
11 January 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Fazzini, E., Zichichi, M., Ferretti, S., D'Angelo, G. (2023). Keyword-based multimedia data lookup in
decentralized systems. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/ICT-
DM58371.2023.10286930].

Published Version:

Keyword-based multimedia data lookup in decentralized systems

Published:
DOI: http://doi.org/10.1109/ICT-DM58371.2023.10286930

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/961841 since: 2024-02-26

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICT-DM58371.2023.10286930
https://hdl.handle.net/11585/961841


Keyword-based multimedia data lookup in
decentralized systems

Emanuele Fazzini∗, Mirko Zichichi†, Stefano Ferretti‡, Gabriele D’Angelo∗,
∗Department of Computer Science and Engineering, University of Bologna, Italy

†IOTA Foundation, Italy
‡Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Italy
emanuele.fazzini@studio.unibo.it, mirko.zichichi@iota.org,

stefano.ferretti@uniurb.it, g.dangelo@unibo.it

Abstract—The use of decentralized systems has the potential
to offer secure and efficient collaboration without intermediaries,
and in the absence or fault of a central server. However, searching
for content in a decentralized system is still an issue, especially
when real-time information needs to be retrieved (e.g. emergency
situations). We propose a keyword-based decentralized lookup
scheme, based on the International Standard Content Code
(ISCC), which enables the unique identification of digital content
without the need for a centralized registry or authority. Our
approach exploits a hypercube Distributed Hash Table (DHT) for
storing and retrieving shared resources and compares different
approaches to index contents within it. Results show that the
use of ISCC, as the basis for creating identifiers, enables more
efficient content placement and retrieval, which could pave the
way for novel decentralized solutions that surmount the presence
of centralized servers for content lookup.

Index Terms—Distributed Hash Table, Keyword Search, De-
centralized File Storage, Distributed Ledger Technology

I. INTRODUCTION

Decentralized systems have the potential to transform mod-
ern (yet, still centralized) traditional services. The combined
use of modern Distributed Ledger technologies (DLTs) and
classic peer-to-peers approaches allow the design of systems
that can surmount the limits related to the presence of a single
point of failure (i.e. the server), that can easily shut down a
service in presence of sudden ICT failures, and thus ensure
higher resilience in disaster contexts [1]. In fact, the offered
redundancy minimizes the impact of individual failures and
ensures that essential services can continue to operate even in
challenging circumstances.

Moreover, decentralized systems empower individuals by
ensuring freedom of expression and information exchange,
offering a resilient and censorship-resistant platform that safe-
guards against oppressive control [2]. Traditional centralized
systems can sometimes be susceptible to misinformation or
manipulation, particularly during times of crisis. Decentral-
ized systems, built on transparent and immutable blockchain
technology, enable secure and efficient interactions without the
need for intermediaries [3], [4], [5]. This helps to mitigate the
spread of false information, enabling better-informed decision-
making and collaboration.

This work has received funding from the University of Urbino through the
“Bit4Food” research project.

A relevant problem in decentralized systems arises when
looking for content [6], [7]. In a previous work, we proposed a
solution for content lookup, based on a Distributed Hash Table
(DHT) [8], [9]. A DHT is a distributed system that provides
a lookup service similar to a hash table: any participating
node can efficiently retrieve the value associated with a given
key [10]. In particular, we resort to a Hypercube DHT. P2P
nodes form an overlay topology shaped as a hypercube, with
each node having a unique identifier represented as a binary
string. The length of the binary string determines the number
of dimensions of the hypercube. The storing and lookup of
a resource in the DHT is based on the navigation inside
the different dimensions of the hypercube, in order to reach
the appropriate node that maintains information about that
resource. The main limitation of that solution was that it
assumes a naive keyword mapping lookup scheme that can
create scalability issues in large decentralized systems.

