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Abstract

This paper is devoted to the decomposition of a images into cartoon, texture and noise components. A two-
stage variational model is proposed which is parameter-free and both context- and noise-unaware. In the
first stage the additive white noise component is separated and then the denoised image is further split into
cartoon and texture, in the second stage. Auto-correlation and cross-correlation principles represent the key
aspects of the two variational stages. The solutions of the two optimization problems are efficiently obtained
by the Alternating Directions Method of Multipliers (ADMM). Numerical results show the potentiality of
the proposed approach for decomposing images corrupted by different kinds of additive white noises.

Keywords: Variational Image Decomposition, Whiteness, Cross-correlation, Automatic Parameter
Selection.

1. Introduction

Decomposing an image into meaningful components is an important and challenging inverse problem
in image processing. This task requires the separation of an image into semantically different contents
which are assumed to be meaningful parts. A classic example is the image denoising problem in which the
goal is to decompose a given degraded image b into a component u representing the true (noise-free) image
and a component n containing the noise realization. In case of additive noise degradation, these quantities
are usually related by b = u+ n. A well-assessed variational approach for image denoising relies on the
search for a solution u in Bounded Variation (BV) space, the set of functions of bounded variation, or with
limited total variation (TV). This is the natural space for modeling ‘cartoon’ type images, since elements
of BV consist of homogeneous regions with sharp object boundaries. TV-based variational approaches suc-
cessfully extract the piecewise-constant (cartoon) structure of the image, while removing noise as well as,
eventually present, small scale repeated patterns (texture) from the image. This is due to the fact that both
types of patterns (additive noise and texture) can be modelled by oscillatory functions of zero mean taking
both positive and negative values. Y. Meyer in [17] introduced the G space, where zero-mean oscillatory
functions show a small G-norm, and a BV-G-based variational model able to decompose an image into a
cartoon part c containing only geometric objects, and an oscillatory part n containing noise and textures.
Inspired by this idea, several variational models have been proposed, some of them addressing numerical
issues on the decomposition approach [1, 7], and others introducing the use of a negative Sobolev norm
as numerical treatable approximations of the G-norm [19, 20, 18, 9, 24]. Other different approaches have
been proposed to compute such a cartoon + texture decomposition: from statistical methods or wavelet
techniques, e.g. [16], to the so-called morphological component analysis, which introduces appropriate
dictionaries to play the role of discriminants between the different content types [22]. Finally, a recently
proposed three-component non-convex formulation is presented in [9], but devoted to simultaneously sep-
arate smooth trend, cartoon and oscillatory parts.

However, in the presence of additive noise and fine granularity textures, all the described proposals
would incorporate textures and noise into the same component. The critical problem therefore remains to
distinguish between noise and texture parts: both texture and noise are indeed characterized by oscillatory
small-scale details. Nevertheless, noise is random and is typically characterized by spatially uncorrelated
values. This will be the underlying motivation of the proposed decomposition framework which aims to
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split a degraded h×w vectorized image b ∈ RN - with N = h×w - into three components:

b = c+ t +n , (1)

where the first component c is well-structured, the so called ‘cartoon’ part, and has a simple geometric
description: it models the homogeneous objects which are present in the image. The second and third
components t and n contain the oscillating patterns which represent textures and noise, respectively.

Given the desired properties of c, t and n, a natural decomposition model has been first formulated
in [2] as an optimization problem which minimizes the sum of three different norms: total variation, G
norm for the textured part and E-norm (where E is the generalized Besov space) for the noise component.
The intrinsic difficulty with the proposed minimization problem comes from the numerical intractability
of the considered norms. For the E-norm, wavelets have been applied to define the equivalent norm. In
the last two decades many papers were published along this direction, addressing the modeling aspects and
some image applications [3, 5, 6]. However, a very small number of publications proposed to characterize
the solutions of such models with respect to the choice of the parameters [1, 7, 8]. Indeed, selecting the
regularization parameters in any image variational framework is, in general, of crucial importance, since
it can highly influence the quality of the final result. For image decomposition, in the past, this has been
done more by trial and error rather than by any well understood theory. An interesting approach to select
the regularization parameter is proposed in [3] and applied in a two-term TV-Gabor decomposition model,
by relying on the assumption that texture and structured components of an image are poorly correlated.

Furthermore, most of the variational image decomposition approaches rely on more than two energy
terms, and inherently on more than one parameter. This clearly allows for high flexibility of the model, but,
on the other hand, the parameter selection issue becomes even more critical.

In this work, we propose an image decomposition approach whose novelty relies on two statistical
characterizations. From one side, the noise component is extracted based on the expected properties of its
auto-correlation, on the other side the texture component is separated based on its cross-correlation with
the cartoon component. More precisely, we propose a two stage variational decomposition model which,
in the first stage, extracts the noise and, in the second stage, separates the texture and cartoon components.
Summarizing, the main contribution of this work is twofold:

• an effective texture-preserving variational model for extracting the noise component from images
corrupted by additive white noise, which does not require any a priori knowledge on the noise dis-
tribution. It relies on a novel, normalized version of the so-called residual whiteness set proposed in
[11], which, unlike [11], does not require to know/estimate the noise standard deviation.

• a fully automatic variational model for extracting the texture component, where the regularization
parameter is selected based on a novel cross-correlation principle. The parameter yielding the maxi-
mum dissimilarity between the texture and cartoon components is chosen.

From a numerical point of view, for both the two novel decomposition stages, we propose an efficient
numerical solution approach based on the popular Alternating Direction Method of Multipliers (ADMM).

Overall, the proposed two stage decomposition model is parameter-free. In particular, stage I model
contains a fidelity term in the form of a whiteness hard constraint without any free regularization parameter;
instead, the regularization parameter of stage II model is automatically updated along the ADMM iterations
based on the cross-correlation principle.

The work is organised as follows. In Sec. 2 the two-stage variational decomposition model is formu-
lated. In Sec. 3, we begin by recalling some basic definitions on 2D normalized cross-correlation and
auto-correlation. Then the whiteness principle and statistical characterization of the sample normalized
auto-correlation are introduced in Sec. 4. The proposed cartoon-texture separation approach via normal-
ized cross-correlation minimization is discussed in Sec. 5, while in Sec. 6 the computational ADMM
framework is detailed. We report some experimental results in Sec. 7, and conclusions in Sec. 8.

2. The proposed two-stage variational decomposition model

The proposed model for the decomposition of images into cartoon, texture and noise components takes
the following form.

Starting from an observed image b, additively composed as in (1), compute estimates c∗, t∗, n∗ of
components c, t,n by the following two-stage variational framework
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• Stage I:

u∗ ∈ arg min
u∈RN

{
J1(u;α,a1) =

N

∑
i=1

φ (∥(Du)i∥2 ;a1)+ ıWα
(b−u)

}
, (2)

n∗ = b−u∗ , (3)

• Stage II:

c∗ ∈ arg min
c∈RN

{
J2(c; µ,a2) =

N

∑
i=1

φ (∥(Dc)i∥2 ;a2)+
µ

2
∥c−u∗∥2

2

}
, (4)

t∗ = u∗− c∗ , (5)

where D := (Dh;Dv) ∈ R2N×N , with Dh,Dv ∈ RN×N finite difference operators discretizing the first-order
horizontal and vertical partial derivatives of an image, respectively, and where, with a little abuse of notation,
(Dx)i := ((Dh x)i ; (Dv x)i) ∈ R2 indicates the discrete gradient of image x at pixel i. The function ıWα

:
RN → R := R∪{+∞} in (2) is the indicator function of the set Wα ⊂ RN , namely ıWα

= 0 for x ∈ Wα ,
ıWα

= +∞ for x /∈ Wα . The parametric set Wα , referred to as the normalized whiteness set with α ∈ R++

called the whiteness parameter, will be formally defined in Section 4.
The parametric function φ( · ;a) : R+ → R+ in (2) and (4) is a re-parameterized and re-scaled version

of the minimax concave (MC) penalty [25], namely a simple piece-wise quadratic function defined by:

φ(t;a) =

{
−a

2
t2 +

√
2at for t ∈

[
0,
√

2/a
)
,

1 for t ∈
[√

2/a,+∞
)
,

(6)

with a ∈R+ a free parameter called the concavity parameter of penalty φ . In fact, since a =−mint φ ′′(t;a),
it represents a measure of the degree of non-convexity of φ .

