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Abstract—One of the major challenges in robotics consists in de-
veloping successful control strategies for robotic grasping devices.
In this scenario, one of the most interesting approaches regards
the exploitation of surface electromyography(sEMG). In this work,
we propose a novel sEMG-based minimally supervised regression
approach capable of performing nonlinear fitting without the ne-
cessity for point-by-point training data labelling. The proposed
method exploits a differentiable version of the Dynamic Time
Warping (DTW) similarity – referred to as soft-DTW divergence –
as loss function for a flexible neural network architecture. This is
a different paradigm with respect to state-of-the-art approaches in
which sEMG-based control of robot hands is mainly realized using
supervised or unsupervised machine learning based regression. An
experimental session was carried out involving 10 healthy subjects
in an offline experiment for systematic and statistical evaluations,
and an online experiment for the evaluation of the control of a
robot hand. The reported results demonstrate that the proposed
soft-DTW neural network can be trained by means of a labelling
that does not require to be temporally aligned with the sEMG
training dataset, while reporting performances comparable with a
standard mean square error(MSE)-based neural network. Also, the
subjects were able to successfully control a robot hand for grasping
motions and tasks with error levels comparable to state-of-the-art
regression approaches.

Index Terms—Grasping, human factors and human-in-the-loop,
multifingered hands, prosthetics and exoskeletons, telerobotics and
teleoperation.

I. INTRODUCTION

HUMAN-ROBOT interfaces (HRi) for the control of robot
hands are principally employed in teleoperation, prosthet-

ics or learning by demonstration applications [1], and consist in
realizing a communication channel between the operator and the
robotic device based on the estimation of the operator’s grasping
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intentions. In literature, several works have realized HRi based
on forearm’s muscles sEMG for the control of robot hands.
Specifically, supervised machine learning based classification
and regression are the two principal approaches [2]. In the clas-
sification approach, user’s grasping intentions are discriminated
from sEMG using a classifier that determines discrete commands
for the robot hand, however presenting intrinsic reliability issues,
mainly related to the unpredictability of misclassifications and
complexity when the number of grasping actions increases [3].
On the other hand, regression approaches are at the base of
the simultaneous and proportional (s/p) control paradigm [4],
in which the operator continuously regulates grasping actions.
However, also regression approaches are affected by some lim-
itations hindering a truly intuitive and reliable sEMG-based
control of robot hands. In particular, these approaches are sub-
jected to frequent training errors, contributing in this way to the
well known problem of the unreliability of sEMG-based control
in real life scenarios. This is due to the fact that regression,
being enforced via supervised machine learning, requires an
instant by instant labelling of the sEMG training dataset. This
introduces systematic labelling imprecisions, and tedious and
frustrating procedures which are critical to the user [5]. To avoid
this issue, several works have investigated the employment of
unsupervised machine learning for s/p control of robot hands,
e.g. Non-negative Matrix Factorization (NMF) [6], Principal
Component Analysis (PCA) [7], and autoencoders [8]. How-
ever, the absence of labelling causes linear factorizations and
autoencoders to easily fail when complex and/or multiple grasp
motions are considered, due to the fact that the non-linear fitting
capability is not available with unsupervised approaches. As a
consequence, unsupervised s/p control algorithms present clear
limitations in extracting meaningful commands from sEMG
signals.