We propose a novel keyword-based decentralized lookup
scheme thought for multimedia content. The goal is to define
a similarity content lookup scheme. able to identify similar
documents and present them as potential search results. With
this in view, we employ the International Standard Content
Code (ISCC). It is a standardized content identification system,
that enables the unique identification of digital content without
the need for a centralized registry or authority. The ISCC
system uses a combination of cryptographic hashing and
content analysis to generate a unique identifier for any given
piece of digital content. This identifier allows verifying the
authenticity and integrity of the content. Moreover, we believe
it enables content discovery. In fact, through this approach,
similar contents have similar identifiers (ids), and this might
ease the lookup process. Another key benefit of the ISCC
system is that it is decentralized and open-source, meaning
that anyone can use it to identify and verify digital contents
without the need for a centralized authority or proprietary
software. This makes it ideal for use in decentralized systems
such as blockchain networks or P2P content sharing platforms,
where there is a need for a reliable and standardized content
identification system, not in charge to a single entity.

An array of diverse use case applications could benefit
from this solution. Indeed, the combination of content dis-
coverability, system reliability, scalability, together with the



cryptographic features of decentralized architectures bolster
security by guarding against unauthorized access and data
tampering. These qualities are highly relevant in contexts
such as data sharing, data censorship resilience, information
retrieval, collaborative networks as well as traceability and
supply chain management.

To assess the our proposal, we set up a set of experiments
using classes of images. We compare different approaches
to index contents within the Hypercube DHT, with respect
to the classic hashing scheme commonly used in DHTs.
Results show that ISCC-based identifiers enable more efficient
content placement and retrieval. This eases the discovery of
multimedia content, which is distributed over Decentralized
File Storage (DFS) systems.

The remainder of this paper is organized as follows. Section
II provides some background. Section III presents the proposed
system. Section IV discusses the experimental evaluation and
results. Finally, conclusions are provided in Section V.

II. BACKGROUND AND RELATED WORK

A. Content Lookup in Decentralized Systems

Content discovery in distributed systems has a relevant state
of the art [9], [11]. There are two main categories of ap-
proaches, i.e. client/server and P2P based solutions. Searching
content in a client/server system is quite simple. The server has
complete knowledge about where contents are located. Thus,
clients can ask the server in order to retrieve data. Things get
more complicated when a decentralized system (i.e., P2P) is
employed [12], [13]. Two main approaches to content lookup
in P2P systems exist, i.e. unstructured and structured.

An unstructured content lookup is a simple approach where
peers forward requests to their neighbors without any specific
organization or structure [14]. Nodes are usually connected
randomly and do not follow any specific topology, or if they
do, this topology is not related to the contents nodes store [15].
In unstructured content lookup, a node disseminates a query
message to its neighbors, and each of these neighbors further
send the message to their neighbors, until the message reaches
the desired content [6]. Unstructured content lookup can be
inefficient in large-scale P2P networks, where the number of
nodes and the amount of data to be stored are large.

Structured content lookup is a more organized approach
that usually involves Distributed Hash Tables (DHTs) to locate
contents [16]. DHTs are a type of data structure that distributes
data evenly among nodes. Each node is responsible for storing
a small subset of the data, and the distribution is based on
a predefined key-space. In structured content lookup, when
a node wants to retrieve content, it first hashes the content’s
unique identifier to obtain a key. The node then uses the key to
locate the node responsible for storing the content in the DHT.
The node can then retrieve the content from that node directly.
Structured content lookup is more efficient than unstructured
content lookup because it allows for content retrieval without
extensive message flooding [17]. In our system, we resort to
a specific DHT shaped as a hypercube.

B. Hypercube

The Hypercube DHT is a structured P2P network that
organizes nodes in a hypercube topology [8], [18]. Nodes are
assigned unique identifiers, encoded as binary strings of a fixed
length. These nodes are responsible for maintaining informa-
tion about specific contents, which are indexed through ids
mapped in the same key-space of node ids. The main concept
is defining how identifiers are associated with contents. The
typical solution is to compute the hash of the desired data
object to obtain a binary string that corresponds to the id in the
DHT. In this case, the content lookup turns into identifying the
node whose id is closer to the hashed identifier. This solution
works if the content to look for is known, i.e. the user does
have the actual data, but he knows precisely which data is
needed.