The common regularization function φ used in both the Stage I model (2) and the Stage II model (4)
represents a well-known, tunable, non-convex generalization of the popular TV regularizer [21]. Thanks to
its non-convexity, depending on the value of the concavity parameter a, the regularizer in (2), (4) holds the
potential for inducing sparsity of the image gradient magnitudes more strongly than TV. We refer to [8] for
details on the sparsity-inducing properties of the regularizer.

Finally, the scalar µ ∈ R++ in (4) represents the regularization parameter of the stage II variational
model.

The Stage I variational model (2)-(3), which will be discussed in detail in Section 4, is aimed at denois-
ing the observed image b or, equivalently, extracting the noise component n from b, with n any realization
from the wide class of additive white noise (AWN) random processes. This class includes important noises
such as those characterized by Gaussian (AWGN), uniform (AWUN), Laplacian (AWLN), Cauchy (AWCN)
or even mixed distributions, which can be found in many applications [11]. The task is not easy, as the im-
age to denoise is assumed to contain a texture component. Decomposing noise from texture is in fact hard
due to both components sharing the property of being highly oscillatory. An effective approach for achiev-
ing a good deblur/denoise of textured images consists in enforcing whiteness of the residue image, that is
of the noise component, in the data fidelity term [10, 11]. In fact, whiteness is a property typically exhibited
by noise but not by texture. In particular, in [11] the authors proposed a variational image restoration model
containing a TV regularizer and a fidelity term in the form of a hard constraint on the so-called residual
whiteness set. However, the definition of this set requires that the noise standard deviation is known. Here,
we build on the idea in [11] but we propose a normalized version of the whiteness set which does not require
any knowledge on the noise distribution and standard deviation. In particular, in Section 4 we introduce a
normalized whiteness set Wα to which the residue image b−u of stage I denoising model (2) must belong.
The idea is that a good-quality estimate u∗ yields a residual b− u∗ which resembles the realization n of a
white noise process, hence by constraining b− u∗ to be white, an accurate u∗ and, hence, n∗ = b− u∗ are
achieved.

In the Stage II variational model (4)-(5), devoted to decomposing the result u∗ of Stage I into a cartoon
and a texture component, the regularization parameter µ is automatically selected by imposing the minimal
cross-correlation between the two parts. In particular, as it will be illustrated in Section 5, model (4)-(5)
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is recasted within a bilevel optimization framework. The use of the non-convex regularizer instead of the
standard TV for extracting the piecewise constant part of the image has been very well assessed in recent
works [8].

3. Preliminaries on 2D normalized cross- and auto-correlation

Let us consider two non-zero images in matrix form x,y ∈ Rh×w

x =
{

xi, j
}
(i, j)∈Ω

, y =
{

yi, j
}
(i, j)∈Ω

, Ω := {0, . . . ,h−1}×{0, . . . ,w−1} .

The sample normalized cross-correlation of the two images x and y and the sample normalized auto-
correlation of image x are the two matrix-valued functions ρ : Rh×w ×Rh×w → R(2h−1)×(2w−1) and ϕ :
Rh×w → R(2h−1)×(2w−1) defined by

ρ(x,y) =
{

ρl,m(x,y)
}
(l,m)∈Θ

, ϕ(x) =
{

ϕl,m(x)
}
(l,m)∈Θ

, (7)

Θ := {−(h−1), . . . , 0 , . . . ,h−1} × {−(w−1), . . . , 0 , . . . ,w−1}, (8)

with scalar components ρl,m(x,y) : Rh×w ×Rh×w → R and ϕl,m(x) : Rh×w → R given by

ρl,m(x,y) =
1

∥x∥2∥y∥2

(
x ⋆ y

)
l,m=

1
∥x∥2∥y∥2

(
x′ ∗ y

)
l,m

=
1

∥x∥2∥y∥2
∑

(i, j)∈Ω

xi, j yi+l, j+m , (l,m) ∈ Θ , (9)

ϕl,m(x) = ρl,m(x,x) =
1

∥x∥2
2

∑
(i, j)∈Ω

xi, j xi+l, j+m , (l,m) ∈ Θ , (10)

respectively. In (9)-(10), ∥ · ∥2 denotes the Frobenius matrix norm, index pairs (l,m) are commonly called
lags, and the symbols ⋆ and ∗ denote the 2-D discrete correlation and convolution operators, respectively,
with x′(i, j) = x(−i,− j).

Clearly, for (9)-(10) being defined for all lags (l,m)∈ Θ, images x,y must be (implicitly) padded with at
least h−1 samples in the vertical direction (up and down) and w−1 samples in the horizontal direction (left
and right). Upon the assumption of periodic boundary conditions for x,y, the cross- and auto-correlation
functions ρ,ϕ present symmetries that allow to consider only lags

(l,m) ∈ Θ := {0, . . . ,h−1} × {0, . . . ,w−1} .

Moreover, it is well known that

ρl,m(x,y), ϕl,m(x,y) ∈ [−1,1] ∀(l,m) ∈ Θ .

The normalized auto-correlation ϕ in (9) - see, e.g., [14] - is the key aspect of the first stage of our
decomposition model. In fact, the normalized whiteness set Wα in (2) will be defined in Section 4 by
inferring bounds on the normalized auto-correlation values of an AWN realization.

The normalized cross-correlation ρ in (10) is used in the second stage of our decomposition model. In
particular, as it will be detailed in Section 5, the regularization parameter µ of stage II variational model
(4) is automatically selected based on mimizing the normalized cross-correlation between the decomposed
cartoon and texture components. To this aim, we introduce the following non-negative scale-independent
scalar measure of correlation C : Rh×w ×Rh×w → R+ between the images x and y:

C (x,y) :=
1
N

∥ρ(x,y)∥2
2 =

1
N

1
∥x∥2

2 ∥y∥2
2
∥x ⋆ y∥2

2 , (11)

where the second equality in (11) follows from the definition of the normalized cross-correlation ρ in
(9). Note that the cross-correlation measure C (·, ·) defined in (11) is scale-independent in the sense that
C (x,y) = C (αx,βy), for any α,β ∈ R\{0}.

In Prop. 3.1 below, we give the expression of C in the Fourier domain.
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Proposition 3.1. Let x,y ∈ Rh×w and let x̃, ỹ ∈ Ch×w be their 2-D discrete Fourier transforms. Then, upon
the assumption of periodic boundary conditions for x,y, the function C defined in (11) satisfies:

C (x,y) = C̃ (x̃, ỹ) :=

∑
(l,m)∈Θ

∣∣x̃l,m
∣∣2 ∣∣ỹl,m

∣∣2
∑

(l,m)∈Θ

∣∣x̃l,m
∣∣2 · ∑

(l,m)∈Θ

∣∣ỹl,m
∣∣2 . (12)

Proof. First, the convolution - or, better, correlation - theorem allows to write

x̃ ⋆ y =
√

N
(

x̃ ⊙ ỹ
)
=

√
N
{

x̃l,m ỹl,m

}
(l,m)∈Θ

, (13)

where ⊙ denotes the Hadamard matrix product operator and z̄ , |z| indicate the conjugate and the modulus
of complex number z, respectively. Then, by applying the Parseval’s theorem we have

∥x ⋆ y∥2
2 = ∥ x̃ ⋆ y∥2

2 = N ∑
(l,m)∈Θ

∣∣x̃l,m ỹl,m
∣∣2 = N ∑

(l,m)∈Θ

∣∣x̃l,m
∣∣2 ∣∣ỹl,m

∣∣2, (14)

∥∥x
∥∥2

2

∥∥y
∥∥2

2 = ∥x̃∥2
2 ∥ỹ∥2

2 = ∑
(l,m)∈Θ

∣∣x̃l,m
∣∣2 · ∑

(l,m)∈Θ

∣∣ỹl,m
∣∣2 , (15)

where the second equality in (14) comes from (13). The expression of C̃ in (12) comes straightforwardly
by replacing (14) and (15) into the expression of C in (11).

4. Stage I: automatic noise separation via normalized auto-correlation

Stage I is aimed at computing an estimate u∗ of the cartoon+texture component, that is at separating
the noise component n∗ = b − u∗, under the general assumption that noise is additive white. The key
novelty characterizing Stage I variational model in (2)-(3) is the normalized whiteness set Wα , which will
be motivated, formally defined and validated by simulations in the next subsection. Then, in subsection 4.2
we outline the ADMM-based numerical solution of Stage I model.

