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Characterizing functional trait variation and covariation, and its drivers, is critica! 
to understand the response of species to changing environmental conditions. 
Evolutionary and environmental factors detennine how traits vary among and 
within species at multiple scales. However, disentangling their relative contri­
bution is challenging and a comprehensive trait environment framework 
addressing such questions is missing in lichens. We investigated the variation 
in nine traits related to photosynthetic perlormance, water use and nutrient 
acquisition applying phylogenetic comparative analyses in lichen epiphytic com­
munities on beech across Europe. These poikilohydric organisms offer a valuable 
model owing to their inherent limitations to buffer contrasting environmental 
conditions. Photobiont type and growth form captured differences in certain 
physiological traits whose variation was largely determined by evolutionary 
processes (ie. phylogenetic history), although the intraspecific component was 
non-negligible. Seasonal temperature fluctuations also had an impact on trait 
variation, while nitrogen content depended on photobiont type rather than nitr<r 
gen deposition. The inconsistency of trait covariation among and within species 
prevented establishing mapr resource use strategies in lichens. However, we did 
identify a general pattern related to the water-use strategy. Thus, to robustly 
unveil lichen responses under different climatic scenarios, it is necessary to 
incorporate both among and within-species trait variation and covariation. 

1. lntroduction

Understanding how functional traits vary along ecological gradients is crucial 
to disentangle the response of species to environmental drivers under the 
rurrent global change context. Functional traits exhibit a range of values that 
vary among and within species and across environmental gradients [1], and 
potentially affect the performance of individuals [2]. The patterns of functional 
trait variation not only inform about the impact of environmental changes on 
communities [3], but are also useful for assessing the effect of community 
changes on ecosystem processes [4]. 



The variation of functional traits within species is con-
strained by genetic differentiation and phenotypic plasticity
[5] reflecting the evolutionary history and the adaptation
of species to environmental conditions [6]. Given the complex-
ity of the sources of functional variation, it is important to
adopt a pluralistic framework integrating the phylogenetic
dimension of biodiversity and the trait-based approach (i.e.
phylogenetic comparative analysis) [7]. Beyond the species
level, some aspects of trait variation may differ at different
scales such as family and population [8]. Thus, exploring the
distribution of functional variation across scales would
improve our understanding on the distinct responses of
species under different environmental scenarios and the impli-
cations for ecosystem functioning [9]. Several studies have
assessed the extent of functional variation among and within
species, and the trait environment relationships, mainly in
vascular plants (e.g. [10,11]). However, an environment trait
framework addressing such questions is still missing in
lichens, although they are placed within the most sensitive
early warning indicators of environmental changes [12].

Plant ecologists have gone one step forward in the study of
functional variation on the basis of the idea that functional
traits covary [13]. Consistent patterns of covariation between
functional traits are valuable tools to define general ecological
strategies [2]. For instance, the pattern of covariation between
leaf traits (e.g. leaf economic spectrum) has been related to
rapid resource acquisition versus resource conservation
strategies [10]. Thus, functional traits are useful proxies to
identify ecological strategies in vascular plants [10,14], but
the ecological link between traits and ecological strategies in
other organisms such as epiphytic lichens remains almost
unexplored. Lichens are useful organisms to address ecological
questions about environmental changes, traits and ecosystem
processes for two main reasons. First, lichen physiology (e.g.
photosynthetic performance, water use and nutrient acqui-
sition) strictly depends on the atmospheric conditions [15],
because they lack mechanisms to regulate water and nutrient
uptake and loss. Moreover, lichens are among the most
nitrogen-sensitive organisms and nitrogen deposition pro-
foundly affects their diversity [16]. Second, their life-history
traits respond to environmental changes [17] and directly
impact ecosystem functioning [18]. For example, they contrib-
ute to forest ecosystem processes including nutrient cycling,
soil fertility, water regulation and purification, and primary
production (see [18] for review; [19]).

