(g) //

��

Hn(N, ∂N)

��
Hn(XM , BM )

Hn(g) // Hn(XN , BN )

HMn (XM , BM )

OO

HMn (g)// HMn (XN , BN )

OO

we easily deduce that

HMn (g)([M,∂M ]M) = deg(g) · [N, ∂N ]M = deg(f) · [N, ∂N ]M .

Moreover, the operator HMn (g) is norm non-increasing, since it is induced
by a map on marked chains which sends every single admissible simplex to
a single admissible simplex. Thus

‖M‖I = ‖[M,∂M ]M‖1 ≥ ‖HMn (g)([M,∂M ]M)‖1
= ‖deg(f) · [N, ∂N ]M‖1 = |deg(f)| · ‖N‖I .
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This concludes the proof of Theorem 2.

3. The universal covering of a marked space

When computing the (co)homology of a space, it is often useful to work
with (co)invariant (co)chains on coverings. In order to implement this strat-
egy in the context of marked (co)homology, we first need to define coverings
of marked spaces. For the sake of simplicity (and since this will be sufficient
for our purposes) we only define the universal covering of a marked space,
even though our construction may be easily adapted to define a more general
notion of covering between marked spaces.

Let (X,B) be a marked space, and assume for simplicity that Y = X \
B admits a universal covering q : Ỹ → Y . Then we define the universal

covering (X̃, B̃) of (X,B) as follows. Let {Fb}b∈B be a collection of disjoint

quasiconical closed neighbourhoods of the points of B. We pick a set B̃
endowed with a fixed bijection with the set of connected components of

q−1(
⋃
b∈B(Fb \ {b})) and we define X̃ = Ỹ ∪ B̃. Observe that the covering

projection q : Ỹ → Y extends to a map π : X̃ → X sending to b ∈ B all the

points of B̃ corresponding to a component of q−1(Fb).

In order to turn the pair (X̃, B̃) into a marked space, we endow X̃ with
the unique topology such that the following conditions hold: the subset

Ỹ = X̃ \ B̃ is open in X̃ and inherits from X̃ the topology of Ỹ as total

space of the universal covering of Y ; if b̃ ∈ B̃ corresponds to a component

F̃ of q−1(Fb \ {b}), then a basis of neighbourhoods of b̃ in X̃ is given by the

collection {F̃ ∩π−1(U)}, as U varies in a basis of neighbourhoods of b in X.

Lemma 3.1. The pair (X̃, B̃) is indeed a marked space, and the map

π : (X̃, B̃)→ (X,B) is admissible.

Proof. Let us check that every b̃ ∈ B̃ admits a quasiconical neighbourhood

in X̃. Let b = π(̃b) and let Fb be a quasiconical neighbourhood of b in X.
Let also H : Fb× [0, 1]→ Fb be a contracting homotopy as in Definition 1.1,
and denote by

H ′ : (Fb \ {b})× [0, 1)→ Fb \ {b}
the restriction of H ′ to (Fb \ {b}) × [0, 1) (which is well defined thanks to

the properties of H). Let also F̃ ⊆ X̃ \ B̃ be the connected component of

q−1(Fb\{b}) corresponding to b̃. Covering theory ensures that the homotopy
H ′ lifts to a homotopy

H̃ ′ : F̃ × [0, 1)→ F̃

such that H̃ ′(x, 0) = x for every x ∈ F̃ . We now set F̃
b̃

= F̃ ∪ {b̃}, and we

extend H̃ ′ to a homotopy

H̃ : F̃
b̃
× [0, 1]→ F̃

b̃
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by setting H̃(x, t) = b̃ whenever x = b̃ or t = 1. It is now easy to check that

the map H̃ is continuous and satisfies the requirements of Definition 1.1,

hence F̃
b̃

is a closed quasiconical neuighbourhood of b̃ in X̃. As b̃ varies in

B̃, the construction just described provides disjoint sets, and this concludes

the proof that (X̃, B̃) is a marked space.

The fact that π−1(B) = B̃ is obvious, while the continuity of π readily
follows from the definitions. Thus π is admissible, whence the conclusion.

�

In general, the map π : X̃ → X is no longer a covering (in fact, it is a
covering if and only if the image of π1(Fb \ {b}) into π1(X \B) is trivial for
every b ∈ B).

