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A High-Order Scheme for Image Segmentation via a

modified Level-Set method

Maurizio Falcone∗ Giulio Paolucci∗ Silvia Tozza†

January 7, 2020

Abstract

In this paper we propose a high-order accurate scheme for image segmentation based on
the level-set method. In this approach, the curve evolution is described as the 0-level set of a
representation function but we modify the velocity that drives the curve to the boundary of the
object in order to obtain a new velocity with additional properties that are extremely useful to
develop a more stable high-order approximation with a small additional cost. The approximation
scheme proposed here is the first 2D version of an adaptive “filtered” scheme recently introduced
and analyzed by the authors in 1D. This approach is interesting since the implementation of
the filtered scheme is rather efficient and easy. The scheme combines two building blocks (a
monotone scheme and a high-order scheme) via a filter function and smoothness indicators that
allow to detect the regularity of the approximate solution adapting the scheme in an automatic
way. Some numerical tests on synthetic and real images confirm the accuracy of the proposed
method and the advantages given by the new velocity.

Keywords: Image segmentation, level-set method, Hamilton-Jacobi equations, filtered
scheme, smoothness indicators.

AMS subject classifications: 68U10, 35F21, 35Q68, 65M06, 65M25

1 Introduction

The Level-Set (LS) method has been introduced by Osher and Sethian in the 1980s [35, 31] and
then used to deal with several applications, e.g. fronts propagation, computer vision, computa-
tional fluids dynamics (see the monographs by Sethian [36] and by Osher and Fedkiw [30] for
several interesting examples). This method is nowadays very popular for its simplicity and for
its capability to deal with topological changes. In fact, the main advantage of the LS method is
the possibility to easily describe time-varying objects, follow shapes that change topology, for
example when a shape splits in two, develops holes, or the reverse of these operations. For the
image segmentation problem the application of the LS method is based on the evolution of a
curve according to a normal velocity based on the gray-levels of the image, typically the curve
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(e-mail:falcone@mat.uniroma1.it, paolucci@mat.uniroma1.it)
†Istituto Nazionale di Alta Matematica, U.O. Dipartimento di Matematica, “Sapienza” Università di Roma, P.le
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is described as the 0-level set of a representation function (or level-set function).
In R2 the LS method corresponds to define an initial closed curve Γ0 using an auxiliary function
v0 which has to change sign on Γ0. The evolution of that curve at time t is denoted by Γt and
is represented by the 0-level set of a function v, i.e.

Γt := {(x, y) : v(t, x, y) = 0}. (1)

This function v is the unique viscosity solution of the following evolutive nonlinear equation of
Hamilton-Jacobi type{

vt + c(t, x, y)|∇v| = 0, (t, x, y) ∈ (0, T )× R2,
v(0, x, y) = v0(x, y), (x, y) ∈ R2,

(2)

where ∇v := (vx, vy) denotes the spatial gradient of v. Usually, the velocity c(t, x, y) does not
change sign during the evolution and the orientation depends on the type of evolution (outward
for an expansion and inward for a shrinking). Typically v0 must be a proper representation of
the initial front Γ0, satisfying

v0(x, y) < 0, (x, y) ∈ Ω0,
v0(x, y) = 0, (x, y) ∈ Γ0,
v0(x, y) > 0, (x, y) ∈ R2 \ Ω0,

(3)

where Ω0 is the region delimited by Γ0 (or the reverse inequalities).
The LS method can handle velocities also depending on physical quantities in order to describe
several phenomena. Typical examples are:

a) c(t, x, y), isotropic growth with time varying velocity

b) c(t, x, y, η), anisotropic growth, dependent on normal direction

c) c(t, x, y, k), Mean Curvature Motion, with k(t, x, y) mean curvature to the front at time t.

The literature on the LS method is huge as well as the range of applications where the method
has been successfully applied. We refer the interested reader to [13, 28] for the isotropic case, to
[25] for the anisotropic growth and to [14, 10] for the curvature case (see also the monographs
[36, 30] and the references therein). Depending on the choice of the velocity, the front evolution
will be described by first or second order partial differential equations, e.g. case c) gives rise
to a degenerate second order equation. Here we limit ourself to first order problems (2) and
velocities which depend only on time and position and we consider a velocity sign constant in
time since this is the more relevant case for image segmentation (a change in sign is relevant for
dislocations in material science and has been studied in [9, 12]).
To set our contribution into perspective, let us mention that the segmentation problem has
been solved by various techniques which mainly rely on two different approaches: variational
methods and active contour methods. For the first approach the interested reader can look at
[8, 7] and the references therein. For the link between the two classes of methods, see [14]. To
have an idea of other segmentation methods, we refer the reader to the surveys [40, 11] and
to the papers [16, 38] for the so called “balloon model” first introduced in [15]. This method
is based on the introduction of a potential giving a driving force to the segmentation process
and typically leads to second order partial differential equations that are at present outside the
reach of the filtered scheme proposed in this paper. For high-order Runge-Kutta methods in the
framework of image segmentation we refer to [34]. As already said, we will apply the level set
method based on (2) looking for an accurate numerical method. High-order methods have been
proposed for (2) and most of them are based on non oscillatory local interpolation techniques
that allow to avoid spurious oscillations around discontinuities of the solution and/or jumps in
the gradient. These techniques were originally developed for conservation laws (see the seminal
paper [21] and the references therein), the research activity on essentially non oscillatory (ENO)
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methods has been rather effective and a number of improvements have been proposed in e.g.
[27, 24, 3] so that now ENO and Weighted ENO (WENO) techniques are rather popular in many
applications (see [39] for a recent survey). We should also mention that later on these techniques
were successfully applied to the numerical solution of Hamilton-Jacobi equations [32] opening
the way to other applications. The reader interested in image processing will find an application
to image compression in [1, 2] and an application to image segmentation in [37]. However, a
general convergence theorem for ENO/WENO schemes is still missing and their application is
a rather delicate issue. These limitations have motivated further investigations and a new class
of high-order methods for evolutive Hamilton-Jacobi equations have been proposed looking for
a different approach based on “filtered schemes” introduced in this framework by Lions and
Souganidis [26] (it is important to note that the name does not refer to filtering a noise as
is common in the imaging community but rather to the presence of a filter function as we
will explain later). The class of filtered schemes is based on a simple coupling of a monotone
scheme with a high-order scheme. Monotone schemes are convergent to the weak (viscosity)
solution but they are known to be at most first order accurate, whereas high-order schemes
gives a higher accuracy but in general are not stable. The crucial point is the coupling between
the two schemes which is obtained via a filter function that selects which scheme has to be
applied at a node of the grid in order to guarantee (under appropriate assumptions) a global
convergence. The construction of these schemes is rather simple as explained by Oberman and
Salvador [29] because one can couple various numerical methods and leave the filter function
deciding the switch between the two schemes. A general convergence result has been proved by
Bokanowski, Falcone and Sahu in [5] and recently improved by Falcone, Paolucci and Tozza [18]
with an adaptive and automatic choice of the parameter governing the switch. Note that the
adaptation of the parameter depends on some regularity indicators in every cell, these indicators
are computed at each iteration and this guarantees convergence. Some contributions to extend
filtered schemes to second order problems can be found in [20] for the stationary case and in [6]
for the evolutive case and financial applications.

Our contribution The contribution of this paper is twofold: from a theoretical point of
view, we propose a modified velocity for the segmentation problem in the level-set approach.
This new velocity is important (and necessary) for the numerical approximation of high-order
schemes, like the filtered scheme considered here and its properties will allow to avoid the re-
initialization procedure used e.g. in [28]. We also improve the accuracy of the method by
applying an adaptive high-order filtered scheme to the segmentation problem. This requires
a 2D extension of the scheme proposed in 1D in [19], for which convergence has been proved
under rather general assumptions in [18], thanks to the definition of new full 2D smoothness
coefficients (see Sect. 3). We will show that this choice is competitive with respect to other high-
order schemes, as the WENO scheme, in terms of accuracy and computational cost, analyzing
several experiments. This contribution is more efficient in terms of CPU time and is interesting
from a theoretical point of view since a precise convergence result for WENO scheme is still
missing.

Paper organization The paper is organized as follows: In Sect. 2, we give the idea behind
the new definition of the velocity function, with details on its construction and explaining why it
is so important to introduce it when applying high-order approximation schemes. In Sect. 3, we
briefly present the Adaptive Filtered (AF) scheme and recall some of its basic elements. In Sect.
4, we give some information on the implementation and we give a sketch of the Algorithm 1 for
the solution of the segmentation problem via the new AF scheme. Finally, the performances
of this new method for the segmentation problem are illustrated in Sect. 5 where we compare
it with a classical monotone scheme (first order accurate) and another high-order scheme (the
WENO scheme) on a series of virtual and real images presenting a detailed error analysis of the
numerical experiments.
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2 Image segmentation via a modified LS method

