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CLASSIFICATION OF FINITE IRREDUCIBLE
CONFORMAL MODULES FOR K}

LUCIA BAGNOLI AND FABRIZIO CASELLI

ABSTRACT. We classify the finite irreducible modules over the conformal superalgebra K by
their correspondence with finite conformal modules over the associated annihilation superal-
gebra A(K}). This is achieved by a complete classification of singular vectors in generalized
Verma modules for A(K}). We also show that morphisms between generalized Verma mod-
ules can be arranged in infinitely many bilateral complexes.

1. INTRODUCTION

Finite simple conformal superalgebras were completely classified in [13] and consist of the
following list: Curg, where g is a simple finite—dimensional Lie superalgebra, W, (n > 0),
Sn.bs S, (n>2b€eC), K,(n>0,n#4), Kj, CKg. The finite irreducible modules over
the conformal superalgebras Cur g, Ky, K; were studied in [8]. Boyallian, Kac, Liberati and
Rudakov classified all finite irreducible modules over the conformal superalgebras of type W
and S in [3]; Boyallian, Kac and Liberati classified all finite irreducible modules over the
conformal superalgebras of type K, in [1]. The classification of all finite irreducible modules
over the conformal superalgebras of type K, for n < 4, had been previously studied also
by Cheng and Lam in [11]. Finally, a classification of all finite irreducible modules over the
conformal superalgebra C K was obtained in [2] and [23] with different approaches. For n = 4
the conformal superalgebra K, is not simple and its the derived subalgebra K} is instead a
simple conformal superalgebra.

A possible strategy for studying modules over conformal superalgebras is the following.
If R is a conformal superalgebra one considers the Lie superalgebra g = A(R), called the
annihilation superalgebra of R. The annihilation superalgebra has a fundamental role since
the study of the finite modules over R is equivalent to the study of finite conformal modules
over g. Furthermore, if R is Z-graded then g is also Z-graded and one can reduce the problem
to finite Verma modules of g, i.e. induced modules Ind(F) = U(g) ®u(g-,) F', where F' is a
finite dimensional g>¢-module [18, 11]. )

This is the case for the simple conformal superalgebra K, and its annihilation superalgebra
A(K}). The main goal of this paper is therefore to classify irreducible conformal modules
for K} through the classification of all degenerate (i.e., non irreducible) finite Verma modules
for A(K}); in turn, this is equivalent to the classification of (highest weight) singular vectors
in these modules, i.e. vectors which are annihilated by A(K})~o. The final result is much
richer than in the "standard” conformal contact superalgebras K,, where, up to duality, there
is only one family of singular vectors, all of degree 1: we show that for A(K}) there are four
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2 LUCIA BAGNOLI AND FABRIZIO CASELLI

families of singular vectors of degree 1, four families of singular vectors of degree 2 and two
"exceptional” singular vectors of degree 3.

Since the classification of singular vectors in finite Verma modules is equivalent to the
classification of morphisms between such modules, we show that these morphisms can be
arranged in an infinite number of bilateral complexes in a picture (see Figure 1) which is
similar to those obtained for the exceptional linearly compact Lie superalgebras F(1,6),
E(3,6), E(3,8) and E(5,10) (see [17, 18, 19, 20, 4, 6]). In a subsequent publication we
will compute the homology of these complexes and provide an explicit construction of all
irreducible quotients.

The paper is organized as follows. In section 2 we collect all preliminaries on conformal
superalgebras which are needed, in section 3 we describe the conformal superalgebra K} and
in section 4 its annihilation superalgebra A(K}). In section 5 we show explicitly how the
conformal superalgebra K acts on a finite Verma module. In section 6 we deduce the crucial
conditions that must be satisfied by a singular vector and we show that singular vectors have
degree at most 3. Finally, section 7, 8, 9 contain the classification of singular vectors of degree
2, 3, 1 respectively.

2. PRELIMINARIES ON CONFORMAL SUPERALGEBRAS

In this section we introduce some notions on conformal superalgebras. For further details
see [15, Chapter 2], [12], [3], [1].
Let g be a Lie superalgebra; a formal distribution with coefficients in g, or equivalently a
g—valued formal distribution, in the indeterminate z is an expression of the following form:

a(z) = Z a,z",
nez

with a, € g for every n € Z. We denote the vector space of formal distributions with
coefficients in g in the indeterminate z by g[[z,27!]]. We denote by Res(a(z)) = a_; the
coefficient of 271 of a(z). The vector space g[[z, 2~ !]] has a natural structure of C[9.]—module.
We define for all a(z) € gl[z, 27]] its derivative:

d.a(z) = Znanznfl.
nez

A formal distribution with coefficients in g in the indeterminates z and w is an expression of
the following form:

with a,,, € g for every m,n € Z. We denote the vector space of formal distributions
with coefficients in g in the indeterminates z and w by g[[z, z~!, w, w™!]]. Given two formal
distributions a(z) € g[[z, 27!]] and b(w) € g[[w,w™]], we define the commutator [a(z), b(w)]:

02100 = | L S| = 3 fa b
nez meZ m,neL
Definition 2.1. Two formal distributions a(z),b(z) € g[[z, 27!]] are called local if
0

(z —w)Na(z), b(w)] = 0 for N > 0.
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We call §—function the following formal distribution in the indeterminates z and w:

iz —w)= Z 2Mw".

m,n: m+n=—1

See Corollary 2.2 in [15] for the following equivalent condition of locality.

Proposition 2.2. Two formal distributions a(z),b(z) € g[[z,27']] are local if and only if
la(2),b(w)] can be expressed as a finite sum of the form:
%
[a(2), b(w)] = Z(a(w)u)b(w)) G0z —w),
j
where the coefficients (a(w)jb(w)) are formal distributions in the indeterminate w. More-
over, if a(z) and b(z) are local then necessarily (a(w);)b(w)) = Res.(z — w)?[a(z), b(w)].

Definition 2.3 (Formal Distribution Superalgebra). Let g be a Lie superalgebra and F a
family of mutually local g—valued formal distributions in the indeterminate z. The pair
(g, F) is called a formal distribution superalgebra if the coefficients of all formal distributions
in F span g.

We define the A—bracket between two local formal distributions a(z),b(z) € g[[z, 27 '] as
the generating series of the (a(z)(;b(2))’s:

bV
[a(2)xb(2)] = Y = (a(2)5b(2)). (1)
— 41
j=0
The A-bracket of formal distributions satisfies some algebraic properties which are the mo-
tivation of the following definition. If V is any Z,-graded vector space we denote by p its
parity function. As customary, whenever we write p(v) for some v € V' we always implicitly
assume that v is a homogeneous element of V.

Definition 2.4 (Conformal superalgebra). A conformal superalgebra R is a left Zy—graded
C[0]—module endowed with a C—linear map, called A—bracket, R® R — C[\| ® R, a ® b
[axb], that satisfies the following properties for all a, b, c € R:

(i) p(0a) = p(a);

(ii) [0axb] = —A[axb], [axdb] = (A + 0)[apb];
(iif) [axb] = —(=1)P@PO[b_\ sal;
(iv) [axlbuc]] = [[anbrsuc] + (=17 PO b, [arc]].

We refer to properties (ii), (iii), (iv) in Definition 2.4 as the conformal linearity, conformal
symmetry and conformal Jacobi identity respectively. We call n—products the coefficients
(agmyb) that appear in [axb] = >, -, 27 (a@b) and give an equivalent definition of conformal
superalgebra. -

Definition 2.5 (Conformal superalgebra). A conformal superalgebra R is a left Zo—graded
C[0]—module endowed with a C—bilinear product (au)b) : R ® R — R, defined for every
n > 0, that satisfies the following properties for all a,b, c € R:
(i) p(0a) = p(a);
(i) (a@myb) =0, for n>>0;
(iii) (Qa()b) =0 and (Dagmyb) = —n(apm-1)b) for all n > 1;
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(iv) (amb) = —(=1)PPO 32 ((=1)7 "% (b jya) for all n > 0;
(v) (@) (b)) = 252y (7) ((a(yb) man—i)€) + (=1)PPO (b (anye)) for all m,n > 0.

Using conditions (iii) and (iv) in Definition 2.5 it is easy to show that for all a,b € R,
n > 0:
(a(m)b) = A(amb) + n(am-1)b). (2)
In particular, by the first part of (iii) in Definition 2.5, the map 0 : R — R, a + Ja is a
derivation with respect to the 0—product.

Remark 2.6. Let F be a formal distribution superalgebra in the indeterminate z which is a
vector subspace of C[[z]] and is invariant under the operator 0,. Then the formal distribution
algebra F, endowed with A—bracket (1) and operator 0 = 0, is a conformal superalgebra (for
a proof see [15, Proposition 2.3]).