Remark 3.2. Let M be a compact manifold with boundary with associated

marked space (X,B). Let f : M̃ → M be the universal covering of M , and

let p
M̃

: (M̃, ∂M̃)→ (X
M̃
, B

M̃
) be the natural projection on the associated

marked space. It is very natural to ask whether (X
M̃
, B

M̃
) may be identified

with the universal covering (X̃, B̃) of (X,B).
First observe that the identification

M̃ \ ∂M̃ = M̃ \ ∂M ∼= X̃ \B

extends to a projection p′
M̃

: M̃ → X̃ which is continuous and sends every

connected component of ∂M̃ to a single point in B̃. As a consequence,

there exists a (unique) map α : X
M̃
→ X̃ such that the following diagram

commutes:

M̃
p
M̃ //

p′
M̃ ��

X
M̃

α}}
X̃ .

Since X
M̃

is endowed with the quotient topology, the map α is continuous.
Moreover, it is easy to check that it is bijective. However, we now show

that α is not a homeomorphism if ∂M̃ contains a non-compact connected

component ∂0M̃ .

Let b̃ = p
M̃

(∂0M̃) ∈ B
M̃

be the point corresponding to ∂0M̃ . We claim

that b̃ does not admit a countable basis of neighbourhoods in X
M̃

. In fact,

let {Un}n∈N be a countable collection of neighbourhoods of b̃ in X
M̃

. Let

d be a distance inducing the topology of M̃ (every topological manifold is

metrizable), and choose a diverging sequence {xn}n∈N in ∂0M̃ . For every
n ∈ N there exists εn > 0 such that the d-ball B(xn, εn) is contained in
p−1

M̃
(Un). Using that the sequence {xn}n∈N diverges, it is not difficult to

construct an open neighbourhood V of ∂0M̃ in M̃ such that V does not
contain B(xn, εn) for every n ∈ N. The projection p

M̃
(V ) of V is now an
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open neighbourhood of b̃ in X
M̃

which does not contain any of the Un, n ∈ N.

This shows that b̃ does not admit a countable basis of neighbourhoods in
X
M̃

.
In order to show that α is not a homeomorphism it is now sufficient to

observe that α(̃b) has a countable basis of neighbourhoods in X̃. In fact,

let b = π(α(̃b)) be the projection of α(̃b) under the covering of marked

spaces π : X̃ → X introduced above. It follows from the very definition of

the topology of X̃ that a basis of neighbourhoods at α(̃b) is given by the
set {π−1(U)} as U varies in a basis of neighbourhoods of b in X. Now it
is easy to check that X is second countable (for example, it is metrizable
and compact), hence b has a countable basis of neighbourhoods in X. This

implies in turn that α(̃b) has a countable basis of neighbourhoods in X̃, thus
concluding the proof that α is not a homeomorphism.

This fact may seem a bit annoying at first sight, but our choice for the

definition of the topology of X̃ allows us to lift admissible simplices from X
to its covering (see Lemma 3.3 and Remark 3.4).

3.1. Lifting admissible simplices. Let Y = X \ B be as before, and let

Γ denote the automorphism group of the universal covering q : Ỹ → Y . It is
immediate to check that every element of Γ extends to an admissible map of

(X̃, B̃) into itself. As it is customary for ordinary (co)homology, we would
like to compute the marked (co)homology of X by looking at (co)invariant
(co)chains on the universal covering. To this aim we need the following
important:

Lemma 3.3. Let π : X̃ → X be the universal covering constructed above,
and let σ : ∆i → X be an admissible singular simplex. Then, there exists an

admissible singular simplex σ̃ : ∆i → X̃ such that π ◦ σ̃ = σ. Moreover, if

σ̃′ : ∆i → X̃ is any admissible singular simplex such that π ◦ σ̃′ = π ◦ σ̃ = σ,
then there exists an element γ ∈ Γ such that σ̃′ = γ ◦ σ̃.

Proof. If σ(∆i) ⊆ B, then by discreteness of B we have σ(∆i) = {b} for

some b ∈ B. We then choose an element b̃ in π−1(b) and define σ̃(x) = b̃ for
every x ∈ ∆i. The conclusion follows from the fact that Γ acts transitively
on the fiber of b.

We may thus set K = σ−1(B) and suppose that A = ∆i\K is non-empty.
Since σ is admissible, the set K is a subcomplex of ∆i, and A is a convex
subset of ∆i. In particular, A is simply connected. Since the restriction of

π to X̃ \ B̃ is a classical covering, this implies that there exists a continuous

lift β : A→ X̃ of the restriction σ|A. Let us fix as usual a family Fb, b ∈ B,
of disjoint closed quasiconical neighbourhoods of the points of B, and let

F̃
b̃
, b̃ ∈ B̃, be the family of disjoint closed quasiconical neighbourhoods of

points of B̃ obtained by lifting the Fb (see the proof of Lemma 3.1).
Let K0 be a connected component of K. Since B is discrete, there exists

b ∈ B such that σ(K0) = {b}. Since σ is admissible and non-constant, the
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subset A contains ∆i \∂∆i. In particular, every point x ∈ K0 is an accumu-
lation point for A. By continuity of σ, there exists an open neighbourhood
U of K0 in ∆i such that U ∩ (K \K0) = ∅ and σ(U) ⊆ Fb. Moreover, we
can choose U so that U \K0 = U ∩A is path connected. We now have

β(U \K0) ⊆ π−1(σ(U \K0)) ⊆ π−1(Fb) =
⊔

b̃∈π−1(b)

F̃
b̃
.

