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Italy.

(*Electronic mail: berktan.percin2@unibo.it)

(*Electronic mail: alberto.lanconelli2@unibo.it)

(Dated: March 13, 2024)

We propose an infinite dimensional generating function method for finding the analytical solution of the so-
called chemical diffusion master equation (CDME) for creation and mutual annihilation chemical reactions.
CDMEs model by means of an infinite system of coupled Fokker-Planck equations the probabilistic evolution
of chemical reaction kinetics associated with spatial diffusion of individual particles; here, we focus an creation
and mutual annihilation chemical reactions combined with Brownian diffusion of the single particles. Using our
method we are able to link certain finite dimensional projections of the solution of the CDME to the solution
of a single linear fourth order partial differential equation containing as many variables as the dimension of
the aforementioned projection space. Our technique extends the one presented in22 and23 which allowed for
an explicit representation for the solution of birth-death type CDMEs.
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1. INTRODUCTION

We consider a system of indistinguishable molecules of a chemical species S which undergo

• drift-less isotropic diffusion in the interval [0, 1];

• creation and mutual annihilation chemical reactions

(I) ∅ λc(x)−−−→ S (II) S + S
λd(x,y)−−−−−→ ∅.

Here, the function [0, 1] ∋ x 7→ λc(x) represents the stochastic rate function for reaction (I); it can be thought of being
of the form λc(x) = γπc(x) with γ being a positive constant representing the probability per unit of time for a new
particle to be created while πc is a probability density on [0, 1] which describes the random location for the birth of
the new particle. Similarly, the function [0, 1]2 ∋ (x, y) 7→ λd(x, y) is the stochastic rate function for reaction (II) to
occur between two particles located at (x, y); for instance, when λd is constant then the location of the two particles
is not relevant for reaction (II) to take place; on the contrary, if λd(x, y) = δ(x− y) (here δ stands for the Dirac delta
function with mass at zero) then reaction (II) occurs (with rate one) only for particles having the same location.
To analyze the probabilistic evolution of such system the authors in5 (see also7 for a further discussion of the model)
proposed a set of equations which describe how the number of molecules and their positions change with time. Namely,
for t ≥ 0, n ≥ 1 and A ∈ B([0, 1]n) they set

N (t) := number of molecules at time t,

ρ0(t) := P(N (t) = 0),∫
A

ρn(t, x1, ..., xn)dx1 · · · dxn := P ({N (t) = n} ∩ {(X1(t), ..., Xn(t)) ∈ A}) ;

here (X1(t), ..., Xn(t)) is the vector collecting the positions at time t of the n particles constituting the system (we
are also assuming that the stochastic processes under investigation are defined on a common probability space with
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reference measure P). Then, they write the following infinite system of equations:

∂tρn(t, x1, ..., xn) =

n∑
i=1

∂2
xi
ρn(t, x1, ..., xn)

+
(n+ 2)(n+ 1)

2

∫
[0,1]2

λd(x, y)ρn+2(t, x1, ..., xn, x, y)dxdy

−
∑
i<j

λd(xi, xj) · ρn(t, x1, ..., xn)

+
1

n

n∑
i=1

λc(xi)ρn−1(t, x1, ..., xi−1, xi+1, ..., xn)

−
∫
[0,1]

λc(y)dy · ρn(t, x1, ..., xn), n ≥ 0, t > 0, (x1, ..., xn) ∈ [0, 1]n,

(1.1)

where we agree on assigning value zero to the three sums above when n = 0. The term

n∑
i=1

∂2
xi
ρn(t, x1, ..., xn)

in (1.1) refers to spatial diffusion of the particles; the terms

(n+ 2)(n+ 1)

2

∫
[0,1]2

λd(x, y)ρn+2(t, x1, ..., xn, x, y)dxdy

and ∑
i<j

λd(xi, xj) · ρn(t, x1, ..., xn)

formalize gain and loss, respectively, due to reaction (II), while

1

n

n∑
i=1

λc(xi)ρn−1(t, x1, ..., xi−1, xi+1, ..., xn)

and

−
∫
[0,1]

λc(y)dy · ρn(t, x1, ..., xn)

represent gain and loss, respectively, associated to reaction (I). System (1.1) is combined with initial and Neumann
boundary conditions  ρ0(0) = 1;

ρn(0, x1, ..., xn) = 0, n ≥ 1, (x1, ..., xn) ∈ [0, 1]n;
∂νρn(t, x1, ..., xn) = 0, n ≥ 1, t ≥ 0, (x1, ..., xn) ∈ ∂[0, 1]n.

(1.2)

The initial condition (first two equations in (1.2)) states that there are no molecules in the system at time zero while
the Neumann condition prevents flux through the boundary of [0, 1], thus forcing the diffusion of the molecules inside
[0, 1]. The symbol ∂ν in (1.2) stands for the directional derivative along the outer normal vector at the boundary of
[0, 1]n.

A. Literature review

The dynamics of biochemical processes in living cells are commonly understood as an interplay between the spatial
transport (diffusion) of molecules and their chemical kinetics (reaction), both of which are inherently stochastic at the
molecular scale. In the case of systems with small molecule numbers in spatially well-mixed settings, the diffusion is
averaged out and the probabilistic dynamics are governed by the well-known chemical master equation (CME)14,28,29.
The CME can be seldom solved analytically17. However, solving a few simple cases analytically can bring valuable
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insight to the solutions of more complex cases. Alternatively, one can solve it by integrating stochastic trajectories with
the Gillespie or tau-leap algorithms1,14, by approximation methods8,11,26,30 or even by deep learning approaches15,19.
In the case of spatially inhomogeneous systems, where diffusion is not averaged out, one would expect to obtain a
similar master equation. However, obtaining such an equation is plagued with mathematical difficulties, and although
it was hinted in previous work10 and formulated for some specific systems31, it was not until recently that this was
formalized into the so-called chemical diffusion master equation (CDME)5,7. The CDME changes a few paradigms
that have not yet been explored thoroughly in stochastic chemical kinetics models. It combines continuous and
discrete degrees of freedom, and it models reaction and diffusion as a joint stochastic process. It consists of an
infinite sorted family of Fokker-Planck equations, where each level of the sorted family corresponds to a certain
number of particles/molecules. The equations at each level describe the spatial diffusion of the corresponding set
of particles, and they are coupled to each other via reaction operators, which change the number of particles in the
system. The CDME is the theoretical backbone of reaction-diffusion processes, and thus, it is fundamental to model
and understand biochemical processes in living cells, as well as to develop multiscale numerical methods6,13,21,32

and hybrid algorithms3,4,9. The stochastic trajectories of the CDME can be often integrated using particle–based
reaction–diffusion simulations2,16.
The problem of finding analytical solutions to some CDMEs has been recently addressed in the papers22 and23. In22

the author proposed an infinite dimensional version of the classical generating function method, which is commonly
utilized to find analytical solution to some CMEs24,12,25 (see also33). In22 the method is employed to solve a CDME
of birth-death type; this approach has been further explored in23 and an explicit solution for the general birth-death
CDME is presented.