We say that a conformal superalgebra R is finite if it is finitely generated as a C[0]—module.
An ideal I of R is a C[0]—submodule of R such that a(,)b € I for every a € R, b€ I, n > 0.
A conformal superalgebra R is simple if it has no non-trivial ideals and the A—bracket is
not identically zero. We denote by R’ the derived subalgebra of R, i.e. the C—span of all
n—products.

Definition 2.7. A module M over a conformal superalgebra R is a Zs—graded C[0]—module
endowed with C—linear maps R — Endc M, a — a(y), defined for every n > 0, that satisfy
the following properties for all a,b € R, v € M:
(i) amv =0 for n> 0;
(ii) (0a)myv = [0, am))v = —nag—1v for all n > 0;
(ili) [agmy, bmlv = >2; (’;‘) (a()b) min—jv for all m,n > 0.

A module M is called finite if it is a finitely generated C[0]—module.
We can construct a conformal superalgebra starting from a formal distribution superalgebra
(g, F). Let F be the closure of F under all the n—products, d, and linear combinations. By
Dong’s Lemma, F is still a family of mutually local formal distributions (see [15]) and it turns
out that F is a conformal superalgebra. We will refer to F as the conformal superalgebra
associated with (g, F).
Let us recall the construction of the annihilation superalgebra associated with a conformal

superalgebra R. Let R = R[y,y™!], set p(y) = 0 and =0+ 0y. We define the following
k—products on R, for all a,b € R, f,g € Cly,y™], k > 0

aj
(afwybg) = Z (a(k—kj)b)(ﬁf)g-
JEL+
In particular if f =y™ and g = y™ we have for all £ > 0:
m n m m+n—j
(ay™ wby™) = D ( ~)(a(k+j>b)y B (3)
JELy J

We observe that E);]i is a two sided ideal of R with respect to the 0—product. The quo-
tient Lie R := R/OR has a structure of Lie superalgebra with the bracket induced by the
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0—product, i.e. for all a,b € R, f,g € Cly,y™!],
o7
af,bo) = 3 (a0 (511 (4)

JELy

Definition 2.8. The annihilation superalgebra A(R) of a conformal superalgebra R is the
subalgebra of Lie R spanned by all elements ay™ with n > 0 and a € R.

The extended annihilation superalgebra A(R)® of a conformal superalgebra R is the Lie
superalgebra CO x A(R). The semidirect sum C9 x A(R) is the vector space CO & A(R)
endowed with the structure of Lie superalgebra uniquely determined by the bracket

0, ay™] = =0, (ay™) = —may™ ",
for all @ € R, and the fact that A(R) and CO are Lie subalgebras.

For all @ € R we consider the following formal power series in A(R)[[]]:

)\n
ay = Z Hay”.
n>0
For all a,b € R, we have: [ay,b,] = [a\b]x+, and (Oa)y = —Aay (for a proof see [5]). This
notation is coherent with the definition of conformal modules in the following sense.

Proposition 2.9 ([8]). Let R be a conformal superalgebra. If M is a finite conformal R-
module then M has a natural structure of A(R)¢-module, where the action of ay™ on M 1is
uniquely determined by axv =) <, %ay”.v forallv € V. Viceversa if M is a A(R)®-module
such that for alla € R, v € M we have ay™.v = 0 forn > 0 then M is also a finite conformal
module by letting ayv =) Aay™v.

n n!

One usually refers to Proposition 2.9 by saying that a module over a conformal superalgebra
R is the same as a continuous module over the Lie superalgebra A(R)¢. Proposition 2.9
reduces the study of modules over a conformal superalgebra R to the study of a class of
modules over its (extended) annihilation superalgebra.

In some cases one can even avoid to use the extended annihilation algebra and simply
consider the annihilation algebra. Recall that a Lie superalgebra g is Z-graded if g = €D, ., 9n
with [gn, 8m] C @nim for all n,m € Z. We say in this case that g has finite depth d > 0 if
g, =0 for all n < —d and g_4 # 0.

Proposition 2.10 ([1]). Let g be the annihilation superalgebra of a conformal superalgebra
R. Assume that g satisfies the following conditions:
L1: g is Z—graded with finite depth d;
L2: there exists t € g such that the centralizer of t is contained in go;
L3: there exists © € g_q such that g;_q = [0, g;], for all i > 0.
Finite modules over R are the same as modules V' over g, called finite conformal, that satisfy
the following properties:
(1) for every v € V, we have g,.v =0 forn > 0;
(2) V is finitely generated as a C[O©]—module.

Remark 2.11. We point out that condition L2 is automatically satisfied when g contains a
grading element, i.e. an element t € g such that [t, b] = deg(b)b for all b € g.
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Let g = @, 9i be a Z—graded Lie superalgebra. We will use the notation g-o = ,., g,
9<0 = D0 0i and g0 = P, 9i- We denote by U(g) the universal enveloping algebra of g.

Definition 2.12. Let F' be a g>p—module. The generalized Verma module associated with
F' is the g—module Ind(F) defined by,

Ind(F) := InngO(F) = U(g) Qu(gs,) I

If F'is a finite dimensional irreducible gso—module we will simply say that Ind(F') is
a finite Verma module. We will identify Ind(F') with U(g-o) ® F' as vector spaces via the
Poincaré—Birkhoff—Witt Theorem. The Z—grading of g induces a Z—grading on U(g<() and
Ind(F). We will invert the sign of the degree, so that we have a Z-¢—grading on U(go) and
Ind(F). We will say that an element v € U(g)x is homogeneous of degree k. Analogously
an element m € U(g<o)r ® F' is homogeneous of degree k.

Proposition 2.13. Let g = @, 9i be a Z—graded Lie superalgebra. If F' is an irreducible
finite— dimensional g>o—module, then Ind(F') has a unique maximal submodule. We denote
by I(F') the quotient of Ind(F") by the unique mazimal submodule.

Proof. First we point out that a submodule V' # {0} of Ind(F’) is proper if and only if it does
not contain nontrivial elements of degree 0. Indeed, if V' contains an element vy # 0 of degree
0, then it contains 1 ® F' = g>¢.vp, due to irreducibility of F. Therefore g.o.F' = Ind(F) C V.
The union S of all proper submodules is still a proper submodule of Ind(F’), since S does not
contain nontrivial elements of degree 0, thus S is the unique maximal proper submodule. []

Definition 2.14. Given a g—module V| we call singular vectors the elements of:

Sing(V) ={v eV | g=o.v =0}.
Homogeneous components of singular vectors are still singular vectors so we often assume
that singular vectors are homogeneous without loss of generality. In the case V = Ind(F’) for

a g>o—module F, we will call trivial singular vectors the elements of Sing(V') of degree 0 and
nontrivial singular vectors the nonzero elements of Sing(V') of positive degree.

Theorem 2.15 ([18],[11]). Let g be a Lie superalgebra that satisfies L1, L2, L3 in Proposition
2.10; then
(1) if F is an irreducible finite—dimensional g>o—module, then the action of g~o on F is
trivial;
(2) the map F' — 1(F) is a bijective map between irreducible finite— dimensional go—modules
and irreducible finite conformal g—modules;
(3) the g—module Ind(F) is irreducible if and only if the go—module F is irreducible and
Ind(F) has no nontrivial singular vectors.

We recall the notion of duality for conformal modules (see for further details [3], [5]). Let
R be a conformal superalgebra and M a conformal module over R.

Definition 2.16. The conformal dual M* of M is defined by
M* ={fx: M — C[A] | fA(Om) = Afa(m), Vm € M} .

The structure of C[0]—module is given by (Of)x(m) = —Afa(m), for all f € M*, m € M.
The A—action of R is given, for alla € R, m € M, f € M*, by:

(axf)u(m) = —(=1)PPD £, (axm).
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Definition 2.17. Let T': M — N be a morphism of R—modules, i.e. a linear map such that
for all a € R and m € M:

i: T(Om) = 0T (m),

ii: T(aym) = a\T(m).
The dual morphism 7% : N* — M™* is defined, for all f € N* and m € M, by:

TNy (m) = =f5 (T'(m)).
3. THE CONFORMAL SUPERALGEBRA K

In this section we introduce and study the contact Lie superalgebras and related confor-
mal superalgebras. Let A(N) be the Grassmann superalgebra in the N odd indeterminates
&1, ..., &n. Let t be an even indeterminate and A(1, N) = C[t, t '@ A(N) which we consider as
an associative algebra in the natural way omitting the symbol A between the indeterminates
&’s. We also consider the Lie superalgebra of derivations of A(1, N):

W(l,N) = {D = ad} —i—Zai@i | a,a; € /\(LN)},

i=1
where 0, = £ and §; = - g¢, for every i € {1,..., N'}.