Since U \K0 is connected, this shows that there exists a unique b̃ ∈ π−1(B)

such that β(U \K0) ⊆ F̃
b̃
, and we set σ̃(x) = b̃ for every x ∈ K0. Using the

definition of the topology of X̃ it is not difficult to show that σ̃ : ∆i → X̃ is
continuous. By construction, it is also admissible, thus providing the desired
lift of σ.

Suppose now that σ̃′ : ∆i → X̃ is an arbitrary lift of σ. The maps σ̃′|A
and σ̃|A both lift σ|A, so it readily follows from classical covering theory that
σ̃′|A = γ ◦ σ̃|A for some γ ∈ Γ. Observe now for every b ∈ B, x ∈ X \ {b}
there exist disjoint neighbourhoods of b and x in X. Therefore, since A is
dense in ∆i the singular simplices σ̃′ and γ ◦ σ̃ coincide on the whole of ∆i,
and this concludes the proof. �

Remark 3.4. Let M be a compact manifold with universal covering M̃ , and

denote by XM , X
M̃

the marked spaces associated to M and M̃ , respectively.

As observed in Remark 3.2, there exists a natural bijection between X̃ and

X
M̃

, so it makes sense to ask whether Lemma 3.3 would hold with X̃ replaced
by X

M̃
. The answer is negative in general.

For example, let M = S1× [0, 1], so that M̃ = R× [0, 1], and let σ : ∆1 →
M̃ be defined by σ(t) = (1/t, t) if t 6= 0 and σ(0) = (0, 0). Let also p

M̃
: M̃ →

X
M̃

be the natural projection, and q : X
M̃
→ XM the projection obtained by

precomposing the map X̃ → XM with the bijection X
M̃
∼= X̃. Then it is not

difficult to prove that the simplex q ◦ p
M̃
◦ σ : ∆1 → X is continuous, hence

admissible. On the contrary, the map p
M̃
◦ σ : ∆1 → X

M̃
is not continuous:

in fact, if U = {(t, y) ∈ R × [0, 1], t > 1 and y < 1/t} ⊆ M̃ , then the set
p
M̃

(U) is open in X
M̃

and intersects the image of p
M̃
◦ σ only at the point

p
M̃

(R × {0}), against the continuity of p
M̃
◦ σ. (On the other hand, the

simplex p
M̃
◦ σ : ∆1 → X

M̃
would be continuous if we endowed the set X

M̃

with the topology inherited from the bijection X
M̃
∼= X̃.) Using this fact,

one can easily show that the admissible simplex q ◦ p
M̃
◦ σ does not lift to

an admissible simplex with values in X
M̃

.

4. Manifolds with amenable boundary

Let M be a manifold with boundary with associated marked space (X,B).
As usual, we assume that M is compact, connected and oriented. Denote

by M̃ the universal covering of M , and let us fix an identification of the
fundamental group of M with the group Γ of automorphisms of the covering
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π : M̃ → M . Let (X,B) be the marked space associated to M , and denote

by (X̃, B̃) the universal covering of (X,B) as a marked space.

4.1. Proof of Theorem 4. Let us now suppose that the fundamental
group of every component of ∂M is amenable. We would like to prove
that ‖M‖I = ‖M‖. We already know that ‖M‖I ≤ ‖M‖, so we need to
show the converse inequality ‖M‖ ≤ ‖M‖I . The duality principle for ordi-
nary singular (co)homology (see e.g. [Löh08] or [Fri17]) implies that there
exists a bounded cohomology class ψ ∈ Hn

b (M,∂M) such that ‖ψ‖∞ ≤ 1
and 〈ψ, [M,∂M ]〉 = ‖M‖.

Let ε > 0 be given. Since the fundamental group of each component
of ∂M is amenable, by [Fri17, Corollary 5.18] there exists a representative
f ∈ Cnb (M,∂M) of ψ such that ‖f‖∞ ≤ ‖ψ‖∞ + ε which is special in the
following sense.