B. Statement of the main result and structure of the paper

Our main result links certain finite dimensional projections of the solution of (1.1) to a single linear partial differential
equation thus providing a tool for finding analytical solutions to (1.1). Our techniques applies to the case where the
function λd : [0, 1]2 → [0,+∞[ is constant. This means that the CDME in (1.1) simplifies to

∂tρn(t, x1, ..., xn) =

n∑
i=1

∂2
xi
ρn(t, x1, ..., xn)

+ λd
(n+ 2)(n+ 1)

2

∫
[0,1]2

ρn+2(t, x1, ..., xn, x, y)dxdy

− λd
n(n− 1)

2
ρn(t, x1, ..., xn)

+
1

n

n∑
i=1

λc(xi)ρn−1(t, x1, ..., xi−1, xi+1, ..., xn)

− γρn(t, x1, ..., xn), n ≥ 0, t > 0, (x1, ..., xn) ∈ [0, 1]n,

(1.3)

We are now going to state our main result and we refer the reader to the next sections for a detailed discussion of our
assumptions and for the proof.

Theorem 1.1. For k ≥ 1 let

ξk(x) :=
√
2 cos((k − 1)πx), x ∈ [0, 1] and αk := (k − 1)2π2,

i.e. the eigenfunctions with corresponding eigenvalues of the differential operator −A = ∂2
x with homogeneous Neu-

mann boundary conditions (as prescribed in (1.2)). We also write ΠN for the orthogonal projection onto the linear
span of {ξ1, ..., ξN}.
If {ρn}n≥0 solves (1.3)-(1.2), then we have the representation

Π⊗n
N ρn(t, x1, ..., xn) =

1

n!

N∑
j1,...,jn=1

(∫
RN

(∂zj1 · · · ∂zjnuN )(t, z)(2π)−N/2e−
|z|2
2 dz

)
ξj1(x1) · · · ξjn(xn), (1.4)

where uN is the solution to the following fourth order Cauchy problem
∂tuN (t, z) = −

∑N
k=1 αk(zk − ∂zk)∂zkuN (t, z) + λd

2 ∂2
z1uN (t, z)

−λd

2

∑N
j,k=1(zj − ∂zj )(zk − ∂zk)∂zj∂zkuN (t, z)

+
∑N

k=1 ck(zk − ∂zk)uN (t, z)− γuN (t, z); t > 0, z ∈ RN ;

uN (0, z) = 1, z ∈ RN .



4

and ck := ⟨λc, ξk⟩L2([0,1]) for k ≥ 1.

The paper is organized as follows: in Section 2 we propose an alternative derivation of equation (1.1) than the
one presented in5 and7. We mimic the classical approach utilized to obtain the chemical master equation through
an adaptation that includes diffusion of the single particles. Even though the computation is pretty standard, we
believe that such derivation helps for a better understanding of the ingredients that describe the problem under
investigation. To this aim we will fix a set of transition probabilities (see Assumption 2.3 below) and derive through a
limit argument the desired equation. We remark that our approach can be readily generalized to include higher order
chemical reactions and more complex descriptions of the diffusive motion of the particles (i.e. anisotropic diffusion
with drift). In Section 3 we employ the general method proposed in22 to analytically solve equation (1.3)-(1.2). This
requires the use of Gaussian Malliavin calculus’s techniques (summarized in the Appendix below) and provides a link
between the solution to (1.3)-(1.2) and the solution of a single fourth order linear PDE which describes certain finite
dimensional projections of the solution to the original problem. At the end, some comments on the Gaussian features
introduced in our problem by the proposed approach are also discussed.

2. ALTERNATIVE DERIVATION OF EQUATION (1.1)

In this section we present a derivation of equation (1.1) (here we do not need to confine ourselves to the case of a
constant λd function as prescribed in the Theorem 1.1). We recall that the particles of the system under investigation
are subject to the chemical reactions

(I) ∅ λc(x)−−−→ S (II) S + S
λd(x,y)−−−−−→ ∅, (2.5)

and diffuse in space, between successive reactions, as independent Brownian motions on the interval [0, 1] with re-
flecting boundary conditions (compare with (1.2)). In the sequel we will be dealing with probabilities of the form
P(N (t) = n,X(t) ∈ A): this represents the probability that the system at time t is made of n many particles and that
such particles are located in the region A ⊆ [0, 1]n. We are not going to use an extra index in X(t) to stress that it is
an n-dimensional vector; this vector will always come with an event of the type {N (t) = n} and hence the number of
components of X(t) will be uniquely determined. We mention that an analogous derivation for the chemical master
equation with mutual annihilation and creation (without diffusion) can be found in12, Section 1.4.
Now we list a couple of technical assumptions which are necessary for our derivation:

Assumption 2.1. For any n ≥ 1, A ∈ B([0, 1]n) (the Borel sets of [0, 1]n) and t > 0 there exists a symmetric function
ρn(t, x1, ..., xn) such that

P(N (t) = n,X(t) ∈ A) =

∫
A

ρn(t, x1, ..., xn)dx1 · · · dxn;

we also set

ρ0(t) := P(N (t) = 0).

Notice that the symmetry of the functions ρn models the indistinguishability of the particles in the system; moreover,
by construction the sequence {ρn}n≥0 fulfils the constraint

∑
n≥0

∫
[0,1]n

ρn(t, x1, ..., xn)dx1 · · · dxn = 1. (2.6)

Assumption 2.2. The functions λc and λd appearing in (2.5) are non negative, bounded and continuous. Moreover,
λd(x, y) = λd(y, x) for all x, y ∈ [0, 1].

We are now ready to describe the probabilistic structure to be imposed on our system for the formal derivation of
equation (1.1).

Assumption 2.3. The system under investigation possesses the following properties:
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• Diffusion of particles: in absence of chemical reactions, particles diffuse in [0, 1] like independent Brow-
nian motions with variance 2t and reflecting boundary conditions; more precisely, the transition density
{pt(x|y)}t≥0,x,y∈[0,1]n for the motion of n many particles solves

∂tpt(x|y) =
∑n

j=1 ∂
2
xi
pt(t, x|y), t > 0, x, y ∈ [0, 1]n;

p0(x|y) = δy(x), x, y ∈ [0, 1]n;

∂νpt(x|y) = 0, t ≥ 0, x ∈ ∂[0, 1]n, y ∈ [0, 1]n.

• Reaction (I) + diffusion of particles: for any n ≥ 1, A ∈ B([0, 1]n) and t, h > 0 we have

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = n− 1, X(t) = y)

= h
1

n

n∑
j=1

∫
A

∫
[0,1]

ph(x|y ∪j z)λc(z)dzdx+O(h2), (2.7)

with y∪j z := (y1, ..., yj−1, z, yj+1, ..., yn) ∈ [0, 1]n and ph(x|y∪j z) being the transition density between y∪j z and
x during the time interval h. To explain the contribution of each single term of the identity above, we imagine
to split the function λc as γ · πc where γ :=

∫
[0,1]

λc(z)dz while πc is a probability density function supported on

[0, 1]. The chemical reaction (I) adds a new particle, here denoted with z, to the system: the rate at which this
happens is γ while the location for the birth of the particle is distributed according to πc. Moreover, once the
creation takes place the outer integral

∫
A
...dx in (2.7) describes the diffusion of the n particles of the system

from the location y ∪j z to the set A during the time frame h. Lastly, to make particles indistinguishable we
symmetrize over the possible positions of z in the vector y ∪j z with the term 1

n

∑n
j=1.

