
29 June 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Barsocchi, P., Chessa, S., Foschini, L., Belli, D., Girolami, M. (2020). Impact of Evolutionary Community
Detection Algorithms for Edge Selection Strategies [10.1109/GLOBECOM42002.2020.9348085].

Published Version:

Impact of Evolutionary Community Detection Algorithms for Edge Selection Strategies

Published:
DOI: http://doi.org/10.1109/GLOBECOM42002.2020.9348085

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/811875 since: 2021-03-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/GLOBECOM42002.2020.9348085
https://hdl.handle.net/11585/811875

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

P. Barsocchi, S. Chessa, L. Foschini, D. Belli and M. Girolami, "Impact of Evolutionary

Community Detection Algorithms for Edge Selection Strategies," GLOBECOM 2020 -

2020 IEEE Global Communications Conference, Taipei, Taiwan, 2020, pp. 1-6

The final published version is available online at

https://dx.doi.org/10.1109/GLOBECOM42002.2020.9348085

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/GLOBECOM42002.2020.9348085

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Impact of Evolutionary Community Detection
Algorithms for Edge Selection Strategies

Paolo Barsocchi
Istituto di Scienza e Tecnologie

dell’Informazione ISTI-CNR National
Council of Research, Pisa, Italy

paolo.barsocchi@isti.cnr.it
https://orcid.org/0000-0002-6862-7593

Dimitri Belli
Department of Computer Science

University of Pisa, Italy
dimitri.belli@di.unipi.it,

https://orcid.org/0000-0003-1491-6450

Stefano Chessa
Department of Computer Science

and Istituto di Scienza e Tecnologie
dell’Informazione ISTI-CNR

University of Pisa, Italy
stefano.chessa@unipi.it,

https://orcid.org/0000-0002-1248-9478

Luca Foschini
Dipartimento di Informatica: Scienza e

Ingegneria
University of Bologna, Bologna, Italy

luca.foschini@unibo.it,
https://orcid.org/0000-0001-9062-3647

Michele Girolami

Istituto di Scienza e Tecnologie
dell’Informazione ISTI-CNR National

Council of Research, Pisa, Italy
michele.girolami@isti.cnr.it,

https://orcid.org/0000-0002-3683-7158

Abstract— The combination of the edge computing paradigm with
Mobile CrowdSensing (MCS) is a promising approach. However,
the selection of the proper edge nodes is a crucial aspect that
greatly affects the performance of the extended architecture. This
work studies the performance of an edge-based MCS architecture
with ParticipAct, a real-word experimental dataset. We present a
community-based edge selection strategy and we measure two key-
metrics, namely latency and the number of requests satisfied. We
show how they vary by adopting three evolutionary community
detection algorithms, TILES, Infomap and iLCD configured by
changing several configuration settings. We also study the two
metrics, by varying the number of edge nodes selected so that to
show its benefit.

Keywords—CrowdSensing, Multi-access Edge Computing,
Mobile Edge, Community Detection.

I. INTRODUCTION

The beginning of the new century has been characterized by
a widespread of mobile and wearables devices without
precedent. Such phenomenon has also fostered the
development of massive sensing techniques like Mobile
CrowdSensing (MCS) combined with distributed network
architectural concepts, such as Multi-access Edge Computing
(MEC). The MEC paradigm can be implemented with a set of
intermediate nodes reducing the network traffic to and from the
Cloud and providing, at the same time, location-based services
to devices in proximity. Such paradigm can be adopted for an
MCS scenario. More specifically, the back-end of a MCS
architecture collects data from the crowd by propagating
sensing tasks to end-devices . Data collected from devices are,
in turn, uploaded to the Cloud. In this scenario, our goal is to
reduce as much as possible those network interactions not
required between the back-end and the sensing devices. To this
purpose, we consider that the MEC paradigm can be here
adopted to improve the performance of the MCS architecture.