Let us con81der the contact form w = dt — Zfil &;d&;. The contact Lie superalgebra K (1, N)
is defined by:

K(1, {DeW(,N)| Dw= fpw for some fp € A(1,N)}.

N) =
We denote by K’(1, N) the derived algebra [K (1, N), K (1, N)] of K(1, N). Analogously, let
A1, N); =C[t] ® A(N). We consider the Lie superalgebra of derivations of A(1, N):

N
W(l,N)+ = {D = aat + ZCLZ@Z | a,a; € /\(1,N)+}
=1

The Lie superalgebra K (1, N), is defined by:
K(1,N)y ={D e W(1,N); | Dw = fpw for some fp € N(1,N)4}.
One can define on A(1, N) a Lie superalgebra structure as follows: for all f,g € A(1, N) we

let:
Fogl = (2 - fj@aif) O~ 0uf (29 - fjmg) + (~10( S a.fdg). ()
i=1 i=1 i=1

It is useful to restate (5) in a more explicit way. We adopt the following notation: we let Z be
the set of (finite) sequences of elements in {1,..., N}; for notational convenience we usually
write [ = iy -- -4, instead of I = (iy,...,4,) and we think of Z as a monoid by juxtaposition
(ie. if I =dy---i,and J = jy---js welet IJ =iy ---ipjy---js); if [ =dy---4, € T we let
&r=¢&,--&, and |I| =7r. Form,n € Z and I, J € T we have

[E"Er, 8] = (2n — 2m — n|I| + m|J )™, + (1) gmtn Z 0:£1 0. (6)

We recall that K (1, N) = A(1, N) as Lie superalgebras via the following map (see [10]):
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N

fe=2f0+ (1D (&G0hf + 0:f)(&:0r + D).
i=1
From now on we will always identify elements of K (1, N) with elements of A(1,N). We
consider on K (1, N) the standard grading, i.e. for every t™¢§;, ---&. € K(1,N) we have
deg(t™&;, -+ &) =2m+ s — 2.
Next target is to realize K (1, N), as the annihilation superalgebra of a conformal superalge-
bra. In order to do this, we construct a formal distribution superalgebra using the following
family of formal distributions:

F = {A(z) = Z(th)meil = A(S(t — Z), VA € /\(N)}

meEZ
Note that the set of all the coefficients of formal distributions in F spans A(1, N).

Proposition 3.1. The pair (N(1, N), F) is a formal distribution superalgebra. More precisely,
forallI,J €7 we have

(&1(2)&s(2) = (] = 2)0:41s(2) + (1) Z 0i&1 0:€7)(2); (7)

(&1(2)&s(2)) = (| + || = 4)€15(2);
(r(2)m&s(2)) = 0 for n > 1.
In particular the conformal superalgebra associated with (A\(1, N), F) is F = C[0.].F.

Proof. Let’s show that £;(z) and &;(2) are local. We have:
€1(2),&(w)] = Z [tmer, e ) !

m,ne”L

N
= <(n 2= 1) =m 2= [J)) ™" ey + (=) "o, 3¢§J) 2w
=1

m,neZ

We let h =m 4+ n — 1 in the former sum and [ = m + n in the latter and we obtain

€1(2), E5(w)]

Z—m—l
= hzz((h —m+1)(2—|I])=m(2— ’J‘))thfum
,me
m—1
+ ) (-1 Zta&a@ —
Il,meZ =1
= Z (h+1)(2 — |[INt" w2 ™ Z (] + | J| — 4)thewh=tem=tym1
h,meZ h,meZ
N
+ Z (=)' Ztlaiflaiwa_l_lz_m_lwm
I,m€EZ =1
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= (] = 2)0w(&r7(w))d(2 — w) + (I + [J]| = 4)&rs(w) 0w (2 — w)
il Z(@‘fl 9i§7)(w)d(z — w).

All results follow. U

We can say something more about the conformal superalgebra F associated with the formal
distribution superalgebra (K (1, N),F).

Proposition 3.2. The conformal superalgebra F = C[0,]F is a free C[0.]—module.

Proof. If Ay, As, ..., Asis a basis of A(IV) then A;0(t—z), A20(t—2),..., A0(t—2) is a basis
of F. Let us consider a finite linear combination, with coefficients in C|[0,], of elements of
this basis:

ZP L) Ab(t — 2) =0,

where P;(0,) € C[0,] for every 1 < i < s. From linear independence of the A;’s, we obtain
for every 1 <1 < s:

Pi(0,)0(t — z) = 0.
Therefore every coefficient P; must be 0. 0

We will identify F = C[0.] ® F with Ky := C[0] ® A(N). We also identify 9, with
and every A(z) € F with A € A(N). We will refer to Ky as the conformal superalgebra
associated with K (1, N). For all I, J € Z the A—bracket is given by

[€360) = (I = 2)0¢1s + (— '1'285185J+A<|I|+|J| )épy, (8)

by Proposition 3.1. In [1] it is shown that the annihilation superalgebra of Ky is A(Ky) =
K(1,N), and that it satisfies conditions L1, L2, L3. Thus, the study of finite irreducible
modules over the conformal superalgebra Ky is reduced to the study of singular vectors of
Verma modules on K (1, N);.

Now we concentrate in the special case N = 4, because the conformal superalgebra K, is
not simple. The derived superalgebra K is one of the exceptional cases appearing in the
classification of finite simple conformal superalgebras in [13]. Our main target is to study all
finite irreducible modules over the conformal superalgebra Kj.

In order to describe Kj explicitly we need to introduce the following terminology. Let V' be
a vector space and B = {b;},.; be a basis of V. An element v € V' can be uniquely expressed
as v = »_.c¢;b;. The support of v with respect to B is Suppgv = {b; : ¢; # 0}. We will
usually drop the index B if there is no risk of confusion.

Recall that we denote by Z the set of all sequences with entries in {1,2,3,4}. We also
denote by 7. the set of sequences in Z with distinct entries and by Z. the set of sequences
in Z with strictly increasing entries. For typographical reasons we simply denote by i - - -4,
the sequence (iq,...,1,).
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Proposition 3.3. The element 1934 ¢ K. More precisely:
K!l = <{8kf[, 8l§1234 el I 7é 1234, k> 0,1 > O}>

Proof. By Proposition 3.2, we know that {8'“51 k>0,1c¢ I<} is a basis for K. We first
show that &1934 ¢ K. Since the j—products are bilinear maps, it is sufficient to show that
§1234 does not belong to Supp(&;(;)§s), for all I, J € Z.. This is an immediate consequence
of (8).

Now we show that every element 9F¢; with k > 0 or I # 1234 lies in KJ:

(1) if k > 0, then 9*¢; = (—g(o)ak—lgl) by (8);
(2) if k = 0 and I # 1234 let i € {1234} be such that &; # 0. Then we have & =

—(& (o)fu) by (8).
U

Proposition 3.4. The element t'&1934 ¢ K'(1,4). More precisely:
K'(1,4) = ({t"¢;, €193y - T €T, I #1234, k1 € Z, 1 # —1}).

Proof. We know that {tkfj kel 1€ I<} is a basis for K(1,4). Let us first show that
t71¢ 1034 ¢ K'(1,4). Since the bracket (5) is bilinear, it is sufficient to prove that t='€1934
does not belong to Supp[t™&r,t"Es] for all m,n € Z and I,J € Z.. Indeed, if t 711934 €
Supp[t™&;, "€ ] then necessarily m+mn = 0 and |I|+ |J| = 4, but these conditions imply that
the coefficient 2n — 2m — n|I| + m|J| in (6) vanishes, leading to a contradiction.
Next we show that every monomial ¢"§; with n # —1 or I # 1234 belongs to K'(1,4):
(1) recall that [t,t"¢;] = deg(t"&r)t"E;. In particular, if deg(t"&r) # 0 the result follows.
(2) if deg(t™¢r) = 0, then either n = 0 and I =ij, or n =1 and I = (). The result follows
since &;; = —[&rij, &) (for any k # i, 7) and t = —[t&, & .
0

4. THE ANNIHILATION SUPERALGEBRA OF K

Motivated by Proposition 2.10 and Theorem 2.15, we want to understand the structure of
A(K}).

Let us recall some notions on central extensions of Lie superalgebras.

Definition 4.1. Let g be a Lie superalgebra. A 2—cocycle on g is a bilinear map ¢ : gxg — C
that satisfies the following conditions:

(1) ¥(a,b) = —(=1)"PO4)(b, a),

(2) (_1)p(a)p(c)¢(a’ [b’ C]) + (_1)p(a)p(b)¢(b’ [Cv a]) + (_1)p(a)p(c)¢(c’ [a’ b]) = O’
for all a,b,c € g. The set of all 2—cocycles on g is denoted by Z*(g, C).