• Let σ, σ′ : ∆n →M be singular simplices which lift to maps σ̃, σ̃′ : ∆n →
M̃ such that, for every i = 0, . . . , n, at least one of the follow-
ing conditions holds: either σ̃(ei) = σ̃′(ei), or σ̃(ei) 6= σ̃′(ei) but

σ̃(ei) and σ̃′(ei) belong to the same connected component of ∂M̃ ,
where e0, . . . , en are the vertices of the standard n-simplex. Then
f(σ) = f(σ′).

We are now ready to construct a cocycle fM ∈ CnM(X,B) out of the

cocycle f . Let us denote by p′
M̃

: M̃ → X̃ the projection described in Re-

mark 3.2.
Let σ : ∆n → X be an admissible simplex, and let σ̃ : ∆n → X̃ be a

lift of σ, as described in Lemma 3.3. It may be the case that σ̃ is not the

projection on X̃ of any singular simplex with values in M̃ . Nevertheless,

we can arbitrarily choose a singular simplex σ̂ : ∆n → M̃ such that σ̃ and
p′
M̃
◦ σ̂ coincide on the vertices of ∆n. We then set

fM(σ) = f(π ◦ σ̂) ,

where π : M̃ →M is the universal covering projection.
The fact that f is special implies that fM is well defined. Moreover, it is

readily seen that fM is a cocycle, and

‖fM‖∞ ≤ ‖f‖∞ ≤ ‖ψ‖∞ + ε ≤ 1 + ε .

Let ψM ∈ Hn
M(X,B) be the class represented by fM. We are now going

to evaluate ψM on the ideal fundamental class of M . So let z ∈ Cn(M,∂M)
be a fundamental cycle for M . The proof of Theorem 2.7 shows that we
can modify z into an admissible fundamental cycle without increasing its
`1-norm. Therefore, we may assume that the chain z is admissible. As
a consequence, the chain zM = p∗(z) ∈ CMn (X,B) is also admissible. By
definition, it follows that zM is an ideal fundamental cycle for M . Moreover,
it readily follows from the definition of fM that fM(zM) = f(z). We then
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have

〈ψM, [M,∂M ]M〉 = fM(zM) = f(z) = 〈ψ, [M,∂M ]〉 = ‖M‖ .
Moreover,

‖ψM‖∞ ≤ ‖fM‖∞ ≤ 1 + ε .

Therefore, by applying Proposition 2.4 with α = [M,∂M ]M and ϕ =
ψM/(1 + ε) we get

‖M‖I = ‖[M,∂M ]M‖1 ≥
〈ψM , [M,∂M ]M〉

1 + ε
=
‖M‖
1 + ε

.

Since ε is arbitrary, we thus have

‖M‖I ≥ ‖M‖ .
This concludes the proof of Theorem 4.

5. Hyperbolic manifolds with geodesic boundary

This section is devoted to the proof of Theorem 9, which computes the
ideal simplicial volume of an infinite family of hyperbolic 3-manifolds with
geodesic boundary. Mimicking the well-known computation of the classical
simplicial volume for hyperbolic manifolds due to Gromov and Thurston, we
will first establish the lower bound on the ideal simplicial volume in terms
of the Riemannian volume described in Theorem 7. To this aim, rather
than defining a proper straightening of simplices as in the classical case,
we will directly exploit the duality principle described in Proposition 2.4.
In the 3-dimensional case, building on a recent result on the volumes of
peculiar classes of (partially) truncated tetrahedra in hyperbolic space, we
will then show that the resulting lower bound is sharp for an infinite family
of 3-manifolds.

5.1. A geometric realization of the associated marked space. We
denote by Hn the hyperboloid model of hyperbolic space Hn, i.e. we set

Hn = {x ∈ Rn+1 | 〈x, x〉 = −1, x0 > 0} ,
where

〈(x0, . . . , xn), (y0, . . . , yn)〉 = −x0y0 +
n∑
i=1

xiyi

is the Minkowsky scalar product. We also denote by Sn the hyperboloid

Sn = {x ∈ Rn+1 | 〈x, x〉 = 1} .
For every element x ∈ Sn we define the dual hyperplane H(x) (resp. dual
half-space H+(x)) of Hn by setting

H+(x) = {y ∈ Hn | 〈y, x〉 ≤ 0} ,
H(x) = ∂H+(x) = {y ∈ Hn | 〈y, x〉 = 0} .

Let now M be a compact hyperbolic manifold with non-empty geodesic

boundary. The universal covering M̃ of M is a convex subset of Hn bounded
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by infinitely many disjoint hyperplanes, and the fundamental group Γ of M

acts by isometries on M̃ . In fact, every isometry of M̃ is the restriction of a
unique element in SO(n, 1), so Γ acts also on Sn. By taking the dual vectors

of the boundary component of M̃ , one can construct a Γ-invariant countable

set D̂ ⊆ Sn such that for every q̂ ∈ D̂ the dual hyperplane H(q) ⊆ Hn is a

connected component of ∂M̃ , and

M̃ =
⋂
q̂∈D̂

H+(q̂) .