When there is the need to make more complex queries to
the system, some alternative solution is needed. For example,
a user might want to locate images of a specific location
(e.g. the Colosseum in Rome, Italy). In this case, he does not
know which is the file to retrieve, but he knows a specific
keyword associated with the type of the image he needs
(e.g. location:Rome, subject:Colosseum). In this
case, content indexing can rely to keywords associated with
the metadata of the content. This is the goal we pursue in our
system. In the rest of this section, we review the approach we
already employed in [8].

To sum up, we are looking for a method that, based on a
set K of keywords exploited to perform a query, computes an
identifier that describes a typology of contents (e.g. images of
the Colosseum in Rome). This leads to the recognition of rID
as the id for that query, which is used to locate the node v in
the DHT that has knowledge about all the contents resolving
the query. Thus, the node will answer with all the references to
these contents available in the decentralized storage. Clearly,
these references are, in turn, other identifiers xID to locate
contents (that have nothing to do with the DHT ids).

Table I provides a description of identifiers involved in our
system. Consider the xID as a generic identifier for some
particular content in the decentralized storage. For instance,
xID might be the CID for an IPFS Object or a specific DLT
transaction identifier. xID is associated to a keyword set K
describing the content resolved by xID. We assume these
keywords belong to a domain K ⊆ W .

Now, a uniform hash function h : W → {0, 1, . . . , r−1} is
employed to map the keyword set K to a keyword set id rID.
In particular, for each k ∈ W , h(k) sets to 1 one specific bit
of the r-bit string given by modr(h(k)). (Put in other words,
each k ∈ W has an assigned position in the r-bit string). Thus,
the rID related to the keyword set K is generated as a r-bit
string where the positions are “activated” (i.e., set to 1), by
all the k ∈ K, i.e. one(rID) = {modr(h(k)) | k ∈ K}.

These r-bit strings represent not only a keyword set K, but
they are used to identify logical nodes in the Hypercube DHT
network. For example, if we fix the size of the r-bit string to
r = 4, then node ids can take binary values from 0000 to 1111.



ID type Description
Content id, xID It is the identifier for the content to be

retrieved in the decentralized storage. It
can be the CID in the case of IPFS, a
DLT transaction ID, etc. In the DHT,
it is the value of the <key,value>
mapping.

Node id, v It represents a vertex of the hypercube
DHT. It is encoded as a r-bit string.
This logical node is associated with a
physical node in the distributed system
that maintains pointers to where data
with certain characteristics, i.e., set of
keywords, are physically stored and
retrievable.

Keyword set id, rID It represents an identifier for a certain
set of keywords K describing given
contents. Thus, rID aggregates in one
single information different keywords.
It is encoded as a r-bit string in the
same space of node ids.

TABLE I: Summary of identifiers employed in this work.

We can formally define a r-dimensional hypercube Hr(V,E)
as a set of vertices V and a set of edges E connecting them.
Each of the 2r vertices represents a logical DHT node, while
edges are formed when two vertices ids differ by only one
bit, e.g., 1011 and 1010 share an edge. The distance between
two vertices u and v can be measured using the Hamming
distance, i.e., Hamming(u, v) =

∑r−1
i=0 (ui ⊕ vi), where ⊕ is

the XOR operation and ui is the bit at the i-th position of
the u string, e.g., for u = 1011 and v = 1010, we have
Hamming(u, v) = 1.

Contents are discovered through queries based on a keyword
set id rID, which corresponds to a point in the hypercube.
In fact, content references are stored on the node u with the
identifier closest to rID (recall that node ids and resource ids
are mapped into the same key-space). The query takes as input
a keyword set id rID and, starting from a random node v, the
request is propagated in the net until reaching a node u, which
is responsible for that keyword set rID. This basic search
will return all and only the xIDs exactly associated with a
keyword set K, i.e., {xID ∈ D | KxID = K}, maintained
by the responsible node u (pin search). What might happen,
however, is that one could be interested also in contents that
are described by keyword sets that include K, i.e., {xID ∈
D | KxID ⊇ K} (superset search). Thus, it is also possible to
ask for contents not only at the u node, but at its neighbours
(in the hypercube) as well. Clearly enough, in this case a limit
l is set to the number of returned results obtained by all the
nodes with id associated to the keyword sets KxID ⊇ K.