• Reaction (II) + diffusion of particles: for any n ≥ 0, A ∈ B([0, 1]n) and t, h > 0 we have

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = n+ 2, X(t) = y)

= h
∑
j<k

λd(yj , yk)

∫
A

ph(x|ŷj,k)dx+O(h2), (2.8)

with ŷj,k := (y1, ..., yj−1, yj+1, ..., yk−1, yk+1, ..., yn) ∈ [0, 1]n. The chemical reaction (II) removes two particles
from the system while the others diffuse: this is the contribution of

∫
A
ph(x|ŷj,k)dx where the particles labelled

j and k are those undergoing the chemical reaction through the term h
∑

j<k λd(yj , yk). This term is mediated
over all the possible couples of particles in the system: the weights of this average, represented by the sum above,
are provided by λd which measures the likelihood for two particles to react depending on their locations. We also
mention that for n = 0 the right hand side of (2.8) simplifies to hλd(x1, x2) +O(h2).

• No reactions + diffusion of particles: for any n ≥ 1, A ∈ B([0, 1]n) and t, h > 0 we have

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = n,X(t) = y)

=

1− h

∫
[0,1]

λc(z)dz − h
∑
j<k

λd(yj , yk)

∫
A

ph(x|y)dx+O(h2). (2.9)

The term inside parenthesis reflects the probability of no reaction happening while the integral formalizes the
diffusion of particles.

• Multiple reactions: for any n ≥ 1, A ∈ B([0, 1]n) and t, h > 0 we have

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = k,X(t) = y) = O(h2), (2.10)

whenever k /∈ {n− 1, n, n+ 2}.



6

We now show how to use Assumption 2.1-2.2-2.3 to get the CDME (1.1). Let n ≥ 1 and A ∈ B([0, 1]n); then, according
to the law of total probability we can write∫

A

ρn(t+ h, x)dx =P(N (t+ h) = n,X(t+ h) ∈ A)

=
∑
k≥0

∫
[0,1]k

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = k,X(t) = y)P(N (t) = k,X(t) ∈ dy)

=
∑
k≥0

∫
[0,1]k

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = k,X(t) = y)ρk(t, y)dy. (2.11)

Notice that for k = 0 the corresponding term in the sum above should be interpreted as

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = 0)ρ0(t).

Now, in view of Assumption 2.3 the only transitions of order one in h are those with k = n+ 2, k = n− 1 and k = n
while the others are of order at least two; therefore, we can rewrite (2.11) as∫

A

ρn(t+ h, x)dx =
∑
k≥0

∫
[0,1]k

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = k,X(t) = y)ρk(t, y)dy

=

∫
[0,1]n+2

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = n+ 2, X(t) = y)ρn+2(t, y)dy

+

∫
[0,1]n−1

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = n− 1, X(t) = y)ρn−1(t, y)dy

+

∫
[0,1]n

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = n,X(t) = y)ρn(t, y)dy

+O(h2)

=

∫
[0,1]n+2

∫
A

h
∑
j<k

λd(yj , yk)ph(x|ŷj,k)dx

 ρn+2(t, y)dy

+

∫
[0,1]n−1

∫
A

h

n

n∑
j=1

∫
[0,1]

λc(z)ph(x|y ∪j z)dzdx

 ρn−1(t, y)dy

+

∫
[0,1]n

∫
A

1− h

∫
[0,1]

λc(z)dz − h
∑
j<k

λd(yj , yk)

 ph(x|y)dx

 ρn(t, y)dy

+O(h2)

=h

∫
A

∑
j<k

∫
[0,1]n+2

λd(yj , yk)ph(x|ŷj,k)ρn+2(t, y)dy

 dx

+ h

∫
A

 1

n

n∑
j=1

∫
[0,1]n−1

∫
[0,1]

λc(z)ph(x|y ∪j z)ρn−1(t, y)dzdy

 dx

+

∫
A

∫
[0,1]n

1− h

∫
[0,1]

λc(z)dz − h
∑
j<k

λd(yj , yk)

 ph(x|y)ρn(t, y)dy

 dx

+O(h2)

=h

∫
A

∑
j<k

∫
[0,1]2

λd(yj , yk)

(∫
[0,1]n

ph(x|ŷj,k)ρn+2(t, y)dŷj,k

)
dyjdyk

 dx

+ h

∫
A

 1

n

n∑
j=1

∫
[0,1]n−1

∫
[0,1]

λc(z)ph(x|y ∪j z)ρn−1(t, y)dzdy

 dx (2.12)
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+

∫
A

∫
[0,1]n

1− h

∫
[0,1]

λc(z)dz − h
∑
j<k

λd(yj , yk)

 ph(x|y)ρn(t, y)dy

 dx

+O(h2).

To ease the notation we now introduce the following:

Thf(x) :=

∫
[0,1]n

ph(x|y)f(y)dy, f ∈ C0([0, 1]
n),

and recall that for suitably regular f we have

lim
h→0

Thf(x) = f(x), x ∈ [0, 1]n, (2.13)

and

lim
h→0

Thf(x)− f(x)

h
=

n∑
i=1

∂2
xi
f(x) x ∈ [0, 1]n; (2.14)

we refer to20 for a precise formulation of those statements. With this notation at hand we can rewrite (2.12) as

∫
A

ρn(t+ h, x)dx =h

∫
A

∑
j<k

∫
[0,1]2

λd(yj , yk)(Thρn+2(t, ·, yj , yk))(x)dyjdyk

 dx

+ h

∫
A

1

n

n∑
j=1

Th(λc ⊗j ρn−1(t, ·))(x)dx

+

∫
A

(Thρn(t, ·))(x)dx− h

∫
[0,1]

λc(z)dz

∫
A

(Thρn(t, ·))(x)dx

− h
∑
j<k

(Thλd(·j , ·k)ρn(t, ·))(x)dx+O(h2).

Here, the symbol ⊗j denotes the tensor product that locates the variable of λc in the j-th position. We now subtract
the quantity

∫
A
ρn(t, x)dx from both sides of the last equality, divide by h and take the limit as h tends to zero. This

gives ∫
A

∂tρn(t, x)dx = lim
h→0

∫
A

ρn(t+ h, x)− ρn(t, x)

h
dx

= lim
h→0

∫
A

∑
j<k

∫
[0,1]2

λd(yj , yk)(Thρn+2(t, ·, yj , yk))(x)dyjdyk

 dx

+ lim
h→0

∫
A

1

n

n∑
j=1

Th(λc ⊗j ρn−1(t, ·))(x)dx

+ lim
h→0

∫
A

(Thρn(t, ·))(x)− ρn(t, x)

h
dx− lim

h→0

∫
[0,1]

λc(z)dz

∫
A

(Thρn(t, ·))(x)dx

− lim
h→0

∫
A

∑
j<k

(Thλd(·j , ·k)ρn(t, ·))(x)dx.