Moreover, up to acting via an isometry ofHn, we may suppose that (1, 0, . . . , 0)

belongs to int(M̃) = M̃ \ ∂M̃ , and this easily implies that the set D̂ is
contained in the half space {x0 > 0}. This allows us to fruitfully ex-
ploit the projective model of hyperbolic space: indeed, let U ∼= Rn be the
affine chart defined by U = {[x] ∈ Pn(R) |x0 6= 0}, consider the projection
π : Rn+1 \{0} → Pn(R) and let P ⊆ U be the projective model of hyperbolic

space, i.e. set P = π(Hn). Also set D = π(D̂) ⊆ U . With a slight abuse, we

denote simply by M̃ the set π(M̃) ⊆ P and, for every q̂ ∈ D̂, we denote by
H+(q̂) also the projection π(H+(q̂)) ∩ U ⊆ U .

Let now (X,B) be the marked space associated to M , and let (X̃, B̃)
be the universal covering of the marked space (X,B). Let us also set

Y = int(M̃) ∪ D. We will now fix the the following identification between

(X̃, B̃) and (Y,D): recall from Remark 3.2 that there exists a natural bijec-

tion between (X̃, B̃) and (X
M̃
, B

M̃
); this induces in turn an identification

between X̃ \ B̃ and X
M̃
\ B

M̃
∼= int(M̃); moreover, B̃ ∼= B

M̃
admits a nat-

ural bijection with the set of connected components of M̃ , hence with D.
We will endow the pair (Y,D) with the structure of marked space inherited

from this identification. Observe that the identification (X̃, B̃) ∼= (Y,D) is
equivariant with respect to the action of Γ on (Y,D).

5.2. (Partially) truncated simplices. Just as ideal simplices are the fun-
damental building blocks for cusped hyperbolic manifolds, truncated sim-
plices may be exploited to construct hyperbolic manifolds with geodesic
boundary. Just as the name suggests, truncated simplices are obtained by
truncating Euclidean simplices in the chart U ⊆ Pn(R) along the dual hy-
perplanes of their hyperideal vertices. Here is a precise definition:

Definition 5.1. Let v0, . . . , vn be points of (U \ ∂P ) ⊆ Pn(R), let ∆ ⊆ U
be the convex hull of the vi, and let I ⊆ {0, . . . , n} be the set of indices i
such that vi /∈ P . Also suppose that the following conditions hold:

(1) For every i, j = 0, . . . , n, i 6= j, the straight segment joining vi with
vj intersects P ;

(2) For every i ∈ I, let v̂i ∈ Sn be the lift of vi such that x0(vi) > 0.
Then vj ∈ H+(v̂i) for every j /∈ I.
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Then the set

∆∗ = ∆ ∩

(⋂
i∈I

H+(v̂i)

)
is a partially truncated simplex (see Figure 2).

The vi are the vertices of ∆∗. A vertex vi is finite if vi ∈ P , and ultraideal
if vi ∈ U \ P . The simplex ∆∗ is degenerate if its vertices are all contained
in a hyperplane of U .

The intersection of ∆∗ with any face of ∆ is an internal face of ∆∗. We
say that an internal edge of ∆∗ is fully hyperideal if both the vertices of the
corresponding edge of ∆ are hyperideal, and that ∆∗ is fully truncated if
every vertex of ∆ is hyperideal. For every i ∈ I, the set ∆∗ ∩ H+(v̂i) is
the truncation simplex of ∆∗. When n = 3, truncation simplices are usually
called truncation triangles. The dihedral angle between a truncation simplex
and any internal face adjacent to it is equal to π/2. (Partially) truncated
tetrahedra are compact; in particular, they have finite volume.

Remark 5.2. In our definition of (partially) truncated tetrahedra we did
not allow ideal vertices, nor (partially) ideal truncation simplices (which
occur when the straight segment joining two hyperideal vertices is tangent
to P at a point in ∂P ). Truncated tetrahedra with ideal vertices arise in the
decomposition of hyperbolic n-manifolds with geodesic boundary and rank-
(n−1) cusps, while truncated tetrahedra with ideal truncation simplices arise
in the decomposition of hyperbolic manifolds with non-compact geodesic
boundary. This choice allows us to avoid some technicalities, and the study
of compact truncated simplices is sufficient for our applications.

For any geodesic segment e in P we denote by L(e) the hyperbolic length
of e.

Definition 5.3. Let ` > 0. Then we set for any n ∈ N

V n
` = sup{vol(∆∗) |∆∗ fully truncated n− simplex ,

L(e) ≥ ` for every internal edge of ∆∗} .