The boundaries of one (or more) object(s) inside a given image are characterized by an abrupt
change of the intensity values I(x, y) of the image, so that the magnitude of |∇I(x, y)| can be
used as an indication of the edges. Let us assume that ∇I exists at least almost everywhere,
the definition of the velocity c(x, y) in (2) plays a crucial role and must be defined in a proper
way in order to guarantee that the curve evolution is close to 0 when the front is close to an
edge, this will stop the evolution. The normal velocity will be positive or negative depending
on the case, expanding or shrinking, respectively, and if the velocity is just given in term of
I it will not change sign during the evolution, as it could happen when the velocity depends
on other geometrical properties of the curve (e.g. the curvature). We will focus on velocities
which ignore the curvature since the numerical approach we present here is well adapted to first
order evolutive Hamilton-Jacobi equations (the extension to second order problems goes beyond
the scopes of this paper). Note that, in order to reduce the noise, several methods have been
proposed in the literature. A very simple one is to use the convolution with a Gaussian kernel.
This can be obtained by evolving the original function I of the gray levels according to the heat
equation for a short time interval (see Sect. 4 for more details). Due to the regularizing effect
of the heat equation this also guarantees that ∇I exists.
Several definitions of the velocity function c(x, y) have been proposed in literature. A typical
example is

c1(x, y) =
1

(1 + |∇(G ∗ I(x, y))|µ)
, µ ≥ 1, (4)

where µ is used to give more weight to the changes in the gradient, if necessary. In [13] the
authors proposed that velocity with µ = 2, and in [28] with µ = 1. According to this definition,
the velocity takes values in [0, 1] and has values that are close to zero at points where the image
gradient is high and equal to 1 where I is constant.
Another possible choice has been proposed in [28] and has the form

c2(x, y) = 1− |∇(G ∗ I(x, y))| −m
M −m

, (5)

where m and M are respectively the minimum and the maximum values of |∇(G ∗ I(x, y))|.
This velocity has similar properties with respect to (4) and takes values in [0, 1] but is close to
0 if the magnitude of the image gradient is close to its maximal value, and equal to 1 otherwise.
It is clear that both definitions have the desired properties, but with slightly different features.
More precisely, in the first case the velocity depends more heavily on the changes in the magni-
tude of the gradient, allowing for an easier detection of the edges but possibly producing false
edges inside the object (e.g. when specular effects are present in the image). The velocity (5) is
smoother inside the objects, being less dependent on the relative changes in the gradient, but
might present some problems in the detection of all the edges if at least one of those is “more
marked”.

2.1 Extension of the velocity function

The edge-stopping function which is defined choosing one of the above mentioned velocities, has
a physical meaning only on the front Γt since it was designed precisely to force the 0-level set
to stop close to the edges. As it has been observed in [28], its meaning does not come from
the geometry of v but only from the configuration of the front Γt. Using one of the classical
velocity functions introduced before, as it will be clarified by the numerical tests in Sect. 5,
high-order schemes produce unstable results since the numerical approximation of v can start
to produce spurious oscillations near the edges where the front should stop. This problem can
be solved by adding a limiter as in [5] but here we present a different technique that avoids the
use of a limiter and adapts automatically the scheme according to the regularity of the solution
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in order to produce more accurate results. To this end, we need to extend the image-based
velocity function c(x, y) to all the level sets of the representation v in order to give a physical
meaning to the speed used in the whole domain.

Following some of the ideas discussed in [28], we want to extend in a simple way the velocity
to the whole domain. Our approach exploits the choice of the initial condition v0 (which is free)
and allows to avoid all the heavy computations required by the numerical approach solution
proposed by the authors in [28]. The modification has an interesting interpretation in terms of
the method of characteristics, as we will see later in this section, and allows for stable numerical
results. Thus, recalling their approach, the first property that the velocity has to satisfy is:

Property 2.1. Any external (image-based) speed function that is used in the equation of motion
written for the function v should not cause the level sets to collide and cross each other during
the evolutionary process.

To present the main idea, let us consider the signed distance to the initial 0-level set as the
initial representation function. This is the classical choice

v0(x, y) =

{
−dist {(x, y),Γ0} in Ω0

dist {(x, y),Γ0} outside Ω0
(6)

where Ω0 is the internal region delimited by Γ0. Therefore, with this choice we can define the
velocity extension as follows:

Property 2.2. The value of the speed function c(x, y) at a point P lying on a level set {v = C}
is exactly the value of c(x, y) at a point Q, such that the point Q is a distance C away from P
and lies on the level set {v = 0}.
Note that the point Q is uniquely determined whenever the normal direction in P is well defined.
In fact, Q = P − c(x, y)η(P ), where η is the outgoing normal and this will provide a definition
also when the level sets are non convex. To develop a formal argument we will assume that the
normal is sufficiently regular.
In order to compute the point Q on the 0-level set associated to each point P of any level set, the
authors introduce in [28] on pages 162-164 a neighborhood of the 0-level set called Narrow-Band.
They fix the width δ of the band and the related number of iterations l needed for the 0-level set
to reach the boundary of the narrow-band (this is done by the procedure explained at page 164 of
[20]). This procedure forces to modify the representation function since the solution is updated
only inside the band and a reinitialization step becomes strictly necessary in order to restore
the meaning of the distance function. Quoting from their paper, such procedure either requires
at least O(N3) computations for a grid of N points in each direction or requires to compute
the solution of an associated stationary eikonal equation. In order to reduce the computational
complexity, the method proposed here is based on a direct assignment of the associated point on
the 0-level set, which requires only O(N2) operations to compute the modified velocity at each
iteration, and greatly simplifies the problem. Moreover, it allows for the use of representation
functions (i.e. initial conditions) even more regular than the signed distance function. The idea
is straightforward and is based on the fact that the evolution is oriented in the normal direction
to the front. If the reciprocal position of the level sets is also known (that is why we must choose
wisely the initial condition) and we make all the points in the normal direction to the 0-level set
evolve according to the same law it is reasonable to expect that all such points will keep their
relative distance unchanged as time flows.
To illustrate and motivate our modification, let us still consider the distance to Γ0 (6) as initial
condition and let us consider the shrinking case as example. Then, by construction, all the
C-level sets are at a distance C from the 0-level set, as stated by Property 2.2. Hence, if we
consider a generic point (xc, yc) on a C-level set, then it is reasonable to assume that the closest
point on Γ0 should be

(x0, y0) = (xc, yc)− v(t, xc, yc)
∇v(t, xc, yc)

|∇v(t, xc, yc)|
. (7)
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Therefore, it seems natural to define the extended velocity c̃(x, y) as

c̃(x, y, v, vx, vy) = c

(
x− v vx

|∇v|
, y − v vy

|∇v|

)
, (8)

which coincides with c(x, y) on the 0-level set, as it is needed. The same approach can be applied
as long as the initial distance between the level sets is known. In that case, if we want higher
regularity to the evolving surface, which would be preferable in the case of high-order schemes
such as those we use in the numerical tests, we can define an appropriate initial condition, for
example, by simply rotating a regular function in one space dimension. More precisely, let us
consider a regular function v0 : R+ → R such that v0(r0) = 0, where r0 is the radius of the
initial circle Γ0 (e.g. the right branch of a parabola centered in the origin), and let us define
v0(x, y) rotating its profile, that is

v0(x, y) = v0

(√
x2 + y2

)
. (9)

Then, it is clear that the C-level sets of v0 are located at a distance

d(C) := v−1
0 (C)− r0, with v−1

0 (C) ≥ 0, (10)

from the 0-level set and, according to our previous remarks, they should keep this property as
time evolves. Consequently, also in this case we can define

c̃(x, y, v, vx, vy) = c

(
x− d(v)

vx
|∇v|

, y − d(v)
vy
|∇v|

)
. (11)

More details on the function d(v) will be given in Sect. 2.2. For simplicity, in the last construc-
tion we assumed the representation function to be centered in the origin, but it is straightforward
to extend the same procedure to more general situations. Note also that if we have only one
object to be segmented (or we are considering the shrinking from the frame of the picture) we
can always use a representation function centered in the origin since we can choose freely the
domain of integration, given by the pixels of the image.

2.2 Motivations of the new velocity function

The modification of the velocity c(x, y) into c̃(x, y, v, vx, vy) defined in (11) with d(v) = 0 if
v = 0, is to follow the evolution of the 0-level set and then to define the evolution on the other
level sets accordingly. This allows to give a geometrical interpretation of the new velocity and
to establish some properties that will also guarantee existence and uniqueness for the first order
evolutive problem. The new velocity can be seen as a characteristic based velocity. As a first
step let us analyze the characteristics of the equation, in these computations we assume that
we always have the necessary regularity. In particular, we assume v ∈ C2(Ω) (or at least C2 in
space and C1 in time) and c(x, y) ∈ C1(Ω). We introduce the notations of the vectors z := (x, y)
and p := (p1, p2) = (vx, vy) that will be used only in this section. Using these notations, the
Hamiltonian in our case can be written as

H(z, v, p) = c̃(z, v, p)|p|. (12)

Let us introduce the method of characteristics, writing the usual system ż(s) = ∇pH
v̇(s) = ∇pH · p−H
ṗ(s) = −∇H −Hvp,

(13)

where ḟ , f = z, v, p denotes the derivative with respect to the variable s, ∇pH the gradient
with respect to p, Hv the partial derivative with respect to the (scalar) value v, and ∇H the
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usual spatial gradient of H already introduced in Sect. 1. In our case, defining for brevity the
point (ξ, ζ) := (x− d(v) p1

|p| , y − d(v) p2

|p| ), we obtain

∂H

∂p1
=
∂c̃

∂p1
|p|+ c̃

∂|p|
∂p1

(14)

=

(
∂c

∂ξ
· ∂ξ
∂p1

+
∂c

∂ζ
· ∂ζ
∂p1

)
|p|+ c̃

p1

|p|

=− d(v)
∂c

∂ξ

 |p| − p2
1

|p|

|p|2

 |p| − d(v)
∂c

∂ζ

(
−p1p2

|p|3

)
|p|+ c̃

p1

|p|

=− d(v)
∂c

∂ξ

p2
2

|p|2
+ d(v)

∂c

∂ζ

p1p2

|p|2
+ c̃

p1

|p|
,

and analogously ∂H
∂p2

, so that we obtain

∇pH =

 d(v)p2

|p|2

(
p1

∂c
∂ζ − p2

∂c
∂ξ

)
+ c̃ p1

|p|
d(v)p1

|p|2

(
p2

∂c
∂ξ − p1

∂c
∂ζ

)
+ c̃ p2

|p|

 that implies ∇pH · p = c̃(z, v, p)|p|. (15)