With this paper, we study the performance of a MCS
architecture extended with a set of mobile MECs acting as a
data retrieval layer. A mobile MEC (M2EC) is a proxy for other
devices. The M2EC plays a primary role in a MCS architecture,
since it allows to increase the reliability of the data collection
process, supporting the sensing activity of MCS mobiles and by
providing a first level of data aggregation. In our previous
studies, we demonstrated the effectiveness of using M2ECs
instead of standard MEC proxies [1, 2][6]. In particular, we
exploited the social behavior of users joining an MCS
measurement campaign in order to optimize the design of a
MCS – MEC architecture. In this work, we still focus on such
approach and we observe that people tend to periodically
interact and to cluster with others according to their social
attitude. This is typical of commuters that daily meet at the train
station, or employees of the same company that meet in the
same office. In these cases, people form a so-called community,
namely a set of users co-located at the same time. When people
form a community, their devices can interact directly by means
of short-range network interfaces such as Wi-Fi Direct, LTE
Direct network interfaces, but also Bluetooth communications
[9]. We tested our MCS – MEC architecture by using the
ParticipAct dataset [3], which reproduces the user’s mobility in
an urban area. Communities are detected by using 3 algorithms
specifically designed for dynamic networks, namely Infomap
[4], TILES [5], and iLCD [7]. The resulting communities are
used to select the M2ECs and to measure two evaluation
metrics: latency and number of requests satisfied. All tests have
been performed through an ad hoc MCS simulator able to

reproduce the interaction from the back-end to the crowd’s
devices. We show how the community detection algorithms
affect the metrics, and we further investigate how the increase
of the number of M2ECs affects the overall performance. In
particular, we consider the case in which each community is
proxied by 5% to 20% of the community members. Our
experimental results show that our selection strategy provides
exploitable results. In particular, we observe that our strategy
fits for those algorithms detecting a high number of small
communities and, at the same time, with those algorithms
detecting few big communities. We also that the M2ECs always
provide a significant contribution in terms of reduction of
average latency and in the data collection capability.

II. RELATED WORK
Multi-access Edge Computing (MEC) is a decentralized

cloud technology and point of convergence between
telecommunication and Information Technology (IT) services
[10]. The MEC paradigm is generally considered a cornerstone
of the recent 5G networks [11]. The concept of MEC
architecture evolves the standard cloud computing model by
flanking to the antennas coupled with radio access network (i.e.,
base stations) a bunch of powerful, highly virtualized servers
that bring the computation closer to peripheral network nodes.
In this way. MEC eases the work of such peripheral units by
reducing latency for all those latency-dependent applications
that run at the edge of the network. To date, MEC
implementations consider both indoor and outdoor scenarios
[12, 13], covering application fields like traffic [14] and
mobility [15]. MCS, instead, is a massive sensing concept
emerged in the last few decades from the wide diffusion of
mobile and wearables [16].. In recent years, studies on MCS
focused on aspects like task assignment [17], energy efficiency
[18], and user recruitment techniques [19].

In recent years, researchers have been oriented towards the
development of synergies to achieve a close integration
between MCS and MEC. Such convergence aims at extending
the coverage of traditional MEC solutions, through the
activation of mobile MCS devices as support edges for other
mobile MCS devices. Fundamental, to plan efficient edge
selection strategies in HEC is the concept of community [8].
Community detection techniques may vary on the basis of the
definition of community adopted and return very different
communities from the same set of elements. During the years,
the scientific community has developed several methods to
identify communities in dynamic graphs, such as those
representing the human mobility over time. In the following,
we apply our edge selection strategy to the output of three
distinct community detection algorithms suitably selected for
their heterogeneity of the identification of communities from
user’s mobility traces.

III. BACKGROUND ON COMMUNITY DETECTION ALGORITHMS
Communities can be detected with algorithms designed to

capture the evolution of interactions among users. More
specifically, we consider the ParticipAct [3] dataset, which
reproduces the human mobility in an urban area in the period

December 2013 to February 2015. Users are mainly students
from the University of Bologna, who were equipped with a
smartphone with a pre-installed MCS app. The application
reports the user’s position at regular intervals, by exploiting the
Google Locations APIs. The user’s position can be obtained by
using information from the GPS, Wi-Fi, or the cellular base
stations. We report in Fig. 1 a graphical representation of the
ParticipAct dataset. We do not analyze the raw mobility traces,
rather we consider the co-location traces. Such traces only
report the timestamp at which two users were in proximity. Co-

Fig. 1 Graphical representation of ParticipAct.