5.3. The marked volume form. Let M be a compact hyperbolic manifold
with geodesic boundary. Recall from the introduction that `(M) denotes
the smallest return length of M , i.e. the length of the shortest path with
both endpoints on ∂M which intersects ∂M orthogonally at each of its
endpoints (equivalently, it is the smallest distance between distinct boundary
components of the universal covering of M). Let (X,B) be the marked space

associated to M , and let (Y,D) ∼= (X̃, B̃) be the marked space described
in Subsection 5.1. We are going to define a marked volume form on M
by assigning to every admissible simplex σ the signed volume of a partially
truncated simplex having the same vertices as a lift of σ.

To this aim, let us first define the function

algvol : Y n+1 → R
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v1

v2

v0

v3

Figure 2. A partially truncated tetrahedron. The
vertices v0 and v1 are hyperideal, while v2 and v3 are
finite.

as follows. Take an element (y0, . . . , yn) ∈ Y n+1. If the yi are all contained
in a hyperplane of P (e.g. if yi = yj for some i 6= j), then we simply set
algvol(y0, . . . , yn) = 0. Otherwise, it is easy to check that {y0, . . . , yn} is the

set of vertices of a non-degenerate (partially) truncated simplex ∆∗ ⊆ M̃ ,
and we set

algvol(y0, . . . , yn) = ε(y0, . . . , yn) · vol(∆∗) ,

where ε(y0, . . . , yn) = 1 (resp. ε(y0, . . . , yn) = −1) if the barycentric parametriza-
tion

∆n → U , (t0, . . . , tn) 7→ t0y0 + . . . tnyn

of the Euclidean simplex with vertices v0, . . . , vn is orientation-preserving
(resp. orientation-reversing). Here we are endowing U with the unique ori-

entation which induces the positive orientation on M̃ ⊆ P ⊆ U .
Observe now that there is an obvious isometric isomorphism between

CnM(X,B) and CnM(Y,D)Γ. We can then define the cochain ω ∈ CnM(Y,D)Γ

by setting

ω(σ̃) = algvol(v0, . . . , vn) ,

where vi = σ̃(ei) and ei is the i-th vertex of the standard simplex ∆n. It is
esay to check that ω is a cocycle, hence we may denote by [ω] ∈ Hn

M(X,B)
the coclass represented by ω.

Proposition 5.4. We have

〈[ω], [M,∂M ]M〉 = vol(M) .



IDEAL SIMPLICIAL VOLUME OF MANIFOLDS WITH BOUNDARY 35

Proof. It is sufficient to exhibit an ideal fundamental cycle zM ∈ CMn (X,B)
for which ω(zM ) = vol(M).

Kojima’s canonical decomposition for hyperbolic manifolds with geodesic
boundary [Koj90, Koj92] shows that M can be decomposed into fully trun-
cated polyhedra. Unfortunately, it is not clear whether these polyhedra may
be coherently subdivided to give a triangulation of M by non-degenerate
truncated simplices. However, a decomposition of M into possibly degen-
erate truncated simplices may be obtained by subdividing Kojima’s decom-
position and, if needed, by inserting a finite number of degenerate trun-
cated simplices between the faces of the original polyhedra. One can fi-
nally obtain the desired fundamental cycle zM by alternating the barycen-
tric parametrizations of these simplices just as we did in Subsection 2.3. It
is then obvious that ω(zM ) = vol(M), and this concludes the proof.

�

5.4. Proof of Theorem 7. We are now ready to conclude the proof of
the lower bound on ‖M‖I in terms of the Riemannian volume of M . By
Proposition 2.9, for every ε > 0 we may find an ideal fundamental cycle

zM =
k∑
i=1

aiσi ∈ CMn (X,B)

such that all the vertices of every σi lie in B, and ‖zM‖1 ≤ ‖M‖I + ε. As
a consequence, since the length of any internal edge of any fully truncated

simplex with vertices in Y = int(M̃)∪D is not smaller than `(M), for every
i = 0, . . . , k we have |ω(σi)| ≤ V n

`(M). Therefore,

vol(M) = ω(zM ) ≤
k∑
i=0

|ai| · |ω(σi)| ≤ V n
`(M)

k∑
i=0

|ai| = V n
`(M)‖zM‖1

≤ V n
`(M) (‖M‖I + ε) .

Since ε is arbitrary, this concludes the proof of Theorem 7.