Therefore, the system (13) becomes in our case the following: ż(s) = ∇pH
v̇(s) = c̃(z, v, p)|p| − c̃(z, v, p)|p| = 0
ṗ(s) = −∇c̃(z, v, p)|p|+ d′(v)∇c̃(z, v, p)|p|2 = ∇c̃(z, v, p)|p|(d′(v)|p| − 1),

(16)

where d′(v) denotes the derivative of the distance d with respect to the value v.
Now, choosing d′(v) such that

d′(v) = |p|−1, (17)

we have the final system  ż(s) = ∇pH,
v̇(s) = 0,
ṗ(s) = 0,

(18)

which states that, as long as the function c̃ remains smooth enough ( ∂c∂ξ ≈ 0 and ∂c
∂ζ ≈ 0), the

characteristics are basically directed in the normal direction and along them both the height
and the gradient are preserved. Looking at the third relation of (18) and at the choice (17),
since p(s) ≡ p(0) = ∇v0 along the characteristics, we can choose simply

d′(v) = |∇v0|−1, (19)

which is the trivial case with the function d(v) = v and also for d(v) given by the previous
definition (10). In fact, using the inverse function theorem, we have

d′(v) =
d

dv

(
v−1

0 (v)
)

=
1

v′0(w)
, (20)

with w such that v0(w) = v. Moreover, recalling the definition (9), we can compute

|∇v0(x, y)| =
∣∣∣∇v0

(√
x2 + y2

)∣∣∣ (21)

=

∣∣∣∣∣∣
v′0

(√
x2 + y2

)
x√

x2 + y2
,
v′0

(√
x2 + y2

)
y√

x2 + y2

∣∣∣∣∣∣
=
v′0

(√
x2 + y2

)
√
x2 + y2

√
x2 + y2 = v′0

(√
x2 + y2

)
,
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and then it is enough to consider (x, y) such that w =
√
x2 + y2. From a numerical point of

view, we compute the function d(v) analytically, by using (19) that exploits our knowledge of
the initial condition v0, e.g. given by (9). Thanks to the previous computations, we reached
a good understanding of the nature of the evolution given by (2)-(11), but we still have not
justified the main motivation that led us to define (11), that is to make all the level sets of
v evolve according to the same law. More precisely, we have to show that, if we consider the
evolution of two points on the same characteristic but on two different level sets, say the 0-level
set z0(s) and a generic level set z`(s), then their relative distance (along the characteristic) does
not change during the evolution. This fact would imply that, if we choose the level sets of v0 to
be such that

z0(0) = z`(0)− d(v0(z`))
∇v0(z`)

|∇v0(z`)|
, (22)

then the points z(s) := z`(s) − d(v(z`)) p(z
`)

|p(zl)| are always on the 0-level set of v. In order to

prove this last statement, let us proceed by a simple differentiation, dropping the dependence
on z` for brevity,

ż(s) =ż`(s)− d

ds

(
d(v)

p

|p|

)
(23)

=ż`(s)−
[
d′(v)v̇(s)

p

|p|
+
d(v)

|p|2

(
ṗ(s)|p| − d

ds
(|p(s)|)p

)]
.

Recalling the relations in the system (18) with respect to v̇(s) and ṗ(s), we can write

ż(s) =ż`(s) +
d(v)

|p|2

(
p · ṗ(s)
|p|

)
p (24)

=ż`(s).

This calculation shows that the points z(s) and z`(s) evolve according to the same law along
characteristics. Note that if (22) holds then z(s) ≡ z0(s) till the characteristics do not cross. In
fact, computing the total derivative with respect to s, we have

d

ds
v(s, z(s)) = vs + vxż(s) = vs + vxż

`(s) =
d

ds
v(s, z`(s)) = 0, (25)

since the points of z`(s) are on the same level set, and so are those of z(s), as we wanted. This

directly implies that the points z :=
(
z − d(v) ∇v|∇v|

)
are on the 0-level set of v as long as the

gradient is preserved.
In order to reduce the computational cost and to simplify the implementation, as will be better
explained in Sect. 4, we decided to split the computation of the Hamiltonian into two steps.
First we compute the points z and then we update the numerical solution of the full problem
(2) with the velocity (11) via the following simplified problem with isotropic velocity

vt + c(z)|∇v| = 0, (t, x, y) ∈ (tn, tn+1)× R2, (26)

where, as usual, tn = t0 + n∆t, and ∆t is the time step. Using this procedure the dependencies
on the gradient and on the value of v are frozen at every iteration, leaving just an explicit
dependence on the variable t. This is why we consider velocities depending only on space
variables when defining the numerical schemes.
Let the original velocity c(x, y) be Lipschitz continuous (this is the classical assumption) and
let us denote by Lc its Lipschitz constant. We conclude showing that our modified velocity
c̃ is still Lipschitz continuous. This point is important to guarantee existence and uniqueness
of the characteristics and of the viscosity solution for the evolutive problem (2) driven by the
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new velocity. Let z = (x, y) and z′ = (x′, y′) be two points in the plane and z and z′ the
corresponding points used in the definition of the new velocity c̃. Provided that the solution
and the normal vector are Lipschitz continuous, we have

|c(z)− c(z′)| =

∣∣∣∣c(z − d(v(z))
∇v(z)

|∇v(z)|

)
− c

(
z′ − d(v(z′))

∇v(z′)

|∇v(z′)|

)∣∣∣∣
≤ Lc (|z − z′|+ |d(v(z′))η(z′)− d(v(z))η(z)|) (27)

≤ Lc (|z − z′|+ |d(v(z′))− d(v(z))||η(z′)|+ |d(v(z))||η(z′)− η(z)|)
≤ Lc(1 + C1 + C2)|z′ − z|

where η represents the normal unitary vector at the point and C1, C2 are two appropriate
constants (remember that the distance from the level set stays bounded during the evolution).

3 The Adaptive Filtered Scheme

In this section we will introduce and illustrate the AF scheme we will use to approximate the
viscosity solution of the problem (2). It is important to note that the name does not refer to
filtering a noise as is common in the imaging community but rather to the presence of a filter
function as we will explain later in this section. For more details on the AF scheme, see [19].
We assume that the Hamiltonian H and the initial data v0 are Lipschitz continuous functions
in order to ensure the existence and uniqueness of the viscosity solution [17]. For a detailed
presentation of uniqueness and existence results for viscosity solutions, we refer the reader to
[17] and [4].

Now, let us define a uniform grid in space (xj , yi) = (j∆x, i∆y), j,i ∈ Z, and in time
tn = t0 + n∆t, n ∈ [0, NT ], with (NT − 1)∆t < T ≤ NT∆t. Then, we compute the numerical
approximation un+1

i,j = u(tn+1, xj , yi) with the simple formula

un+1
i,j = SAF (un)i,j := SM (un)i,j + φni,jε

n∆tF

(
SA(un)i,j − SM (un)i,j

εn∆t

)
, (28)

where SM and SA are respectively the monotone and the high-order scheme dependent on both
space variables, F : R→ R is the filter function needed to switch between the two schemes, εn

is the switching parameter at time tn, and φni,j is the smoothness indicator function at the node
(xj , yi) and time tn, based on the 2D-smoothness coefficients defined in [33] and briefly recalled
later on in this section. The AF scheme here introduced is convergent, as proven in [18]. In the
sequel the gradient components will be denoted by the usual notation (p, q) and p+, p− will be
right and left discrete derivatives with respect to x (similar notations apply to q that denotes
the discrete partial derivative with respect to y).

The two schemes composing the AF scheme can be freely chosen, provided that they satisfy
the following assumptions:
Assumptions on SM : The scheme is consistent, monotone and can be written in differenced
form

un+1
i,j = SM (un)i,j := uni,j −∆t hM

(
xj , yi, D

−
x u

n
i,j , D

+
x u

n
i,j , D

−
y u

n
i,j , D

+
y u

n
i,j

)
(29)

for a Lipschitz continuous function hM (x, y, p−, p+, q−, q+), with D±x u
n
i,j := ±u

n
i,j±1−u

n
i,j

∆x and

D±y u
n
i,j := ±u

n
i±1,j−u

n
i,j

∆y .

Assumptions on SA: The scheme has a high-order consistency and can be written in differ-
enced form

un+1
i,j = SA(un)i,j := uni,j −∆thA

(
xj , yi, D

−
k,xui,j , . . . , D

−
x u

n
i,j , D

+
x u

n
i,j , . . . , D

+
k,xu

n
i,j ,

D−k,yui,j , . . . , D
−
y u

n
i,j , D

+
y u

n
i,j , . . . , D

+
k,yu

n
i,j

)
, (30)
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for a Lipschitz continuous function hA(x, y, p−, p+, q−, q+) (in short), with

D±k,xu
n
i,j := ±

uni,j±k − uni,j
k∆x

and D±k,yu
n
i,j := ±

uni±k,j − uni,j
k∆y

.

Example 3.1. As examples of monotone schemes in differenced form satisfying the hypotheses
stated before, we can consider the simple numerical hamiltonian

hM (p−, p+, q−, q+) :=

√
max{p−,−p+, 0}2 + max{q−,−q+, 0}2 (31)

for the eikonal equation

vt +
√
v2
x + v2

y = 0, (32)

or, for more general equations also depending on the space variables, we can use the 2D-version
of the local Lax-Friedrichs hamiltonian

hM (x, y, p−, p+, q−, q+) :=H

(
x, y,

p+ + p−

2
,
q+ + q−

2

)
− αx(p−, p+)

2
(p+ − p−)− αy(q−, q+)

2
(q+ − q−), (33)

with

αx(p−, p+) := max
x,y,q,

p∈I(p−,p+)

|Hp(x, y, p, q)| , αy(q−, q+) := max
x,y,p,

q∈I(q−,q+)

|Hq(x, y, p, q)| , (34)

where I(a, b) := [min(a, b),max(a, b)]. This scheme is monotone under the restrictions ∆t
∆x ·αx+

∆t
∆y · αy ≤ 1.