4.1. The normalized whiteness set
If the component n∈Rh×w in (1) represents the realization of a 2-D discrete white noise random process

N , then it is well known that the sample normalized auto-correlation ϕ(n) defined in (10) satisfies the
following asymptotic property:

lim
N→+∞

ϕl,m(n) =

{
1 if (l,m) = (0,0) ,

0 if (l,m) ∈ Θ0 := Θ \{(0,0)} .

For white noise corruptions of realistic (finite) size N, one can roughly say that the normalized auto-
correlation values at non-zero lags (l,m) ∈ Θ0 have all small magnitude, depending on the total number
of pixels N. As a general rule, the larger is the image size N, the smaller will be (on average) the sample
normalized auto-correlation values of the white noise realization n.

More precisely, regarding all quantities ϕl,m(n), (l,m)∈ Θ0 as realizations of random variables Φl,m(N ),
it can be proved the following result.

Proposition 4.1. Let us consider a h×w white random process with distribution having (finite) variance
σ2, and let the process be stationary to the fourth-order and with finite fourth-order moments. Then, as the
dimension N = hw tends to +∞, the random variables Φl,m(N ) representing the sample normalized auto-
correlation at any nonzero lag (l,m) ∈ Θ0 are asymptotically uncorrelated and their limiting distribution is
a Gaussian distribution defined as follows:

Φl,m(N ) ∼ G (0,σΦ) ∀(l,m) ∈ Θ0, σΦ = N−1/2 . (16)

The proof of Proposition 4.1 follows quite easily from the one of Proposition 1 in [11], where the distribution
of the unnormalized auto-correlation is considered and the standard deviation of the zero-mean Gaussian
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(d) normalized auto-correlation values ϕl,m(n) for (h,w) = (10,10), (l,m) = (2,3)
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Figure 1: Results of the Montecarlo simulation carried out for validating the theoretical property (16) of normalized auto-correlation
values ϕl,m(n) at non-zero lags (l,m) on realizations n ∈ Rh×w of white noise processes with different pdfs and standard deviations.

pdf is σ2N−1/2. Intuitively, statement 16 comes from considering that the normalizing factor (denominator)
in the definition (10) of the normalized auto-correlation is proportional to σ2.

In order to provide clear experimental evidence for property (16), in Figure 1 we report the results of a
Montecarlo simulation, that we detail in the following.

For some different image sizes (h,w), we generated pseudo-randomly a large number – namely, 106

– of realizations n ∈ Rh×w from each of four different zero-mean white noise processes, characterized
by uniform, Gaussian, Laplace and mixed Gauss-uniform distributions with standard deviations σ = 0.5,
σ = 3, σ = 6 and σ = 0.1, respectively. In the top row of Figure 1 we report (solid red line) the four
theoretical noise distributions considered and also the normalized histograms of the generated random sam-
ples (in blue) to validate the employed pseudo-random sampling procedure. Then, for each realization n
we computed the sample normalized auto-correlation ϕ(n) according to definition (10) and, finally, we
constructed, for each non-zero lag (l,m) ∈ Θ0, the normalized histogram of the obtained 106 sample auto-
correlation values ϕl,m(n). In the second to fifth rows of Figure 1 we show the obtained histograms (in
green) and the theoretical pdf (solid red line) defined in (16) for four different small image sizes (h,w) ∈
{(4,4),(2,8),(10,10),(20,5)} and different auto-correlation lags (l,m) ∈ {(2,3),(1,2),(2,3),(1,2)}. The
results in the second and third row correspond to images having N = 16 pixels, in the fourth and fifth row
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to images with N = 100 pixels. Hence, the solid red lines in Figure 1 indicate a zero-mean Gaussian pdf
with standard deviation σΦ = 16−1/2 = 0.25 in (b)-(c) and σΦ = 100−1/2 = 0.1 in (d)-(e), respectively.

First, one can notice that, for a given number of pixels N, the histograms are practically independent
of the noise pdf and standard deviation, of the image height and width and of the auto-correlation lag.
Moreover, for N = 16 the histograms are only approximately similar to the theoretical pdf in (16), but
already for images made of N = 100 pixels, the theoretical pdf almost coincides with the histograms.

It is thus evident that, independently of the noise distribution type and standard deviation, for sufficiently
large images the normalized auto-correlation values at all non-zero lags distribute according to the zero-
mean Gaussian pdf in (16), where the standard deviation σΦ only depends on the image size N.

The validated property (16) motivates the introduction of the following normalized whiteness set to
which the target white noise component n or, equivalently, the residue image b− u of Stage I model (2),
must belong:

Wα :=
{

n ∈ Rh×w : −wα ≤ ϕl,m(n)≤ wα ∀(l,m) ∈ Θ0
}

=
{

n ∈ Rh×w : −wα ≤ 1
∥n∥2

2

(
n⋆n

)
(l,m)≤ wα ∀(l,m) ∈ Θ0

}
=

{
n ∈ Rh×w : −wα nT n ≤

(
n⋆n

)
(l,m)≤ wα nT n ∀(l,m) ∈ Θ0

}
, (17)

where the non-negative scalar wα , referred to as the whiteness bound, represents a degree of freedom which
allows to set the actual size of the whiteness set or, equivalently, the probability that the sample normalized
auto-correlation ϕ(n) of a white noise realization n belongs to the whiteness set. In particular, based on
(16), it results natural both to use a unique symmetric bound wα for any lag (l,m) in definition (17) and to
select wα as a non-negative multiple α of the standard deviation σϕ , namely

wα = α σϕ = α N−1/2,

such that the non-negative whiteness coefficient α allows to directly set the probability that the sample
normalized auto-correlation of a white noise realization at any given non-zero lag falls inside the whiteness
set. In fact, due to the pdf in (16) being Gaussian with zero mean, there is a well known one-to-one
relationship between α and the probability that the normalized auto-correlation values belong to the interval
[−wα ,+wα ]. For instance, setting α = 2 yields a whiteness set Wα=2 which represents the set of smallest
size containing, for any non-zero lag, about 95% of all the possible realizations of white noise processes.

We finally point out that the introduced normalized whiteness set Wα in (17) is non-convex, similarly
to the unnormalized one in [11]. This implies that Stage I represents a challenging nonconvex optimization
problem.

4.2. Applying ADMM to the Stage I variational model (2)-(3)

By introducing the three auxiliary variables g ∈ R2N , r ∈ RN , s ∈ RN , model (2) can be rewritten in the
following equivalent form:

{u∗,g∗,r∗,s∗} ∈ arg min
u,r,s∈RN, g∈R2N

{
N

∑
i=1

φ (∥gi∥2 ;a1)+ ıWα
(r,s)

}
subject to: g = Du , r = b−u , s = b−u , (18)

where, with a little abuse of notation, gi :=(Du)i =
(
(Dhu)i ; (Dvu)i

)
∈ R2 represents the discrete gradient

of image u at pixel i, and ıWα
is the indicator function of the feasible set Wα for variables r and s defined by

Wα :=
{
(r,s)∈RN×RN : −wα rTs ≤ (r ⋆ s)(l,m)≤ wα rTs ∀(l,m) ∈ Θ0

}
. (19)

The auxiliary variable g is introduced to transfer the discrete gradient operator (Du)i out of the non-
differentiable term φ(∥ · ∥2;a1). The variables r and s both play the role of the noise component n = b−u
within the whiteness constraint (17) so that constraint (19) is now imposed jointly on r and s. To solve (18)
we apply the ADMM-based iterative approach proposed in [11], where we simply replace the feasible set
with the one defined in (19) and the convex TV regularizer with the non-convex one in (2), based on the
penalty function φ in (6).
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5. Stage II: automatic cartoon-texture decomposition via normalized cross-correlation

Stage II variational model in (4) is aimed at decomposing the output u∗ of Stage I into a cartoon com-
ponent c∗ and a texture component t∗ = u∗ − c∗. As previously outlined, the non-convex regularization
term in (4) allows to extract the piece-wise constant component c∗ more effectively than using the standard
TV regularizer. In particular, the larger the concavity parameter a2 of the penalty function φ in (4), the
stronger the gradient-sparsity promoting effect of the regularizer. However, by increasing a2, the cost func-
tion J2 in (4) becomes more and more non-convex, with all the implied numerical difficulties (existence of
local minimizers, convergence of minimization algorithms). Since the fidelity term in (4) is quadratic and
strongly convex, then the so-called Convex Non-Convex (CNC) strategy can be used for achieving good
sparsity-inducing effects while keeping the cost function J2 convex [4, 13].