C. International Standard Content Code

The International Standard Content Code (ISCC) [19] is
an ISO-approved standard that, given an input file, creates a
corresponding code to identify the file itself. Generating the
code consists of employing a set of content-driven, locality-
sensitive, and similarity-preserving hash functions. Unlike
cryptographic hash functions, these hash functions aim to

preserve similarity between data, so that two similar contents
do not have different codes. This process consists of four main
components.

• Meta-Code: encodes metadata similarity, e.g.,
AAA5C73C3GZDHDHD;

• Content-Code: encodes perceptual or syntactic similarity
of contents, e.g., EEA2T2CQVF6ZR7BU;

• Data-Code: encodes raw bitstream data similarity, e.g.,
GAACDVmDpTfvWZfP;

• Instance-Code: encodes checksum for data integrity, e.g.,
IAACRtoh1WeiDvEi.

These components can be considered separately, all together,
or used to generate a code represented by a digest derived from
the four components. This digest is composed of 52 characters,
totaling 36 bytes (288 bits), and it is the result of a base32
function applied to the four components. (In this work, we
will use Meta-Code and Content-Code, only.)

Each component consists of 72 bits, 8 bits for the header,
and 64 bits for the body, and has as its return value a
string encoded in base58-iscc [20]. The header is intended
to recognize the type of code component and, in the case of
Content Similarity Code, to indicate the file type from four
main choices: text, audio, video, and image.

An example of a research work that uses the ISCC standard
to build a similarity-based lookup scheme for multimedia
content in decentralized systems is presented in [21]. That
paper compares an ISCC based indexing and a classic hashing
scheme commonly used in DHTs. Results show that the use of
ISCC enables more efficient content placement and retrieval, if
compared to standard hash functions employed in other DHTs.
This is basically what we are going to do, but coupling the
indexing approach with the use of a Hypercube DHT for the
retrieval of contents in decentralized storage.

III. MULTIMEDIA MULTIPLE KEYWORDS SEARCH

The deployment of DFS, containing multimedia contents
to be indexed, leads to the need for a similarity content-
based indexing service that is more sophisticated than a simple
keyword-value based index [8]. We thus envision a system that
allows for multimedia content retrieval, not only thanks to one
(or a set of) keywords but based on metadata and data contents
[22]. With this goal in mind, we evaluate some alternative
decentralized indexing approaches based on the hashing of
the content itself, or on the use of the ISCC standard and the
hashing of its metadata [19].

A. System Model

The system architecture has two layers: the hypercube DHT
network works on top of the DFS network, i.e., IPFS (see
Figure 1). Contents are stored in the underlying layer, while
they are indexed in the upper layer. The system maintains three
different kinds of information, i.e. the (multimedia) contents,
their identifiers, and the metadata (e.g., keywords) associated
with them. Thus, the Hypercube DHT maintains an association
between keywords K and the related content identifiers xIDs,



Fig. 1: Multi-level architecture of the system model.

i.e., a CID in IPFS. These identifiers are used to retrieve the
actual data, i.e., multimedia content stored in the DFS.

B. Indexing scheme

The goal of the indexing scheme is to minimize the number
of hops required to search contents through the Hypercube
DHT, while automatizing the creation of keywords for multi-
media content. In other words, we are considering the oppor-
tunity of having a decentralized lookup scheme that clusters
similar contents into near peers in the logical overlay. We
aim to identify the best scheme that maps similar contents
to similar keyword set ids, so that nearby nodes in the
Hypercube DHT maintain pointers to similar contents located
in a decentralized storage or ledger. In this work, we compare
two approaches, i.e., one based on the use of a traditional
hash-based function and some variants of a scheme based on
the use of the ISCC standard.

1) The SHA-256 method: The first approach is a traditional
cryptographic hash function based scheme that, given content,
computes the hash of the considered information and takes
it to generate a keyword set id. Thus, given the content, this
method produces a r-bit string that is, in turn, exploited by
the approaches described in Section III-B3 to generate a final
keyword set id. Hereinafter, we refer to this indexing scheme
as SHA-256, which is the typical employed hashing function.

2) The ISCC methods: The alternative approach (referred
to as ISCC method) exploits the ISCC standard. In particular,
we consider different combinations of the ISCC Meta-Code
and Content-Code associated with multimedia content:

• ISCC-M - only the Meta-Code associated with the meta-
data is employed to obtain the keyword set id used in the
hypercube DHT.