Example 3.2. An example of numerical hamiltonian hA satisfying the assumptions required is
the Lax-Wendroff hamiltonian

hA(x, y,D±x u,D
±
y u) := H(x, y,Dxu,Dyu)−

∆t

2

[
Hp(x, y,Dxu,Dyu)

(
Hp(x, y,Dxu,Dyu)D2

xu+Hx(x, y,Dxu,Dyu)
)

+

+Hq(x, y,Dxu,Dyu)
(
Hq(x, y,Dxu,Dyu)D2

yu+Hy(x, y,Dxu,Dyu)
)

+

+2Hp(x, y,Dxu,Dyu)Hq(x, y,Dxu,Dyu)D2
xyu
]
, (35)

where D±x u, Dxu, D2
xu are, respectively, the usual one-sided and centered one-dimensional finite

difference approximations of the first and second derivative in the x-direction (analogously for
the y-direction), whereas for the mixed derivative we use

D2
xyui,j :=

ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4∆x∆y
. (36)

Note that the derivatives of H can be computed either analytically or by some second order
numerical approximation. In particular, to compute the derivative Hx, we can simply use

(Hx)i,j :=
H(xj+1, yi, Dxui,j , Dyui,j)−H(xj−1, yi, Dxui,j , Dyui,j)

2∆x
, (37)

and analogously for Hy.

For more details on the construction of SM and SA and other examples of possible numerical
hamiltonians, see [33, 18].

In our approach, in order to couple the two schemes, we need to define three key quantities:
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1. The filter function F, which must satisfy

(a) F (r) ≈ r for |r| ≤ 1 so that if |SA − SM | ≤ ∆tεn and φni,j = 1⇒ SAF ≈ SA,

(b) F (r) = 0 for |r| > 1 so that if |SA − SM | > ∆tεn or φni,j = 0⇒ SAF = SM .

Several choices for F are possible, different for regularity properties. In this paper, we will
consider the discontinuous filter already used in [5] and defined as follows:

F (r) :=

{
r if |r| ≤ 1
0 otherwise,

(38)

which is clearly discontinuous at r = −1, 1 and satisfies trivially the two required proper-
ties.

2. If we want the scheme (28) to switch to the high-order scheme when some regularity is
detected, we have to choose εn such that∣∣∣∣SA(vn)i,j − SM (vn)i,j

εn∆t

∣∣∣∣ =

∣∣∣∣hA(·, ·)− hM (·, ·)
εn

∣∣∣∣ ≤ 1, for (∆t,∆x,∆y)→ 0, (39)

in the region of regularity at time tn, that is

Rn :=
{

(xj , yi) : φni,j = 1
}
. (40)

Proceeding by Taylor expansion for the monotone and the high-order Hamiltonians, by
(39) we arrive to a lower bound for εn. The simplest numerical approximation of that
lower bound is the following

εn = max
(xj ,yi)∈Rn

K

∣∣∣∣∆t2 [
Hp

(
Hx +HpD

2
xu

n
)

+Hq

(
Hy +HqD

2
yu
n
)

+ 2HpHqD
2
xyu

n)
]

+(
h̃Mp+ − h̃Mp−

)
+
(
h̃Mq+ − h̃Mq−

)∣∣∣ , (41)

in which we have used the usual notation for the gradient, i.e. (p, q) := (vx, vy) and

h̃Mp+ := hM
(
x, y,Dxu

n, D+
x u

n, Dyu
n, Dyu

n
)
−hM

(
x, y,Dxu

n, D−x u
n, Dyu

n, Dyu
n
)
. (42)

The definition of h̃Mp− , h̃
M
q+ , h̃Mq− follows from (42) in an analogous way. All the derivatives

of H are computed at (x, y,Dxu
n, Dyu

n) and the finite difference approximations around
the point (i, j), using K > 1

2 . See [33] for more details.

3. For the definition of a function φ, needed to detect the region Rn, we require

φni,j :=

{
1 if the solution un is regular in Ii,j ,
0 if Ii,j contains a point of singularity,

(43)

with Ii,j := [xj−1, xj+1] × [yi−1, yi+1]. In order to proceed with the construction, we
split the cell Ii,j into four subcells, denoted by the superscript ‘ϑ1ϑ2’, for ϑ1, ϑ2 = +,−,
according to the shift with respect to the center (xj , yi). Then, extending the classical
WENO approach proposed in [23] to multiple spatial dimensions, we measure the regularity
of the solution inside each subcell by computing the smoothness coefficients as rescaled
L2 norms of the Lagrange polynomial Pϑ1,ϑ2

k (x, y) interpolating the values of un on the
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considered stencil, that is

βk
ϑ1ϑ2 = (−1)|ϑ|

2∑
α1,α2=0

|α|≥2

∫ 0

ϑ1∆x

∫ 0

ϑ2∆y

∆x2(α1−1)∆y2(α2−1)
(
∂α1
x ∂α2

y Pϑ1ϑ2

k (x, y)
)2

dxdy

=
1

∆x∆y

[
u[2,0]

2 + u[0,2]
2 + u[1,1]

2 +
17

12

(
u[2,1]

2 + u[1,2]
2
)

+
317

720
u[2,2]

2 + u[2,0]u[2,1]

+u[0,2]u[1,2] −
1

6

(
u[2,0]u[2,2] + u[0,2]u[2,2]

)
− 1

12

(
u[2,1]u[2,2] + u[1,2]u[2,2]

)]
(44)

where |ϑ| denotes the number of ‘−’ in (ϑ1, ϑ2), for k = 0, 1. Note that we have dropped
the dependence on the time step tn for brevity and we have used the shorter notation
u[t,s] to denote the multivariate undivided difference of u of order t in x and s in y. The
previous formula can be used to obtain all the needed quantities as long as the following
ordered stencils are used to compute the undivided differences

• S−−0 = {xj−1, xj , xj+1} × {yi−1, yi, yi+1}, S−−1 = {xj , xj−1, xj−2} × {yi, yi−1, yi−2};
• S+−

0 = {xj+1, xj , xj−1} × {yi−1, yi, yi+1}, S+−
1 = {xj , xj+1, xj+2} × {yi, yi−1, yi−2};

• S++
0 = {xj+1, xj , xj−1} × {yi+1, yi, yi−1}, S++

1 = {xj , xj+1, xj+2} × {yi, yi+1, yi+2};
• S−+

0 = {xj−1, xj , xj+1} × {yi+1, yi, yi−1}, S−+
1 = {xj , xj−1, xj−2} × {yi, yi+1, yi+2}.

Since these coefficients are such that

• βk = O(∆2), with ∆ := max{∆x,∆y}, if the solution is smooth in Sk;
• βk = O(1) if there is a singularity in Sk,

according to the usual WENO procedure we weight the obtained information and focus
on the ‘inner’ stencil, denoted by the subscript ‘0’, by computing

ωϑ1ϑ2 =
αϑ1ϑ2

0

αϑ1ϑ2
0 + αϑ1ϑ2

1

, (45)

where αϑ1ϑ2

k = 1

(β
ϑ1ϑ2
k +σ∆)2

, with σ∆ = ∆x2 + ∆y2, which represents the measure of

smoothness of the solution in each subcell. Once we have computed the four indicators,
we couple the information by defining

ω = min{ω−−, ω+−, ω−+, ω++}, (46)

which, as can be shown by exploiting the properties of the coefficients βk, is such that

ωi,j =

{
O(∆4) if ρ ∈ Ii,j
1
2 +O(∆) otherwise,

(47)

where ρ is a point of discontinuity in the gradient. At this point, in order to reduce the
amplitude of the oscillations around the optimal value 1

2 in regular regions (the O(∆)
term), we use the mapping first introduced in [22] to propose a modification of the original
WENO procedure, called M-WENO, that is

ω∗ = g(ω) = 4ω

(
3

4
− 3

2
ω + ω2

)
, (48)
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which, using Taylor expansion around 1
2 , directly gives ω∗ = 1

2 +O(∆3) when the solution
is regular in Ii,j . Finally, in order to define our function φ, it is enough to take

φ(ω∗) = χ{ω∗≥M}, (49)

with M < 1
2 (e.g. M = 0.1 in the tests reported in Sect. 5), a number that can also depend

on ∆x and ∆y . For more details and other possible constructions for the definition of φ,
we refer the interested reader to [33, 18].

Remark 3.3. Choosing εn ≡ ε∆x, with ε > 0 and φni,j ≡ 1, we get the Filtered Scheme of
[5], so here we are generalizing that approach to exploit more carefully the local regularity of the
solution at every time tn and cell Ii,j.

4 Numerical implementation of the modified LS method

Before illustrating the numerical tests, let us first give some comments on the numerical schemes
composing the AF scheme adopted for the tests in Sect. 5. The main issue concerning the local
Lax-Friedrichs and the Lax-Wendroff schemes defined by (33) and (35), respectively, is the
need to compute the one-directional velocities Hp and Hq which depend also on ∂c

∂ξ and ∂c
∂ζ ,

as visible in (15). Moreover, in order to implement the local Lax-Friedrichs scheme we should
be able to compute the maximum of |Hp| (resp. |Hq|) uniformly with respect to p (resp. q),
which is a very intricate matter due to the (possible) low regularity of c̃. In fact, if we focus on
the usual behavior of c(x, y) in the proximity of a relevant edge, we can expect the derivatives
∂c
∂ξ and ∂c

∂ζ to be really big. This is not surprising since the front decelerates rapidly in the

neighborhood of an edge. In addition, in order to solve the full model (2)-(11), we should take
into account also the remaining dependence of H(x, y, v, ·, ·) when deriving the second-order Lax-
Wendroff scheme and, clearly, the formula to compute the threshold εn. Finally, concerning the
Courant-Friedrichs-Lewy (CFL) condition, it is necessary to compute max{|Hp|, |Hq|} with the
full formula (15). Consequently, λ could be excessively small due to the low regularity of c̃.
In this latter case, we would clearly need an adaptive mesh refinement technique to reduce the
computational cost.