Now, using (2.13) we get

lim
h→0

∫
A

∑
j<k

∫
[0,1]2

λd(yj , yk)(Thρn+2(t, ·, yj , yk))(x)dyjdyk

 dx

=

∫
A

∑
j<k

∫
[0,1]2

λd(yj , yk)ρn+2(t, x, yj , yk)dyjdyk

 dx
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=

∫
A

(
(n+ 2)(n+ 1)

2

∫
[0,1]2

λd(yj , yk)ρn+2(t, x, yj , yk)dyjdyk

)
dx,

and

lim
h→0

∫
A

1

n

n∑
j=1

Th(λc ⊗j ρn−1(t, ·))(x)dx =

∫
A

 1

n

n∑
j=1

λc(xj)ρn−1(t, x1, ..., xj−1, xj+1, ..., xn)

 dx.

Moreover, formula (2.14) yields

lim
h→0

∫
A

(Thρn(t, ·))(x)− ρn(t, x)

h
dx =

∫
A

(
n∑

i=1

∂2
xi
ρn(t, x)

)
dx,

while formula (2.13) gives

lim
h→0

∫
[0,1]

λc(z)dz

∫
A

(Thρn(t, ·))(x)dx =

∫
[0,1]

λc(z)dz

∫
A

ρn(t, x)dx

and

lim
h→0

∫
A

∑
j<k

(Thλd(·j , ·k)ρn(t, ·))(x)dx =

∫
A

∑
j<k

λd(xj , xk)ρn(t, x)dx.

If we combine all the preceding equalities we can conclude that∫
A

∂tρn(t, x)dx =

∫
A

(
(n+ 2)(n+ 1)

2

∫
[0,1]2

λd(yj , yk)ρn+2(t, x, yj , yk)dyjdyk

)
dx

+

∫
A

 1

n

n∑
j=1

λc(xj)ρn−1(t, x1, ..., xj−1, xj+1, ..., xn)

 dx

+

∫
A

(
n∑

i=1

∂2
xi
ρn(t, x)

)
dx

−
∫
[0,1]

λc(z)dz

∫
A

ρn(t, x)dx

−
∫
A

∑
j<k

λd(xj , xk)ρn(t, x)dx.

Since A ∈ B([0, 1]n) is arbitrary, this is equivalent to (1.1).

3. ANALYSIS OF EQUATION (1.3)-(1.2) THROUGH AN INFINITE DIMENSIONAL GENERATING FUNCTION
METHOD

In this section we employ the general method proposed in22 to solve analytically the CDME (1.1)-(1.2). We mention
that this method has lead to an explicit representation for the solution to the general birth-death CDME23. For the
application of that approach in the current framework we need to impose the following technical condition.

Assumption 3.1. The function λd : [0, 1]2 → [0,+∞[ is constant; this means that equation (1.1) simplifies to

∂tρn(t, x1, ..., xn) =

n∑
i=1

∂2
xi
ρn(t, x1, ..., xn)

+ λd
(n+ 2)(n+ 1)

2

∫
[0,1]2

ρn+2(t, x1, ..., xn, x, y)dxdy

− λd
n(n− 1)

2
ρn(t, x1, ..., xn)

+
1

n

n∑
i=1

λc(xi)ρn−1(t, x1, ..., xi−1, xi+1, ..., xn)

− γρn(t, x1, ..., xn), n ≥ 0, t > 0, (x1, ..., xn) ∈ [0, 1]n,

(3.15)
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The need for such assumption is related to some technical features of the method used to solve (3.15). We refer to
Remark 3.6 below for details.

Remark 3.2. As pointed out in5, if we fix the reaction rates to be positive constants so γ, λd ∈ R+ and integrate
equation (3.15)-(1.2) with respect to all degrees of freedom, then this reduces to the classical chemical master equation
for the reactions

(I) ∅ γ−→ S (II) S + S
λd−→ ∅.

In fact, identity

P(N (t) = n) =

∫
[0,1]n

ρn(t, x1, ..., xn)dx1 · · · dxn,

(compare with Assumption 2.1) together with the boundary conditions in (1.2) yield

∂tP(N (t) = n) =λd
(n+ 2)(n+ 1)

2
P(N (t) = n+ 2)− λd

n(n− 1)

2
P(N (t) = n)

+ γP(N (t) = n− 1)− γP(N (t) = n), (3.16)

which is indeed the desired chemical master equation (see equation (1.28) in12: here, the authors employ the standard
generating function method for solving equation (3.16)). We also mention that such computation, and hence the link
between chemical diffusion master equations and their corresponding chemical master equations, is far from being
obvious.

The scheme for solving (3.15), as presented in22, is made of several steps that we now discuss in the following
preparatory results. Before doing that, we introduce the notation −A := ∂2

x and we recall that in the Appendix below
one can find a quick review of the Malliavin calculus’s tools utilized in the sequel.

Lemma 3.3. If {ρn}n≥0 is a classical solution to equation (3.15)-(1.2), then

Φ(t) :=
∑
n≥0

In(ρn(t, ·)) (3.17)

solves {
∂tΦ = dΓ(−A)Φ + λd

2 D2
1Φ− λd

2 N(N− I)Φ +D⋆
λc
Φ− γΦ;

Φ(0) = 1,
(3.18)

in F⋆.

Proof. Let {ρn}n≥0 be a classical solution to equation (3.15)-(1.2); this means in particular that ρ0 ∈ C1([0,+∞[)
and ρn ∈ C1,2([0,+∞[×[0, 1]n) for all n ≥ 1. Recall also that according to Assumption 2.1, for any n ≥ 2 and
t ≥ 0 the function ρn(t, ·) is symmetric in its arguments. This allows us to consider the multiple Itô integrals
In(ρn(t, ·)), formally defined in appendix (3.31), and to interchange the partial derivative ∂t with the iterated integrals.
Furthermore, employing the operators dΓ(−A), D1, N and D⋆

λc
, whose definitions and properties can be found in the

Appendix below, and equation (3.15), we can write for all n ≥ 1 and t ≥ 0 that

∂tIn(ρn(t, ·)) =In(∂tρn(t, ·))

=dΓ(−A)In(ρn(t, ·)) +
λd

2
D2

1In+2(ρn+2(t, ·))−
λd

2
N(N− I)In(ρn(t, ·))

+D⋆
λc
In−1(ρn−1(t, ·))− γIn(ρn(t, ·)).

If we now sum over n ≥ 0 and recall that ρ−1 ≡ 0 while D2
1 maps to zero any multiple Itô integral of order less than

two, we obtain equation (3.18) for the stochastic process defined in (3.17).

Remark 3.4. It is worth to point out that condition (2.6) is already encoded in equation (3.18). In fact, if {Φ(t)}t≥0

solves (3.18), then

∂t⟨⟨Φ, E(1)⟩⟩ =⟨⟨∂tΦ, E(1)⟩⟩
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=⟨⟨dΓ(−A)Φ, E(1)⟩⟩

+
λd

2
⟨⟨D2

1Φ, E(1)⟩⟩ −
λd

2
⟨⟨N(N− I)Φ, E(1)⟩⟩

+ ⟨⟨D⋆
λc
Φ, E(1)⟩⟩ − γ⟨⟨Φ, E(1)⟩⟩.