To overcome the limitations of state-of-the-art approaches –
i.e. point-to-point labelling of the training dataset for supervised
learning and unavailability of data fitting capabilities for unsu-
pervised learning techniques – we propose an sEMG-based HRi
for the control of robot hands that merges the power of non-linear
fitting with the necessity of avoiding instant by instant sEMG
data labelling. Specifically, we present a minimally supervised
regression approach based on a differentiable version of the
Dynamic Time Warping (DTW) similarity measure [9]. DTW
is a distance-based discrepancy to evaluate similarity between
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temporal sequences in a more general manner with respect
to classical static Euclidean distance based measures. In-
deed, DTW is invariant to phase misalignments, speed and
sampling rate differences, and non-linear temporal distor-
tions [10]. DTW has been used in previous studies for the
classification of sEMG [11], vision [12] and Inertial Measure-
ment Units (IMUs) [13] data. It has been also exploited for the
evaluation of sEMG-based s/p control performance [7], and for
the averaging of time series [14]. We exploit the properties of
DTW to realize a neural network architecture that can be trained
through a labelling that is independent from the actual temporal
execution of the grasping motions during the sEMG training
dataset acquisition. From a computational point of view, the de-
scribed approach requires to use the DTW as a fitting loss func-
tion, which is not possible since the DTW is not differentiable.
We therefore use a smoothed version, named soft-DTW diver-
gence [15], which is differentiable, non-negative and minimized
for identical temporal sequences, and can therefore be used as
fitting term for a minimally supervised regression via a flexible
neural network architecture. In this study, a soft-DTW Neural
Network (soft-DTW NN) for minimally supervised regression
of forearm sEMG signals is proposed and tested for robot hand
grasping control. The aim is to show that this sEMG-based HRi
allows to perform s/p control avoiding instant by instant labelling
of sEMG training data, while, at the same time, exploiting the
advantage of non-linear fitting provided by the neural network
architecture. Experiments were carried out engaging a group
of 10 subjects. Specifically, we report for the outcome of both
offline experiments (involving five of the subjects) for a sys-
tematic evaluation and statistical analysis of the soft-DTW NN
performance, and online experiments (involving the other five
subjects) in which s/p control of both a simulated and real robot
hand was assessed for repeated grasping and motion control
tasks.

II. MATERIALS AND METHODS

In this section we present a NN architecture to perform nonlin-
ear regression of sEMG signals into control commands, avoiding
instant-by-instant labelling of the training dataset. Specifically,
we present the NN structure, along with the soft-DTW based loss
function used to train the network in a minimally supervised way.
Since control commands are extracted from myoelectric signals,
we first describe the experimental setup used for sEMG signals
acquisition and processing. Those commands are then exploited
to control the UBHand robot hand. We therefore present the
control law used to regulate power, tripodal and ulnar grasping
motions.

A. Experimental Setup

1) Wearable sEMG Sensing and Signal Processing: The
sEMG signals were acquired from the operator’s forearm mus-
cles, by means of the 8-channels wearable sEMG armband
gForcePro, by OYMotion1 (Fig. 1). Specifically, the armband
was placed in proximity of the Flexor Digitorum Superficialis

1[Online]. Available: http://www.oymotion.com/

Fig. 1. (a) gForcePro sEMG armband worn on the forearm. (b) UB Hand robot
hand.

and Extensor Digitorum Communis bellies muscles, referring
to procedures and best practices outlined in [16]. The raw
sEMG signals were acquired at 1 kHz from the armband by
means of an embedded Bluetooth interface, and streamed to a
nearby PC. Then, a processing chain was applied to each sEMG
channel, composed by the following filtering operations [17]: (i)
a 50 Hz notch filter for powerline interference cancellation, (ii)
a 20 Hz highpass filter for baseline noise reduction, and (iii) the
computation of the root mean square (RMS) value of the signal
over a 200 ms running window.

2) Robot Hand Description and Controller: The grasping
device used to test the proposed minimally supervised sEMG
regression is the UB Hand IV [18] (in the following simply
UBHand), a dexterous anthropomorphic robot hand (Fig. 1).
In particular, two versions were used, the real UBHand and its
simulator. The real UBHand is a five-fingered fully-actuated
anthropomorphic robot hand [18], with 15 DoF driven by 25
tendons, each of the latter actuated by a servomotor. In this study,
the robot hand controller was implemented in order to allow the
regulation of three different motions corresponding to the power,
tripodal and ulnar grasps (Fig. 1). In detail, considering that the
hand presents nJ = 15 joints (3 joints for each finger) actuated
by nT = 25 tendons, the vector of UBHand joint reference
angles θref

J (t) is imposed as

θref
J (t) = Sα(t), (1)

where S ∈ RnJ×3 is the grasp synergy matrix containing, in
its first, second and third column, the joint weights that al-
low to regulate the closure of the power, tripodal and ulnar
grasps, respectively, by modulating the synergistic reference
α(t) = [αPO(t) αTR(t) αUL(t)]