In order to avoid most of these complications in the numerical implementation, we choose
to approximate the solution of the simplified problem (26), adjusting the velocity c̃ according
to (11) at each time step. Using the simplified problem (26), we can use the simple relation

max
p

max
q
|Hp(·, p, q)| = max

p
|Hp(·, p, 0)|, (50)

avoiding to take the maximums over all the possible values of p and q, which is instead required
for the resolution of the full problem (2)-(11) with anisotropic velocity c̃. Analogous comment
holds for Hq. Lastly, from the numerical point of view, the use of this simplification brings
another fundamental consequence: when we apply the numerical schemes to solve (26), we are
considering, formally, a problem with bounded velocities max{|Hp|, |Hq|} ≤ 1. This implies
that we can choose the following CFL condition:

λ := max

{
∆t

∆x
,

∆t

∆y

}
≤ 1

2
max{|Hp|−1, |Hq|−1}, (51)

using the relation (50), which is a less restrictive condition with respect to the original one
coming from the full problem (2)-(11).

In the following, we will use the same notations introduced in Sect. 3, except for the number
of time steps NT , which will be replaced by the total number of iterations Ni used by the scheme,
since now we are looking for an asymptotic solution (in some stationary sense). The maximum
number of iterations, which is fixed at the beginning of the procedure, will be denoted by Nmax.
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Let us give some details on the precise numerical implementation, commenting the main
procedures involved in the (sketched) Algorithm 1.

Algorithm 1 Segmentation via the LS Method

Input: µ, Kreg, tol, Nmax, I, u0
E0 = 1, n = 0
regularize the matrix I (apply the Gaussian filter)
compute the velocity matrix c using (4) or (5)
store the position of the front in the matrix F 0

while (En ≥ tol) and (n < Nmax) do
Step 1: compute the modified velocity matrix c̃n using (11)
Step 2: update the solution un → un+1

n = n+ 1
Step 3: store the front Fn

compute the error En

Ni = n
Output: Ni, u

Ni .

Let us set the parameters of the simulation, which are the power µ in (4), the number of
iterations Kreg of the heat equation for the Gaussian filter, the tolerance tol > 0 of the stopping
criterion, the amplitude of the pixels (∆x,∆y) and, subsequently, the time step ∆t according
to the CFL condition (51).

Then, at each iteration n = 0, . . . , Ni, which has to be interpreted in the sense “until
convergence” (note thatNi is not known a priori, but depends on the stopping criterion described
in Step 3 and can be equal to Nmax in case of not convergence of the scheme), we repeat the
following steps.
Step 1. For i = 0, · · ·Ny, j = 0, · · · , Nx, with (Nx + 1) × (Ny + 1) the size of the input image,
we precompute the matrix c̃(xj , yi, ui,j , Dxui,j , Dyui,j) at the beginning of each iteration using
central finite difference approximations for the first order derivatives Dxui,j and Dyui,j . Note
that the quantities only depend on (i, j) also through u. Clearly, this method is valid only as
long as the representation function u remains smooth at all the level sets, and should be justified
in the case of singular edges (although we will not pursue this precise matter). Moreover, in
general the point

(xju , yiu) :=

xj − d(ui,j)
Dxui,j√

(Dxui,j)
2

+ (Dyui,j)
2
, yi − d(ui,j)

Dxui,j√
(Dxui,j)

2
+ (Dyui,j)

2


(52)

is not a point of the grid (xj , yi).
To reconstruct the correct value (or at least a reasonable approximation) there exist different
possible implementations. For example, a simple bilinear reconstruction from the neighboring
values

Nu :=
{(
xbjuc, ybiuc

)
,
(
xdjue, ydiue

)
,
(
xdjue, ybiuc

)
,
(
xbjuc, ydiue

)}
, (53)

where we have used the notation

djue := j −
⌈
xju − xj

∆x

⌉
and biuc := i−

⌊
yiu − yi

∆y

⌋
, (54)

with the other cases following an analogous definition. Another possibility, which we have used
in the numerical tests since it seems to give nicer results in terms of the shape of the approximate
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representation u, consists in taking as (xju , yiu) the point such that

|uiu,ju | := min
(xj ,yi)∈Nu

|ui,j |. (55)

Note that this construction is well defined only if |∇ui,j | 6= 0. Therefore, we define the updated
velocity matrix as

c̃ni,j :=

{
ciu,ju if |∇uni,j | 6= 0,
ci,j otherwise,

(56)

and we use c̃n as an isotropic velocity in the next step.
Step 2. We approximate the problem (26) using the AF scheme (28), with the local Lax-
Friedrichs scheme (33) as SM and the Lax-Wendroff scheme (35) as SA. From now on, we will
refer to this AF implemented scheme with the acronym AF-LW.
We add homogeneous Neumann boundary conditions to the problem (26) in all our experiments
in order to not alter the average intensity of the image.
Step 3. In this last step, we describe how approximating the front Γt. Since Γt is a curve, it
is composed by points that are not all grid points belonging to our mesh. Hence, in order to
approximate the position of the front at each time step t, we consider a neighborhood θδ of the
front Γt of radius δ = max{∆x,∆y}. In this way, stopping the evolution as soon as the front
ceases to move will be equivalent to require that the neighborhood θδ ceases to move. In order
to apply that procedure, at each iteration n we store the values of the points (xj , yi) such that
uni,j changes sign in a matrix Fni,j (we use the closest points on the grid, that are (i, j ± 1) and
(i± 1, j)), and set Fni,j = 0 otherwise. In this way we automatically store the disposition of the
front with an error of order δ = max{∆x,∆y}, i.e. we approximate the position of the front, as
desired.
We will continue to do that at each iteration until the matrix F at two consecutive iterations
will be “close enough”. For this reason, we consider two stopping rules:

E∞ := ||un+1 − un||L∞(θδ) = max
i,j
|Fni,j − Fn−1

i,j | < τ, (57)

where τ > 0 is the prescribed tolerance a priori chosen,

E1 := ||un+1 − un||L1(θδ) = ∆x∆y
∑
i,j

|Fni,j − Fn−1
i,j | < τ, (58)

where now a dependence on the discretization parameters appears.
In our implementation we use one of the two stopping rules above introduced combined with a
condition on the number of allowed iterations (i.e. n < Nmax).

5 Numerical simulations

In this section we present a series of numerical experiments on both synthetic and real images,
comparing the results obtained by the AF scheme with those obtained by the simple monotone
scheme and a high-order scheme which uses the Total Variation Diminishing (TVD) Runge-
Kutta (RK) of third order in time and the WENO scheme of second/third order in space. More
in details, for the WENO scheme we use the same efficient implementation suggested in [23],
Remark 1 on page 2130, which we extended to the 2D case, adding the improvement presented
in [2], which consists in choosing σ = ∆x2 instead of σ = 10−8 that is the value used in the
original paper [23] by Jiang and Peng. Note that we used this scheme instead of the third to
fifth order scheme used in the numerical tests of [23] for comparison reasons, otherwise it would
be not comparable by order. The first aim is to show the possible improvements of the modified
model with respect to the classical formulation. In fact, after extensive numerical simulations,
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we noticed that the classical model is not well defined when using high-order schemes, since they
can produce heavy oscillations as soon as the Lipschitz constant of the representation function
becomes too big. This effect causes the stopping rule to be practically ineffective (independently
of the norm used) in most cases particularly when using the AF scheme or the WENO scheme,
whereas the simple monotone scheme seems to give always stable results. Note that, when the
singularity develops, the representation function becomes more and more vertical as time flows.

The numerical tests illustrated in this section will compare the results also varying the
initial datum or varying the norm for the stopping rule defined in (57) and (58). Moreover, for
synthetic images, we also vary the space steps ∆x and ∆y, that we consider equal to each other
(∆x = ∆y), and, therefore, the total number of pixels.

Now, let us specify the initial condition used in each case. When the velocity is defined by
the classical model, in the expansion case (Case a) we use the paraboloid

u0(x, y) = min

{
x2 + y2 − r2,

1

2
r2

}
, (59)

where r > 0 is the radius of the initial circle and 1
2r

2 a value chosen in order to cut the surface
from above (therefore we have a flat surface at the numerical boundary),whereas in the shrinking
case (Case b) we use the truncated pyramid (with a square or rectangular base depending on
the image frame), that is

u0(x, y) = min{2(x− bx), 2(ax − x), 2(y − by), 2(ay − y),−0.2}, (60)

where [ax, bx] × [ay, by] is the frame of the image, −0.2 is the value at which we truncate the
pyramid and 2 is the steepness of the faces of the surface (the smaller the value, the less steep the
faces are). By this choice we use a slightly more regular front with respect to the discontinuous
representation that simply changes value crossing the frame of the image, still being able to
keep the whole surface outside the region occupied by the objects to segment.

For the modified velocity c̃, in the expansion case (Case a) we consider two different initial
data: the paraboloid as in (59) (Datum 1 ) or the following signed distance function (Datum 2 )

u0(x, y) = dist{(x, y),Γ1
0}, (61)

where Γ1
0 is the usual circle centered in (0, 0) with radius r = 0.5 unless otherwise stated.

Instead, for the shrinking case (Case b) we only use the signed distance function

u0(x, y) = dist{(x, y),Γ2
0}, (62)

with Γ2
0 representing the frame of the image. We summarize the different initial conditions in

Tab. 1.