Algorithm 1 – The M2EC selection strategy
 Input: A community set, α, β
 Output: A number of M2ECs

1 Let S be the community set {S1, …, Sn} of a given
Community Detection Algorithm

 2 Sort{S} // wlog we assume that |Si|≥|Sj| iff i ≥ j
 3 Let SC be the set of the first k communities {S1, …, Sk}, with
 k ≤ n, such that:
 - |S1 … Sk|≥ α
 - |S1 … Sk+1 | - | S1 … Sk |≤ β
 4 for all SCi ∈ SC do
 5 for all ui ∈ SCi do
 6 Ci = compute_centrality (ui)
 7 end
 8 Sort{ SCi} \\ so that ci ≤ cj, ∀ c ϵ Ci
 9 end
10 M2EC_LIST = [] // The output M2EC list initialized as empty
11 // wlog the number of M2ECs is computed as follows
12 N_M2EC = | U| * x // where U is set of all active users
 {u1, … , un}, and x is the percentage of M2ECs to be
 selected
13 while |M2EC_LIST| < | N_M2EC | do
14 for all SCi ∈ SC do
15 // For each community of the community subset SC,
 we select the next M2EC depending on its sorting
16 M2EC_LIST = SCi[next]
17 end
18 end

location traces are used to detect communities and, more
interestingly, their evolution over time.

We experienced with Infomap [4], TILES [5] and iLCD [7],
three algorithms that well capture the evolution of communities
along the time. Infomap finds communities of nodes such that
the paths connecting them is the shortest possible. Paths are
explored by a random walker and, at every step of the walker,
the code describing the path is recorded. The random walker
stops its process when it is not possible to further minimize the
length of such coded-paths. TILES is an online community
algorithm that explores the flow of interactions between nodes
over time through a domino effect strategy. Such strategy is
based on the so-called label propagation procedure. TILES
tracks the changes in the neighbor of those nodes that produce
a variation in the interaction flow. We also tested iLCD
(intrinsic Longitudinal Community Detection), a meta-
algorithm that considers the dynamics of a network to detect
strongly overlapping communities in a temporal region. Given
a co-location trace for a given period (e.g. 1, 6, 12 months), the
three algorithms can be configured so that to detect at regular
intervals the communities. We refer to such period as Δ. For the
purpose of this work, we set Δ = 2 days, so that to obtain a set
of communities from every algorithm once every 2 days. We
report in Fig. 2, the box plot with the number of communities
detected by the three algorithms.

IV. MOBILE MEC SELECTION STRATEGY
The M2EC selection strategy we propose relies on two main
steps. Firstly, we detect communities of users with the
community detection algorithms described in Section III.
Secondly, we select the M2ECs as representative for each
community. Communities are identified by considering the
user’s mobility of a time period (e.g. 1 month). During such
period, we can detect the existing communities with one of 3
algorithms mentioned, at periodic intervals (e.g. daily, weekly,
monthly). The number of M2ECs is computed as a percentage
of all active users of the platform so to obtain x%
representatives. The M2EC selection algorithm analyzes the list
of communities identified with one of the 3 community
detection algorithms. The input list provides for each
community an identifier and the list of the community

members. The algorithm operates on mobile time windows,
without assuming the static behavior of the contacts. It works
as follows:

 To rank the communities on the basis of their cardinality,
from the largest to the smallest.

 To select the first k communities according to the
following condition: the cardinality of the union of the
communities is higher of a given threshold α and the
contribution of the k+1 community is lower than a given
threshold β. Therefore, the parameter α and β enable to
select the optimal number of communities.

 To compute the centrality measure of each community
member and to rank the community members according
to such measure. For the purpose of this work, we
consider the betweenness and the eigenvector centrality
measures.

 To compute the number of M2ECs as a percentage of all
candidate devices. If the number of M2ECs selected is
less or equal to the number of communities selected, than
we obtain the list of M2ECs by taking just one
representative per community. Otherwise, the algorithm
selects the remaining number of M2ECs by selecting one
M2EC per community starting from the community with
the highest cardinality.