• ISCC-C - only the Content-Code is used to obtain the
keyword set id.

• ISCC-CM - both Meta and Content codes are computed
and then their keyword set ids are combined through an
OR operation (Meta-Code OR Content-Code).

Starting code Key set id generation scheme
OR concat

SHA-256 SHA-OR SHA-concat
ISCC Meta ISCC-M-OR ISCC-M-concat
ISCC Content ISCC-C-OR ISCC-C-concat
ISCC Content OR Meta ISCC-CM-OR ISCC-CM-concat

TABLE II: Indexing schemes considered in the evaluation.

3) Keyword Set Id generation method: Given a (hexadec-
imal base representation of a) r-bit string s, generated using
one among the SHA-256 or ISCC methods described above,
we further manipulate s to generate the final keyword set id.
Two (slightly) different strategies are adopted for generating
the id.

• OR-based indexing. s is subdivided into a sequence of
chunks of size g. For each chunk, ci, we compute its
modulo ci mod r, which identifies the position in the r-
bit string that is set equal to 1. By repeating this procedure
for all chunks, we obtain a final bit string by OR-ing all
the modulo operations for all the chunks.

• Concatenation-based indexing Given s expressed in
hexadecimal format, every single character ci is consid-
ered (i.e., with respect to the approach above, we set
g = 1). The final keyword set id is built through the
concatenation of the result of ci mod r, for all the ci.

Table II shows the names we assigned to all the variants of
the employed methods, based on the use of SHA-256 or ISCC,
and on the specific keyword set id generation method.

IV. EXPERIMENTAL EVALUATION

This section discusses how we evaluated the different in-
dexing schemes and the obtained results.

A. Metrics of Interest

Our goal was to assess which set of parameters and keyword
set id generation technique are able to maximize the distance
between classes of contents, while minimizing the internal
distance between contents belonging to the same class. (As
reported before, since we are dealing with bit-string ids, the
distance we consider in this case is a classic Hamming dis-
tance.) Thus, for each class c, we compute a type of clustering
index (CI), measured as the average distance between the c-
centroid and the centroids of all other classes, over the average
distance of items in c with respect to the c-centroid. Finally,
we compute the average of these clustering values, to obtain a
single outcome for the considered setup scheme. The metric CI
is a variation of the Dunn index, which is the ratio between the
minimum inter-cluster distance and the maximum intra-cluster
distance. Clearly enough, the higher the value of CI the better
it is.

B. Experimental Results

The test dataset was composed of 30 classes, each con-
taining 15 photos of the same subject, like a monument or a
painting. The system was analyzed through simulation [23].

Figure 2 shows the average results when using the OR-
based indexing method. It is possible to appreciate how the



Fig. 2: Clustering Index (CI) for OR-based methods. It mea-
sures the method ability to cluster similar contents on the same
nodes of the Hypercube DHT. Thus, the higher the better.

ISCC-M-OR and ISCC-CM-OR indexing schemes, based on
the use of ISCC meta-codes, perform better than others. In
particular, ISCC-CM-OR slightly outperforms ISCC-M-OR.
This result is not surprising, since ISCC-CM-OR uses more in-
formation than ISCC-M-OR to index contents. Indeed, adding
more information should improve the ability to differentiate
between different classes of multimedia content. However, this
improvement seems only marginal in these experiments.

Results for the concat-based methods are shown in Figure
3. In particular, Figure 3a shows the results obtained from
different values of the r parameter, with g kept fixed and
equal to 2, while Figure 3b provides results when g = 4.
In both plots, it is possible to notice that the use of Meta-
Code, i.e. ISCC-M-concat, is the best choice for allocating
images on the DHT. In fact, this approach guarantees better
performance in terms of maximizing the distance between
different classes and, at the same time, minimizing the distance
between contents of the same class. In this experiment, ISCC-
CM-concat that employs both Content-Code and Meta-Code
has a similar, but slightly worse, behaviour with respect to the
ISCC-M-concat. This result suggests that the most important
information that allows separating classes is the Meta-Code.
From the results shown in the figure, it seems that the
configuration with the parameter g = 2 provides slightly better
performance with respect to g = 4, but the improvement is
actually limited. An interesting thing to notice is that the best
result obtained with the OR-based method, i.e. ISCC-CM-OR,
is almost twice as much as the highest value obtained with
the concat-based method, i.e. ISCC-CM-concat. This allows
us to conclude that ISCC-CM-OR performs better in terms of
the distribution of multimedia content on the DHT.