5.5. The class Mg. As in the introduction, let Mg, g ≥ 2, be the class
of 3-manifolds M with boundary that admit an ideal triangulation by g
tetrahedra and have Euler characteristic χ(M) = 1−g (so χ(∂M) = 2−2g).
We also denote by Mg the set of hyperbolic 3-manifolds M with connected
geodesic boundary such that χ(∂M) = 2− 2g. It turns out that elements of
Mg admit a geometric decomposition into regular truncated tetrahedra.

A fully truncated tetrahedron ∆ is regular if any permutation of its ver-
tices is realized by an isometry of the truncated tetrahdron. Equivalently,
∆ is regular if and only if the dihedral angles along its edges are all equal
to each other, and this happens if and only if the hyperbolic lengths of its
internal edges are all equal to each other. Up to isometry, regular trun-
cated tetrahedra are parametrized by their edge length (which may vary
in (0,+∞), or by their dihedral angles (which may vary in (0, π/3)). It
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is well known (see for example [Ush06]) that, if θ(`) denotes the dihedral
angles along the internal edges of a regular truncated tetrahedron with edge
lengths equal to `, then the map ` → θ(`) is strictly increasing, and has
limits

lim
`→0+

θ(`) = 0

(when the truncated tetrahedron is tending to a regular ideal hyperbolic
octhedron), and

lim
`→+∞

θ(`) = π/3

(when the truncated tetrahedron is tending to a regular ideal hyperbolic
tetrahedron).

For every g ≥ 2, we denote by `g the length of the internal edges of the reg-
ular truncated tetrahedron with dihedral angles equal to π/(3g). Moreover,
for every ` > 0 we denote by ∆` the (isometry class of the) regular truncated
tetrahedron with edge length equal to `. It is proved e.g. in [KM91] that

vol(∆`g) = v8 − 3

∫ π
3g

0
arccosh

(
cos t

2 cos t− 1

)
dt ,

where v8 is the volume of the regular ideal octahedron.
The following result is a restatement of the main theorem of [FM], and

shows that, at least for every ` ≤ `2, the regular tetrahedron ∆` has the
largest volume among all fully truncated tetrahedra whose edge lengths are
not smaller that `:

Theorem 5.5. Let ` ≤ `2. Then

V 3
` = vol(∆`) .

The following result lists some known properties of manifolds belonging to
Mg. The last point implies that Mg coincides with the set of the elements

of Mg of smallest volume.

Proposition 5.6 ([FMP03, KM91]). Let g ≥ 2. Then:

(1) the set Mg is nonempty;
(2) every element of Mg admits a hyperbolic structure with geodesic

boundary (which is unique up to isometry by Mostow Rigidity The-
orem);

(3) the boundary of every element of Mg is connected, so Mg ⊆Mg;
(4) if M ∈ Mg, then M decomposes into the union of g copies of ∆`g ,

so in particular vol(M) = g vol(∆`g);

(5) if M ∈Mg, then vol(M) ≥ g vol(∆`g);
(6) if M ∈ Mg, then the shortest return length `(M) of M is equal to

`g;

(7) if M ∈Mg, then `(M) ≥ `g.

Proof. Items (2) and (3) and (4) are proved in [FMP03], items (1) and (5)
in [KM91, Miy94]. Item (7) is proved in [Miy94, Lemma 5.3], and (6) follows
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from (7) together with the fact that the internal egdes of the truncated tetra-
hedra in the decomposition described in (4) define return paths of length
`g. �

5.6. Proof of Theorem 9 and Corollary 10. We are now ready to prove
Theorem 9. Let M ∈Mg. By Proposition 5.6 we have vol(M) = g ·vol(∆`g)

and `(M) = `g. Moreover, Theorem 5.5 ensures that V 3
`g

= vol(∆`g), so

plugging these equalities into the lower bound given by Theorem 7 we obtain

‖M‖I ≥
vol(M)

V 3
`(M)

=
g · vol(∆`g)

vol(∆`g)
= g .

On the other hand, the manifold M admits an ideal triangulation with g
tetrahedra, so

‖M‖I ≤ c(M) ≤ g .
We thus get

‖M‖I = c(M) = g ,

which proves the first statement of Theorem 9.
If M ∈ Mg, Proposition 5.6 implies that vol(M) ≥ g · vol(∆`g) and

`(M) ≥ `g, so that V 3
`(M) ≤ V

3
`g

= vol(∆g). Therefore, we have

‖M‖I ≥
vol(M)

V 3
`(M)

≥
g · vol(∆`g)

vol(∆`g)
= g .

