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Abstract— The combination of the edge computing paradigm with 
Mobile CrowdSensing (MCS) is a promising approach. However, 
the selection of the proper edge nodes is a crucial aspect that 
greatly affects the performance of the extended architecture. This 
work  studies the performance of an edge-based MCS architecture 
with ParticipAct, a real-word experimental dataset. We present a 
community-based edge selection strategy and we measure two key-
metrics, namely latency and the number of requests satisfied. We 
show how they vary by adopting three evolutionary community 
detection algorithms, TILES, Infomap and iLCD configured by 
changing several configuration settings. We also study the two 
metrics, by varying the number of edge nodes selected so that to 
show its benefit. 

Keywords—CrowdSensing, Multi-access Edge Computing, 
Mobile Edge,  Community Detection. 

I. INTRODUCTION 

The beginning of the new century has been characterized by 
a widespread of mobile and wearables devices without 
precedent. Such phenomenon has also fostered the 
development of massive sensing techniques like Mobile 
CrowdSensing (MCS) combined with distributed network 
architectural concepts, such as Multi-access Edge Computing 
(MEC). The MEC paradigm can be implemented with a set of 
intermediate nodes reducing the network traffic to and from the 
Cloud and providing, at the same time, location-based services 
to devices in proximity. Such paradigm can be adopted for an 
MCS scenario. More specifically, the back-end of a MCS 
architecture collects data from the crowd by propagating 
sensing tasks to end-devices . Data collected from devices are, 
in turn, uploaded to the Cloud. In this scenario, our goal is to 
reduce as much as possible those network interactions not 
required between the back-end and the sensing devices. To this 
purpose, we consider that the MEC paradigm can be here 
adopted to improve the performance of the MCS architecture. 

With this paper, we study the performance of a MCS 
architecture extended with a set of mobile MECs acting as a 
data retrieval layer. A mobile MEC (M2EC) is a proxy for other 
devices. The M2EC plays a primary role in a MCS architecture, 
since it allows to increase the reliability of the data collection 
process, supporting the sensing activity of MCS mobiles and by 
providing a first level of data aggregation. In our previous 
studies, we demonstrated the effectiveness of using M2ECs 
instead of standard MEC proxies [1, 2][6]. In particular, we 
exploited the social behavior of users joining an MCS 
measurement campaign in order to optimize the design of a 
MCS – MEC architecture. In this work, we still focus on such 
approach and we observe that people tend to periodically 
interact and to cluster with others according to their social 
attitude. This is typical of commuters that daily meet at the train 
station, or employees of the same company that meet in the 
same office. In these cases, people form a so-called community, 
namely a set of users co-located at the same time. When people 
form a community, their devices can interact directly by means 
of short-range network interfaces such as Wi-Fi Direct, LTE 
Direct network interfaces, but also Bluetooth communications 
[9]. We tested our MCS – MEC architecture by using the 
ParticipAct dataset [3], which reproduces the user’s mobility in 
an urban area. Communities are detected by using 3 algorithms 
specifically designed for dynamic networks, namely Infomap 
[4], TILES [5], and iLCD [7]. The resulting communities are 
used to select the M2ECs and to measure two evaluation 
metrics: latency and number of requests satisfied. All tests have 
been performed through an ad hoc MCS simulator able to 



reproduce the interaction from the back-end to the crowd’s 
devices. We show how the community detection algorithms 
affect the metrics, and we further investigate how the increase 
of the number of M2ECs affects the overall performance. In 
particular, we consider the case in which each community is 
proxied by 5% to 20% of the community members.  Our 
experimental results show that our selection strategy provides  
exploitable results. In particular, we observe that our strategy 
fits for those algorithms detecting a high number of small 
communities and, at the same time, with those algorithms 
detecting few big communities. We also  that the M2ECs always 
provide a significant contribution in terms of reduction of 
average latency and in the data collection capability.  