Remark 4.2. We denote the set of linear maps g — C by C'(g, C) and we call its elements
1—cochains. For every 1—cochain f € C'(g, C), it is possible to construct a 2—cocycle § f on
g. For all a,b € g we define:

5f(a’b> = f([av b])

It is a straightforward verification that §f is a 2—cocycle on g. The map § : C'(g,C) —
Z%(g,C), f — &f, is called coboundary operator.
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Definition 4.3. We denote by B?*(g,C) the image of § : C'(g,C) — Z%*(g,C). Two
2—cocycles ¥1,1y € Z%(g,C) are cohomologous when 1, — ¢y € B?*(g,C). We denote by

H(g,C) the quotient 2,85,

Definition 4.4. A Lie superalgebra g is a central extension of g by a one—dimensional center
CC' if there exist two (Lie superalgebras) homomorphisms i : CC' — g and s : g — g such
that the following sequence is exact:

05CCLg2g—0,
and Ker(s) lies in the center of g.

Definition 4.5. Two central extentions g; and g, of g by a one—dimensional center CC' are
isomorphic if there exists an isomorphism of Lie superalgebras ® : g; — g2 such that the
following diagram is commutative:

0 cc g, g 0

Next result is certainly well-known but we include a sketch of the proof for completeness
and for the reader’s convenience.

Proposition 4.6. There is a bijection between (isomorphism classes of ) central extensions of
g by a one—dimensional center and elements of H*(g,C). If ¢ € Z*(g,C) the corresponding
central extension is, up to isomorphism, g = g ® CC where:

[C’ CL] =0 and [a’ b]ﬁ = [CL, b]g + @Z)(CL, b)c)
for all a,b € g.

Proof. Let
0-5CC5g3g—0,

be a central extension of g. In particular, § = g @ Ci(C') as vector spaces and we have the
following relation between the bracket [-,-]; in g and the bracket [-,-]; in g for all a,b € g,
a,p e C:

[a + @i(C), b+ Bi(C)]g = la, blg + ¢(a, 0)i(C),

where 1 : g x g — C is a 2—cocycle.

Conversely, given ¢ € C?*(g,C), we can construct a central extension g of g. We define
g = g@®CC. For all a,b € g, o, € C, we set i(aC) := aC, s(a + aC) := a and
la 4+ aC,b+ pCl; := [a, by + ¥(a,b)C. It follows directly from the definition of 2—cocycles
that it is a central extension.

Finally we show that two isomorphic central extensions g; = g@® CC and g, = g & CC' corre-
spond to cohomologous 2—cocycles. Since g; and g are isomorphic, we have an isomorphism
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® : g1 — go such that the following diagram is commutative:

i1 s1

0 CC g1 g 0
lld lcp lId
0——CC 255, -2sg—0
Thus for all a € g, a € C:
P(a+alC)=a+p(a)C+aC, (9)

where p € Cl(g, C).
We call 9y (resp. 15) the 2—cocycle that corresponds to g (resp. g2). We have for all a,b € g:

®(la, blg, ) = ©([a, b]g + ¢1(a, b)C)
= [a, 0]y + (p(la, blg) + ¢ (a, b)) C.
But from the fact that ® is an isomorphism we also have:
®(la, blg, ) = [®(a), B(b)]g,
= [a+ p(a)C, b+ p(b)Clg,
= [a, blg + ¥2(a, b)C.

Therefore, 0p + 11 = 5.

Analogously, if ¥1,1y € Z*(g,C) are cohomologous, i.e. 1, — 1)y = on € B%*(g,C), then we
can construct an isomorphism between the central extensions defined by ¢; and v as in (9)
letting p := . U

The following proposition is the main result of this section.

Proposition 4.7. There exists a (unique) surjective morphism of Lie superalgebras ¢ :
Lie Kj — K'(1,4) such that for allm € Z

G(Ey™) =™y, for all I € T, I #1234
¢(351234y”) = _m51234tm_1

and Ker(¢p) = C0O&a34. The annihilation superalgebra of K} is a central extension of
K(1,4)4 by a one—dimensional center CC':

The extension is given by the 2—cocycle v € Z*(K(1,4),C) which computed on basis ele-
ments returns non—zero values in the following cases only (up to skew-symmetry of 1):

(1, &934) = —2,
V(&, Oi&raza) = —1.

We need a lemma in order to prove Proposition 4.7.

Lemma 4.8. The element 0¢1934y° € Lie K is central.
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Proof. By (3) and (4) we have, for all ay' € Lie K}, with a € K}:
[851234y0, ayl} = (851234(0)a) yl =0.

In the last equality we used the fact that (851234(0)a) is computed as the restriction of the
O—product in K, and (iii) in Definition 2.5. O

We adopt the following notation. Given a proposition P, we let

~J 1 if Pis true,
Xp = 0 if P is false.

Remark 4.9. Recall that by the definition of Lie K7, for all « € K} and m € Z, we have
day™ = —may™ ! and that &1934 ¢ K by Proposition 3.3. Hence, every monomial O P(&)y"
can be represented in Lie K as a scalar multiple of a monomial £;y™ for some [ # 1234 or of
a monomial 0&1234y".

More precisely we have that the set {&;y™, 01034y™ : m € Z, I € I, I # 1234} is a basis
of Lie K.

Proof of Proposition 4.7. By Remark 4.9 we know that there exists a unique linear map ¢
satisfying the prescribed conditions. It is clear from its definition that ¢ is surjective and so
we only need to prove that ¢ is a morphism of Lie superalgebras. We have to distinguish four
cases:

(1) Let I,J € Z. with I,J # 1234 and &5 # £&1234, and m,n € Z. In Lie K} we have,
by (3) and (4) and j—products (7):

(Y™, Ey"] = Z (7?) (fl(j)fJ)ym+n_j

JELy
= (&1 &)y +m(Er€n)y™

4
= (1] = 2)0&ry™ ™ + (—=1)1" Zaifl &y +m(|I + || = )yt

=1
4
= (2n — 2m — n|I| + m|J)Ey™ T 4+ (=) Z 03&1 &g y™ ™.
=1

Therefore, by (6), we have:
[D(&y™), d(Eay™)] = [t 7]

4
= (2n —2m — 7L|I| + m|J|)tm+n_1§U + (_1)|I|tm+n Z@Z& @ij
i=1

= o([&ry™, Ey™))-

(2) Let I,J € Z with |I|,|J| # 4 and &5 = &1234, and m,n € Z. We proceed like in the
previous case and we have

Ery™, Ey"] = (Ery€n)y™ ™ +m(Erpyéa)y™ !
= (m - 2)651234ym+n-
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and so in K'(1,4) we have

[D(Ery™), (Egy™)] = [t 7]
= (2= [I])(m + n)t™ " € 3
= o([&ry™, Eay™]).-

(3) Let m,n € Z. We have f = 06 &:£36,y™ and g = 0£18:6384y™ in Lie K}, with m, [ € Z.
In Lie K} we have, using bracket (4) and n—products (7):

h .
[0&1234y™, 0&1934Y"] = Z (j) (0&1234 (j)8§1234)ym+"ﬂ —0

JELy
by (iii) of Definition 2.5, (2) and (6). On the other hand
[6(0€1254y™), D(0€1234y™)] = [ = m&rasat™ ", —nraat™'] =0,

by (6).
(4) Finally, let J € Z, J # 1234 and m,n € Z. First, we point out that (0234 7H&7) =
—J(&1234 (j—1)€s) = 0 for all j > 2 by (7). Therefore in Lie K we have

[551234ym, nyn} = (851234(0)5J)ym+n + m(0&1234 (1)5J)ym+n_1

= —m(&1234 (o)fJ)?Jm+n_1

4
= —=2mX j_p 1234 y" Tl —m Z 05193406 y™ L

=1

In K'(1,4) we have, using bracket (6):

[0(01234y™), D(Esy™)] = [ — mErasat™ *, E51"]

4

= =X _gm(=2n = 2m + 2) " 255y —m Z 01034 O;E 5t
i=1

= ¢([0&123ay™, £5Y"])-

The previous computations imply that the kernel of the map ¢ : Lie K — K'(1,4) is
Ker ¢ = (0€1£2€3€4) and so the following sequence is exact:

0 — (06,6661 S Lie K, 5 K'(1,4) — 0.

By Lemma 4.8 the Lie superalgebra Lie K is therefore a central extension of K’(1,4) by the
one—dimensional center (9&1£2£3&4).