Most studies reporting environmental impacts on lichens
using a trait-based approach typically use ‘soft’ traits (sensu
[20]) because they provide integrative information about many
physiological functions and are easy to obtain. It is well recog-
nized that certain lichen traits such as photobiont type and
growth form may be used as indicators of environmental
changes [21]. However, the link of these traits with specific func-
tions is weak. Additionally, more information is needed about
the variation of more mechanistic physiological traits (i.e.
‘hard’ traits) in a wide set of species under contrasting environ-
ments. There is some evidence that traits related to
photosynthetic performance, water use and nutrient acquisition
respond to environmental drivers. For instance, in certain
species, environmental conditions determine the photosynthetic
performance (e.g. chlorophyll content, degradation or fluor-
escence) [22], the specific thallus mass (STM, [23]), the water
holding capacity (WHC, [24]) and the nutrient content [25].
Therefore, traits such as chlorophyll content, STM, WHC,
nitrogen and carbon content, and isotopic ratios may provide 
valuable information to explore species responses to environ-
mental changes and to identify general ecological strategies in 
lichens. For example, species with resource-conservative traits 
such as low nitrogen content, and high chlorophyll and STM 
(i.e. the equivalent to specific leaf area in vascular plants) may 
be favoured in stressful environments [26].

Here, we analysed the functional response of epiphytic 
lichens from beech forests (Fagus sylvatica L.) across its latitudinal 
distribution range in Europe covering a broad range of climatic 
conditions (i.e. temperature, precipitation and seasonality). We 
used a comparative approach integrating phylogenetic related-
ness and a trait-based approach to decouple the effect of 
phylogeny and environment on lichen functional variation. 
First, we evaluated if ‘soft’ traits such as photobiont type and 
growth form capture the variation of nine ‘hard’ traits. Second, 
we assessed the relative contribution of order, species and popu-
lation on trait variation to unravel the extent of inter- versus 
intraspecific variation in lichen traits after accounting for 
phylogenetic effects. Third, we analysed the response of each 
functional trait to different environmental drivers: climate and 
nitrogen deposition. Fourth, we calculated the covariation of 
functional traits along the gradient to unveil the existence of 
trade-offs between the studied traits and to evaluate to what 
extent this covariation is consistent among and within species.

We hypothesized that: (i) photobiont type and growth form 
indicate differences in ‘hard’ traits related to the photosynthetic 
performance, water-use strategy and nutrient acquisition;
(ii) evolutionary and environmental drivers would determine
functional variation of ‘hard’ traits with a more important con-
tribution of inter- than intraspecific variability and with a key
role of environment; (iii) under stressful environmental con-
ditions, species with a conservative strategy will be favoured
over those with an acquisitive strategy; and (iv) correlation of
traits related to general ecological strategies will be similar
among and within species.
2. Material and methods
(a) Collection sites and lichen sampling
The present study was carried out in 23 beech forests covering the 
whole latitudinal range of F. sylvatica in Europe (electronic sup
plementary material, figure S1). To reduce habitat differences, we 
selected mature and well preserved forests at least 5 km away 
from each other, with a tree cover over 65%, and without tree cut
ting during the last 50 years. All forests harboured the lichen 
species Lobaria pulmonaria (L.) Hoffm. to ensure the survey of 
mature epiphytic communities in the same successional stage 
[27], thus minimizing the differences related to the community 
development. The latitudinal gradient represented a large climatic 
gradient with mean annual temperature ranging from 3.9 to 11.9°C 
and total annual precipitation ranging from 563 to 1644 mm (elec
tronic supplementary material, table S1). By studying epiphytes on 
this single host species, we were able to: (i) control as much as poss
ible the habitat differences not related with climate, and (ii) 
measure functional traits on individuals located at the extremes 
and at the core area of distribution of the host tree species.

Within each forest, we collected four thalli, whenever possible, 
of all macrolichen species found (i.e. large and conspicuous 
lichens) (electronic supplementary material, table S2). Samples 
were collected from beech trunks between June and September 
2015 and 2016. After collection and before measurements, samples 
were air dried, cleaned from debris and stored at 20°C [28]. 
Lichens were stored a maximum of two weeks between collection
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