Sufficient conditions to apply the CNC strategy to the cost function J2 in (4), are reported in Prop. 5.1
below; we refer to [15] for proof details.

Proposition 5.1. For any a2,µ ∈ R++, the cost function J2 : RN → R in (4) is continuous, bounded
below by zero and coercive. Then, a sufficient condition for J2 to be convex (strongly convex) is that the
parameters a2,µ satisfy

a2D
TD − µ IN ⪰ 0 (≻ 0) ⇐⇒ a2 = τ

µ

8
, τ ∈ [0,1] (τ ∈ [0,1)) . (20)

It follows that by choosing a2 according to (20) with convexity coefficient τ ∈ [0,1), J2 is strongly
convex and, hence, Stage II model (4) admits a unique solution for any µ ∈ R++. Hence, we can use
τ = 0.99, so that the gradient-sparsity promoting effect of the regularizer is almost maximized in the convex
regime, or τ > 1 can be used when even stronger sparsifying effects are desired, but at the cost of dealing
with a non-convex model.

The only free parameter in Stage II model is thus the regularization parameter µ . In the next subsection
we propose a novel cross-correlation principle which allows to select automatically also the value of µ .

5.1. The cross-correlation principle for selecting µ

The idea at the basis of the proposed cross-correlation principle is to select the µ value which mini-
mizes the normalized cross-correlation measure in (11) between the cartoon component c∗ and the texture
component t∗ = u∗−c∗ obtained by solving the Stage II model (4)-(5). In fact, one can expect that the two
components are poorly cross-correlated.

In order to formalize the application of the cross-correlation principle, we rewrite Stage II decomposi-
tion model (4)-(5) in the form of the following bi-level optimization problem:

µ
∗ ∈ arg min

µ∈R++

{C(µ) := C (ĉ(µ), t̂(µ))} , (21)

subject to :
ĉ(µ) ∈ arg min

c∈RN

{
N

∑
i=1

φ (∥(Dc)i∥2 ;a2)+
µ

2
∥c−u∗∥2

2

}
, a2 = τ

µ

8
,

t̂(µ) = u∗− ĉ(µ) ,

(22)

The bi-level problem consists in a lower-level minimization (22) whose solutions ĉ(µ), t̂(µ) are arguments
of the higher-level minimization (21). The aim of the bi-level problem is then to find an “optimal” regular-
ization parameter µ∗ such that C(µ∗) attains a minimum value, to finally obtain c∗ = ĉ(µ∗) , t∗ = t̂(µ∗).

Note that in (21) we apply the proposed normalized cross-correlation principle, with the scalar cross-
correlation measure C defined in (11), and that the bi-level problem (21)-(22) does not admit a closed-form
solution due to the fact that the solution function ĉ(µ) does not admit an explicit form.

In Section 6 we will illustrate in detail the iterative approach proposed for computing estimates of the
solutions of the bi-level problem (21)-(22). The lower-level minimization problem (22) is solved by means
of a two-blocks ADMM algorithm, with the value of the regularization parameter µ updated along the
ADMM iterations so as to solve the higher-level minimization problem (21) at convergence. In particular,
the update of µ can be performed efficiently within one of the two ADMM primal sub-problems thanks
to the fact that this sub-problem takes the form of a quadratic Tikhonov-regularized least-square problem.

8



In fact, as described in the next subsection 5.2, this kind of quadratic problem allows for a direct (and
efficient) application of the proposed cross-correlation principle. Therefore, the results in subsection 5.2
will constitute a building-block for the ADMM-based iterative approach proposed in Section 6 for the
solution of bi-level problem (21)-(22).

5.2. The cross-correlation principle applied to Tikhonov-regularized least-square problems

We consider the following Tikhonov-regularized least-square problem:

ĉ(µ) = arg min
c∈RN

{
Q(c; µ) :=

1
2
∥Dc−q∥2

2 +
µ

2
∥c−u∥2

2

}
, (23)

with q ∈ R2N , u ∈ RN given constant vectors (we drop the superscript ∗ for u to simplify notation).
The quadratic cost function Q(c; µ) : RN →R in (23) is clearly continuous, bounded below by zero and

strongly convex, hence it admits a unique global minimizer, solution of the first-order optimality condition(
DTD+ µ IN

)
c = DT q + µ u . (24)

Recalling that D = (Dh;Dv) and defining accordingly q = (qh;qv), qh,qv ∈ RN , the linear system in (24)
can be written as (

DT
h Dh +DT

v Dv + µ IN
)

c = DT
h qh +DT

v qv + µ u . (25)

In order to write the linear system in the Fourier domain, first we note that the two matrices Dh,Dv ∈
RN×N are 2D convolution matrices that, under the assumption of periodic boundary conditions, can be
diagonalized in C by using the 2D discrete Fourier transform. Formally, we can write:

Dh = F∗D̃hF, Dv = F∗D̃vF , (26)

with F,F∗ ∈ CN×N unitary matrices representing the 2D discrete Fourier transform operator and its conju-
gate transpose (i.e., its inverse), respectively, and with D̃h, D̃v ∈ CN×N diagonal matrices defined by

D̃h = diag
(
d̃h,1, . . . , d̃h,N

)
, D̃v = diag

(
d̃v,1, . . . , d̃v,N

)
.

In particular, it follows from properties of differential matrices Dh,Dv that

d̃h,1 = d̃v,1 = 0 ,
∣∣∣d̃h,i

∣∣∣2 + ∣∣∣d̃v,i

∣∣∣2 ∈ (0,8] ∀ i ∈ {2, . . . ,N} . (27)

Replacing (26) into the linear system (25), after simple manipulations we obtain

F∗
(∣∣D̃h

∣∣2 + ∣∣D̃v
∣∣2 +µ IN

)
Fc = F∗

(
D̃hFqh + D̃vFqv +µ Fu

)
. (28)

Then, multiplying both sides of (28) by the unitary matrix F and denoting by x̃ the 2D discrete Fourier
transform of image x, i.e. x̃ = Fx, we get(∣∣D̃h

∣∣2 + ∣∣D̃v
∣∣2 +µ IN

)
c̃ = D̃h q̃h + D̃v q̃v +µ ũ . (29)

The coefficient matrix of the linear system (29) is clearly real and diagonal. Moreover, it follows from
µ ∈ R++ that the matrix is positive definite, hence non-singular.

Thus, the quadratic optimization problem in (23) admits a unique solution given by the following ex-
plicit expression:

ĉ(µ) = F∗ ˜̂c(µ) , with ˜̂ci(µ) =
d̃h,i q̃h,i + d̃v,i q̃v,i + µ ũi∣∣d̃h,i

∣∣2 + ∣∣d̃v,i
∣∣2 + µ

, i = 1, . . . ,N . (30)

In particular, we note that, based on the first property in (27), we have

˜̂c1(µ) = ũ1 ∀µ ∈ R++ .
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This means that the solution ĉ(µ) of the quadratic minimization problem (23) has the same mean value
of the vector u, independently of the regularization parameter µ , and that the associated residual t̂(µ) =
u− ĉ(µ) has mean zero.

The 2D discrete Fourier transformed cartoon component ˜̂c(µ) in (30) can be rewritten in more compact
form as follows ˜̂ci(µ) =

ε i + µ ũi

ω i + µ
, i = 1, . . . ,N , (31)

where
ωi :=

∣∣∣d̃h,i

∣∣∣2 + ∣∣∣d̃v,i

∣∣∣2 ∈ R+ , εi := d̃h,i q̃h,i + d̃v,i q̃v,i ∈ C . (32)

The associated texture component ˜̂t(µ) = ũ−˜̂c(µ) thus reads

˜̂t i(µ) = ũi −˜̂ci(µ) =
ω i ũi − ε i

ω i + µ
, i = 1, . . . ,N . (33)

Based on (31)-(33) and on statement (12) of Prop. 3.1, the cross-correlation function C(µ) in (21) can be
written in explicit form. In fact, we have

C(µ) = C (ĉ(µ), t̂(µ)) = C̃
(˜̂c(µ),˜̂t(µ)) =

N

∑
i=1

( fc,i(µ) ft,i(µ))(
N

∑
i=1

fc,i(µ)

) (
N

∑
i=1

ft,i(µ)

) (34)

with functions fc,i, ft,i : R++ → R+ defined by

fc,i(µ) =
∣∣˜̂ci(µ)

∣∣2 =

∣∣ε i + µ ũi
∣∣2

(ω i + µ)2 =

∣∣εi
∣∣2 +µ2

∣∣ũi
∣∣2 +2 µ Re

(
εi ũi

)
(ω i + µ)2

ft,i(µ) =
∣∣˜̂t i(µ)

∣∣2 =

∣∣ω i ũi − ε i
∣∣2

(ω i + µ)2 =

∣∣εi
∣∣2 +ω2

i

∣∣ũi
∣∣2 −2ω iRe

(
εi ũi

)
(ω i + µ)2

, i = 1, . . . ,N , (35)

where we applied in (35) the relation
∣∣z1 + z2

∣∣2 =
∣∣z1
∣∣2 + ∣∣z2

∣∣2 + 2Re(z1z2), which holds for any two
complex numbers z1,z2 ∈ C.