In particular, we point out that ¢ : Lie K} /CO& 26384 — K'(1,4) is an isomorphism. In the
previous computations we computed all the possible brackets between monomials in Lie K7,
therefore in particular all the possible brackets between monomials in A(K}) and we can
observe that the central element 0&;934 lies in the support of the bracket of two basis elements

only in the case (2) of the previous computations. The other parts of the statement follow.
O
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5. VERMA MODULES

In this section we study the action of g := A(K}) = K(1,4); ® CC on a finite Verma
module Ind(F), where F is a finite—dimensional irreducible g>o—module, on which g-( acts
trivially. The grading on g is the standard grading of K(1,4), and C has degree 0. We have:

g-2= <1>’
g-1= <§1’§2)€37€4> )

Remark 5.1. The annihilation superalgebra g satisfies conditions L1, L2, L3 of Proposition
2.10. Indeed:

L1. This is obvious.
L2. The element t is a grading element, i.e. [t,a] = deg(a)a for all a € g. Hence, by
Remark 2.11, ¢ satisfies condition L2.
L3. The element © is chosen as —%f@ = —% € g_o. Indeed for all m > 0 and [ € Z_ we
have t™&; € gom+1j—2 and
1

+m —_ _ tm—i—l
SI m+ 1[6’ f[]

and C = [@, 51234].

Remark 5.2. Since Ind(F) = U(go)® F, it follows that Ind(F') = C[O]®@ A(4)® F'. Indeed,
let us denote by #; the image in U(g) of & € A(4), for all ¢ € {1,2,3,4}. In U(g) we have
that n? = ©, for all 7 € {1,2,3,4}: since [§;,&] = —1 in g, we have n;n; = —m;m; — 1 in U(g).

From now on it is always assumed that F' is a finite—dimensional irreducible g>o—module.
We will study the action of g on Ind(F') using the A—action notation by Proposition 2.9:

N
Exlg@v) =) ?tjfl-(g ®v),

j>0 7"

for I € Z, g € U(g<o) and v € F. In order to find an explicit formula for & ,(g ® v) we need
some preliminary lemmas.

We will make the following slight abuse of notation: if I,J € Z. we will denote by I N
J (resp. I\ J) the increasingly ordered sequence whose elements are the elements of the
intersection of the underlying sets of I and J (resp. the elements of the difference of the
underlying sets of I and J). We will say I C J when the underlying set of I is contained in
the underlying set of J. Analogously we will denote by I¢ the increasingly ordered sequence
whose elements are the elements of the complement of the underlying set of I. Given I =
(i1, 19, -1k) € Iz, we will use the notation 7; to denote the element 7;,7;, - -7, € U(g<o)
and we will denote |n;| = |I| = k. We will denote & = &a34 (resp. 7. = m1234). Given
I = (i, ig, - -ix) and 1° = (Jr41, Jrre, - - - Ja), we will denote by e; the sign of the permutation

(1 2 ok k41 - 4)
i1 42 v Gk Je1 v Ja )

We will also use the following notation: if (i1,...,7;) € Z and ¢ € {1,2,3,4} we let
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7777

e = (—1)7*1n, iy M= zJ for some (necessarily unique) j
0 otherwise.

and for a € C, I = (i1, 49, -1iy),J € Ty

6]7]] :@i1@i2...@ikﬁj @[fj :@i1@i2...@ikfj;
Oag; My = a0y Oug, &7 = a0[& y;
Qs = 1ns Nés = &s-

Given I,J € Zx we let
§1%11 = X ins=0"17

Ny * & = Xins—o"JI-

and we extend this notation by linearity in both arguments.
We observe that in g, by (6) and Proposition 4.7 we have

[tmfla fr] = _mtmilflr + (_1)|I|tmarfl + w(tmfh 51”)0

and in particular
(tm¢r, &) = —mt™ g, 4+ (= DMm0&r + X, _o X, el rC (10)
forall I € Z,, m > 0 and r € {1,2,3,4}.
Lemma 5.3. Let [, L €1, v e F and m > 3. We have:
—6e, @ Cv ifm=3, |I|=0 and |L| =4,

0 otherwise.

tmf](UL (029 ’U) = {

Proof. We can always assume, without loss of generality, that n;, = nyng with I N J = (),
KCI.
We first point out that t"¢;(n, ® v) = 0 when m > 3 because deg(t™¢;) = 2m + |I| — 2 >
4 > deg(nyz).

If m =3, |I| >0, t3;(n, ®v) =0 because deg(t*¢;) = 2m + |I| — 2 > 4 > deg(n.).

If m=3, |I|=0and |L| # 4, t*(n, ® v) = 0 because deg(t®) =4 > deg(ny).

If m =3, |I| =0 and |L| =4 we can assume L = 1234 without loss of generality and by
(10), we have

£ (Masa © v) = —3(t%€1)1234 @ v — 31 (2E2)3a © v — 32 (1*E3) N4 @ v — 3123 (t°6s) @ v
= 6(t&12)n34 @ v
= —6(8123)74 @ v
= —6® Cw.
O
Lemma 5.3 describes the terms of degree at least 3 in the variable A in the A-action of K

on a Verma module. Next target is to study the terms of degree 0, 1 and 2: this will be
accomplished in Lemmas 5.5, 5.6 and 5.7 respectively. But we first state a technical lemma.
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Lemma 5.4. Let I,J, K € T, with INJ =0, K CI. We have:

&k @) = 3 (—1) I HEDHELID/2- LKL 0,y 0 0,6 0
LCK

+ XII|=3XJ=1c erng ® Co.

Proof. From repeated applications of (10) we have

Er(nmi) @ v = (—=1)"In;&me @ v+ Xin=s X j=re €K & Co. (11)
Indeed, from (10), if |I| = 1,2, or |I| = 3 with J # I¢, then [£7,&,] = 0 for all » € J and
formula (11) is straightforward. In the case |I| =3 and J = I¢, using (10), we have:
51(?710?7[() Qv = _771651771( X v+ X|I|:3XJ:[CSI?7K ® CU-

The rest of the proof is the same as the proof of Lemma A.2 in [1] and it is done by
induction on | K| using formula (11) and is therefore omitted. O

Lemma 5.5. Let I, L € 1.. We have:

&1(np ® ) <wwﬂ—mmm®w§3%m@wm®w— DS o, e @ Ejiv

=1 1<J

-+ X|I|:3 €1 ajan & C'U.

Proof. The proof is analogous to the proof in [1] of Lemma A.3, and it is based on Lemma
5.4. The extra term in C' is due to the additional term of Lemma 5.4, which is not present in
Lemma A.2 of [1]. O

Now we study the term of degree 1 in A of the A—action.
Lemma 5.6. Let I, L € 1.. We have:

t&r(n @ v) =(=)Mom, @ tw 4 (=1)IHIH Z (OrinL * &) ®

_ Z 831,51 (8j77L) X fm.v + X|I|:2 Er 8]c77L X CU.
i
Proof. Without loss of generality we can suppose that n; = nynx with INJ =0, K C I. Let
us prove that:

€1 (nyi ® v) =(—1)1ly (t&)nK®”+Z D)= @ Ve @ v (12)

The formula is the same as the relation proved for K (1, N), in the proof of Lemma A.4 of
[1], except for an additional term in C'. We point out that a term with C' is involved only if
|I| = 2 and |J| = 2. Let us prove (12) by induction on |J|. If |J| = 0, (12) is straightforward.
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Let J be such that [.J| > 0 and JNI=0. Let J,s be such that ny = nyns. We have, using
(12) for ny, that:

ter(nymsnx ®v) ()Wﬂ(%ﬁwm®v+23 DI @ ) e @ v

+ X|1|:2 e1(0reny)nsnx @ Cv.