All steps are summarized in Algorithm 1.

V. EXPERIMENTAL SETTINGS AND RESULTS
The goal of the experimental settings is to study how the

latency and the number of requests satisfied vary as the number
of M2ECs increases. Moreover, we also analyze how many
M2ECs are required in order to guarantee a given latency
requirements and a certain number of requests satisfied. With
the term request, we refer to any information that a mobile
device requires to upload to the Cloud. We developed a python-
based simulation environment that assigns to nodes in the MCS
measurement campaign an arbitrary number of requests to be
satisfied. A request has an expiration time (Δ) and it can be
satisfied in two different ways. Firstly, a request can be satisfied
if a node interacts directly with a M2EC through a short-range
network interface. Secondly, a request can be satisfied if the
node uploads data to the back-end with a broadband connection.
During each of the experiments, we simulated a traffic load of

TABLE I Experimental Settings

Property Value
City Bologna

Observation period March 1st – 31st, 2014

Max n. of participants 133

Number of requests 5k

Δ 1,3, and 7 days

α, β 70%, 2%

M2EC selection strategies Betweenness, Eigenvector

Percentage of M2ECs [5-20]%, step 5% step

Fig. 2 Number of communities with the 3 algorithms.

5k requests, randomly assigned to the MCS nodes. Details of
the experimental settings are reported in Table I.

We evaluated on trial some values for the parameters α and
β in accordance with the number of communities returned by
each of all community detection algorithms considered, and we
calibrated the simulator accordingly. Under this respect,
Infomap returns at the same time few big communities and
many small communities as obtained with iLCD. Differently,
TILES returns mainly small communities whose nodes are
strongly connected. Such heterogeneity of the communities
detected is also reported in Fig. 2, we set α to 70% and β to 2%.

We adopted two centrality measures to rank the community
members, namely the betweenness and the eigenvector. On the
one hand, the betweenness is a centrality measure based on
shortest paths, that assigns to each vertex of the network a value
on the basis of the number of shortest paths that pass through it.
Such measure reflects the interaction degree that each node has
with other nodes of the same network. On the other hand, the
eigenvector is a centrality measure that returns the degree of
influence that a node exerts within the network, and the score
assigned to each node is computed on the basis of the influence
of its neighborhood. In other words, the eigenvector assigns
higher scores to those nodes that have neighbors with higher
connection. We performed several tests by varying the

percentage of M2ECs selected and the Δ, ranging from a
minimum of 1 to a maximum of 7 days. In all tests performed
the percentage of M2ECs selected varies from a minimum of
5% to a maximum of 20% of the total number of active mobiles
in the platform. We increase such percentage of 5% step at each
test. The graphs in Fig. 3 and Fig. 4 respectively show the
results obtained for latency and number of requests satisfied, by
varying Δ and the centrality measure. Concerning results in Fig.
3, we observe that the trends for Infomap, iLCD, and TILES
follow a regular decreasing trend as the percentage of M2ECs
increases. The algorithm selects the best M2ECs with
communities returned by iLCD and when the ranking of the
community nodes is executed with the eigenvector. Such result
is more evident in the line plot for iLCD with Δ 7. The
corresponding graph shows an initial better performance when
the nodes are ranked with the betweenness (38.6h) with respect
to the eigenvector (43.2h). However, once the number of
M2ECs increases, the betweenness node ranking allow to reach
a latency of 26.9h, whereas the eigenvector node ranking
reduces the latency up to 32.9h. We also observe that when the
ranking of community nodes is performed with the
betweenness, for Δ = 7 the latency is bound between 40h with
the 5% of M2ECs and 27.9h with 20% of M2ECs for the
Infomap implementation, and between 43h with the minimum
number of M2ECs selected to 30.2h with 20% of M2ECs for the

Fig. 3 Average latency by varying the number of M2ECs selected (betweenness and eigenvector)