Now,

⟨⟨dΓ(−A)Φ, E(1)⟩⟩ = ⟨⟨Φ, dΓ(−A)E(1)⟩⟩ = ⟨⟨Φ, E(1) ⋄ δ(−A1)⟩⟩ = 0,

while

⟨⟨D2
1Φ, E(1)⟩⟩ − ⟨⟨N(N− I)Φ, E(1)⟩⟩ =⟨⟨Φ, D⋆

1D
⋆
1E(1)⟩⟩ − ⟨⟨Φ, N(N− I)E(1)⟩⟩

=⟨⟨Φ, E(1) ⋄ δ(1) ⋄ δ(1)⟩⟩ − ⟨⟨Φ, N2E(1)− NE(1)⟩⟩
=⟨⟨Φ, E(1) ⋄ δ(1) ⋄ δ(1)⟩⟩ − ⟨⟨Φ, E(1) ⋄ δ(1) ⋄ δ(1)⟩⟩
=0.

Here, in the last equality we utilized the identities

NE(1) = E(1) ⋄ δ(1) and N2E(1) = E(1) ⋄ δ(1) ⋄ δ(1) + E(1) ⋄ δ(1).

Lastly,

⟨⟨D⋆
λc
Φ, E(1)⟩⟩ − γ⟨⟨Φ, E(1)⟩⟩ =⟨⟨Φ, Dλc

E(1)⟩⟩ − γ⟨⟨Φ, E(1)⟩⟩

=

∫
[0,1]

λc(x)dx · ⟨⟨Φ, E(1)⟩⟩ − γ⟨⟨Φ, E(1)⟩⟩

=0.

This proves that ∂t⟨⟨Φ(t), E(1)⟩⟩ = 0; since Φ(0) = 1 (recall the initial condition in (3.18) which in turn follows from
(1.2)) we deduce that ⟨⟨Φ(0), E(1)⟩⟩ = 1 and hence

⟨⟨Φ(t), E(1)⟩⟩ = 1, for all t ≥ 0. (3.19)

On the other hand, by definition of dual pairing we can write

⟨⟨Φ(t), E(1)⟩⟩ =
∑
n≥0

∫
[0,1]n

ρn(t, x1, ..., xn)dx1 · · · dxn,

which together with (3.19) implies (2.6). Notice that a similar calculation can be carried also when λd is not constant;
in this case the operator Φ 7→ N(N− I)Φ should be replaced with Φ 7→ δ2(λ(·, ·)D2Φ). This shows that condition (2.6)
is part of equation (3.15) also in the absence of Assumption 3.1.

The usefulness of transforming the CDME (3.15)-(1.2) into the abstract problem (3.18) becomes apparent when we
consider suitable finite dimensional projections of the stochastic process {Φ(t)}t≥0. To this aim, we set for k ≥ 1

ξk(x) =
√
2 cos((k − 1)πx), x ∈ [0, 1] and αk = (k − 1)2π2 (3.20)

to be the eigenfunctions with corresponding eigenvalues of the differential operator −A = ∂2
x with homogeneous

Neumann boundary conditions (as prescribed in (1.2)). We also write ΠN for the orthogonal projection onto the
linear span of {ξ1, ..., ξN}.

Lemma 3.5. If {Φ(t)}t≥0 solves (3.18) in F⋆, then

ΦN (t) := Γ(ΠN )Φ(t), t ≥ 0 (3.21)

solves {
∂tΦN = dΓ(−A)ΦN + λd

2 D2
1ΦN − λd

2 N(N− I)ΦN +D⋆
ΠNλc

ΦN − γΦN ;

ΦN (0) = 1,
(3.22)

in F⋆.
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Proof. Using (3.21) and (3.18) we can write

∂tΦN = ∂tΓ(ΠN )Φ = Γ(ΠN )∂tΦ

= Γ(ΠN )

(
dΓ(−A)Φ +

λd

2
D2

1Φ− λd

2
N(N− I)Φ +D⋆

λc
Φ− γΦ

)
. (3.23)

The proof consists in showing that our assumptions allow for the commutation between the operator Γ(ΠN ) and each
of the following: dΓ(−A), D2

1, N(N − I) and D⋆
λd
. Let us start with the commutation between Γ(ΠN ) and dΓ(−A):

for any smooth h ∈ L2([0, 1]) we have

⟨⟨Γ(ΠN )dΓ(−A)Φ, E(h)⟩⟩ =⟨⟨dΓ(−A)Φ, E(ΠNh)⟩⟩
=⟨⟨Φ, dΓ(−A)E(ΠNh)⟩⟩
=⟨⟨Φ, E(ΠNh) ⋄ δ(−AΠNh)⟩⟩
=⟨⟨Φ, E(ΠNh) ⋄ δ(ΠN (−A)h)⟩⟩
=⟨⟨Φ,Γ(ΠN )(E(h) ⋄ δ(−Ah))⟩⟩
=⟨⟨Γ(ΠN )Φ, E(h) ⋄ δ(−Ah)⟩⟩
=⟨⟨dΓ(−A)Γ(ΠN )Φ, E(h)⟩⟩
=⟨⟨dΓ(−A)ΦN , E(h)⟩⟩.

Comparing the first and last members of this chain of equalities we deduce that

Γ(ΠN )dΓ(−A)Φ = dΓ(−A)ΦN , in F⋆.

It is important to observe how in the fourth equality above the commutation between −A and ΠN is made possible
by having chosen to project onto the space generated by the eigenfunctions of −A.
We now study the commutation between Γ(ΠN ) and D2

1:

⟨⟨Γ(ΠN )D2
1Φ, E(h)⟩⟩ =⟨⟨D2

1Φ, E(ΠNh)⟩⟩
=⟨⟨D1D1Φ, E(ΠNh)⟩⟩
=⟨⟨Φ, D⋆

1D
⋆
1E(ΠNh)⟩⟩

=⟨⟨Φ, E(ΠNh) ⋄ δ(1) ⋄ δ(1)⟩⟩
=⟨⟨Φ,Γ(ΠN )(E(h) ⋄ δ(1) ⋄ δ(1))⟩⟩
=⟨⟨Γ(ΠN )Φ, E(h) ⋄ δ(1) ⋄ δ(1)⟩⟩
=⟨⟨D1D1Γ(ΠN )Φ, E(h)⟩⟩
=⟨⟨D2

1Γ(ΠN )Φ, E(h)⟩⟩.

In the fifth equality above we employed the identity ΠN1 = Π11 = 1 since the first eigenfunction of −A is precisely
1. We therefore can conclude that

Γ(ΠN )D2
1Φ = D2

1ΦN , in F⋆.