T ∈ R3 between the range of
values [0,1]. In particular, the weights ofS are computed in such
a way that the hand poses match the maximum closure level of
power, tripodal and ulnar grasp forαPO(t) = 1,αTR(t) = 1 and
αUL(t) = 1, respectively. At the lower level the robot hand ser-
vomotors, thanks to their embedded electronics, are controlled
according to

τ(t) = K(θref
M (t)− θM (t)), (2)

where τ(t) ∈ RnT denotes the vector of servomotor torques, K
is a proper diagonal matrix determining the motor stiffnesses,
θM (t) ∈ RnT the current servomotor angles, and θref

M (t) =
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Fig. 2. Soft-DTW Neural Network architecture and grasp control scheme.

Hθref
J (t) is the reference servomotor angles, beingH ∈ RnT×nJ

a map between motor and joint spaces as defined in our previous
works, for more details see [18], [19]. Therefore, by modulating
the components of α(t) in (1) it was possible to regulate power,
tripodal and ulnar grasps singularly and with smooth transitions
from one grasp to another.

B. Soft-DTW Neural Network

1) Network Architecture and Grasp Control: A feed-forward
neural network was used in conjunction with a soft-DTW based
loss function in order to perform a minimally supervised regres-
sion of sEMG signals, that is a regression in which an instant by
instant labelling of the training dataset was not required. Let us
consider the vector of RMS sEMG signals (see Section II-A1),
denoted as E(t) = [e1(t) e2(t) · · · e8(t)]T , which was applied
to the input of the soft-DTW NN as shown in Fig. 2. According to
the figure, let us consider the network structure as composed byn
hidden layers and an output layer. The generic j–th hidden layer
contains Nj neurons with hyperbolic tangent sigmoid transfer
function F(·) and bias vector b(j) ∈ RNj , with the input vector
a(j−1)(t) ∈ RNj−1 (coinciding with the output of the (j − 1)–th
hidden layer withNj−1 neurons, except for the first hidden layer
in which the input is E(t)) passing through the weight matrix
W (j) ∈ RNj×Nj−1 . According to this notation, the output vector
of the j–th hidden layer a(j)(t) ∈ RNj is given by

a(j)(t) = F(W (j)a(j−1)(t) + b(j)). (3)

The output layer – the (n+ 1)–th layer of the network – contains
two neurons (i.e. Nn+1 = 2) with linear transfer function H(·)
and, therefore, the output vector of the network a(n+1)(t) ∈
RNn+1 is described by

a(n+1)(t) =

[
a
(n+1)
1 (t)

a
(n+1)
2 (t)

]
= H(W (n+1)a(n)(t) + b(n+1)),

(4)
where a

(n+1)
1 (t) and a

(n+1)
2 (t) are the two scalar outputs of

the network, and a(n)(t) ∈ RNn , W (n+1) ∈ RNn+1×Nn and
b(n+1) ∈ RNn+1 are the input vector, weight matrix and bias
vector of the output layer.

The goal of the introduced network was to perform a min-
imally supervised nonlinear regression of sEMG signals into
control signals. Therefore, the network had to be trained in order
to select its parameters – i.e. the weight matrices and bias vectors

of (3) and (4) – such that the two outputs a(n+1)
1 (t) and a(n+1)

2 (t)
in (4) allow to control the robot hand grasp closure level and type,
respectively. Specifically, defining

c(t) := a
(n+1)
1 (t) and g(t) := a

(n+1)
2 (t), (5)

for the robot hand control we impose

αPO(t) = γPO c(t),

αTR(t) = γTR c(t),

αUL(t) = γUL c(t), (6)

where αPO(t), αTR(t) and αUL(t) are the synergistic references
for the power, tripodal and ulnar grasps, respectively, previously
introduced in (1), and

γPO = γPO(g(t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(t)
g−
1
, if 0 ≤ g(t) ≤ g−1

1, if g−1 < g(t) < g+1
g(t)−g−

2

g+
1 −g−

2

if g+1 ≤ g(t) ≤ g−2
0, otherwise

, (7)

γTR = γTR(g(t)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(t)−g+
1

g−
2−g+

1

, if g+1 ≤ g(t) ≤ g−2
1, if g−2 < g(t) < g+2
g(t)−g−

3

g+
2 −g−

3

if g+2 ≤ g(t) ≤ g−3
0, otherwise

, (8)