TILES implementation. We notice that that when the algorithm
runs upon the communities discovered by the TILES, it is not
able to select as many M2ECs as the ones selected within the
communities discovered by Infomap and iLCD. Such behavior
is mainly due to the restricted number of communities
discovered by TILES and the percentage of nodes belonging to
each community with respect to the total number of nodes of
the population (less than 48% of the total). The results obtained
by setting the Δ to 3 days show that the eigenvector returns the
best latency results with all the three community detection
algorithms, that present very similar decreasing latency trends.
Concerning the number of requests satisfied (Fig. 4), we
observe that all the trends of the line-plot matrix show an
increasing trend independently of the node ranking centrality
measure in use for all community detection algorithms. For Δ =
7 we register that our algorithm selects the best M2ECs with the
communities discovered by TILES and when the node ranking
is performed with the betweenness. In fact, as the number of
M2ECs increases we register for the TILES implementation a
number of requests satisfied that ranges from 3415 (68%) with
5% of M2ECs up to 4081 (82%) with 20% of M2ECs. Always
for Δ = 7 we observe that the iLCD implementation performs
good with a low percentage of M2ECs selected, returning 3543
(71%) requests satisfied with 5% of M2ECs. We also observe
that for iLCD the performance improve slowly as the number

of M2ECs increases. In fact, with 20% of M2ECs selected the
iLCD implementation satisfies 4070 (81%) requests, returning
an improvement of only 10% with respect to the performance
of 5% M2ECs. Finally, we observe that as the number of M2ECs
selected increases the node ranking with the eigenvector
performs as good as the betweenness one only with TILES in
any of the Δs considered (59%, 71%, and 82% respectively for
Δ = 1, Δ = 3, and Δ = 7).

VI. CONCLUSIONS
Mobile edge computing technologies are nowadays widely
used in many applications. In the case of CrowdSensing they
are particularly effective as edges may act as localized data
collectors and aggregators. A further, potential innovation in
the integration of MEC and MCS is the extension of the concept
of edges by introducing mobile edges (M2ECs) implemented by
the devices that are part of the CrowdSensing platform itself.
This idea gave recently rise to a research trend, in which the key
questions concern the real advantages of using mobile edges,
the applicative scenarios in which are more valuable, and the
overheads or penalties given by their use. One aspect that is
already clear is that, since mobile edges leverage on
opportunistic communications to collect data from the other
devices, the applicative scenario can be one in which
communication latencies are not critical (this is typical for

Fig. 4 Number of requests satisfied by varying the number of M2ECs selected (betweenness and eigenvector)

applications intended for offline analysis of the collected data).
However, even if latency (defined as the time elapsed from the
time in which the data is produced to the time in which the data
is available at the data center) is not critical, it still plays a role
since its dimension determines the boundary of application of
mobile edges in MCS. This work addresses this specific aspect
as it aims at estimating the impact on the latency due to two
different architectural approaches in the design of the mobile
edges solution (which are the number of M2ECs to use and the
Δ of the data before they are sent to the data center through
broadband connection). The results have shown that, although
the use of a larger number of M2ECs provides a reduction of the
latency, the strongest reduction is obtained by reducing the Δ.
However, even when the Δ is significantly reduced, the M2ECs
still play an important role in the data collection as they are able
to collect a fraction of data ranging from 50% to 80% in most
of the cases. This result, that was not expected, is related to the
“social” nature of M2ECs that are chosen based on the evolving
communities of devices as reported with the alluvial graph in
Fig. 5. In practice, this result implicitly suggests that even when
the number of M2ECs is low they are able to collect a large
fraction of data from their communities, while the devices that
have few connections with the others and that are out of the
communities will have to transmit the data by leveraging on
their broadband connections.
Another indirect result of this work is that the algorithm used
for the detection of the communities in the selection of the
M2ECs has a minor but observable effect on the latency. In fact,
the different community detection algorithms exhibit a slight
difference in performance, especially when the number of
M2ECs is low. Furthermore, the similar trends showed in Fig. 3
and Fig. 4 suggest that our M2EC selection algorithm performs
well with community detection algorithms that return
community sets made up of very few numerous communities,
as well as with community detection algorithms that return
community sets made up of many communities with very
strongly connected nodes. In the future we are planning to
extend this analysis by considering different ways for
computing the communities and by analyzing other parameters,
like the number of communities for which a M2EC is selected.