II. RELATED WORK 
Multi-access Edge Computing (MEC) is a decentralized 

cloud technology and point of convergence between 
telecommunication and Information Technology (IT) services 
[10]. The MEC paradigm is generally considered a cornerstone 
of the recent 5G networks [11]. The concept of MEC 
architecture evolves the standard cloud computing model by 
flanking to the antennas coupled with radio access network (i.e., 
base stations) a bunch of powerful, highly virtualized servers 
that bring the computation closer to peripheral network nodes. 
In this way. MEC eases the work of such peripheral units by 
reducing latency for all those latency-dependent applications 
that run at the edge of the network. To date, MEC 
implementations consider both indoor and outdoor scenarios 
[12, 13], covering application fields like traffic [14] and 
mobility [15]. MCS, instead, is a massive sensing concept 
emerged in the last few decades from the wide diffusion of 
mobile and wearables [16].. In recent years, studies on MCS 
focused on aspects like task assignment [17], energy efficiency 
[18], and user recruitment techniques [19].  

In recent years, researchers have been oriented towards the 
development of synergies to achieve a close integration 
between MCS and MEC. Such convergence aims at extending 
the coverage of traditional MEC solutions, through the 
activation of mobile MCS devices as support edges for other 
mobile MCS devices. Fundamental, to plan efficient edge 
selection strategies in HEC is the concept of community [8]. 
Community detection techniques may vary on the basis of the 
definition of community adopted and return very different 
communities from the same set of elements. During the years, 
the scientific community has developed several methods to 
identify communities in dynamic graphs, such as those 
representing the human mobility over time. In the following, 
we apply our edge selection strategy to the output of three 
distinct community detection algorithms suitably selected for 
their heterogeneity of the identification of communities from 
user’s mobility traces. 

III. BACKGROUND ON COMMUNITY DETECTION ALGORITHMS 
Communities can be detected with algorithms designed to 

capture the evolution of interactions among users. More 
specifically, we consider the ParticipAct [3] dataset, which 
reproduces the human mobility in an urban area in the period 

December 2013 to February 2015. Users are mainly students 
from the University of Bologna, who were equipped with a 
smartphone with a pre-installed MCS app. The application 
reports the user’s position at regular intervals, by exploiting the 
Google Locations APIs. The user’s position can be obtained by 
using information from the GPS, Wi-Fi, or the cellular base 
stations. We report in Fig. 1 a graphical representation of the 
ParticipAct dataset. We do not analyze the raw mobility traces, 
rather we consider the co-location traces. Such traces only 
report the timestamp at which two users were in proximity. Co-

 
Fig. 1 Graphical representation of ParticipAct. 

Algorithm 1 – The M2EC selection strategy 
  Input:     A community set, α, β 
  Output:  A number of M2ECs 

1 Let S be the community set {S1, …, Sn} of a given 
Community Detection Algorithm 

  2   Sort{S} // wlog we assume that |Si|≥|Sj| iff i ≥ j 
  3   Let SC be the set of the first k communities {S1, …, Sk}, with 
       k ≤ n, such that: 
            - |S1  …  Sk|≥ α 
            - |S1  …  Sk+1 | - | S1  …  Sk |≤ β 
  4   for all SCi ∈ SC do 
  5      for all ui ∈ SCi do 
  6           Ci =  compute_centrality (ui) 
  7      end 
  8      Sort{ SCi} \\ so that ci ≤ cj, ∀ c ϵ Ci 
  9   end 
10  M2EC_LIST = []  // The output M2EC list initialized as empty 
11  // wlog the number of M2ECs is computed as follows 
12  N_M2EC = | U| * x  // where U is set of all active users  
      {u1, … , un}, and x is the percentage of M2ECs to be  
      selected 
13  while |M2EC_LIST| < | N_M2EC | do 
14      for all SCi ∈ SC do 
15          // For each community of the community subset SC,  
                   we select the next M2EC depending on its sorting 
16          M2EC_LIST = SCi[next]   
17      end 
18  end 
 
 



location traces are used to detect communities and, more 
interestingly, their evolution over time.  