Figure 4 shows how the images were allocated over the
hypercube nodes, in a configuration with a number of bits
r = 8, respectively for ISCC-CM-OR (Figure 4a) and the
typical SHA-256 (Figure 4b). What each chart shows is a part
of the Hypercube DHT. Each node of the graph corresponds
to a node in the DHT. Each node is coloured based on the
images it maintains. (To be more precise, it maintains pointers
to where images are located.) Thus, for instance, a node

coloured in orange means that it maintains images related
to the “Altare della Patria” (a popular monument in Rome,
Italy). Different colours pertain to different classes of images,
with the exception of the grey colour, which represents the
fact that the node contains (pointers to) images of different
classes. Moreover, each node has a weight (label) associated
with it, which represents the number of contents it stores.
Simply put, what we would like to see here is a graph of
nodes, with a high weight, which are highly connected when
they have the same colour and with no nodes coloured in
grey. It is possible to notice that ISCC creates more effective
clustering for images of the same class. Nodes containing
images of the same class stay closer, and those containing
images of different classes are far apart. Instead, SHA-256
causes an allocation of multimedia contents that is spread over
the hypercube, causing a higher number of hops in content
lookups over the DHT, and consequently performing worse
in terms of returned multimedia contents and lookup delay.
It is worth mentioning that both schemes were applied to
DHTs of the same size. The fact that ISCC subgraph has
fewer nodes shown in the figure, w.r.t. SHA-256, means that
contents were actually allocated in fewer nodes in the DHT,
thus leaving other nodes not utilized. In our view, this is a
benefit, since, as mentioned, the allocation is more clustered.
In a situation with a higher amount of multimedia content,
our results suggest that a ISCC Meta-Code method guarantees
that different classes of contents would be managed by nearby
DHT nodes, with different classes going on different portions
of the DHT. Conversely, SHA-256 allocation does the job it is
supposed to do, i.e. it distributes contents (even those of the
same class) throughout the DHT. Few images are allocated in
each DHT node. Indeed, several of these nodes have only one
image associated, as reported in the node weights. This leads
to a significant number of hops to lookup for a content type
and fewer returned results correlated with the query.

V. CONCLUSIONS

We proposed a keyword-based decentralized lookup
scheme, based on the ISCC standard to retrieve contents
stored in a decentralized system such as DFS or DLTs.
Our experiments show that the use of the ISCC enables a
more efficient content placement and retrieval, compared to
the classic hashing schemes. Overall, our proposal can pave
the way for novel decentralized solutions that overcome the
limitations of centralized servers for content lookup, making
decentralized systems more scalable, efficient, and resilient
to node failures when subject, for instance, to sudden and
unexpected emergency situations or censorship. Such a system
represents an instrumental tool that effectively addresses the
challenges of data tracing and efficient retrieval across various
application domains.

REFERENCES

[1] L. Chen, W. Yu, J. Li, S. Yang, and H. V. Poor, “A distributed deep
learning approach for intelligent multimedia content analysis in the
internet of things,” IEEE Internet of Things Journal, vol. 8, no. 7, pp.
5234–5245, 2021.



(a) g=2 (b) g=4

Fig. 3: Clustering Index (CI) for concat-based methods, with different g and r settings. The metrics refer to the ability of the
method to cluster similar multimedia contents on the same nodes of the Hypercube DHT. Thus, the higher the better.

(a) ISCC allocation. (b) SHA allocation.

Fig. 4: Subgraph of DHT nodes containing references to images of different classes. Links represent direct connections among
nodes of the DHT. The more nodes with same the color are linked together, the better it is.