Notice that, since we are supposing 1y = 17,7, with JNI=0and s ¢ J, the term
X 1=2 er(0reny)nsnx ® Cv is 0 because if |I| = 2, then |J| < 2. We have, using (10), that:

t&r(nmsng @ v) ==Yy (e mg @ v — (=)W ¢ m @ v
4
]:1

- (= 1) XIII 2X7)= E10ren s @ C.
We observe that:
— (=)Wl &k @ v = (=) O E ke © v
= (=D O )y © v,

Therefore:
t&r(nymanx @ v) =(—=1)1 D n(t&nnx @ v + Z DI @5m5) €y nic @ v

Hence, formula (12) is proved. The rest of the proof is analogous to the proof of Lemma A.4
in [1] and it is based on (12). O

Now we study the term of degree 2 in A of the A—action.
Lemma 5.7. Let I, L €1, andv € F'. We have
_t gl(nL & U lll Z 811377L X fj i X|[|:1 €1 aI”?L ® Cv.
1<J

Proof. As before, without loss of generality, we can suppose that n;, = nynx with I N J = (),
K C I. Let us prove that:

S i @) (13)

= —X,-x Z(_1>|I||J|+|I|(|I|+1)/2aij77»7 O ® Eij.v — X1 &1 Bk © C.
i<j

In order to establish (13), we need to prove the following:

(%t2él> nsg = Z Ili( 1’5’) 65'77] (t27|s|f[5'> — X|I|:1 Er a[c?]JC. (14)

SeT.:|8|<2
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We prove (14) by induction on |J|. If |J| = 0, the result is straightforward.
Let us consider ny = nm, with JN I =0 and r ¢ J. We have, using (14) for 7, that:

1 1 _
(§tzfl) nynr = Z m&gﬁj (t2 lS'f]s)Ur — X|I|:1 €r (ajc?]J)UTC.
SeT.:|8|<2 ’

Notice that, since we are supposing 1y = 77, with JNI=0andr ¢ J, the term
=X j11=1 €1 (Oreng)n-C is 0 because if [I| =1, then [J| < 3. Now, by (10), we have

S
( e nm = Y i \S\ (Dsm)ne (£ 1¢1s) Z +5 ]‘Sl‘ Osmy (t'717¢14,)
S:18|<2 |S|<2
X121 X g= 25J
- Z :t( ’SD 657”7‘ 2-1S |€IS Z 85' nJ |S|€IS7‘)
S:|S1<2,r¢S S:|S|<1

j:X|I| 1X|J| €50
=D, I \S\ E)577(7(’52_|S|5IS)W<@”’iX|1|=1X|J|=25JC

S:|S|<2

Now we compute explicitly the sign of the last summand above. Hence we consider I with
1I| =1 and |J| = 3. For I = (i) and J = (j, k,1) = I¢, by repeated applications of (10), w
have:

1 1
(5152&)773'771@775 = —(t&;)mem + n; (tar)m — nyme(t&a) — 77;'7]1@775(5152&)
1
= &+ Mk (Sigr) — mem (8€iz) — mi&am + nym (&) — mymw(t€a) — Ujﬁk??l(gtzfi)
1
= =&k + €10 + Me&iji — (&) — n6m) + 0 (t&ar) — i (téa) — 77jkl(§t2£i>

Z i |S| 857;](152"5'5[5) — &1 0ren;C,

S:|S|<2

The result follows with the simple verification that the coefficient of C' above agrees with the
coefficient of C' in (14).

Now we observe that if |S| = 0,1 then deg(t*¢;€s) > deg(nx) and deg(t&;€s) > deg(nx)
and therefore, by (14), we have

1
575251(?1777}( ®v) = Z +(0sms)rsnx ® v = X121 €191y @ Cv.
S:|S|=2

Proceeding as in the proof of Lemma A.5 in [1], one can show that the signs in this sum do
not depend on S and are all equal to —(—1)IVI. Tt follows that this relation reduces to:

1
§t251(7lﬂ71< @) = =(=D)"W " 0ms (Erig)mc ® v = X o2 10renymi @ Co. - (15)

i<j
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Formula (13) can be proved using (15), (10) and induction on |K|. The proof is similar to
the proof of (15). Finally, the rest of the proof is analogous to the proof of Lemma A.5 in [1]
and it is based on (13). O

It is convenient to summarize the previous lemmas in the following result.

Proposition 5.8. Let I, L € Zx. The A—action has the following expression:

4
Enn(ne @ v) =(=D(|T] = 2000 © v+ dojer) (& xne) @ v

=1
+ (—1)|I| Z a(aijff)nll X fjﬂ‘.v + X|I|:3 g7 0ren, ® Cv

i<j

4
+ A((—l)lllaﬂh ® tw+ (=1)HH Z(almL *&) @
i=1

+ Z 631’51 (8j77L) ® fj,i‘v + X|]|:2 er0reng, ® CU)

i
+ X\ <(_1)|I| Z Orijnr ® &5,iv — X1j=1 €T Orenr, @ Cv)
1<j

+ A3 <_X|I|:0 Oreng, @ CU) .

For n; € A\(4) we indicate with 777 its Hodge dual in U(g<g), i.e. the unique monomial such
that 77 x &, = m1234. Then we extend by linearity the definition of Hodge dual to elements
S amr € U(g<o) and we set ©Fn; = Ok
We recall Lemma 4.2 from [1].

Lemma 5.9. For f € N(4), L € I, i € {1,2,3,4}, we have:

O =T x& = (—1)He * 71, (16)
B = (—1)(A1UA=D/2HAIL] f e (17)
&xn = —(—1)Homz, (18)
nL*& = —O0nL. (19)

Next result is a consequence of Proposition 5.8.

Proposition 5.10. Let I,L € Z.. Let T be the vector space isomorphism T : Ind(F) —
Ind(F) defined by T(g @ v) =g, for all g € U(g<o), v € F. Then:

(To&ryoT M) (L ®v)
4
= (—1)(|I|(IIIH)/2)HI||L|{(m —2)0(&*nr) @ v — (—1) Z(@'ff * Onr) @ v
=1

- Z(ﬁrsgl * nL) ® fs,r‘v + X|]|:3 €1 (glc *UL) ® Cv

r<s
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4
A [(& o) @t — (=DM 9 xmn) @ v+ (=) (0 xme) @ v
i=1 i#j

+ Xirj=2 €1 (Ere xm) ® C'v}

+ A [ - Z(fﬁj *11L) © &0 = X =y €1 (e %) & CU] + X [ = Xrj=0(& * 1) ® Cv] }

i<j
Proof. The proof follows by Proposition 5.8 with a straightforward application of Lemma
5.9. O

In the following lemma we give a recursive formula in order to compute &7, (0%g ® v) for
I'€Z, and g€ U(g<o).

Lemma 5.11. Let [ € 74, g € U(g<o) and k € Z~o. We have:
En(©Fg@0v) = (04 N)(£,0" g v) — X|I|:451@kflg ® Cv.
Proof. We have by (6) and Proposition 4.7:

N
En(OFfgev) = =(#E)(0Fg @ v)
i>0 7"
)\‘7 - k—1 )\J 7 —1 k—1 k—1
= Z F@(tjfl)(@ g®v) + Z F(]t] (0" g ®@v) = X|1=€10" g ® Cv
§=0 7" §=>0 7"

= (O + N (/O g ) - X|I|:451@kflg ® Cv.

6. SINGULAR VECTORS

In this section we deduce some necessary conditions that singular vectors must satisfy.
These conditions are obtained generalizing some ideas developed in [1].

We first give a more explicit description of go: we have g = ({C,t,&;: 1 <i<j<4}) =
50(4)®CtdCC, where s0(4) is the Lie algebra of 4 x 4 skew—symmetric matrices. In the above
homomorphism the element §;; corresponds to the skew-symmetric matrix —E; ;+E;; € s0(4).
We consider the following basis of a Cartan subalgebra b:

hy = —i&12 + 1834, hy = —i&12 — &34 (20)

Let oy, ay € h* be such that a,(h,) = ay(hy) = 2 and a,(hy) = ay(h,) = 0. The set of roots
is A = {ay, —ag, ay, —a, } and we have the following root decomposition:

50(4) - h ¥ (@aEAga) with o, = Cew 9-a, = Cf:va gay - Cey’ g—ay - (ny
where

[

(=&13 —&ou — &4+ 1&23),

ey = =(=&13+&a+ &4+ 16 3),

| =N -
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fz= %(51,3 + & — €14+ 162 3),

fy = %(51,3 —&ou + 1814+ 162 3).
It will be convenient to use the following notation:
€1 = ey + ey = —&i3 + 1823, (21)
€2 =€ — €y = —&oa — 1€14. (22)

The set {e1, ez} is a basis of the nilpotent subalgebra g,, @ ga, -
We will write the weights u = (m,n, u, uc) of weight vectors of go—modules with respect to
action of the vectors h,, hy,t and C.

Remark 6.1. Since C'is central, by Schur’s lemma, C' acts as a scalar on F.

Remark 6.2. The sets {e,, f;, by} and {e,, f,, h,} span two copies of sl and we think of g§°
in the standard way as a Lie algebra of derivations We have that:

988 = <em’ f;r, hx) S¥) <6y7 fy’ hy> = <x18;r27 x28m17x1@:v1 - x28&t2> S <y18y2’ y28¥/1’y1@y1 - y2@y2>‘

Thanks to Remark 6.2 we will identify the irreducible g§®*—module of highest weight (m,n)
with respect to hg,h, with the space of bihomogeneous polynomials in the four variables
X1, T2, Y1, Y2 of degree m in the variables x1, zo, and of degree n in the variables y, ys.