γUL = γUL(g(t)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(t)−g+
2

g−
3−g+

2

, if g+2 ≤ g(t) ≤ g−3
1, if g−3 < g(t) < g+3
g(t)−g4
g+
3 −g4

if g+3 ≤ g(t) ≤ g4

0, otherwise

, (9)

are gains with a trapezoidal profile (see Fig. 3), in which g+i =
gi + δ, g−i = gi − δ (i = {1, 2, 3}) and we set g1 = 1, g2 = 2,
g3 = 3, g4 = 4 and δ = 0.3. In this way, c(t) in (6) has the
task to regulating the closure level of the power, tripodal and
ulnar grasps, based on the value of the gains γPO, γTR and γUL

according to (7)–(9) (see Fig. 3), the latter allowing a continuous
transition among the different grasps.

2) Loss Function and Minimally Supervised Training: The
network training was performed with the scaled conjugate gradi-
ent back-propagation algorithm [20]. According to the concept
and notations introduced in the previous subsection, the loss
function used was the soft-DTW divergence [15] between the



MEATTINI et al.: sEMG-BASED MINIMALLY SUPERVISED REGRESSION USING SOFT-DTW NEURAL NETWORKS 10147

Fig. 3. Profile of the gains γPO, γTR and γUL, described by (7)–(9).

network 2-dimensional output AT ∈ R2×d, obtained by apply-
ing at the network inputs a 8-dimensional sEMG training dataset
ET ∈ R8×d (see Section II-A1), and the 2-dimensional target
output T ∈ R2×d with a length of d samples. Specifically, the
soft-DTW divergence loss function is given [15] by

D(AT , T ) = S(AT , T )− 1

2
S(AT , AT )− 1

2
S(T, T ), (10)

where S(AT , T ) is the soft-DTW operator [21]

S(AT , T ) = min
π∈A(AT ,T )

λ
∑
i,j∈π

d(aTi
, t

j
)2, (11)

where aTi
, t

j
∈ R2 indicates 2-dimensional elements of AT , T ,

respectively, d(aTi
, t

j
)2 denotes the squared Euclidean distance

operator, and minλ is the soft-min operator defined [21], consid-
ering a generic function f(x), as

min
x

λf(x) = −λ log
∑
x

exp

(−f(x)

λ

)
, (12)

in which λ > 0 is a parameter such that, for λ → 0+, the
soft-DTW S(·, ·) coincides with the standard non-differentiable
DTW. In this work, we set λ = 0.1. Finally, in (11), A(AT , T )
denotes the set of all admissible alignment paths [22] between
AT and T . We recall that, denoting by x and y two generic
time series of respective lengths n and m, a path π ∈ A(x, y) of
lengthK is a sequence (π0, . . . , πk, . . . , πK−1), which elements
are index pairs πk = (ik, jk) such that

i) 0 ≤ ik < n, 0 ≤ jk < m;
ii) π0 = (0, 0), πK−1 = (n− 1,m− 1);

iii) ∀ k > 0, considering πk = (ik, jk) and πk−1 =
(ik−1, jk−1), it holds:

� ik−1 ≤ ik ≤ ik−1 + 1;
� jk−1 ≤ jk ≤ jk−1 + 1.
For the sake of clarity, Fig. 4 reports exemplifying alignment

paths. Please refer to [15], [22] for further details. The soft-
DTW divergence based loss function introduced in (10) can be
explicitly differentiated and, therefore, used within the back-
propagation algorithm in order to train the neural network. The
gradient of (10) was obtained as

Fig. 4. Exemplifying alignment paths between generic signals x and y of four
samples. The black arrows denote the DTW alignment path, whereas the solid
and dashed gray arrows indicates other generic alignment paths.

Fig. 5. Target outputs t1 and t2 (middle and bottom graphs), defined on the
basis of the length of d samples of the sEMG training dataset (top graph). Note
that the sEMG training dataset was recorded without any reference to follow
nor synchronization with the target output (which was defined a posteriori).
Accordingly hand gestures at the top of the figure are not alligned with targets
t1 and t2.