[2] M. Zichichi, S. Ferretti, and G. D’Angelo, “On the efficiency of decen-
tralized file storage for personal information management systems,” in
Proc. of the 25th IEEE Symposium on Computers and Communications
2020 (ISCC2020). IEEE, 2020, pp. 1–6.

[3] J. Zhou, F. Tang, H. Zhu, N. Nan, and Z. Zhou, “Distributed data vending
on blockchain,” 2018, p. 1100 – 1107.

[4] M. Zichichi, S. Ferretti, and G. D’Angelo, “A distributed ledger based
infrastructure for smart transportation system and social good,” in 2020
IEEE 17th Annual Consumer Communications Networking Conference
(CCNC), 2020, pp. 1–6.

[5] S. Peng, W. Bao, H. Liu, X. Xiao, J. Shang, L. Han, S. Wang, X. Xie,
and Y. Xu, “A peer-to-peer file storage and sharing system based on
consortium blockchain,” Future Generation Computer Systems, vol. 141,
p. 197 – 204, 2023.

[6] G. D’Angelo and S. Ferretti, “Highly intensive data dissemination in
complex networks,” Journal of Parallel and Distributed Computing,
vol. 99, pp. 28–50, 2017.

[7] M. A. Belarbi, S. A. Mahmoudi, S. Mahmoudi, and G. Belalem, “A
new parallel and distributed approach for large scale images retrieval,”
Lecture Notes in Networks and Systems, vol. 49, p. 185 – 201, 2019.

[8] M. Zichichi, L. Serena, S. Ferretti, and G. D’Angelo, “Complex queries
over decentralised systems for geodata retrieval,” IET Networks, 2022.

[9] S. Wasiq, S. H. A. Bukhari, and M. A. Halepoto, “Distributed image
retrieval in a decentralized network using content-addressable network-
ing,” Multimedia Systems, vol. 26, no. 4, pp. 445–461, 2020.

[10] I.-H. Gu and T. Tjahjadi, “Multiresolution feature detection using a
family of isotropic bandpass filters,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 32, no. 4, pp. 443–454, 2002.

[11] S. S. Roy and S. K. Das, “Content lookup in peer-to-peer networks: A
survey,” Journal of Network and Computer Applications, vol. 105, pp.
35–56, 2018.

[12] T. Bocek, E. Hunt, D. Hausheer, and B. Stiller, “Fast similarity search in
peer-to-peer networks,” in NOMS 2008 - 2008 IEEE Network Operations

and Management Symposium, 2008, pp. 240–247.
[13] A. Crespo and H. Garcia-Molina, “Semantic overlay networks for p2p

systems,” in Agents and Peer-to-Peer Computing, G. Moro, S. Berga-
maschi, and K. Aberer, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 1–13.

[14] S. Ferretti, “Gossiping for resource discovering: An analysis based on
complex network theory,” Future Generation Computer Systems, vol. 29,
no. 6, p. 1631 – 1644, 2013.

[15] ——, “Shaping opportunistic networks,” Computer Communications,
vol. 36, no. 5, pp. 481–503, 2013.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup protocol for internet applica-
tions,” IEEE/ACM Trans. on Networking, vol. 11(1), pp. 17–32, 2001.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” in Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols
for computer communications, 2001, pp. 161–172.

[18] R. M. Karp and S. Shenker, “A randomized algorithm for finding
frequent elements in streams and bags,” in Proc. of the ACM symposium
on Theory of computing. ACM, 2000, pp. 163–174.

[19] “Iscc,” https://iscc.codes.
[20] “Base-iscc,” https://iscc.codes/specification/#base58-iscc.
[21] M. Couceiro, L. Nunes, and J. Silva, “A similarity-based lookup scheme

for multimedia content in decentralized systems,” in 2020 International
Conference on Distributed Computing in Sensor Systems (DCOSS).
IEEE, 2020, pp. 468–474.

[22] Z. Wu, C. R. Yang, S. Vargas, and A. Balasubramanian, “Is ipfs ready
for decentralized video streaming?” 2023, p. 3002 – 3010.

[23] G. D’Angelo and S. Ferretti, “Adaptive parallel and distributed sim-
ulation of complex networks,” Journal of Parallel and Distributed
Computing, vol. 163, p. 30 – 44, 2022.