Remark 5.2. We observe that a criterion for the selection of the regularization parameter based on the cross-
correlation between the cartoon and texture components has been previously proposed in [3]. However, in
[3] the regularization parameter of a TV-Gabor decomposition model is selected a-posteriori (i.e., unlike
our proposal, the model is numerically solved for a grid of different µ values) as the minimizer of a different
and less informative cross-correlation measure. More precisely, our proposal aims to minimize the cross-
correlation measure in (11), which is defined in terms of the cross-correlation function values ρl,m in (9)
at all lags (l,m). Instead, the proposal in [3] only takes into consideration the cross-correlation function
value at lag (l,m) = (0,0) and it is explicitly stated that the criterion is expected to work well for simple
decomposition problems. In order to highlight the benefit of using our more informative criterion, in Figure
2 we compare in terms of Signal-to-Noise Ratio (SNR) the quality of the decomposition results obtained
on a simple example by using Stage II model (4)-(5) with µ selected according to both our criterion and the
criterion in [3]. The SNR values of cartoon and texture components provided by our approach are 40.46
and 29.11, respectively, those by the method in [3] are 30.03 and 18.69.

6. Applying ADMM to the Stage II variational model (4)-(5)

In this section, we illustrate in detail the ADMM-based iterative algorithm used to numerically solve
the Stage II decomposition model (4)-(5), recast as the bi-level optimization problem (21)-(22), with the
penalty function φ defined in (6) and with the regularization parameter µ automatically updated along the
ADMM iterations to satisfy the proposed normalized cross-correlation principle.
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Figure 2: (a) SNR values of the cartoon and texture components obtained by applying the Stage II decomposition model (4)-(5) for a
fine grid of different µ values, with circles and crosses indicating the SNR values achieved by using the proposed µ-selection criterion
and the one in [3], respectively; (b) proposed cross-correlation measure C(µ) defined in (21), with the selected minimum marked by a
circle; (c) cross-correlation measure proposed in [3], denoted by C̃(µ), with the selected minimum marked by a cross; (d) test image
input to decomposition; (e)-(f) cartoon and texture components obtained by using the proposed µ-selection criterion.

We recall that, unlike Stage I variational model (2) which is non-convex due to the feasible whiteness
set Wα , Stage II model (4) contains a non-convex regularization term but it can be convexified by applying
the previously illustrated CNC strategy [12], see Prop. 5.1.

Similarly to what we did for solving Stage I model, we introduce the auxiliary variable g := Dc ∈ R2N ,
which represents the discrete gradient of image c. Then, Stage II model (4) can be rewritten in the following
equivalent form:

{c∗,g∗} ∈ arg min
c∈RN,g∈R2N

{
N

∑
i=1

φ (∥gi∥2 ;a2)+
µ

2
∥c−u∗∥2

2

}
, a2 = τ

µ

8
,

subject to: g = Dc . (36)

To solve (36), we define the augmented Lagrangian function

L (c,g,λ ; µ)=
N

∑
i=1

φ (∥gi∥2;a2) +
µ

2
∥c−u∗∥2

2 −⟨λ ,g−Dc⟩+ β

2
∥g−Dc∥2

2 , (37)

where λ ∈ R2N is the vector of Lagrange multipliers associated with the linear constraints g = Dc in (36)
and β ∈ R++ is the ADMM penalty parameter.

Solving (36) amounts to seek for solutions of the saddle-point problem:

Find {c∗,g∗,λ ∗} ∈ RN× R2N× R2N such that

L (c∗,g∗,λ ; µ) ≤ L (c∗,g∗,λ ∗; µ) ≤ L (c,g,λ ∗; µ) ∀{c,g,λ} ∈ RN× R2N× R2N .
(38)

Given the previously computed (or initialized for k = 0) vectors c(k), g(k), λ (k), and the regularization
parameter µ(k), the k-th iteration of the proposed ADMM-based iterative scheme applied to the solution of
the saddle-point problem (38) reads as follows:
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c(k+1) ∈ arg min
c∈RN

L
(
c,g(k),λ (k); µ

(k)) , (39)

g(k+1) ∈ arg min
g∈R2N

L
(
c(k+1),g,λ (k); µ

(k)), (40)

λ (k+1)
= λ (k) − β

(
g(k+1) − Dc(k+1)

)
. (41)

In the following two subsections we show how to solve the two minimization sub-problems (39)-(40) for
the primal variables g and c, then in subsection 6.0.3 we outline and analyze the main computational steps
of the overall algorithm.

6.0.1. Solving the subproblem for c and updating µ based on the cross-correlation principle
After dropping the constant terms (i.e., the terms not depending on the optimization variable c) of the

augmented Lagrangian function L in (37) , the minimization sub-problem for c in (39) reads

c(k+1) = arg min
c∈RN

{
µ

2
∥c−u∗∥2

2 −⟨λ (k),g(k)−Dc⟩+ β

2
∥g(k)−Dc∥2

2

}
. (42)

After simple algebraic manipulations, (42) can be equivalently rewritten as

c(k+1) = arg min
c∈RN

{
Q(c;γ) :=

1
2
∥Dc−q(k)∥2

2+
γ

2
∥c−u∗∥2

2

}
(43)

with
q(k) = g(k)− 1

β
λ
(k) ∈ R2N , γ =

µ

β
∈ R++ . (44)

The unconstrained quadratic optimization problem in (43)-(44) has exactly the same form of problem (23),
with q(k) in place of q and γ in place of µ . Hence, according to the cross-correlation principle outlined
in Section 5.2, we can preliminarily determine the value γ(k+1) – hence, the value µ(k+1) = β γ(k+1) –
which minimizes the normalized cross-correlation between the obtained cartoon component c(k+1) and the
associated texture component t(k+1) = u∗ − c(k+1). More precisely, γ(k+1) is selected by minimizing the
cross-correlation measure C(γ) defined as in (34), namely

γ
(k+1) ∈ arg min

γ ∈R++

C(k)(γ) :=

N

∑
i=1

(
f (k)c,i (γ) f (k)t,i (γ)

)
(

N

∑
i=1

f (k)c,i (γ)

) (
N

∑
i=1

f (k)t,i (γ)

)
 . (45)

Notice that, unlike in Section 5.2, here we added the superscript (k) to the functions f c,i, f t,i and, hence,
to the function C to highlight that they can change along the ADMM iterations due to vector q(k) in (44)
changing. More precisely, based on definitions in (35), the functions f (k)c,i , f (k)t,i : R++ → R+ in (45) read

f (k)c,i (γ) =

∣∣∣ε(k)i

∣∣∣2 + γ 2
∣∣ũi
∣∣2 + 2γ Re

(
ε
(k)
i ũi

)
(ω i + γ)2

f (k)t,i (γ) =

∣∣∣ε(k)i

∣∣∣2 +ω2
i

∣∣ũi
∣∣2 − 2ω iRe

(
ε
(k)
i ũi

)
(ω i + γ)2

, i = 1, . . . ,N , (46)

where constants ωi, ε
(k)
i , i = 1, . . . ,N, are defined as in (32), with ε

(k)
i depending on vector q(k) in (44).