By direct computations, we obtain the following results.

Lemma 6.3. The subalgebra g-o is generated by g1, i.e. g = @, for all i > 2 and as
go—modules:

=G 1<i<4) @& T el || =3).

The go—modules (t& : 1 < i < 4) and (& : 1 € I, |I| = 3) are irreducible and the
corresponding lowest weight vectors are t(§; + i) and (§1 + 1€2)E3E4.

Lemma 6.4. As g}°—modules:
g1 = (T1Y1, T1Y2, Tay1, Taya).-
The isomorphism is given by:
§o 18 < 1ayr, & — & & Tayp, —&a+ i3 & T1Y2, Su + i3 < Ty
Motivated by the previous lemma, we will use the notation
Wi = Mg + 1, W = M2 — ANy, Wiz = —Ng + N3, War = Ny + iN3. (23)

We point out that [wyy, wes] = 40, [w1a, we] = —40 and all other brackets between the w's
are 0.

By Lemma 6.3 to check whether a vector m in a g-module is a highest weight singular vector
it is enough to show that it is annihilated by ey, ea, t(§1 +1&2) and (& +i€2)€384. Nevertheless
in the determination of all possible highest weight singular vectors it is convenient to consider
the action of all elements in g~ and for this it is extremely convenient to use the A-action.

Remark 6.5. From the definition of the A—action we deduce that m € Ind(F’) is a highest
weight singular vector if and only if the following hold:
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S0: 61.7?1:627?1 O
S1: L (&) = 0 for all T € T;
S2: L (& i) p—o = 0 for all I € Z such that |I| > 1;

S3: (&13m)a=0 = 0 for all I € Z, such that /]| > 3.

Indeed condition SO implies that m is a highest weight vector. Condition S1 is equivalent to
> i- 4
j>2

which implies (#&;)m =0 for all [ € Z, and j > 2.
Condition S2 is equivalent to (t&;)m = 0 for all for all I € Z such that |I| > 1.
Condition S3 is equivalent to &;m = 0 for all I € Z such that || > 3.

(197 = 0,

The aim of this section is to solve equations S0-S3 in order to obtain the following clas-
sification of singular vectors. We recall that the highest weight of F' is always written with
respect to the elements h,, h,, t and C. Let us call M(m,n, y, pic) the Verma module
Ind(F(m,n, g, pe)), where F'(m,n, p, i) is the irreducible go—module with highest weight

(mv n, e, MC)
Theorem 6.6. Let ' be an irreducible finite—dimensional go—module, with highest weight

w. A vector in Ind(F) is a non trivial highest weight singular vector of degree 1 if and only
if m is (up to a scalar) one of the following vectors:

a: i = (m,n, —"0 ) with m,n € Zso,

- - m, n.
Mg = W11 @ X7 Yy

-1 - m;n)} with m € Z>0, n € Zzo,

b: p= (

— m_.n m—1 n.
My = W1 @ Ty Yy — Wil QX Loy,

c: p=(m,n,2+ B0 ) with m,n € Zso,

— m, n m—1 n m, n—1 m—1 n—1, .
Mie = W2 @ T Y — W12 QT TolYy — W21 @T1Y; Y2+ Wi @Ty  Talyy  Yo2;

d: p=(m,n,1 mAR) with m € Zso, n € Lo,

- m, n m, n—1
Mg = W12 @ Ty Y; — W11 QT Yy Yo

Theorem 6.7. Let F' be an irreducible finite—dimensional go—module, with highest weight
w. A vector m € Ind(F) is a non trivial highest weight singular vector of degree 2 if and only
if m is (up to a scalar) one of the following vectors:

a: p=(0,n,1-%,—1—13) withn € Z,

Maq = W11W21 & Yy';
b: pp=(m,0,1 =3, 14 F) with m € Zsy,

Mgy = WiWig @ T7";
c: p=(m,0,2+ %, —F) withm € Zs,

—» m -1 m—2,2
Moe = WaaWao @ T + (Wi1weg + Warwin) ® T Ty — wiwi2 @ 2]~ “T3;
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d: p=(0,n,2+47%,%) withn € Z-,
Moq = Wiz @ YT — (War11 + Waiwia) ® Y1~ ya — wiiwa @ Y >ys.
Theorem 6.8. Let F' be an irreducible finite—dimensional go—module, with highest weight
w. A vector m € Ind(F) is a non trivial highest weight singular vector of degree 3 if and only
if m is (up to a scalar) one of the following vectors:

ar pu= (170) gv _%);

M3q = W11 WpW21 & T1 + W Wi2W11 @ Ta;

M3y = W11 WoWi2 @ Y1 + WigW W11 @ Ya.
Theorem 6.9. There are no singular vectors of degree greater than 3.

Remark 6.10. We call a Verma module degenerate if it is not irreducible. We point out
that, given M (m,n, u, pc) and M(m,n, iy, ie) Verma modules, we can construct a non
trivial morphism of g—modules from the former to the latter if and only if there exists a
highest weight singular vector m in M (m,n, i, fic) of highest weight (m,n, u, pe). The
map is uniquely determined by:

Vv M(manaﬂtauc> — M(m>ﬁ>/jt>/j0>

vy > M,

where v, is a highest weight vector of F(m,n, ju, ic). If m is a singular vector of degree d,
we say that V is a morphism of degree d.

We use Remark 6.10 to construct the maps in Figure 1 of all possible morphisms in the case
of K. We also observe that the symmetry of this picture is coherent with conformal duality.
Indeed, by the main result in [5] the conformal dual of a Verma module M (m,n, u, pe) is
M(m,n, —p + a, —pc + b), with

a = str(ad(t)g.,) = 2

and
b = str(ad(C)jy.,) =0,

where g = A(K}), "str” denotes supertrace, and "ad” denotes the adjoint representation. In
particular the duality is obtained with the rotation by 180 degrees of the whole picture. Note
also that all compositions of two morphisms in Figure 1 must vanish by the classification of
singular vectors, and hence we obtain an infinite number of bilateral complexes of morphisms.

From Theorems 6.6, 6.7 and 6.8 it follows that the module M (0,0, 2, 0) does not contain non
trivial singular vectors, hence it is irreducible due to Theorem 2.15. This is also confirmed by
the following result which can be skipped by the reader who is interested in the classification
of singular vectors only.

Proposition 6.11. The module M(0,0,2,0) is irreducible and it is isomorphic to the coad-
joint representation of K(1,4)+ on the restricted dual, i.e. K(1,4)} = @D,z (K (1,4)+,)".
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Proof. Observe that we consider M(0,0,2,0) as a K(1,4);-module since the action of C is
trivial.

We first show that K(1,4)% is an irreducible K (1,4);—module.
We recall that the action on the restricted dual is given, for every z,y € K(1,4); and
fe K(1,4)%, by:

(x.f)(y) = (=)D f ([, y)), (24)

where p(z) (resp. p(f)) denotes the parity of = (resp. f) and the bracket is given by (5).
Since we are considering the restricted dual, a basis of K(1,4)% is given by the dual basis
elements (t"¢;)* with n > 0 and I € Z.. We will also denote ©* = —2¢;, so that ©*(©) = 1.

B (m’n’1+m2—n7_1_mT—Hz) n n (m7n7_m+n7m2—n) A

//”
.

:/““7
"

C (m’n’ m;rn + 2’ n;m) / (m’ n, 1 + n;m’ 1 + n+2m) D

.

.

.

.

.

.

FI1GURE 1. Morphisms between finite Verma modules
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We first show by induction on s + p that
(O (0.(&, -+ (&,-07)))) -+ ) = Ysp(°Girs)", (25)
————

s—times

for some 7, € C\ {0}. If s+ p = 0 the result is trivial, so we assume s +p > 0.
If s > 0, by induction hypothesis, for every n > 0 and J € Z_ we have

(©.- (0 .(&\ (- (&, 0NN (E"Es) = =Ysm1p (7 Ei1s,) ([0, 87E])
H/—/

s—times

) s—1ps ifn=sand J =gy,
0 otherwise.

and the claim follows in this case.
If s=0 (and p > 0) for every n > 0 and J € Z. we have

(&ir- o (i (O (E"ET) = Yop-1(&ir - (i) ) (E"E5) = (= 1)Py0,p-1 (i) ([§i1, 7€)

_ (_1)p+1,.)/07p71 ifn=0and J = il . '/ip,
0 otherwise.

and the proof of (25) is complete.
Now we need the following observation: let m,s > 0 and I, K € Z. be such that
deg(t™&r) > deg(t*¢k), i.e. 2m +|I| —2 > 2s+ |K| — 2. Then

Bm©* it K=1and s=m

. , (26)
0 otherwise.