We proceed with the commutation between Γ(ΠN ) and N(N− I):

⟨⟨Γ(ΠN )N(N− I)Φ, E(h)⟩⟩ = ⟨⟨N(N− I)Φ, E(ΠNh)⟩⟩
= ⟨⟨Φ, E(ΠNh) ⋄ δ(ΠNh) ⋄ δ(ΠNh)⟩⟩
= ⟨⟨Φ,Γ(ΠN )(E(h) ⋄ δ(h) ⋄ δ(h))⟩⟩
= ⟨⟨ΦN , E(h) ⋄ δ(h) ⋄ δ(h)⟩⟩
= ⟨⟨ΦN , N(N− I)E(h)⟩⟩
= ⟨⟨N(N− I)ΦN , E(h)⟩⟩.

This yields

Γ(ΠN )N(N− I)Φ = N(N− I)ΦN , in F⋆.

Lastly,

⟨⟨Γ(ΠN )D⋆
λc
Φ, E(h)⟩⟩ =⟨⟨D⋆

λc
Φ, E(ΠNh)⟩⟩
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=⟨⟨Φ, E(ΠNh)⟩⟩
∫ 1

0

ΠNh(x)λc(x)dx

=⟨⟨Γ(ΠN )Φ, E(h)⟩⟩
∫ 1

0

h(x)ΠNλc(x)dx

=⟨⟨ΦN , DΠNλc
E(h)⟩⟩

=⟨⟨D⋆
ΠNλc

ΦN , E(h)⟩⟩,

and hence

Γ(ΠN )D⋆
λc
Φ = D⋆

ΠNλc
ΦN , in F⋆.

An implementation of all derived identities in (3.23) leads directly to (3.22).

Remark 3.6. The previous lemma is a key ingredient of our method since it allows for finite dimensional projections
of the solution to equation (3.18). In particular, it is the possibility of commuting dΓ(−A) and N(N− I) with Γ(ΠN )
that implies the desired result. It is worth to mention that such possibility exists because of Assumption 3.1, thus
motivating this strong simplification. In fact, without such assumption we would not be able to commute Γ(ΠN ) with
the operator Φ 7→ δ2(λ(·, ·)D2Φ) which is what one should work with, in the place of N(N−I), for non constant λd. One
may also wonder whether changing the projection space related to ΠN could solve this issue (maybe defining a finite
dimensional space described by the function λd): however, this modification would imply the loss of commutativity
between Γ(ΠN ) and dΓ(−A).

Lemma 3.7. For any N ≥ 1 there exists a function uN : [0 +∞[×RN such that

ΦN (t) = uN (t, I1(ξ1), ..., I1(ξN )), P-a.s.

Furthermore, the function uN solves (weakly) the following fourth order linear problem:
∂tuN (t, z) = −

∑N
k=1 αk∂

⋆
k∂kuN (t, z) + λd

2 ∂2
1uN (t, z)

−λd

2

∑N
j,k=1 ∂

⋆
j ∂

⋆
k∂j∂kuN (t, z)

+
∑N

k=1 ck∂
⋆
kuN (t, z)− γuN (t, z); t > 0, z ∈ RN ;

uN (0, z) = 1, z ∈ RN .

(3.24)

Here, for any k ∈ {1, ..., N} the symbol ∂k is a shorthand notation for ∂zk while ∂⋆
k stands for the differential operator

−∂k + zk (which is nothing else that the Gaussian divergence). Moreover, ck := ⟨λc, ξk⟩L2([0,1]).

Proof. It is well known (see for instance Theorem 4.9 in18) that the second quantization operator Γ(ΠN ) corresponds
to the conditional expectation with respect to the sigma-algebra generated by the random variables I1(ξ1),..., I1(ξN );
therefore, according to (3.21) we can write

ΦN (t) = Γ(ΠN )Φ(t) = E[Φ(t)|σ(I1(ξ1), ..., I1(ξN ))] = uN (t, I1(ξ1), ..., I1(ξN )).

Here, the function uN : [0+∞[×RN is measurable and its existence in guaranteed by Doob’s lemma (see Lemma 1.13
in20). We now replace ΦN (t) with uN (t, I1(ξ1), ..., I1(ξN )) in (3.22) and decompose the Malliavin calculus’s operators
along the orthonormal bases {ξk}k≥1. More precisely:

dΓ(−A)[uN (t, I1(ξ1), ..., I1(ξN ))] =δ (−AD[uN (t, I1(ξ1), ..., I1(ξN ))])

=δ

−A
∑
k≥1

DξkuN (t, I1(ξ1), ..., I1(ξN ))ξk


=δ

(
−A

N∑
k=1

∂kuN (t, I1(ξ1), ..., I1(ξN ))ξk

)

=δ

(
−

N∑
k=1

αk∂kuN (t, I1(ξ1), ..., I1(ξN ))ξk

)

=−
N∑

k=1

αk∂kuN (t, I1(ξ1), ..., I1(ξN ))I1(ξk)
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+

N∑
k=1

αk∂
2
kuN (t, I1(ξ1), ..., I1(ξN ))

=−
N∑

k=1

αk∂
⋆
k∂kuN (t, I1(ξ1), ..., I1(ξN ));

Here, in the second-to-last equality we employed identity (1.56) from27. We proceed now with

D2
1uN (t, I1(ξ1), ..., I1(ξN )) = ∂2

1uN (t, I1(ξ1), ..., I1(ξN )),

and

N(N− I)uN (t, I1(ξ1), ..., I1(ξN )) =(N2 − N)uN (t, I1(ξ1), ..., I1(ξN ))

=

N∑
j=1

∂⋆
j ∂j

(
N∑

k=1

∂⋆
k∂kuN (t, I1(ξ1), ..., I1(ξN ))

)

−
N∑

k=1

∂⋆
k∂kuN (t, I1(ξ1), ..., I1(ξN ))

=

N∑
j,k=1

∂⋆
j ∂

⋆
k∂j∂kuN (t, I1(ξ1), ..., I1(ξN )).

In the last equality we employed the commutation relation ∂j∂
⋆
k = ∂⋆

k∂j + δjkI where δjk stands for the Kronecker
symbol. Lastly,

D⋆
ΠNλc

uN (t, I1(ξ1), ..., I1(ξN )) =
∑
k≥1

D⋆
ξk
uN (t, I1(ξ1), ..., I1(ξN ))⟨ΠNλc, ξk⟩L2([0,1])

=

N∑
k=1

∂⋆
kuN (t, I1(ξ1), ..., I1(ξN ))⟨ΠNλc, ξk⟩L2([0,1])

=

N∑
k=1

∂⋆
kuN (t, I1(ξ1), ..., I1(ξN ))ck.

Collecting all identities derived above we see how equation (3.22) is equivalent to (3.24).

We are now ready to state the main result of the present section.

Theorem 3.8. Let {ρn}n≥0 be a classical solution to the CDME (3.15)-(1.2). Then, for any N ≥ 1 we have the
representation

Π⊗n
N ρn(t, x1, ..., xn) =

1

n!

N∑
j1,...,jn=1

E[(∂j1 · · · ∂jnuN )(t, I1(ξ1), ..., I1(ξn))]ξj1(x1) · · · ξjn(xn), (3.25)

for all n ≥ 1, t ≥ 0, (x1, ..., xn) ∈ [0, 1]n and with uN solution to the Cauchy problem (3.24).