We experienced with Infomap [4], TILES [5] and iLCD [7], 
three algorithms that well capture the evolution of communities 
along the time. Infomap finds communities of nodes such that 
the paths connecting them is the shortest possible. Paths are 
explored by a random walker and, at every step of the walker, 
the code describing the path is recorded. The random walker 
stops its process when it is not possible to further minimize the 
length of such coded-paths. TILES is an online community 
algorithm that explores the flow of interactions between nodes 
over time through a domino effect strategy. Such strategy is 
based on the so-called label propagation procedure. TILES 
tracks the changes in the neighbor of those nodes that produce 
a variation in the interaction flow. We also tested iLCD 
(intrinsic Longitudinal Community Detection), a meta-
algorithm that considers the dynamics of a network to detect 
strongly overlapping communities in a temporal region. Given 
a co-location trace for a given period (e.g. 1, 6, 12 months), the 
three algorithms can be configured so that to detect at regular 
intervals the communities. We refer to such period as Δ. For the 
purpose of this work, we set Δ = 2 days, so that to obtain a set 
of communities from every algorithm once every 2 days. We 
report in Fig. 2, the box plot with the number of communities 
detected by the three algorithms. 

IV. MOBILE MEC SELECTION STRATEGY 
The M2EC selection strategy we propose relies on two main 
steps. Firstly, we detect communities of users with the 
community detection algorithms described in Section III. 
Secondly, we select the M2ECs as representative for each 
community. Communities are identified by considering the 
user’s mobility of a time period (e.g. 1 month). During such 
period, we can detect the existing communities with one of 3 
algorithms mentioned, at periodic intervals (e.g. daily, weekly, 
monthly). The number of M2ECs is computed as a percentage 
of all active users of the platform so to obtain x% 
representatives. The M2EC selection algorithm analyzes the list 
of communities identified with one of the 3 community 
detection algorithms. The input list provides for each 
community an identifier and the list of the community 

members. The algorithm operates on mobile time windows, 
without assuming the static behavior of the contacts. It works 
as follows: 

 To rank the communities on the basis of their cardinality, 
from the largest to the smallest. 

 To select the first k communities according to the 
following condition: the cardinality of the union of the 
communities is higher of a given threshold α and the 
contribution of the k+1 community is lower than a given 
threshold β. Therefore, the parameter α and β enable to 
select the optimal number of communities. 

 To compute the centrality measure of each community 
member and to rank the community members according 
to such measure. For the purpose of this work, we 
consider the betweenness and the eigenvector centrality  
measures. 

 To compute the number of M2ECs as a percentage of all 
candidate devices. If the number of M2ECs selected is 
less or equal to the number of communities selected, than 
we obtain the list of M2ECs by taking just one 
representative per community. Otherwise, the algorithm 
selects the remaining number of M2ECs by selecting one 
M2EC per community starting from the community with 
the highest cardinality. 

All steps are summarized in Algorithm 1. 

V. EXPERIMENTAL SETTINGS AND RESULTS 
The goal of the experimental settings is to study how the 

latency and the number of requests satisfied vary as the number 
of M2ECs increases. Moreover, we also analyze how many 
M2ECs are required in order to guarantee a given latency 
requirements and a certain number of requests satisfied. With 
the term request, we refer to any information that a mobile 
device requires to upload to the Cloud.  We developed a python-
based simulation environment that assigns to nodes in the MCS 
measurement campaign an arbitrary number of requests to be 
satisfied. A request has an expiration time (Δ) and it can be 
satisfied in two different ways. Firstly, a request can be satisfied 
if a node interacts directly with a M2EC through a short-range 
network interface. Secondly, a request can be satisfied if the 
node uploads data to the back-end with a broadband connection. 
During each of the experiments, we simulated a traffic load of 

TABLE I  Experimental Settings 

Property Value 
City Bologna 

Observation period March 1st – 31st, 2014 

Max n. of participants 133 

Number of requests 5k 

Δ 1,3, and 7 days 

α, β 70%, 2% 

M2EC selection strategies Betweenness, Eigenvector  

Percentage of M2ECs [5-20]%, step 5% step 

 

 
Fig. 2 Number of communities with the 3 algorithms. 