This concludes the proof of Theorem 9.
In order to prove Corollary 10, it is sufficient to observe that, if M is an

oriented compact hyperbolic 3-manifold with geodesic boundary having an
ideal simplicial volume not greater than 2, then Corollary 8 ensures that

2 ≥ ‖M‖I ≥
vol(M)

v8
≥ vol(∂M) ,

where the last inequality is due to Miyamoto [Miy94, Theorem 4.2]. In
particular, from Gauss-Bonnet Theorem we deduce that ∂M is a connected
surface of genus 2, so ‖M‖I ≥ 2 by Theorem 9. We have thus proved that
the elements of M2 are exactly the compact hyperbolic 3-manifolds with
geodesic boundary having the smallest possible ideal simplicial volume.

5.7. An application to mapping degrees. Take elements M ∈Mg and
M ′ ∈ Mg′ , where g ≥ g′. As stated in Corollary 11, Theorems 2 and 9
imply that any map of pairs

f : (M,∂M)→ (M ′, ∂M ′)

satisfies the inequality

(1) deg(f) ≤ g

g′
.

The following proposition implies that there are cases where this bound is
sharp:
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Proposition 5.7. Let g′ ≥ 2 and let g = k · g′, k ∈ N \ {0}, be a multiple
of g′. For every M ′ ∈ Mg′ there exist a manifold M ∈ Mg and a map of
pairs f : (M,∂M)→ (M ′, ∂M ′) such that

deg(f) =
g

g′
.

Proof. As proved e.g. in [FMP03], manifolds inMg′ can be characterized as
those orientable manifolds that admit an ideal triangulation with g′ tetrahe-
dra and only one edge, meaning that all the edges of the truncated tetrahedra
of the triangulation are identified to each other in the manifold.

Let us denote by e′ the unique edge of the triangulation of M ′. Then
by removing from M ′ a small open neighbourhood of e′ one gets a genus–
(g′ + 1) handlebody. In particular, a small loop encircling e′ has infinite
order in π1(M ′ \ e′), so for every k ≥ 1 we can consider the cyclic ramified
covering f : M →M ′ having order k and ramification locus equal to e′. By
construction, the ideal triangulation of M ′ lifts to an ideal triangulation of
M having g = k · g′ tetrahedra and only one edge e = f−1(e′). Thus M
belongs to Mg. Since the map f has topological degree equal to k, this
concludes the proof. �

One could bound the degrees of maps between manifolds with boundary
also by looking at the ordinary simplicial volume both of the boundaries
and of the doubles of the manifolds involved. Indeed, if f : (M,∂M) →
(M ′, ∂M ′) is a map of pairs between oriented manifolds with boundary of
the same dimension, then f restricts to a map g : ∂M → ∂M ′ and extends
to a map F : DM → DM ′ between the double DM of M and the double
DM ′ of M ′. Moreover,

deg(F ) = deg(g) = deg(f) .

Therefore, by exploiting the usual bounds of mapping degrees in terms of
the ordinary simplicial volume, one gets

(2) deg(f) = deg(F ) ≤ ‖DM‖
‖DM ′‖

,

(3) deg(f) = deg(g) ≤ ‖∂M‖
‖∂M ′‖

.

Let us show that, at least when M ∈ Mg and M ′ ∈ Mg′ , these bounds are
less effective that the bound (1) obtained by exploiting the ideal simplicial
volume. Indeed, in this case the inequality (2) ensures that, for every map
of pairs f : (M,∂M)→ (M ′, ∂M ′), one has

deg(f) ≤ ‖DM‖
‖DM ′‖

=
vol(DM)

vol(DM ′)
=

vol(M)

vol(M ′)
=

g vol(∆`g)

g′ vol(∆`g′ )
,

and the right-hand side of this inequality is strictly bigger than g/g′, since
g > g′ implies `g < `g′ and vol(∆`g) > vol(∆`g′ ). For example, if g′ = 2
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and g = 2k is very big, then vol(∆`g′ ) ≈ 3.226, while vol(∆`g) ≈ v8 = 3.664,

so the integral part of (g vol(∆`g))/(g
′ vol(∆`g′ )) ≈ 1.135(g/g′) is strictly

bigger than the (sharp) bound g/g′.
On the other hand, in this case the inequality (3) gives

deg(f) ≤ ‖∂M‖
‖∂M ′‖

=
|χ(∂M)|
|χ(∂M ′)|

=
g − 1

g′ − 1
,

and again the right hand side of this inequality is strictly bigger than g/g′.
For example, if g′ = 2 this bound gives deg(f) ≤ g − 1, which is a much
less restrictive condition than the inequality deg(f) ≤ g/2 provided by the
study of ideal simplicial volume.
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[Löh07] C. Löh, Homology and simplicial volume, Ph.D. thesis, WWU Münster, 2007,
available online at http://nbn-resolving.de/urn:nbn:de:hbz:6-37549578216.

[Löh08] , Isomorphisms in l1-homology, Münster J. Math. 1 (2008), 237–266.
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