∇AT
D(AT , T ) =

(
∂Δ(AT , T )

∂AT

)
Π(AT ,T )+

− 1

2

(
∂Δ(AT , AT )

∂AT

)
Π(AT ,AT ) (13)

where Δ(AT , T ) is the matrix that stores the squared Eu-
clidean distances d(aTi

, tj)
2, ∂Δ(AT , T )/∂AT is the Jacobian

of Δ(AT , T ) with respect to AT , Π(AT ,T ) and Π(AT ,AT ) are
the soft-DTW alignment path matrices between (AT , T ) and
(AT , AT ), respectively (we refer the reader to [21] for details on
alignment path matrices and soft-DTW alignment path matrix).
The target output T is given once the sEMG training dataset ET

is provided. Specifically, looking at Fig. 5, the user is required to
execute the following sequence of continuous grasping motions,
starting from the hand completely open, while the sEMG data
is acquired and stored in ET ∈ R8×d: (i) power grasp closure
followed by power grasp opening; (ii) tripodal grasp closure
followed by tripodal grasp opening; (iii) ulnar grasp closure



10148 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

followed by ulnar grasp opening (see Fig. 5). The execution
of this sequence of grasping motions does not require the user
to follow any reference artificial hand. Then, the target output
T = [t1 t2]

T ∈ R2×d is defined as described in the following.
t1 presents a trapezoidal profile between −1 and 1, uniformly
distributed along the d samples given by the sEMG training
set, resembling the three closure levels of the power, tripodal
and ulnar grasps according to (1), and t2 indicates the grasp
related to each of the three closure levels (see Fig. 5), where
the values 1, 2 and 3 indicate the power, tripodal and ulnar
grasps, respectively, in accordance with (7)–(9). Note that no
instant-by-instant labelling is required.

III. EXPERIMENTS AND RESULTS

A. Subjects

We engaged 10 healthy subjects (1 female, age: 25, and
9 males, age: 30.5± 4 ? right handed: 9 sbjs., left handed: 1 sbj).
In the following, the subjects will be referred as S1, S2,..., S10.
Five of the subjects (S1,..., S5) were involved in an offline exper-
imental session, where sEMG signals were recorded for a sys-
tematic evaluation of the proposed soft-DTW NN compared with
the performance of a standard (mean square error)MSE-based
NN (see Section III-C). The other five subjects (S6,..., S10) were
involved in an online experimental session (see Section III-D),
and were required to online control both a simulated robot hand
(see Section III-D1) in order to replicate reference continuous
grasping motions, and a real robot hand (see Section III-D3) to
perform the grasping of different objects. The experiment was
conducted in accordance with the Declaration of Helsinki and all
participants were thoroughly informed about the experimental
protocol and asked to sign an informed consent form.

B. Experimental Recordings

During experiments, the subjects were seated in front of a table
and their forearm sEMG signals were recorded in accordance
to Section II-A1. For the offline dataset acquisition, the five
subjects were asked to execute six times the sequence of power,
tripodal and ulnar grasps, as depicted in Fig. 5. Importantly, for
the only purpose of the offline study, the subjects were instructed
to follow the motions of a reference graphical simulator of the
UBHand robot hand shown on a screen. The reference simulated
hand was made to move very slowly (1 minute and 30 seconds for
each sequence of power, tripodal and ulnar grasp motions), for
attempting to minimize as much as possible the desynchroniza-
tion between simulated and subject?s hand motions. Differently,
for online training dataset acquisition, the participants were
instructed to perform only two repetitions of the sequence of
power, tripodal and ulnar grasps, without any visual reference.
Note that the reduced number of repetitions was intended to
highlight the potentialities of our NN, which can be used even
with a relatively small amount of data. Once the acquisition was
completed, the sEMG signals were stored as a dataset to be used
for NN training.

C. Offline Experimental Session

The subjects involved in the offline experiment were asked
to execute a sequence of gestures as described in Section III-B,
and the related recorded myoelectric signals were exploited to
train the network and then to evaluate the performance of the
proposed soft-DTW NN using the ANOVA test, as reported in
details in the following of this section.