Table 1: Summary of the initial conditions considered in the numerical tests.
c c̃

Expansion case u0 as Paraboloid (59) Datum 1: u0 as Paraboloid (59)
(Case a) Datum 2: u0 as Distance from Γ1

0 (61)

Shrinking case u0 as Truncated pyramid
(Case b) (or tent) (60) u0 as Distance from Γ2

0 (62)

In order to give a quantitative evaluation of the performances in addition to the qualitative
analysis, in the tables we compare the results in terms of number of iterations Ni and relative
error in pixels, defined as

P -Errrel =
|Pex − Pa|

Pex
, (63)
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where Pex and Pa are the number of pixels inside the exact and approximated boundaries of the
object(s), respectively. Note that we can compute the “exact” object only if the background is
really smooth (in the synthetic cases it is always uniform), because we usually use a comparison
with a “threshold” for the values of I(x, y) in order to select the regions occupied by the object
(exact object). Whereas, for the approximated object we will count the pixels for which ui,j ≤ 0.
Moreover, we measure the error also with a closely related quantity, that is

P -Err1 = |Pex − Pa|∆x∆y, (64)

in order to show some dependence on the discretization parameters.
If the schemes do not converge in the fixed maximum number of allowed iterations Nmax, we
will put a “−” inside the tables, in place of Ni. For all our tests, we will set Nmax = 2000.
Moreover, in case the front does not stop correctly on the boundary of the object, thus giving
an unstable and unusable result, we will put an “X” in correspondence of the errors column.
For each test, we specify all the values of the parameters involved (µ, Kreg, tol and ∆x = ∆y
or #Nodes), the norm used in the stopping rule and the chosen velocity function. For all the

numerical tests presented in this paper, we use CFL number λ = max
{

∆t
∆x ,

∆t
∆y

}
= 1

2 , K = 1

in the formula (41) for the computation of ε, and the velocity function c1 defined in (4) for
the classical model, referring to it simply as the classical c. All the numerical tests have been
implemented in language C++, with plots and computation of the errors in MATLAB. The
computer used for the simulations is a Notebook Asus F556U Intel Core i7-6500U with speed
of 2.59 GHz and 12 GB of RAM.

5.1 Synthetic tests

Let us begin by a simple synthetic example. The main goal here is to compare the behavior of
the three schemes with respect to the use of the classical velocity c and the modified one c̃, and
the performances varying the number of grid nodes.

Test 1. Rhombus For this first test, we perform the simulations only in the case of an
expansion, since the results do not vary much in the shrinking case.
The rhombus considered is defined by the equation

|x|
2

+ |y| = 3

4
, (x, y) ∈ [−2, 2]2, (65)

that produces a final front visible in Fig. 1 for each scheme using the velocity c̃. As clearly
visible, this rhombus presents some heavily marked corners, which causes some serious troubles
when using the filtered scheme or the WENO scheme for the solution of the classical model.
In fact, looking at Tab. 2, we can see that the two high-order schemes achieve convergence, in
the sense of the iterative stopping rule (57), but after having lost track of the boundary (the
front overcomes the edge of the object and then keeps expanding). This happens also varying
the number of grid nodes (from 102 to 402). On the contrary, the monotone scheme converges,
the two errors reported decrease by refining, still using the same parameters µ,Kreg and same
tolerance tol. The difficulties of the high-order schemes with the classical velocity c are cleary
visible looking at Fig. 2, in which the contour plots of the representation function obtained by
the three schemes are visible: the evolution of the level-sets for the monotone scheme expands
and finally coincides at the final time (last row on the left) with the boundary of the object.
Instead, for the two high-order schemes we can see different times in order to show well when
the oscillations on the left and right edges begin to increase causing the loss of the rhombus
boundary in the approximation. For the modified velocity c̃, the behavior of the schemes
is different, see the contour plots in Fig. 3. Note that the yellow level-set on the last row,
particularly for the WENO scheme, is not the 0-level set. The effects of the modified velocity
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Figure 1: Test 1a with Datum 1. Plots of the final front obtained by the Monotone scheme (top), the
AF-LW scheme (middle) and the WENO scheme (bottom) with velocity c̃ and the parameters reported in
Tab. 3.

on the evolution is clear comparing Figs. 2 and 3. In the first case all the level sets expand
towards the boundary of the rhombus, eventually collapsing onto each other. This gives rise
to a discontinuity around the front, which causes instabilities for high-order schemes. On the
contrary, using c̃ these schemes are stable, since the level sets remain equally spaced around the
0-level set and the representation function is still Lipschitz continuous. Looking at Tab. 3, we
can observe that the monotone scheme converges in a lower number of iterations Ni and with
lower errors with respect to the correspondent results obtained by using the classical velocity
and reported in Tab. 2. Note that we used the same parameters, tolerance and initial datum
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Figure 2: Test 1a with Datum 1. Contour plots of the representation function obtained by the Monotone
scheme (left) at Ni = 40, 80, 120 and at final time, and by the AF-LW scheme (middle) and the WENO
scheme (right) at Ni = 80, 100, 160, 220, using velocity c with #Nodes = 202.

(the paraboloid, Datum 1) for both velocities to make a fair comparison. The AF-LW scheme
converges and give always better results in terms of both errors and number of iterations with
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Figure 3: Test 1a with Datum 1. Contour plots of the representation function obtained by the Monotone
scheme (left), the AF-LW scheme (middle) and the WENO scheme (right) at Ni = 30, 60 and at final time,
using velocity c̃ with #Nodes = 202.

respect to the monotone scheme with c or c̃. Also the WENO scheme converges in a lower
number of iterations with respect to the monotone one, even if with greater errors. This is due
to the fact that the WENO scheme needs to recompute the velocity c̃, which makes the errors
accumulate (since we use Runge-Kutta of third order, we need to recompute c̃ three times).
Hence, all the three schemes benefit of the new definition of velocity and the AF-LW scheme
with c̃ gives the best performances. Regarding the speed of the schemes, looking at Tab. 4
which contains the CPU times in seconds related to the three schemes needed to obtain the
results reported in Tab. 3, the AF-LW scheme needs a longer CPU time with respect to the
monotone one, as expected. However, the AF-LW scheme is faster than the WENO scheme
and its best performances are reached in a short time, at most about 40 seconds for the last
refinement of the grid, compared to the 1028.51 seconds necessary to the WENO scheme.

A more correct analysis can be made by decreasing the tolerance tol together with the number
of nodes #Nodes. In Tabs. 5, 6, and 7 we analyze the behavior of the schemes with respect
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Table 2: Test 1a. Errors and number of iterations using L∞ norm, Datum 1 and the parameters
µ = 2, Kreg = 0, tol = 0.0005, varying the number of nodes. Best results are in bold.

c Monotone AF-LW WENO

#Nodes Ni P -Errrel P -Err1 Ni P -Errrel P -Err1 Ni P -Errrel P -Err1
102 84 0.1025 0.2321 213 X X 217 X X

202 152 0.0526 0.1172 394 X X 399 X X

402 288 0.0265 0.0593 745 X X 669 X X

Table 3: Test 1a. Errors and number of iterations using L∞ norm, Datum 1 and the parameters
µ = 2, Kreg = 0, tol = 0.0005, varying the number of nodes. Best results are in bold.

c̃ Monotone AF-LW WENO

#Nodes Ni P -Errrel P -Err1 Ni P -Errrel P -Err1 Ni P -Errrel P -Err1
102 50 0.0748 0.1694 48 0.0693 0.1568 47 0.0886 0.2008

202 100 0.0427 0.0950 96 0.0363 0.0808 96 0.0469 0.1045

402 199 0.0208 0.0466 196 0.0203 0.0454 196 0.0240 0.0537

Table 4: Test 1a. CPU times in seconds related to the Tab. 3.

#Nodes Monotone AF-LW WENO

102 0.19 0.64 4.75

202 1.35 5.61 68.38

402 9.77 40.20 1028.51

to the initial data. Looking at Tab. 5 we can note that the monotone scheme is not influenced
by the change of the initial datum in terms of number of iterations. In fact, comparing the two
columns related to Ni, only one iteration in the last row is different. With respect to the errors,
small changes are visible, with a small improvement using Datum 2 for the last two rows. The
AF-LW scheme (Tab. 6) has better performances with lower (or equal) errors and lower (or
equal) Ni when using Datum 2. For the WENO scheme (see Tab. 7) no changes are visible in
terms of Ni for all the refinements and both the initial data. In terms of errors, only a small
change in the last row is visible, with a slight preference for Datum 1. For all the schemes, the
errors decrease when we refine the grid as expected. Comparing the three tables, Tabs. 5, 6,
and 7, we can note that the AF-LW scheme get always better results in terms of number of
iterations and errors with both initial data with respect to the monotone scheme, expect for
the last refinement (#Nodes = 402) with Datum 2, in which the monotone scheme seems to be
a little bit better, due to round off errors. The WENO scheme get always the greatest errors
using both intial data, for the reasons explained before, in a number of iterations which differ
from those of the AF scheme for at most one iteration in some cases. This simple synthetic
example illustrates very well the limits of a high-order scheme like the WENO one, when some
singularities occur, and how the proposed AF scheme is able to deal with them.