Proof. If {ρn}n≥0 is a classical solution to the CDME (3.15)-(1.2), then according to Lemma 3.3 the stochastic process
{Φ(t)}t≥0 defined in (3.17) solves equation (3.18) in F⋆. Moreover, Lemma 3.5 shows that the finite dimensional
projection of {Φ(t)}t≥0 introduced in (3.21) solves the auxiliary problem (3.22). Notice that by construction the
kernels of the Wiener Itô chaos expansion of {ΦN (t)}t≥0 are {Π⊗

Nρn}n≥0 (since this is the action of Γ(ΠN ) on
{Φ(t)}t≥0).
On the other hand, according to the Stroock-Taylor formula (see Exercise 1.2.6 in27) the Wiener Itô chaos expansion
of {ΦN (t)}t≥0 can also be represented as

Π⊗
Nρn(t, x1, ..., xn) =

1

n!
E[Dx1

· · ·Dxn
ΦN (t)]. (3.26)
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From Lemma 3.7 the process {ΦN (t)}t≥0 can be written as {uN (t, I1(ξ1), ..., I1(ξn))}t≥0 where uN solution to the
Cauchy problem (3.24). Therefore, substituting this into (3.26) and computing the Malliavin derivatives yields

Π⊗
Nρn(t, x1, ..., xn) =

1

n!
E[Dx1

· · ·Dxn
uN (t, I1(ξ1), ..., I1(ξn))]

=
1

n!

N∑
j1,...,jn=1

E[(∂j1 · · · ∂jnuN )(t, I1(ξ1), ..., I1(ξn))]ξj1(x1) · · · ξjn(xn),

which is the formula we wanted to prove.

A. Some comments on the PDE (3.24)

The generalization of the generating function method utilized in this section has introduced some new Gaussian
features to the original problem (3.15)-(1.2). At a formal level, the infinite dimensional nature of the system of
Fokker-Planck equations under investigation combined with the Fock space structure of the sequence {ρn}n≥0 leads
naturally to the use of Gaussian stochastic analysis’s techniques.
We now try to rewrite the representation formula (3.25) in a Gaussian-free manner. To this aim, we present the
following technical result.

Lemma 3.9. Let f ∈ C1(RN ) be, together with all its first order partial derivatives, polynomially bounded at infinity.
Then, setting

f̃(z) :=

∫
RN

f(y)(2π)−N/2e−|z−y|2/2dy, z ∈ RN ,

we have for all k ∈ {1, ..., N} and z ∈ RN that

∂̃kf(z) = ∂kf̃(z) and ∂̃⋆
kf(z) = zkf̃(z) (3.27)

Proof. It is a direct verification.

Proposition 3.10. If uN solves the PDE (3.24), then vN := ũN solves
∂tvN (t, z) = −

∑N
k=1 αkzk∂kvN (t, z) + λd

2 ∂2
1vN (t, z)

−λd

2

∑N
j,k=1 zjzk∂j∂kvN (t, z)

+
∑N

k=1 ckzkvN (t, z)− γvN (t, z); t > 0, z ∈ RN ;

vN (0, z) = 1, z ∈ RN .

(3.28)

Proof. Follows immediately from (3.27).

The PDE (3.28) represents a version of (3.24) in which the Gaussian features inherited from our approach have been
removed. Equation (3.28) has certainly the advantage over (3.24) of being of second order (contrary to the fourth
order of the latter); moreover, if we consider the case N = 1 and remember that ξ1 ≡ 1 and α1 = 0 we obtain{

∂tv1(t, z) =
λd

2 (1− z21)∂
2
1v1(t, z) + γ(z1 − 1)v1(t, z); t > 0, z ∈ R;

v1(0, z) = 1, z ∈ R.
(3.29)

This is exactly the equation you obtain via the classical generating function method applied to the CME (3.16), which
is the diffusion-free analogue of our system (3.15)-(1.2). See12 for a detailed study of (3.29). Therefore, from this
point of view equation (3.28) is the natural extension of (3.29) to a model that includes diffusion of the particles.
Even though equation (3.28) possesses some desirable properties, its investigation from both analytical and numerical
points of view presents some important obstacles. First of all, if we use the function vN solution to (3.28) in the place
of uN solution to (3.24), then the representation formula (3.25) takes the form

Π⊗n
N ρn(t, x1, ..., xn) =

1

n!

N∑
j1,...,jn=1

(∂j1 · · · ∂jnvN )(t, 0, ..., 0)ξj1(x1) · · · ξjn(xn), (3.30)
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as it follows immediately by the definition of vN and Lemma 3.9. This means that the natural domain for solving
(3.28) would be a neighborhood of the origin instead of the whole space; this can be seen already in the case N = 1,
i.e. equation (3.29), where z1 should be taken in [−1, 1] in order to avoid a sign change in the leading second order
term. However, it is very hard to find a reasonable argument for assigning a boundary value to the problem (3.28)
(this issue is also discussed in25).
A second main difficulty in analyzing equation (3.28) is due to its intrinsic ill-posedness. In fact, if for simplicity we
take N = 2 and focus on the second order (i.e. leading) term of the differential operator appearing in the right hand
side of (3.28), we see that the matrix describing its coefficients is a multiple of

A(z1, z2) =

[
1− z21 −z1z2
−z1z2 −z22

]
.

Checking the positive semi-definiteness of the matrix A (recall that where have an initial condition for solving equation
(3.28)) we see that

⟨A(z1, z2)θ, θ⟩ =(1− z21)θ
2
1 − 2z1z2θ1θ2 − z22θ

2
2

=θ21 − (z1θ1 + z2θ2)
2

and the last quantity cannot be non negative for any choice of (θ1, θ2) ∈ R2 unless z2 = 0 (to see this take θ1 = 0).
Therefore, there is no open neighborhood of the origin for the space variable z where the matrix A is positive semi-
definiteness. This entails the ill-posedness of the PDE (3.28).
The discussion presented above highlights some potential advantages in embedding the CDME (3.15)-(1.2) into the
Gaussian framework utilized in this section for deriving the representation formula (3.25).

APPENDIX

In this section we collect some definitions and formulas utilized in the proofs of Section 3. For more details on the
subject we refer the reader to one the books18 and27.

Wiener chaos and spaces of random variables

Let (Ω,B,P) be the classical Wiener space over the interval [0, 1]. We denote by

Bx : Ω → R
ω 7→ Bx(ω) := ω(x), x ∈ [0, 1],

the coordinate process which by construction is a one dimensional Brownian motion under P. According to the
Wiener-Itô chaos expansion theorem, any random variable Φ in L2(Ω) can be uniquely represented as

Φ =
∑
n≥0

In(hn),

where for n ≥ 1, In(hn) stands for the n-th order multiple Itô integral defined as

In(hn) := n!

∫ 1

0

∫ x1

0

· · ·
∫ xn−1

0

hn(x1, ..., xn)dBxn
· · · dBx2

dBx1
. (3.31)

Two notable dense subset of L2(Ω) are

F :=

{
M∑
n=0

In(hn), for some M ∈ N ∪ {0}, h0 ∈ R and hn ∈ L2
s([0, 1]

n), n = 1, ...,M

}
,

which collects the random variables with a finite order chaos expansion, and

E :=

E(f) :=
∑
n≥0

In

(
f⊗n

n!