1) Offline Motion With Desynchronization Task: In the of-
fline experiment, we were interested in systematically evaluating
the capability of the proposed soft-DTW NN to tolerate inaccu-
rate point-by-point labelling of sEMG signals. Therefore, we
want to study the effect of having the target output T (previ-
ously introduced in Section II-B2) not synchronized with the
grasping motions performed by the subjects during the sEMG
training dataset acquisition. In this scenario, the performance
obtained with the soft-DTW NN were also compared with the
performance of a standard MSE-based NN, i.e. a NN trained
in the same labelling circumstances but using the standard
MSE as loss function. To this aim, the subjects were asked to
execute for six times continuous closing/opening motions of the
power, tripodal and ulnar grasps in sequence, while following a
reference simulated hand, as explained in Section III-B. We then
used the simulated hand motion reference to build three different
types of target outputs for the training of the NN: (i) the syn-
chronized target, which was directly obtained from the motion
of the simulated hand (i.e. corresponding to an sEMG signal
labelling almost-synchronized with the subject’s hand motion);
(ii) the target shrunk by 1/3, which was obtained by shrinking
the synchronized target by one-third of its length, keeping the
same initial point and holding the last value until matching
the length of the original non-shrunk target (i.e. corresponding
to a labelling slightly desynchronized with the subject’s hand
motion); and, finally, (iii) the target shrunk by 2/3, obtained in
a manner analogous to the target shrunk by 1/3, but shrunk by
two-thirds of the original target length (i.e. corresponding to a
labelling highly desynchronized with the subject’s hand motion).
Then, six different nested cross-validations (CV) were applied
to the sEMG dataset recorded from each of the subjects involved
in the offline experimental session (composed by 6 repetitions of
the sequence of power, tripodal and ulnar grasp closing/opening
motions), one for each combination of NN (soft-DTW and
MSE-based) and target output (synchronized, shrunk by 1/3 and
shrunk by 2/3). In detail, each nested CV was composed by
two nested loops. The inner loop consisted in a 5-fold CV, in
which a grid-search was conducted for the selection of the best
combination of number of NN hidden layers and neurons per
hidden layer (see Section II-B1). The outer loop consisted in
a 6-fold CV for the evaluation of the performance of the NN
architecture that won in the inner loop, tested on a separated
external fold. The final result of the CV was then computed
by averaging the six NN performance values obtained from the
outer loop. Note that each fold corresponded to a single sequence
of power, tripodal and ulnar grasp closing/opening motions. The
metric used to compute the NN performance values in the CV
nested loops was the standard DTW, because it represents a
particularly appropriate distance measure for offline evaluations
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Fig. 6. Results of the offline experimental session. (a) Boxplot of the aggregated results, over the subjects, of the nested CV (see Section III-C). The symbol
“∗∗” indicates a statistically significant difference (p < .01), whereas the absence of the symbol indicates no statistically significant difference. (b) Example of the
NN outputs for the different combinations of NN and target types, reported from a single validation fold of the outer loop of the nested CV for the subject S1. (c)
Target outputs used to train the NN: synchronized target, target shrunk by 1/3 and target shrunk by 2/3.

of sEMG-based s/p control approaches [7]. A Matlab code
version of the described nested CV and related soft-DTW NN
implementation has been released in GitHub at the repository.2

2) Results of the Offline Motion With Desynchronization
Task: The results of the offline experimental session can be ob-
served in the boxplots reported in Fig. 6(a), grouped based on the
different target outputs used for the NN training within the CV,
for the soft-DTW and MSE-based NN types. On these results,
a two-way repeated measures Analysis of Variance (ANOVA)
was conducted. The two investigated factors were NN type
(soft-DTW, MSE-based) and target output type (synchronized,
shrunk by 1/3, shrunk by 2/3), and the statistical significance
was set to p < .05. The Shapiro-Wilk test for normality check
was performed, reporting that the assumption of normality was
not violated. The Mauchly’s test was performed to check the
assumption of sphericity, indicating a violation for both the main
and interaction effects, W = 3.75 · 10−18, p < .001. Conse-
quently, the respective Greenhouse-Geisser estimate of spheric-
ity correction was applied. The result of the two-way ANOVA
revealed a statistically significant interaction between the fac-
tors NN type and target output type, F (0.66, 2.64) = 19.24,
p < 0.05. Therefore, as usual in these cases, we analyzed the
data reported in Fig. 6(a) as separate groups in a one-factor
design, and performed a one-way ANOVA, which revealed the
presence of a statistically significant difference, F (1.56, 6.6) =
27.85, p < .01. Therefore, following the one-way ANOVA, we
finally performed a Games-Howell test (appropriate in presence
of sphericity assumption violations) for pairwise comparison of
the different groups of data in Fig. 6(a). According to the symbols
“**” in Fig. 6(a) indicating the groups of data statistically
significantly different, it results from the pairwise comparison
that no statistically significant difference was present between