5k requests, randomly assigned to the MCS nodes. Details of 
the experimental settings are reported in Table I. 

We evaluated on trial some values for the parameters α and 
β in accordance with the number of communities returned by 
each of all community detection algorithms considered, and we 
calibrated the simulator accordingly. Under this respect, 
Infomap returns at the same time few big communities and 
many small communities as obtained with iLCD. Differently, 
TILES returns mainly small communities whose nodes are 
strongly connected. Such heterogeneity of the communities 
detected is also reported in Fig. 2, we set α to 70% and β to 2%.  

We adopted two centrality measures to rank the community 
members, namely the betweenness and the eigenvector. On the 
one hand, the betweenness is a centrality measure based on 
shortest paths, that assigns to each vertex of the network a value 
on the basis of the number of shortest paths that pass through it. 
Such measure reflects the interaction degree that each node has 
with other nodes of the same network. On the other hand, the 
eigenvector is a centrality measure that returns the degree of 
influence that a node exerts within the network, and the score 
assigned to each node is computed on the basis of the influence 
of its neighborhood. In other words, the eigenvector assigns 
higher scores to those nodes that have neighbors with higher 
connection. We performed several tests by varying the 

percentage of M2ECs selected and the Δ, ranging from a 
minimum of 1 to a maximum of 7 days. In all tests performed 
the percentage of M2ECs selected varies from a minimum of 
5% to a maximum of 20% of the total number of active mobiles 
in the platform. We increase such percentage of 5% step at each 
test. The graphs in Fig. 3 and Fig. 4 respectively show the 
results obtained for latency and number of requests satisfied, by 
varying Δ and the centrality measure. Concerning results in Fig. 
3, we observe that the trends for Infomap, iLCD, and TILES 
follow a regular decreasing trend as the percentage of M2ECs 
increases. The algorithm selects the best M2ECs with 
communities returned by iLCD and when the ranking of the 
community nodes is executed with the eigenvector. Such result 
is more evident in the line plot for iLCD with Δ 7. The 
corresponding graph shows an initial better performance when 
the nodes are ranked with the betweenness (38.6h) with respect 
to the eigenvector (43.2h). However, once the number of 
M2ECs increases, the betweenness node ranking allow to reach 
a latency of 26.9h, whereas the eigenvector node ranking 
reduces the latency up to 32.9h. We also observe that when the 
ranking of community nodes is performed with the 
betweenness, for Δ = 7 the latency is bound between 40h with 
the 5% of M2ECs and 27.9h with 20% of M2ECs for the 
Infomap implementation, and between 43h with the minimum 
number of M2ECs selected to 30.2h with 20% of M2ECs for the 

 
Fig. 3 Average latency by varying the number of M2ECs selected (betweenness and eigenvector) 



TILES implementation. We notice that that when the algorithm 
runs upon the communities discovered by the TILES, it is not 
able to select as many M2ECs as the ones selected within the 
communities discovered by Infomap and iLCD. Such behavior 
is mainly due to the restricted number of communities 
discovered by TILES and the percentage of nodes belonging to 
each community with respect to the total number of nodes of 
the population (less than 48% of the total). The results obtained 
by setting the Δ to 3 days show that the eigenvector returns the 
best latency results with all the three community detection 
algorithms, that present very similar decreasing latency trends. 
Concerning the number of requests satisfied (Fig. 4), we 
observe that all the trends of the line-plot matrix show an 
increasing trend independently of the node ranking centrality 
measure in use for all community detection algorithms. For Δ = 
7 we register that our algorithm selects the best M2ECs with the 
communities discovered by TILES and when the node ranking 
is performed with the betweenness. In fact, as the number of 
M2ECs increases we register for the TILES implementation a 
number of requests satisfied that ranges from 3415 (68%) with 
5% of M2ECs up to 4081 (82%) with 20% of M2ECs. Always 
for Δ = 7 we observe that the iLCD implementation performs 
good with a low percentage of M2ECs selected, returning 3543 
(71%) requests satisfied with 5% of M2ECs. We also observe 
that for iLCD the performance improve slowly as the number 