To solve the 1-dimensional minimization problem in (45), we use a grid search procedure. We choose a
discrete set of candidate γ values

Γ := {γ1,γ2, . . . ,γM} , γ j ∈ R++ , j = 1, . . . ,M , (47)
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then we select as γ(k+1) the γ j yielding the minimum value of function C(k)(γ); in formula,

γ
(k+1) = arg min

γ ∈Γ

C(k)(γ) . (48)

Once γ(k+1) has been selected, we can compute c(k+1) as defined in (30), (31), namely

c(k+1) = F∗ c̃ (k+1), with c̃ (k+1)
i =

ε
(k)
i + γ (k+1) ũi

ω i + γ (k+1) , i = 1, . . . ,N . (49)

.

6.0.2. Solving the sub-problem for g
Before solving the subproblem for g, we update the value of the concavity parameter a2 of the penalty

function φ based on the new value of the regularization parameter µ(k) selected in the previous subproblem:

a(k)2 = τ
µ(k)

8
. (50)

The minimization sub-problem for g in (40) can thus be equivalently written as follows:

g(k+1) ∈ arg min
g∈R2N

{
N

∑
i=1

φ

(
∥gi∥2 ;a(k)2

)
+

β

2

∥∥g− v(k)
∥∥2

2

}
, (51)

with vector v(k) ∈ R2N defined by

v(k) = Dc(k+1)+
1
β

λ
(k) .

The 2N-dimensional problem (51) is equivalent to the following N independent 2-dimensional problems:

g(k+1)
i ∈ arg min

gi∈R2

{
φ

(
∥gi∥2 ;a(k)2

)
+

β

2

∥∥gi − v(k)i

∥∥2
2

}
= proxβ

φ(∥·∥2;a(k)2 )

(
v(k)i

)
, i = 1, . . . ,N , (52)

with the constant vectors v(k)i ∈ R2 defined by

v(k)i =
(
Dc(k+1)

)
i
+

1
β

(
λ
(k)
)

i
, i = 1, . . . ,N , (53)

and where the (possibly set-valued) function proxβ

φ(∥·∥2;a(k)2 )
: R2 ⇒ R2 denotes the proximal operator of

function φ(∥ · ∥2;a(k)2 ) with proximity parameter β .
A necessary and sufficient condition for all the cost functions in (52) to be strongly convex, such that

the proximal maps in (52) are single-valued functions and, hence, the (global) minimizers g(k+1)
i exist and

are unique, is that β > a(k), see [8]. In particular, we set

β
(k) = max

{
β , 1.05a(k)

}
. (54)

The proximal map in (52) admits a closed-form expression [8], such that the N problems in (52) admit
solutions g(k+1)

i , i = 1, . . . ,N, which read

g(k+1)
i = ξ

(k)
i v(k)i , ξ

(k)
i =


0 if

∥∥v(k)i

∥∥
2 = 0 ,

max

min

β (k)−
√

2a(k)2 /
∥∥v(k)i

∥∥
2

β (k)−a(k)2

, 1

 , 0

 if
∥∥v(k)i

∥∥
2 > 0 .

(55)
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Algorithm 1 ADMM-based method for the numerical solution of Stage II decomposition model (4)-(5)

inputs: image u∗ ∈ RN output of Stage I decomposition model (2)

output: estimated cartoon and texture components c∗, t∗ ∈ RN , with c∗+ t∗ = u∗

1. initialise: set g(0) = Du∗, λ (0) = 0

2. for k = 0, 1, 2, . . . until convergence do:

3. · compute γ(k+1) by (44)-(48)

4. · compute c(k+1) by (49)

5. · compute g(k+1) by (50), (53)-(55)

6. · compute λ (k+1) by (41)

7. end for

8. c∗ = c(k+1), t∗ = u∗− c∗

6.0.3. Computational details and efficiency analysis
The main computational steps of the overall proposed ADMM-based approach for the numerical solu-

tion of Stage II decomposition model (4)-(5) with automatic selection of both the two model parameters µ ,
a2 and (eventual) adjustment of the ADMM penalty parameter β are outlined in Alg. 1.

For what regards the computational cost per-iteration, first we note that solving the subproblem for g by
(50), (53)-(55) and updating λ by (41) - lines 5-6 of Alg. 1 - both require O(N) operations, whereas updating
µ by (44)-(48) and solving the subproblem for c by (49) - lines 3-4 of Alg. 1 - require at least O(N logN)
operations. In fact, a direct 2D discrete Fourier transform of q(k) in (44) is necessary to determine the
complex constants ε

(k)
i in (46) - see definition (32) - and an inverse 2D discrete Fourier transform of c̃ (k+1)

is required in (49), both performed by using a 2D fast Fourier transform implementation.
Actually, the CPU time profiling of Alg. 1 shows that the real computational bottleneck resides in the

µ-updating step in line 3, but not due to the Fourier transform. In fact, once the constants ε
(k)
i has been

calculated by Fourier transforming q(k), the computation of γ(k+1) by (45)-(48) requires O(NM) operations,
with M the number of different γ values tested in the grid-search minimization procedure (47)-(48). This
step is the more costly since in order to achieve a sufficiently accurate estimate of γ(k+1), M can not be
too small and, in general, must be taken larger than logN. For this reason, in the following we outline
the procedure used to evaluate M times - i.e., for γ ∈ {γ1, . . . ,γM} - the function C(k)(γ) in (45)-(46) as
efficiently as possible, based on precomputing constants.

At the beginning of the ADMM algorithm, we compute once for all the constants entering the definition
of C(k)(γ) which do not change along the iterations (this avoids recomputing the same quantities at each
iteration). In particular, after calculating (by 2D discrete Fourier transform of u and by Fourier diagonal-
ization of convolution matrices Dh,Dv) the complex numbers ũi, d̃h,i, d̃h,i and their conjugates ũi, d̃h,i, d̃h,i,
i = 1, . . . ,N, we compute, in the following order, the constants

ω i = d̃h,i d̃h,i + d̃v,i d̃v,i ∈ R+

η1,i = ũi ũi ∈ R+

η2,i = ω2
i η1,i ∈ R+

, i = 1, . . . ,N .

Then, at each ADMM iteration (with iteration index k), after calculating the vector q(k) as defined in
(44) and its 2D discrete Fourier transform (with complex components q̃ (k)

h,i , q̃
(k)
v,i , i = 1, . . . ,N), we compute,
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Table 1: Example 1: decomposition of the geometricR image, shown in Fig.3, composed by a radial texture t and a geometric
cartoon component c; SNR and SSIM values of c∗ and t∗ for different f factors.

f c∗: SNR t∗: SNR c∗: SSIM t∗: SSIM
0.55 16.20 14.34 0.930 0.881
0.60 17.38 13.74 0.934 0.889
0.65 18.73 13.23 0.939 0.899
0.70 20.22 12.74 0.946 0.909
0.75 21.88 12.22 0.956 0.920
0.80 23.88 11.71 0.967 0.930
0.85 26.39 11.20 0.978 0.941
0.90 29.94 10.73 0.988 0.955
0.95 34.97 9.27 0.998 0.975

in the following order, the constants:

ε
(k)
i = d̃h,i q̃ (k)

h,i + d̃v,i q̃ (k)
v,i ∈ C

η
(k)
3,i = ε

(k)
i ε

(k)
i ∈ R+

η
(k)
4,i = 2Re

(
ε
(k)
i ũi

)
∈ R

η
(k)
5,i = η2,i +η

(k)
3,i −ωi η

(k)
4,i ∈ R

, i = 1, . . . ,N .

Hence, at each ADMM iteration, for any of the M different γ j values belonging to the discrete set Γ

defined in (47), we calculate
f (k)c,i (γ j) =

η
(k)
3,i + γ j

(
η1,i γ j + η

(k)
4,i

)
(ωi + γ j)

2 ∈ R

f (k)t,i (γ j) =
η
(k)
5,i

(ωi + γ j)
2 ∈ R

, i = 1, . . . ,N ,

and then compute the value C(k)(γ j) by using the definition in (45).
Finally, γ(k+1) is selected as the γ j ∈ Γ yielding the minimum value of C(k)(γ j) - see the minimization

problem in (48).

7. Numerical Results

In this section we assess the effectiveness of the proposed two-stages image decomposition method and
the performance of the automatic selection of the regularization parameter µ under the cross-correlation
minimization discussed in Section 5. More specifically, in the first example in Section 7.1 we focus only on
the cartoon-texture decomposition according to the variational model (4)-(5) in Stage II where u∗ is taken as
a noise-free synthetically constructed image, to better highlight the benefits of the parameter µ selection. In
the second example, discussed in Section 7.2, we present the results of the overall two-stages decomposition
framework applied to photographic images corrupted by different kinds of additive white noise, where the
textured parts are limited to small regions of the image and represent natural as well as geometric patterns. A
comparison with other state-of-the-art variational models for the ”c+t+n” decomposition is finally presented
and commented in the third example in Section 7.3.