5.2 Real tests

In this section we consider real images also coming from biomedical applications. Thanks to the
error formulas (63) and (64), we can give a sort of quantitative evaluation of the performances
of the schemes in terms of “pixels error” (i.e. the number of pixels composing the area of the
object to be segmented).
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Table 5: Test 1a. Errors and number of iterations varying #Nodes (L∞ norm). Best results are
in bold.

c̃ Monotone Datum 1 Datum 2

#Nodes tol µ Kreg Ni P -Errrel P -Err1 Ni P -Errrel P -Err1
102 0.001 2 0 50 0.0748 0.1694 50 0.0776 0.1757
202 0.0005 2 0 100 0.0427 0.0950 100 0.0420 0.0935
402 0.00025 2 0 199 0.0208 0.0466 200 0.0199 0.0446

Table 6: Test 1a. Errors and number of iterations varying #Nodes (L∞ norm). Best results are
in bold.

c̃ AF-LW Datum 1 Datum 2

#Nodes tol µ Kreg Ni P -Errrel P -Err1 Ni P -Errrel P -Err1
102 0.001 2 0 48 0.0693 0.1568 47 0.0658 0.1490
202 0.0005 2 0 96 0.0363 0.0808 96 0.0363 0.0808
402 0.00025 2 0 196 0.0203 0.0454 195 0.0201 0.0450

Table 7: Test 1a. Errors and number of iterations varying #Nodes (L∞ norm). Best results are
in bold.

c̃ WENO Datum 1 Datum 2

#Nodes tol µ Kreg Ni P -Errrel P -Err1 Ni P -Errrel P -Err1
102 0.001 2 0 47 0.0886 0.2008 47 0.0886 0.2008
202 0.0005 2 0 96 0.0469 0.1045 96 0.0469 0.1045
402 0.00025 2 0 196 0.0240 0.0537 196 0.0242 0.0541

Test 2. Brain (340 × 340 pixels) The first real test focuses on a biomedical image of a
human brain. For this test, we approximate the relevant “external” boundary of the brain via
a front expansion (Case a) or a shrinking (Case b), so that we start from inside or outside as
visible in Fig. 4.

Figure 4: Test 2. From left to right: Initial front for the expansion case (Case 2a) composed by a circle of
radius r = 0.25; initial front for the shrinking case (Case 2b); mask used for the pixel errors in Case 2b.

Looking at Figs. 5 and 6, it is worth to note that the two high-order schemes recognize
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Figure 5: Test 2a with Datum 1. On the first row: plots of the final front using the monotone scheme
with tol = 0.00001, Ni = 376 (left), and with tol = 0.000005, Ni = 468 (right). Second row: plot of the
final front using the AF-LW scheme, Ni = 407 (left), and the WENO scheme, Ni = 451 (right), both with
tol = 0.00001. The four tests have been obtained using the L1 norm in the stopping criterion, with µ = 4,
Kreg = 5, and velocity c̃.

better the boundary of the object starting from two different initial datum using the same
tolerance tol = 0.00001. The differences and the best resolutions are clearly visible looking at
the central part close to the bottom of the brain figures. In fact, the monotone scheme stops too
early (see the top-left pictures in both Figs. 5 and 6). In order to get better results, a smaller
tolerance parameter is necessary for the monotone scheme, see the top-right pictures in both
the considered figures. In that case the monotone scheme can increase its resolution even if with
a higher number of iterations and in any case not more accurate than the high-order schemes.
Comparing the AF and the WENO schemes, both obtain more accurate results with a lower
number of iterations with respect to the monotone scheme. More in details, with initial Datum
1, AF scheme converges in a lower number of iterations, with Datum 2 the WENO scheme
uses less iterations to get convergence. In any case, the CPU times are really different and the
AF scheme is always much more faster than the WENO scheme (aroud 15-20 times faster),
as visible looking at Tab. 8, in which the CPU times in seconds related to the simulations of
the three schemes visible in Figs. 5-6 are reported. Clearly, the AF-LW scheme needs more
CPU time with respect to the monotone scheme, this is mainly due to the computation of the
smoothness indicators, but is still fast and competitive since it needs only one minute and half
in the worst case (to get a better result). In Case a, hence, the qualitative evaluation is enough
to understand which scheme provides the better results in a reasonable CPU time.
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Table 8: Test 2a. CPU times in seconds related to the brain tests (Figs. 5-6).

Figure Mon.(left) Mon.(right) AF-LW WENO

5 12.95 16.54 71.18 1424.18

6 9.63 20.31 91.41 1318.59

Figure 6: Test 2a with Datum 2. First row: Plots of the final front using the monotone scheme with
tol = 0.00005, Ni = 264 (left), and with tol = 0.00001, Ni = 495 (right). Second row: Plots of the final
front using the AF-LW scheme, Ni = 431 (left), and the WENO scheme, Ni = 390 (right), both with
tol = 0.00005. The four tests have been obtained using the L1 norm in the stopping criterion, with µ = 4,
Kreg = 5, and velocity c̃.

For the shrinking case, a quantitative error evaluation is needed in addition to the qualitative
one. Looking at Fig. 7, we can see that all the three schemes recognized the desired more external
boundary. Analyzing the errors reported in Tab. 9, we observe that the AF-LW scheme produces
lower values in both errors P -Errrel and P -Err1 with respect to the other schemes for both
the resolutions considered (input image size 170× 170 and 340× 340 pixels). The errors in the
second row have been computed using the mask visible in Fig. 4 on the right and are related
to Fig. 7. In that test of the brain, case b, the WENO scheme obtains errors closer to those of
the AF scheme, lower with respect to the monotone scheme for both the considered image sizes.
Comparing the CPU times with the two different resolutions, we note that with half size and
less than half time we can obtain better accuracy with respect to the P -Err1 error using the
AF-LW scheme instead of the monotone one. Comparing only the two high-order schemes, again
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the CPU times of the WENO scheme are about 11 or 20 times greater than those necessary to
the AF scheme.

Figure 7: Test 2b. Plots of the final front using the monotone scheme (left), the AF-LW scheme (middle)
and the WENO scheme (right) with µ = 5, Kreg = 3, and velocity c̃. Image size: 340× 340.

Table 9: Test 2b. Errors and number of iterations using L1 norm, c̃ and the parameters tol =
0.00005, µ = 5, Kreg = 3, varying the image size. Best results are in bold.

Monotone AF-LW WENO

Image size Ni P -Errrel P -Err1 Ni P -Errrel P -Err1 Ni P -Errrel P -Err1
170× 170 83 0.0465 0.2436 87 0.0439 0.2300 87 0.0448 0.2348

340× 340 228 0.0118 0.2476 262 0.0078 0.1628 264 0.0079 0.1648

Table 10: Test 2b. CPU times in seconds related to the brain tests (Fig. 7).

Image size Monotone AF-LW WENO

170× 170 0.80 3.75 44.10

340× 340 8.39 46.07 933.90

Test 3. Horse Chess (184 × 256 pixels) We choose the image of the horse piece in
the game of chess visible in Fig. 8 and we approximate its boundary from inside (Case a),
varying the initial datum, and outside (Case b), always using the modified model with velocity
c̃. Starting our analysis of the results from the expansion case, looking at Fig. 9 we can
note some differences between the schemes around the mouth of the horse, at the top at the
beginning of the horse’s mane, and at the bottom left, i.e. at the end of the horse’s mane, where
the monotone scheme seems to stop too early. Looking at Fig. 10, we note in addition other
differences and worse performances of the monotone scheme, due probably to the specularities
inside the image. Regarding the errors reported in Tab. 11, the WENO scheme get lower
errors with Datum 1 and tol = 0.00005, even if with a greater number of iterations with respect
to the AF scheme, whereas with tol = 0.000025 we obtain the inverse situation, i.e. the AF
scheme get lower errors but with more iterations with respect to the WENO scheme. Looking
at Tab. 12, we can note that using the initial Datum 2 the AF scheme provides always the best
performances in terms of both errors P -Errrel and P -Err1. Regarding the CPU times, Tab. 13
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Figure 8: Test 3. From left to right: Initial front for the expansion case (Case 3a) composed by a circle of
radius r = 0.5; initial front for the shrinking case (Case 3b); mask used for the pixel errors in both cases.

Figure 9: Test 3a with Datum 1. Plots of the final front using the monotone scheme, Ni = 508 (left),
the AF-LW scheme, Ni = 544 (middle), and the WENO scheme, Ni = 523 (right), with L1 norm and
tol = 0.000025, µ = 2, Kreg = 5, and velocity c̃.

Figure 10: Test 3a with Datum 2. Plots of the final front using the monotone scheme Ni = 453 (left),
the AF-LW scheme, Ni = 542 (middle), and the WENO scheme, Ni = 472 (right), with L1 norm and
tol = 0.00004, µ = 2, Kreg = 5, and velocity c̃.

shows that the WENO scheme is really slow compared to the other schemes, whereas the AF
scheme always converges in less than one minute.
Analyzing the results in the shrinking case, small differences can be noted looking at Fig. 11,
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Table 11: Test 3a. Errors and number of iterations using L1 norm, Datum 1, velocity c̃, and the
parameters µ = 2, Kreg = 5, varying the tolerance. Best results are in bold.

c̃ Monotone AF-LW WENO

tol Ni P -Errrel P -Err1 Ni P -Errrel P -Err1 Ni P -Errrel P -Err1
0.00005 433 0.0794 0.6424 396 0.0672 0.6424 432 0.0591 0.4788

0.000025 508 0.0599 0.4848 544 0.0438 0.3544 523 0.0462 0.3744

Table 12: Test 3a. Errors and number of iterations using L1 norm, Datum 2, velocity c̃, and the
parameters µ = 2, Kreg = 5, varying the tolerance. Best results are in bold.

c̃ Monotone AF-LW WENO

tol Ni P -Errrel P -Err1 Ni P -Errrel P -Err1 Ni P -Errrel P -Err1
0.00008 382 0.1031 0.8344 451 0.0640 0.5180 411 0.0684 0.5536

0.00004 453 0.0737 0.5964 542 0.0501 0.4052 472 0.0565 0.4572

Table 13: Test 3a. CPU times in seconds related to the chess horse tests (Tabs. 11-12).

Datum tol Monotone AF-LW WENO

1 0.00005 7.26 26.22 378.07

1 0.000025 8.78 42.23 462.55

2 0.00008 6.51 37.15 377.47

2 0.00004 8.02 44.16 443.66

Figure 11: Test 3b. Plots of the final front using the monotone scheme (left), the AF-LW scheme (middle)
and the WENO scheme (right) with velocity c̃, and tol = 0.00005, by using L1 norm in the stopping criterion
and parameters µ = 2, and Kreg = 3.