of M2ECs increases. In fact, with 20% of M2ECs selected the 
iLCD implementation satisfies 4070 (81%) requests, returning 
an improvement of only 10% with respect to the performance 
of 5% M2ECs. Finally, we observe that as the number of M2ECs 
selected increases the node ranking with the eigenvector 
performs as good as the betweenness one only with TILES in 
any of the Δs considered (59%, 71%, and 82% respectively for 
Δ = 1, Δ = 3, and Δ = 7). 

VI. CONCLUSIONS 
Mobile edge computing technologies are nowadays widely 
used in many applications. In the case of CrowdSensing they 
are particularly effective as edges may act as localized data 
collectors and aggregators. A further, potential innovation in 
the integration of MEC and MCS is the extension of the concept 
of edges by introducing mobile edges (M2ECs) implemented by 
the devices that are part of the CrowdSensing platform itself. 
This idea gave recently rise to a research trend, in which the key 
questions concern the real advantages of using mobile edges, 
the applicative scenarios in which are more valuable, and the 
overheads or penalties given by their use. One aspect that is 
already clear is that, since mobile edges leverage on 
opportunistic communications to collect data from the other 
devices, the applicative scenario can be one in which 
communication latencies are not critical (this is typical for 

 
Fig. 4 Number of requests satisfied by varying the number of M2ECs selected (betweenness and eigenvector) 



applications intended for offline analysis of the collected data). 
However, even if latency (defined as the time elapsed from the 
time in which the data is produced to the time in which the data 
is available at the data center) is not critical, it still plays a role 
since its dimension determines the boundary of application of 
mobile edges in MCS. This work addresses this specific aspect 
as it aims at estimating the impact on the latency due to two 
different architectural approaches in the design of the mobile 
edges solution (which are the number of M2ECs to use and the 
Δ of the data before they are sent to the data center through 
broadband connection). The results have shown that, although 
the use of a larger number of M2ECs provides a reduction of the 
latency, the strongest reduction is obtained by reducing the Δ. 
However, even when the Δ is significantly reduced, the M2ECs  
still play an important role in the data collection as they are able 
to collect a fraction of data ranging from 50% to 80% in most 
of the cases. This result, that was not expected, is related to the 
“social” nature of M2ECs that are chosen based on the evolving 
communities of devices as reported with the alluvial graph in 
Fig. 5. In practice, this result implicitly suggests that even when 
the number of M2ECs is low they are able to collect a large 
fraction of data from their communities, while the devices that 
have few connections with the others and that are out of the 
communities will have to transmit the data by leveraging on 
their broadband connections.  
Another indirect result of this work is that the algorithm used 
for the detection of the communities in the selection of the 
M2ECs has a minor but observable effect on the latency. In fact, 
the different community detection algorithms exhibit a slight 
difference in performance, especially when the number of 
M2ECs is low. Furthermore, the similar trends showed in Fig. 3 
and Fig. 4 suggest that our M2EC selection algorithm performs 
well with community detection algorithms that return 
community sets made up of very few numerous communities, 
as well as with community detection algorithms that return 
community sets made up of many communities with very 
strongly connected nodes. In the future we are planning to 
extend this analysis by considering different ways for 
computing the communities and by analyzing other parameters, 
like the number of communities for which a M2EC is selected. 
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Fig. 5 Example of evolution of communities for a time period. 