We tested the decomposition framework in MATLAB on both synthetic and photographic images, and
we assessed the quality of the computed image decompositions by two quantitative measures: the Signal-
to-Noise Ratio (SNR) and the Structural Similarity Index (SSIM). SNR is defined by the following formula

SNR(x,xGT) := 10log10
∥xGT −E[xGT]∥2

2

∥x− xGT∥2
2

,
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c t c t

c∗ t∗ c∗ t∗

Figure 3: Example 1: decomposition of the geometricR image into cartoon c∗ and textured t∗ images for different blending factors
f = 0.55 (left) and f = 0.85 (right).

Table 2: Example 1: decomposition of the starR image, shown in Fig.4, composed by blending a radial texture t and a star
cartoon component c with factor f = 0.85; SNR and SSIM values of c∗ and t∗ for different texture scales T .

T c∗: SNR t∗: SNR c∗: SSIM t∗: SSIM
2 27.36 10.54 0.989 0.950
4 26.33 9.70 0.979 0.916
6 24.91 8.29 0.976 0.880
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where xGT,x are the ground truth image component and its reconstruction, respectively, and E[xGT] is the
mean of xGT. SSIM is used as a metric to measure the similarity between two given images x and y, and it
is defined as

SSIM(x,y) :=
(2E[x]E[y]+C1)(2σxy +C2)

(E[x]2 +E[y]2 +C1)(σ2
x +σ2

y +C2)
,

where σxy represents the covariance between x and y, σx and σy the standard deviations of x and y, and C1,
C2 constants with standard values as defined in the ssim Matlab command routine.

The parameters in the ADMM-based methods in Algorithm 1 are set as follows: τ in (20) is set to
τ = 0.99 in Examples 1 and 3, and, consequently, the concavity parameter for Stage II model is set as
a2 = τ

µ

8 in order to guarantee to be in a CNC regime. In Example 2, the challenging decomposition of
corrupted textured photographic images required a non-convex regime in Stage II with τc = 5. Finally,
the penalty parameter β of ADMM for Stage II satisfies (54), such that the ADMM sub-problem for g
is strongly convex. Moreover, iterations of the ADMM-based approaches used for solving Stage I and II
models are both stopped as soon as the iteration index k or the iterate x(k) satisfy

k > 2000, δ
(k) :=

∥∥∥x(k)− x(k−1)
∥∥∥

2∥∥x(k−1)
∥∥

2

≤ 10−5, (56)

where x(k) = u(k) for Stage I, x(k) = c(k) for Stage II.

7.1. Example 1: performance of stage II
In this section, we evaluate the performance of the proposed Stage II model (4)-(5) in separating textured

and cartoon image components from a noise-free image b (corresponding to u∗ in (4)). The success of this
stage strongly depends on the cross-correlation principle applied to automatically set the regularization
parameter µ in (4).

In our examples, the image b is synthetically constructed as a linear combination of an original cartoon
image c with values normalized in the range [0,1], and a zero-mean texture component t with values in the
range [−0.5,0.5]. Then b is a combination obtained by a blending scalar factor f ∈ [0,1] as follows

b = f c+(1− f ) t. (57)

We will analyze how the blending factor f , the kind of texture and the geometric structure can affect the
texture-cartoon image decomposition process.

First of all, we have experimentally inferred that textures with a more modest contribution to the overall
intensity of image b (i.e., f large) result in higher quality decompositions. In Figure 3 we illustrate the
decomposition results of images b synthetically constructed by applying (57) with two different blending
factors: f = 0.55 (Figure 3, left panel), and f = 0.85 (Figure 3, right panel). In the second row of Figure 3
the illustrated images are the computed estimates c∗, t∗ of the components c, t, where here b = c+ t (first
row). In Table 1, quantitative evaluations in terms of SNR and SSIM values are reported for increasing f
values.

We observe that, by increasing the blending factor the quality of the piece-wise component c∗ improves,
and corresponding SNR and SSIM values increase. Differently for the component t∗, where the SNR
slightly decreases, remaining approximately constant, while the SSIM increases. This can be visually
justified by the incorrect presence in t∗ of edges of the geometric structures which is noticeable for low
factors of f , and tends to disappear for higher values of f . We noted this trend for many different kinds of
cartoon and texture components.

Another important characteristic of our decomposition framework that we have deduced experimentally
is that textures with finer granularity are more easily separable from the cartoon part. From a mathematical
point of view, while the definition of noise or piecewise-constant components of an image are pretty clear,
the definition of texture is rather vague and highly dependent on the level of detail (granularity) of the tex-
tured pattern. To better understand which level of detail is better handled by our framework, we constructed
test images with different granularity depending on a parameter T which controls the scale of the details

t = sin
(

2π
S
T

)
, (58)

17



b (T=6) c∗ t∗

b (T=4) c∗ t∗

b (T=2) c∗ t∗

Figure 4: Example 1: decomposition of the starR images (first column) composed by blending with factor f = 0.85 a cartoon
component c star with different textured images t radial generated using periods T = 6,4,2 in (58).

18



Figure 5: Example 1: first column, plots referred to the decompositions in Fig. 4(T=2); second column, plots referred to the decom-
positions in Fig. 4(T=6). For the two cases we have that the minumum C(µ) is 3.84×10−6 (left panel) and 6.29×10−5 (right panel)

where T represents the period of the texture and S is a matrix which characterizes the texture. For example,
for radial sinusoidal textures, each entry of S represents the distance between the coordinates of a reference
point and the coordinates of each pixel image, eventually rescaled by a factor.

In (58), as T decreases, the function increases its oscillatory behaviour (frequency) or, equivalently, the
granularity of the texture component becomes finer.

In Table 2, SNR and SSIM values of c∗ and t∗ are reported for some values of T on the test image
b, composed by a radial texture component and a star cartoon component, illustrated in Figure 4.
As T decreases, the performance of the cross-correlation principle applied improves, in the sense that the
resulting estimated components improve both qualitatively and in terms of SNR and SSIM values.

To strengthen this fact, we illustrate in Figure 5 the plots of the cross-correlation measure C(µ∗) and of
the SNR and SSIM curves as function of increasing µ values for two different texture granularities T = 2
(left) and T = 6 (right). The regularization parameter µ , selected by our automatic algorithm as the global
minimizer of the function C(µ) in (11), is depicted by a circle. One can notice that the selected µ value in
both cases is near to the optimal one, but for finer granularity (left panel) the minimum cross-correlation
measure C(µ∗) is one order of magnitude smaller. This reflects the fact that the achieved decomposition is
of higher quality, as the two obtained components c∗ and t∗ are less correlated.

Finally, Stage II of the proposed decomposition framework has been validated against different geomet-
ric texture models without finding significant variation on its performance. In the examples illustrated in
Figure 6 we show the cartoon-texture components of the geometricR images (first column) composed by
blending with factor f = 0.90 a geometric cartoon component c with textured images t linear, radial
and chess (row-wise); with coarse (top block) and fine (bottom block) textured patterns. A more com-
plete overview is offered by the results in Table 3 for varying f values (first column). The quantitative
performance associated with the images shown in Figure 6 are reported in the last block.

In general we found out that the radial textures get slightly worse results in terms of SNR and SSIM
values and this is much more visible in coarse granularity textured images t. We will expand our insights in
Example 2 where we will validate our framework on photographic images containing natural textures.