REFERENCES
[1] D. Belli, S. Chessa, A. Corradi, G. Di Paolo, L. Foschini and M. Girolami,

"Selection of Mobile Edges for a Hybrid CrowdSensing Architecture,"
2019 IEEE Symposium on Computers and Communications (ISCC),
Barcelona, Spain, 2019, pp. 1-6.

[2] P. Bellavista, D. Belli, S. Chessa, L. Foschini, “A social-driven edge
computing architecture for mobile crowdsensing management”, IEEE
Communications Magazine, 57(4), pp. 68-73, 2019.

[3] G. Cardone, A. Corradi, L. Foschini, R. Ianniello, “ParticipAct: A large-
scale crowdsensing platform”, IEEE Transactions on Emerging Topics in
Computing, 4(1), pp. 21-32, May, 2015.

[4] D. Edler, L. Bohlin, M. Rosvall, “Mapping higher-order network flows in
memory and multilayer networks with infomap”, Algorithms, 10(4), 112,
2017.

[5] G. Rossetti, L. Pappalardo, D. Pedreschi, F. Giannotti, “TILES: an online
algorithm for community discovery in dynamic social networks”,
Machine Learning, 106(8), pp. 1213-1241, 2017.

[6] D. Belli, S. Chessa, A. Corradi, L. Foschini, M. Girolami, Optimization
strategies for the selection of mobile edges in hybrid crowdsensing
architectures, Computer Communications, Volume 157, 2020, Pages 132-
142,

[7] R. Cazabet, F. Amblard, C. Hanachi, “Detection of overlapping
communities in dynamic social networks”, in IEEE Second International
Conference on Social Computing, pp. 309-314, 2010.

[8] G. Rossetti, R. Cazabet, “Community discovery in dynamic networks: a
survey”, ACM Computing Surveys (CSUR), 51(2), 35, 2018.

[9] M. Girolami, P. Barsocchi, S. Chessa and F. Furfari, "A social-based
service discovery protocol for mobile Ad Hoc networks," 2013 12th
Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET),
Ajaccio, 2013, pp. 103-110.

[10] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, C. S.
Hong, “Joint communication, computation, caching, and control in big
data multi-access edge computing”, IEEE Transactions on mobile
Computing, 2019.

[11] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, V. Young, “mobile edge
computing – a key technology towards 5G”, ETSI White Paper, 11(11),
pp. 1-16, 2015.

[12] J. L. Carrera Villacrés, Z. Zaho, M. Wenger, T. Braun, “MEC-based
UWB Indoor Tracking System”, in 15th Annual Conference on Wireless
On-demand Network Systems and Services (WONS), 2019.

[13] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
Concepts, methodologies, and applications”, ACM Transactions on
Intelligent Systems and Technology, vol. 5, no. 3, pp. 1–55, Sep 2014.

[14] H. Peng, Q. Ye, X. Shen, “Spectrum management for multi-access edge
computing in autonomous vehicular networks”, IEEE Transactions on
Intelligent Transportation Systems, pp. 1-12, 2019.

[15] P. Zhang, M. Durresi, A. Durresi, “Multi-access edge computing aided
mobility for privacy protection in internet of things”, Computing, 101(7),
pp. 729-742, 2019.

[16] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges”, IEEE Communications Magazine, vol. 49, no. 11, pp.
32-39, 2011.

[17] W. Gong, B. Zhang, C. Li, “Task assignment in mobile crowdsensing:
Present and future directions”, IEEE Network, 32(4), pp. 100-107, 2018.

[18] H. Xiong, D. Zhang, L. Wang, J. P. Gibson, J. Zhu, “EEMC: Enabling
energy-efficient mobile crowdensing with anonymous participants”,
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 6,
no. 3, pp. 1-26, 2015.
D. Belli, S. Chessa, B. Kantarci, L. Foschini, “A capacity-aware user
recruitment framework for fog-based mobile crowdsensing”, IEEE
Symposium on Computers and Communications (ISCC), 2019.

Fig. 5 Example of evolution of communities for a time period.