Table 14: Test 3b. Errors and number of iterations using L1 norm, velocity c̃ and the parameters
tol = 0.00005, µ = 2, Kreg = 3. Best results are in bold.

Monotone AF-LW WENO

Ni P -Errrel P -Err1 Ni P -Errrel P -Err1 Ni P -Errrel P -Err1
187 0.0303 0.2452 197 0.0273 0.2212 196 0.0262 0.2120
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Table 15: Test 3b. CPU times in seconds related to the horse test (Tab. 14).

Monotone AF-LW WENO

3.14 14.10 195.13

particularly between the two high-order schemes. For the monotone scheme, we note that the
final front stops just before the boundary of the object. So, also in this case, the only qualitative
analysis is not enough. A quantitative analysis is shown in Tab. 14, in which both the high-order
schemes are more accurate than the monotone scheme as expected. In this case WENO is the
most accurate scheme, having lower values in both errors, even if with a CPU time around 14
times greater than that of the AF scheme (see Tab. 15).
In order to show the effectiveness of our implementation of the modified velocity, in Fig. 12
we collected the final representations obtained by the monotone scheme. Although in the first

Figure 12: Test 3. Contour plots of the final representations using the monotone scheme with velocity c̃,
for Case a with Datum 2 (left) and for Case b (middle), and with velocity c for Case b (right).

case some new fronts arise due to the specularities inside the image, we can still recognize that
the gradient of the initial condition is preserved and that the level sets do not collide during
the evolution. In particular, in the middle image the distance function to the 0-level set is still
clearly visible. The third image is related to the results obtained by using the classical velocity
c in Case b, with the same tolerance used with c̃ and visible in Fig. 11. We note that with the
classical model oscillations appear throughout the whole horse, even if focusing on the 0-level
set the scheme performs well. A better behavior of all the level-sets can be obtained but using
a greater tolerance tol, e.g. tol = 0.0005.

Test 4. Grains (300×300 pixels) In this test we consider the shrinking front in presence
of multiple separate objects to be segmented. The final fronts obtained by the three schemes
are visible in Fig. 13, in which almost no differences are visible. Looking at the errors and
number of iterations reported in Tab. 16, we can note that the two high-order schemes are more
accurate than the first order monotone one, with a number of iterations Ni very close between
the three schemes, the lowest number is obtained by the AF scheme. In terms of errors, the
WENO scheme is the most accurate, even if with a really great CPU time as ever (see Tab.
17). We report in Fig. 14 the contour plots of the initial datum and the final representation
obtained by the AF scheme. It is rather interesting to see that, although the representation
function has a rather complex evolution and splits in various parts, the final solution is still a
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distance function to the 0-level set, now composed by different peaks each relative to a single
grain.

Figure 13: Test 4b. Plots of the final front obtained by the Monotone scheme (left), the AF-LW scheme
(middle) and the WENO scheme (right), using velocity c̃ and the parameters reported in Tab. 16.

Table 16: Test 4b. Errors and number of iterations with velocity c̃, using L1 norm in the stopping
criterion, and the parameters tol = 0.0001, µ = 2, and Kreg = 2. Best results are in bold.

Monotone AF-LW WENO

Ni P -Errrel P -Err1 Ni P -Errrel P -Err1 Ni P -Errrel P -Err1
312 0.0097 0.0316 299 0.0074 0.0240 306 0.0064 0.0208

Table 17: Test 4b. CPU times in seconds related to the grains test (Tab. 16).

Monotone AF-LW WENO

8.71 41.26 676.91

Test 5. Geometric shapes (640 × 480 pixels) In some of the previous real tests, we
have seen that with a careful tuning of the parameters in the stopping rule, the monotone scheme
can get comparable results with respect to those obtained by the high-order schemes, at least
from a visible point of view. This is not always possible, especially in more critical situations,
e.g. when the difference between the background and the objects we want to segment is less
marked, as shown in this test. In Fig. 15 we reported the initial front in red for the shrinking
case. The more difficult object to detect will be the ellipse, due to the lighter gray levels
closer to the white background. Looking at the final fronts in Fig. 16, obtained by varying
the tolerance in the stopping criterion, we can note that the AF scheme recognizes very well
the boundaries of all the objects, differently from the monotone one. In fact, if we stop too
early the schemes, with tol = 0.0005, we note that the monotone scheme still has to conclude
the recognition of the “spray” shape below on the left. But if we adopt a smaller tolerance,
e.g. tol = 0.0001 or tol = 0.00005, in order to give “more time” to the monotone scheme to
achieve all the boundaries, the scheme improves the detection of the spray shape, but loses
the boundary of the ellipse. Higher-order approximation of the evolution can clearly give more
stability, especially when the contrast is not satisfactory as in the present situation.
This numerical test clearly shows the difficulties that the monotone scheme can encounter. It
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Figure 14: Test 4b. Contour plots of the initial datum (left) and the final representations (right), using the
AF-LW scheme with velocity c̃ and the parameters reported in Tab. 16.

Figure 15: Test 5b. Initial front for the shrinking case (Case 5b).

needs a really complicated manual tuning of the parameters, and nonetheless not always gives
good and reliable results (as in this case), whereas the AF scheme overcomes this difficulty
thanks to its properties.

Test 6. Pneumonia (191×150 pixels) Finally, we conclude our numerical tests consid-
ering a Pneumonia image in the expansion case starting from an initial datum here composed
by four equal paraboloids (each defined as Datum 1) or cones (defined as Datum 2), placed as
visible in Fig. 17, with 0-level sets composed by circles of radius r = 0.125.
In this test the behavior of the three schemes is confirmed in terms of CPU time, looking at Tab.
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Figure 16: Test 5b. Plots of the final front using the monotone scheme (left), and the AF-LW scheme
varying the tolerance (tol = 0.0005, 0.0001, 0.00005) with µ = 4, Kreg = 1, and velocity c̃.

18, and in terms of accuracy, as visible in Figs. 18 and 19, where the final fronts obtained by
the high-order schemes recognize better the object starting from the two different initial data,
Datum 1 and Datum 2, respectively. In fact, in the first figure, Fig. 18, it is evident looking
at the lung on the left; in the second case, Fig. 19, it is clear especially looking at the right
lung, mostly for visualizing the better performances of the AF scheme. Moreover, comparing in
vertical the two figures, focusing on each scheme with different initial datum, we can note that
all the three schemes seems to prefer the distance function (Datum 2).
The good behavior of the AF scheme and of the modified model in the case of a merging fronts
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Figure 17: Test 6a. From left to right: Initial front composed of four separate circles of radius r = 0.125,
contour plots of the initiam data (Datum 1, and Datum 2).

Figure 18: Test 6a with Datum 1. From left to right: Plots of the final front using the monotone scheme
(Ni = 185), the AF-LW scheme (Ni = 194), and the WENO scheme (Ni = 192), with L1 norm and
tol = 0.00001, µ = 4, Kreg = 5, and velocity c̃.

Figure 19: Test 6a with Datum 2. From left to right: Plots of the final front using the monotone scheme
(Ni = 413), tol = 0.00001, the AF-LW scheme (Ni = 589) with tol = 0.00001, and the WENO scheme
(Ni = 458) with tol = 0.000012, all using L1 norm, µ = 4, Kreg = 5, and velocity c̃.

is confirmed by the contour plots of the final representations, shown in Fig. 20. Regarding the
WENO scheme (last column), some oscillations arise at some point in the evolution and increase
as time flows (see the bottom-left part of the final representation using Datum 2). This is why
a slightly greater tolerance has been used in that case to obtain the reported result.
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Figure 20: Test 6a. Contour plots of the final representations using the monotone scheme (left), the AF-LW
scheme (middle), and the WENO scheme (right). Top: Datum 1, bottom: Datum 2.

Table 18: Test 6a. CPU times in seconds related to the Pneumonia tests (Figs. 18-19).

Figure Monotone AF-LW WENO

18 1.80 8.05 83.83

19 5.01 28.91 202.373

6 Conclusions and perspectives

In this work we have proposed a new velocity function for the level-set method in order to
improve image segmentation and we have extended to 2D an adaptive filtered scheme originally
developed in 1D [18]. We have shown that the use of the new velocity function c̃ allows to get
more accurate results stabilizing high-order schemes as the AF or the WENO schemes, for which
the classical velocity introduces some instabilities destroying the convergence. Moreover, the new
velocity function can also be applied to the simple monotone scheme getting better results even
in the first order approximation and does not require the re-initialization of the front in order to
keep an accurate tracking of the 0-level set. From the numerical point of view, the AF scheme is
based on two building blocks: a monotone scheme and a high-order scheme. The filter function
allows to couple the two schemes in a rather simple way and easily switches from one scheme
to the other according to new smoothness indicators. In terms of CPU time, the AF scheme
is less expensive than the WENO scheme and offers a good option to improve the accuracy of
the monotone scheme. It is interesting to note that these two changes are rather effective for
the segmentation of synthetic and real images according to many simulations, some of them
are presented in Sect. 5. A qualitative analysis of the resulting segmentations is illustrated by
the pictures of the last section whereas a more accurate comparison of the schemes is based on
a quantitative analysis of the pixel errors. Moreover, the sensitivity of the AF scheme seems
to be rather low with respect to the presence of noise and only few steps of a linear filter are
required to obtain the necessary regularization of the gray levels of the input image I. Although
in this paper the image segmentation is obtained just using the classical first order equation, a
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possible extension to second order problems can be considered, this extension is motivated by
the inclusion of curvature terms in the evolutive equation as done in the literature. The analysis
of the adaptive filtered scheme to second order non linear equations goes beyond the scopes of
this paper and will be object of a further investigation.
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