Remark 7.1 (Note on convergence of the algorithm for Stage II). All results reported in this section are
obtained by using the ADMM-based approach outlined in Section 6, which computes estimates of both the
cartoon/texture components and the regularization parameter by solving the bi-level optimization problem
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b c∗ t∗

Figure 6: Example 1: decomposition of the geometricR images (first column) composed by blending with factor f = 0.90 a
geometric cartoon component c with textured images t linear, radial and chess; with coarse (top block) and fine (bottom
block) textured patterns.
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b u∗ c∗ t∗

Figure 7: Example 2 - decomposition results for different types of additive white noise, namely AWL (first block), AWGN (second
block) and AWU (third block), on test images - from top to bottom - deco, geom, woman, sky, tree and girl.
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Table 3: Example 1: SNR and SSIM values of components c∗ and t∗ for different factors f and pattern grains - Fine (F) Coarse (C) -
with linear, radial and chess textured images, given geometric as cartoon.

f T texture c∗: SNR t∗: SNR c∗: SSIM t∗: SSIM

0.6

C
lin 13.35 9.71 0.945 0.822
rad 13.51 9.84 0.898 0.840

chess 13.80 13.17 0.923 0.838

F
lin 18.39 14.75 0.977 0.794
rad 17.38 13.74 0.934 0.889

chess 17.69 17.06 0.972 0.823

0.7

C
lin 17.39 9.91 0.968 0.860
rad 16.79 9.28 0.925 0.842

chess 16.99 12.52 0.948 0.853

F
lin 21.54 14.06 0.986 0.891
rad 20.22 12.74 0.946 0.909

chess 20.26 15.79 0.982 0.881

0.8

C
lin 22.07 9.91 0.985 0.891
rad 20.86 8.68 0.948 0.852

chess 21.23 12.08 0.974 0.881

F
lin 25.05 12.89 0.993 0.938
rad 23.88 11.71 0.967 0.930

chess 23.45 14.30 0.990 0.930

0.9

C
lin 27.40 8.20 0.995 0.923
rad 24.72 5.49 0.940 0.800

chess 26.94 10.75 0.991 0.928

F
lin 30.99 11.79 0.997 0.967
rad 29.92 10.73 0.988 0.955

chess 28.95 12.75 0.996 0.961

(21)-(22). A theoretical proof of convergence of the algorithm is very challenging to be given. However,
evidence of numerical convergence has emerged from all experiments in this section and, in particular,
can be observed in Figure 5 for two specific examples. In fact, the blue curves shown in the bottom row
represent the values of the normalized cross-correlation measure C(µ) in the higher-level minimization
problem (21) and have been obtained by solving the lower-level problem (22) for a fine grid of different
µ values. Hence, the global minimizer of these curves represents (approximately, due the discrete set of
µ values considered) the theoretical solution µ∗ of the higher-level problem (21). Since the blue circles
in the same figures indicate the µ values selected by using our ADMM approach, this confirms the good
convergence behaviour of our algorithm.

7.2. Example 2: performance of the two-stages decomposition framework

In what follows we focus on the joint decomposition model (Stage I + Stage II) solving the minimisation
problems (2)-(3) and (4)-(5) on noise-corrupted photographic images. Following the degradation model (1)
the images u = c+ t have been synthetically corrupted by additive white noises n of different types among
uniform (AWUN), Gaussian (AWGN), Laplacian (AWLN). The corrupted images b = u+ n, are shown
in Fig. 7 (first column), and the resulting image components u∗ (the denoised component), c∗ (cartoon
component), and t∗ (textured parts), are reported in the remaining columns.

The images are characterized by a mixture of flat regions, neat edges and textured parts and they have
been corrupted by adding a realization of white noise, from top to bottom: AWLN with standard deviation
σ ∈ {2,10}, AWGN with σ ∈ {15,25}, AWUN with σ ∈ {10,20}, respectively. All the experiments have
been carried out by applying the proposed two-stages algorithm with automatic parameter selection, in pure
non-convex regime (τ = 5.0). The denoiser in Stage I solves the variational problem (2), without any a
priori estimate on the noise distributions or specific knowledge on the content of the images. This model
turned out to be a great denoiser for images with textured parts (see images u∗ in Fig. 7, second column).

As concerns the Stage II, the cross-correlation principle works very well in simple cases as shown
in synthetic images in Example 1, where a very clear distinction between texture and structure has been

22



Figure 8: Example 2: plots of the relative change values δ (k) of Stage I (left panel) and Stage II (right panel) ADMM iterates for the
six numerical tests reported in Fig. 7.

obtained (see Fig. 5). In these cases C(µ) reaches a minimum approximately at the point where the texture
is completely smoothed out from b, and then increases, when more of the structure gets into the c part.
However, for photographic images, like those in Fig.7 where there are natural textures that present structures
of different scales, the decomposition is a more challenging issue. In terms of correlation function, in fact,
there is no more a single minimum and the function may oscillate. We adopted here the selection of µ

which corresponds to the first local minimum reached by the correlation function.
From a visual inspection we can appreciate the clean decomposition obtained even in presence of severe

corruptions and diversified texture patterns. The image in the last row of Fig. 7 contains textures of different
granularity (waved strips). The textured part t∗ naturally captured by our decomposition framework is the
one with finer granularity, as already observed in Example 1.

In order to provide evidence for the good convergence behaviour of the ADMM-based iterative ap-
proaches proposed for the numerical solution of Stage I and II variational models, in Fig. 8 we report the
relative change values δ (k) - see definition in (56) - of iterates u(k) (ADMM for Stage I, left panel) and
iterates c(k) (ADMM for Stage II, right panel) for all the six different numerical tests shown in Fig. 7.

7.3. Example 3: comparison with other variational decomposition models

In this last example we present the qualitative performance of the proposed decomposition approach
with respect to other variational models which aim to separate an image into three components (structure,
texture, and noise). Specifically, the original model in [2], based on total variation, G-norm, and Besov-
norm (which amounts to a wavelet shrinkage), the adaptive model in [5], where differently weighted G-
norms are used to separate noise from texture using a space-variant regularisation parameter, and, finally,
the ternary variational decomposition introduced in [23], where a non-convex penalty function replaces the
TV term, while G-norm, and Besov-norm are used to model the texture and noise components, respectively.
To avoid introducing artifacts due to naive reproduction of the various algorithms and associated parameter
setting within, the images compared and here reported in Fig. 9 and Fig. 10 were directly captured by the
original papers.

In Fig. 9 the decomposition results are illustrated for a simple image b corrupted by AWGN with
standard deviation σ = 20. The corresponding image components c∗, t∗ and n∗, presented in [2] and [5]
are illustrated in the second and third row, respectively. The latter model performs very well in texture
detection, while suffering of a manual setting of the space-variant parameter map. Results obtained by our
Stage I + Stage II algorithm are shown in Fig. 9 (first row). Stage I shows its effectiveness in removing noise
without incorporating edges, and the CNC approach applied in solving Stage II seems to be particularly well
suited to capture the piece-wise constant structure c∗.

A similar effect can be observed in Fig. 10 where our decomposition approach is compared with the
results shown in [23]. The image b has been corrupted by AWGN with σ = 20. The difficulty in separating
texture from noise by [23] is evident in the image n∗ of the second line. Difficulty overcome by the proposed
Stage I, as shown in image n∗ in Fig. 10, first row.

Compared with these state-of-the-art image variational decomposition models, the proposed two-stage
model yields the best qualitative performance, without neither requiring any critical parameter tuning, nor
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b c∗ t∗ n∗

Figure 9: Example 3 - decompositions of images b (first column) into cartoon, texture and noise obtained by applying our method
(first row), model in [2] (second row), model in [5] (third row)

assuming any knowledge of noise kind and variance, but taking advantage, instead, of an automatic param-
eter selection to achieve a sub-optimal texture - cartoon separation.

8. Conclusions

In this work we have presented a parameter-free two-stage variational model for the decomposition
of images into cartoon, texture and noise components. A first peculiarity of the model is the capability
to efficiently separate texture from noise, thanks to statistics based on whiteness and cross-correlation.
The decomposition model does not require any knowledge on the noise distribution or standard deviation,
which is a fundamental second distinguishing quality useful in practical contexts. And last, but not least,
the parameter tuning is automatically performed on the basis of the morphology of the image, along the
iterations of the numerical optimization procedure.

The trivial ℓ2-norm texture characterization considered as penalty in the model (4) allows for a direct and
explicit tuning of the regularization parameter µ and for a convex optimization due to the CNC numerical
strategy. On the other hand, it could represent a weakness of the decomposition model in the sense that
the underlying function space is very large, and the reconstructed t∗ images could contain spurious fine-
scale details. Future work will investigate other more suitable normed spaces that still allow to maintain an
explicit relationship with the regularization parameter. Finally, to solve the two optimization problems in
Stage I and Stage II, we designed ADMM-based algorithms which integrate the automatic computation of
the involved parameters.

The results obtained are very promising, and motivated us to experiment and compare with other varia-
tional decomposition methods.
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b c∗ t∗ n∗

Figure 10: Example 3 - decompositions of images b (first column) into cartoon, texture and noise by applying our method (first row),
and obtained by model in [23] (second row)
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