2[Online]. Available: https://github.com/TipeaTapei/sDTW-Neural-Network

the performance obtained by the proposed soft-DTW NN trained
with the synchronized, shrunk by 1/3 or shrunk by 2/3 target,
and the MSE-based NN trained with the synchronized target.
This demonstrates the robustness of the proposed sEMG-based
minimally supervised regression approach to both slightly and
highly desynchronizations between sEMG signals and related
labelling. Fig. 6(b) shows, as an example, the outputs of the
offline experiment for a single validation fold of the CV outer
loop for the subject S1, where it is possible to observe that all the
soft-DTW NN and MSE-based NN trained on the synchronized
target were able to approximately follow the reference, whereas
critically degraded performance were shown by the MSE-based
NN trained with the target shrunk by 1/3 and 2/3.

D. Online Experimental Session

The subjects involved in the online experiment were required
to online control both the simulated and real UBHand robot
hand using the proposed sEMG-based minimally supervised
regression approach as illustrated in Sections II-A2 and II-B1.
In particular, for each subject, the soft-DTW NN were trained
according to Sections II-B2 and III-B.

1) Motion Following Task: In the first task of the online
experimental session, each subject was asked to control the sim-
ulated UBHand. In particular, two simulated robot hands were
shown on a screen, and the subject was required to control only
one of the two, in order to instantaneously replicate reference
power, tripodal and ulnar grasping motions shown by the other
simulated hand (see Fig. 7), i.e. carrying out a motion following
task.

2) Results of the Motion Following Task: Fig. 7(a) reports
the online controlled grasp closure level c(t) and grasp type g(t)
(according to notation of (5)) averaged over the subjects involved
in the online experimental session. It can be observed that, on

https://github.com/TipeaTapei/sDTW-Neural-Network
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Fig. 7. Results of the online experimental session for the motion following
task, controlling the simulated UBHand. (a) Average controlled grasp closure
level c(t) and grasp typeg(t) (see (5)), over the subjects involved in the online ex-
periment, along with standard deviation and average absolute error with respect
to the motion of a reference hand that was required to be followed. (b) Average
synergistic reference signals α(t) (see (1)) and some related configuration of
the controlled and reference simulated robot hands.

average, the subjects followed continuous reference grasping
motions with acceptable accuracy, reporting for a maximum
average absolute error equal to 0.62 for the grasp closure and
1.28 for the grasp type (see Fig. 7(a)). In this relation, in order
to provide a better positioning of the obtained error levels with
respect to previous works on regression of sEMG signals into
hand kinematics, we also report that the results in Fig. 7(a)
correspond —on average over the subjects— to an R2 value,
a normalized MSE (nMSE) and a root-MSE (RMSE) equal to:
(i) 0.7878, 0.2122 and 0.133, respectively, for the grasp closure;
and (ii) 0.7294, 0.2706 and 0.3088, respectively, for the grasp
type. For the comparison, we report the results obtained by three
important/pioneering works related to sEMG signal regression:
(i) in [23] an R2 value in the range 0.8–0.9 was reported using
Kernel Ridge Regression (KRR); (ii) in [24] a nMSE in the
range 0.2–0.3 was reported when using Kernel Ridge Regression
(KRR); and (iii) in [25] (refer also to [26]) a RMSE in the
range 0.07–0.08 was reported using Long Short-Term Memory
(LSTM) NN. Therefore, even if these previous studies were char-
acterized by different experiments and protocols, it is possible to
appreciate that the results obtained with the proposed soft-DTW
NN achieved a close error to the ones obtained by the selected
previous works, the latter based on supervised approaches. In
this relation, the meaning of using the soft-DTW NN approach