)
, for some f ∈ L2([0, 1])

 ,

which is the family of the so-called stochastic exponentials.
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Malliavin derivative and its adjoint

The Malliavin derivative of Φ =
∑M

n=0 In(hn) ∈ F, denoted {DxΦ}x∈[0,1], is the element of L2([0, 1]; F) defined by

DxΦ :=

M−1∑
n=0

(n+ 1)In(hn+1(·, x)), x ∈ [0, 1].

For l ∈ L2([0, 1]) and Φ =
∑M

n=0 In(hn) ∈ F, we also write

DlΦ := ⟨DΦ, l⟩L2([0,1]) =

M−1∑
n=0

(n+ 1)In

(∫ 1

0

hn+1(·, y)l(y)dy
)

=

M−1∑
n=0

(n+ 1)In (hn+1 ⊗1 l)

for the directional Malliavin derivative of Φ along l. Here, we denote the r-th order contraction of hn and hm by
hn ⊗r hm, i.e.

(hn ⊗r hm)(x1, ...., xn+m−2r)

:=

∫
[0,1]r

hn(x1, ..., xn−r, y1, ..., yr)hm(y1, ..., yr, xn−r+1, ..., xn+m−2r)dy1 · · · dyr.

We have:

DxE(f) = f(x)E(f), x ∈ [0, 1] and DlE(f) = ⟨f, l⟩L2([0,1])E(f).

If we now take l ∈ L2([0, 1]), Φ =
∑M

n=0 In(hn) ∈ F and Ψ =
∑K

n=0 In(gn) ∈ F, we can write

E[DlΦ ·Ψ] = E[Φ ·D⋆
l Ψ],

where

D⋆
l Ψ :=

K+1∑
n=1

In(l⊗̂gn−1)

and

(l⊗̂gn−1)(x1, ..., xn) :=
1

n

n∑
i=1

f(xi)gn−1(x1, ..., xi−1, xi+1, ..., xn).

The following identity holds:

D⋆
l Ψ+DlΨ = Ψ · I1(l).

One can also introduce the adjoint of Dx, denoted δ:

δ(Φ(·)) :=
M∑
n=0

In+1(h̃n) ∈ F,

where h̃n stands for the symmetrization of hn with respect to the n + 1 variables x1, ..., xn, x. We mentioned that
D⋆

l Ψ it is sometimes written as Φ ⋄ δ(l).

Second quantization operators

LetA : L2([0, 1]) → L2([0, 1]) be a bounded linear operator; for Φ =
∑M

n=0 In(hn) ∈ F we define the second quantization
operator of A as

Γ(A)Φ :=

M∑
n=0

In
(
A⊗nhn

)
,
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and the differential second quantization operator of A as

dΓ(A)Φ :=

M∑
n=1

In

(
n∑

i=1

Aihn

)
,

where Ai stands for the operator A acting on the i-th variable of hn. Notice in addition that for A being the identity,
we recover from dΓ(A) the well known number operator :

NΦ =

M∑
n=1

nIn (hn) .

The following identities hold true:

E[Γ(A)Φ] = E[Φ]; E[dΓ(A)Φ] = 0;

E[Γ(A)Φ ·Ψ] = E[Φ · Γ(A⋆)Ψ]; E[dΓ(A)Φ ·Ψ] = E[Φ · dΓ(A⋆)Ψ];

Γ(A)E(f) = E(Af); dΓ(A)E(f) = D⋆
AfE(f); dΓ(A)Φ = δ (AD·Φ) .

A space of generalized random variables

Let

F⋆ :=

∑
n≥0

In(hn), for some h0 ∈ R and hn ∈ L2
s([0, 1]

n), n ≥ 1


be a family of generalized random variables. The action of T =

∑
n≥0 In(hn) ∈ F⋆ on φ =

∑M
n=0 In(gn) ∈ F is defined

as

⟨⟨T, φ⟩⟩ :=
M∑
n=0

n!⟨hn, gn⟩L2([0,1]n).

By construction, we have the inclusions

F ⊂ L2(Ω) ⊂ F⋆

with

⟨⟨T, φ⟩⟩ = E[Tφ],

whenever T ∈ L2(Ω). We will say that T = U in F⋆ if

⟨⟨T, φ⟩⟩ = ⟨⟨U,φ⟩⟩, for all φ ∈ F.

Let

F⋆ :=

∑
n≥0

In(hn), for some h0 ∈ R and hn ∈ L2
s([0, 1]

n), n ≥ 1


be a family of generalized random variables. The action of T =

∑
n≥0 In(hn) ∈ F⋆ on φ =

∑M
n=0 In(gn) ∈ F is defined

as

⟨⟨T, φ⟩⟩ :=
M∑
n=0

n!⟨hn, gn⟩L2([0,1]n).

By construction, we have the inclusions

F ⊂ L2(Ω) ⊂ F⋆
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with

⟨⟨T, φ⟩⟩ = E[Tφ],

whenever T ∈ L2(Ω). We will say that T = U in F⋆ if

⟨⟨T, φ⟩⟩ = ⟨⟨U,φ⟩⟩, for all φ ∈ F.

Lastly, we recall a generalized version of the so-called Stroock-Taylor formula: if T =
∑

n≥0 In(hn) ∈ F⋆, then

hn(x1, ..., xn) =
1

n!
E[Dx1

...Dxn
T ], (x1, ..., xn) ∈ [0, 1]n.
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23Lanconelli, A., Perçin, B. T., and del Razo, M. J. (2023). Solution formula for the general birth-death chemical diffusion master equation.
arXiv:2302.10700 [math.PR].

24Lecca, P., Ian, L., and Jordan, F. (2013). Deterministic Versus Stochastic Modelling in Biochemistry and Systems Biology. Oxford:
Woodhead Publishing.

25McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. J. Appl. Probability, 4:413–478.
26Munsky, B. and Khammash, M. (2006). The finite state projection algorithm for the solution of the chemical master equation. The
Journal of chemical physics, 124(4):044104.

27Nualart, D. (2006). The Malliavin calculus and related topics. Probability and its Applications (New York). Springer-Verlag, Berlin,
second edition.

28Qian, H. and Bishop, L. M. (2010). The chemical master equation approach to nonequilibrium steady-state of open biochemical systems:
Linear single-molecule etheornzyme kinetics and nonlinear biochemical reaction networks. Int. J. Mol. Sci., 11(9):3472–3500.



19

29Qian, H. and Ge, H. (2021). Stochastic Chemical Reaction Systems in Biology. Springer.
30Schnoerr, D., Sanguinetti, G., and Grima, R. (2017). Approximation and inference methods for stochastic biochemical kinetics—a
tutorial review. Journal of Physics A: Mathematical and Theoretical, 50(9):093001.

31Schweitzer, F. and Farmer, J. D. (2003). Brownian agents and active particles: collective dynamics in the natural and social sciences,
volume 1. Springer.

32Smith, C. A. and Yates, C. A. (2018). Spatially extended hybrid methods: a review. Journal of the Royal Society Interface,
15(139):20170931.
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