Fig. 8. Frames from the video recording of the online experiment during the
object grasping task with real UBHand, for the subject S6.

with respect to state-of-the-art supervised regression techniques
lies in the fact of obtaining comparable performances with
considerable less effort for the training recording session, since
no instrumentation/specific procedures are required to enforce
temporal synchronization between training data and labels.
This, along with the fact that the soft-DTW approach has the
capability of compensating for the systematic labels-trainset
synchronization imprecisions of supervised approaches, paves
the way to a novel minimally supervised regression paradigm
that can significantly contribute in reducing the reliability issue
shown by sEMG-based control in real life applications outside
of laboratory settings.

Furthermore, Fig. 7(b) reports the average temporal evolution,
over the subjects, of the synergistic references αPO(t), αTR(t)
andαUL(t) (see (1)) corresponding to the actual average control
inputs of the simulated UBHand, obtained by applying (6) to the
signals of Fig. 7(a). In Fig. 7(b), it is worth highlighting how a
correct control of the power grasp motion could be obtained
by a proper combination of αPO and αTR, without necessarily
matching the related reference signals (dotted lines in Fig. 7(b))
obtained by applying (6) to the reference signals of Fig. 7(a).
This justifies the higher absolute error for the grasp type in
Fig. 7(a) around the time instants 40 s and 100 s, which, in
reality, did not produce incorrect online motion tracking perfor-
mance (see the frames of the reference and controlled simulated
UBHand in Fig. 7(b)).

3) Object Grasping Task: In the second and last online ex-
periment task, the subjects were required to control the real
UBHand in order to perform object grasping. Specifically, each
subject had to grasp three different types of objects: a cylinder,
a sphere and a cuboid using the power, tripodal and ulnar grasp,
respectively (see Fig. 8).

4) Results of the Object Grasping Task: We report that all
the subjects involved in the online experimental session success-
fully performed a stable grasp of the three objects, confirming,
also for the control of a real robot hand, the positive control
performance already registered with the results obtained in the
offline experiment and in the online control of the simulated
robot hand. Fig. 8 reports the frames of a video recording of
the online object grasping task carried out by the subject S6,
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showing the successful grasping of the cylindrical, spherical and
cuboidal objects by continuously controlling power, tripodal and
ulnar grasps on the real UBHand.

IV. CONCLUSION

In this article, a soft-DTW NN for sEMG-based minimally
supervised regression for s/p control of robot hands has been
presented. The proposed approach has been illustrated, and
the result of an experimental evaluation involving 10 healthy
subjects–five in an offline experiment and five in an online
experiment– has been reported. In the offline experimental ses-
sion, the robustness of the proposed soft-DTW NN to temporal
misalignment between the NN target output and the sEMG
training dataset has been demonstrated, also supported by statis-
tical evidence. In the online experimental session, the involved
subjects were able to successfully continuously control the
grasping motions of a simulated robot hand, and to perform
the grasping of different objects controlling power, tripodal and
ulnar grasps on a real robot hand. The advancements offered
for control purposes by the proposed method are related to the
fact that complex training procedures can be avoided. Indeed,
labels-trainset synchronization procedures, which are necessary
in state-of-the-art supervised regression approaches, introduce
complications related to the tiring/frustration of the users and to
the fact that a perfectly synchronized labelling of physiological
data is not possible in practice even with very complex instru-
mentation and procedures. This makes, de facto, the training
procedure of supervised approaches difficult to be correctly per-
formed in real scenarios, therefore playing a role in the very well
known problem of degradation of performances and unreliability
of sEMG-based control of robot hands. The proposed soft-DTW
NN goes in the direction of the possibility of improving control
performance by avoiding complex training procedures, as it
is also attempted by state-of-the-art unsupervised regression
approaches, but with the additional capability of nonlinear fitting
by means of a minimally-supervised approach. Future investi-
gations will regard the improvement of the NN architecture for
enhanced computational efficiency, improved convergence of
the NN training algorithm and better performance. We will also
consider the usage of deep learning architectures for the increase
of the set of grasp types controllable on the robot hand.
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