(P ER)T = {
for suitable £, ; € C\{0}. By (26) we deduce that if f € K(1,4); with f = > aym(t"&)* #
0 and we choose the pair Iy, mo among all pairs (I, m) with ay,, # 0 such that 2m + |I| — 2
is maximum, then ¢™ ¢ f is a nonzero scalar multiple of ©*. From this observation and
(25) we deduce that K (1,4)% is irreducible.

Now consider M (0,0,2,0) = Ind(F'), where F' = (v) is the 1-dimensional go-module of
highest weight (0,0,2,0). Since ©* is a highest weight singular vector in K(1,4)* of weight
(0,0,2,0) we deduce that there exists a (unique) morphism

@ M(0,0,2,0) = K(1,4)7

such that ¢(v) = ©*. The morphism ¢ is surjective by the irreducibility of K(1,4)%. The
morphism ¢ is also injective since it preserves the degree, and homogeneous components of
the same degree of A/(0,0,2,0) and K(1,4)% have also the same dimension. O

In order to prove Theorems 6.6, 6.7 and 6.8, we need some lemmas.

Remark 6.12. We point out that, by Remark 6.5, a vector 7 € Ind(F’) is a highest weight
singular vector if and only if it satisfies SO-S3. Since T, defined as in Proposition 5.10, is an
isomorphism and m = T~'T(n), the fact that 7 € Ind(F) satisfies SO-S3 is equivalent to
impose conditions SO0-S3 for (T o fy o T~')T(m), using the expression given by Proposition
5.10.

Therefore in the following lemmas we will consider a vector T(m) € Ind(F) and we will
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impose that the expression for (T o fy o T-Y)T(m) = T(fym), given by Proposition 5.10,
satisfies conditions S0-S3. We will have that m is a highest weight singular vector.

Motivated by Remark 6.12, we look for a singular vector m such that

T(Tﬁ) = Z Z @k’f]L (029 vL,k, (27)

k=0 LeI«

with v, € F for all k. For all k, we will denote v, j, = V12341
In order to make clearer how the A—action of Proposition 5.10 works for a vector as in
(27), let us see the following example.

Example 6.13. Let T'(m) = ©%n13 ® v132 + 172 ® va. Using Proposition 5.10 and Lemma
5.11, we have:

T(f2>\m> =

4
= _(/\ + 6)2{ - @(52 * 7713) ® U132 + Z(@‘& * 81'7713) ® V13,2
i=1

4
+ A [(52 *113) @ t.vgg o + Z 0;(&2i % m3) @ V132 — Z(@‘&j *M13) @ fj,z‘-vl?,,ﬂ

i=1 i#j

+ A2 [ - Z(f%g‘ *M3) ® §j,i-Vi32 — €2 (f(2)c *1Mi3) @ Ovlg,ﬂ }

1<j

4 4
— O(& *12) @ v + Z(aifz * Oina) @ Va0 + A [(52 *12) @ t.vgo + Z 0i(&2i % 1m2) ® V2

i=1 =1
- Z(@&j *12) ® fj,i‘v2,0} + )\2[ - Z(f%j *12) @ &ji-V2,0 — €(2) (5(2)6 *12) ® 0112,0}
i#] i<j
=—(\+ @)2{@?7123 & V13,2 + )\[ — M3 @ t.v13.2 + 04(E2a *x Mi3) @ V132
— (O2an *m3) ® 54,2.1)13,2} } +1® w0+ /\[ - Z(§] *12) @ 5;‘,2.112,0} + /\27]1234 ® Cvag
i#2
=—(\+ @)2{@7]123 ® V13,2 + )\[ — M2s @ t.U13,2 + Ni23 @ Vg2 + Thga @ 52,4-1113,2} }
+1® w0+ )\[ — M2 @ &1,2.V20 + 1oz @ §2,3.V2,0 + Noa @ 524-1)2,0} + A11934 ® Cvgy.

Lemma 6.14. Let m € Ind(F) be a singular vector, such that T'(m) is written as in (27).
The degree of T'(m) in © is at most 3.

Proof. Using Proposition 5.10, Lemma 5.11 and Remark 6.12, condition S1 for I = ) reduces
to:

a2 al

0=

+ A2 Z(fij * L) @ & ULk — >\3X|L|:0771234 ® CUL,k]

i<j

(T(1) =Y > k(k —1)(A + ©)F2 [ —20n, @ v+ AL @ty — (4 —|L|)nL @ v )
k=2 L
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N
+ 2 Z Z ]f()\ -+ @)k_l [ﬁL X t.Uka — (4 — ’LD?]L X ULk

Il
—
h

K
+2A Z §ij * ML) @ & VL, — 3/\2X|L|:0771234 ® OUL,k]

i<j
N

+ Z Z()\ +0)* [2 Z(fz’j * 1) @ &ijvr e — 6AX | L j=Th234 @ CUL,k] :
k=0 L i<y

If we expand this expression with respect to the variables A and A\ + ©, the coefficients of
(A4 ©)*A3, with s > 0, are:

(s +2)(s+ 1)mass @ Cvg s = 0.
and therefore

Vo = 0 (28)
for all k > 2. If we consider the coefficients of (A + ©)*\? with s > 1 we obtain:
Z Z(S +2)(s+ 1)(&ij *n1) @ &ijvLsv2 — 6(s + 1)miazs @ Cvp o1 = 0.
L i<j

Therefore we obtain that for s > 1:

D> (G xme) @ &ijvnepe = 0. (29)

L i<j

Now we look at the coefficients of (A + ©)°\ with s > 2 and obtain:

Z(S +2)(s+1)(20L @ v sq2 + 1L @ tvpspr — (4 — |L])nL @ VL sy2)

L
+4 Z Z(s + 1) (i % NL) @ i VL 41 — 6Mizzs @ Cvg s = 0.
L i<j
Therefore, using (28) and (29), we obtain that for s > 2:
> (LI = 2)nL ® vpey2 + 1 @ Lvges2) = 0. (30)

L
Finally we look at the coefficients of (A 4+ ©)® with s > 3 and obtain:

D (s Ds(=2nL @ vp 1) +2(s + 1) (1 @ tvgeir — (4= [L)r @ vpe11)
L
+2 Z Z(fzg * 1) ® &ij.vps = 0.
L i<j
This equation together with (29) and (30) immediately implies vy, = 0 for all & > 4. O
By Lemma 6.14, for a singular vector m € Ind(F"), T'(m) has the following form:

T(m) = ©? Z nL ® vz + 62 Z N @ vra + O Z N @vpa + ZﬁL ®vro- (31)
I3 I3 I3 L

We write the A—action in the following way, using Proposition 5.10 and Lemma 5.11
T(&rym) (32)
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bo(I) + G1(I) + A[Bo(I) — ao(I) — Go(I)] + N2 [Co(I) + G5(I)] + N> Dy(I)
+ (A +0)([ao(I) + by (1) + 2Go(I)] + A[Bi(1) — ar(I) — 3G5(I)] + N*Ci(I) + A>Dy (1))
+ A+ 0)2([ar (1) + by(I) + 3G5(I)] + A[Bo(I) — as(I)] + NCa(I) + X*Dy(C))
+
+

o~~~

A+ 0)? ([az(I) + bs(I)] + A[Bs(I) — as(I)] + N*C5(I) + A>D5(1))
A+ 0)*as([)

where the coefficients a, (1), b,(I), B,(I), Cy(I), Dy(I), G,(I) depend on I for every 0 < p <
3. Here is their explicit expression:

ap(I) =Y (= 1)IHEDAHIL( ] —2)(¢r % ne) @ vrp;

L
b,(I) = Z(_1)(|1l(|1|+1)/2)+|1||L| [ |I| Z O:Er % D) @ vpp + Z Orsl1 % ML) @ Eps L)
L = r<s

+ X11=3 er(€rexmp) ® OvL,p:| ;

4
B,(I) = Z(_1)(|1|(|I|+1)/2)+|1||L| {(51 * 1) @ tug, — (_1)|I| Z Oi(Erix ML) @ vy
L i=1

+ (=D 01y L) © &jivrp + Xpyoafr(Ere % nL) ® CUL,p):| ;
i

C,(I) = Z(_1)(|1l(|1|+1)/2)+|1||L| [Z(gﬁj *NL) @ &ij-vip = X ner1(€re x 1) @ (JvL,p)] ;

L i<j
Dp(]) = Z(_1)(|I|(|II+1)/2)+IIIIL| [ _ X|I|:0 (51234 *UL) ® CUL,p] ;
L

Go(I) = = X r—serme ® Copy.
L

We will write a, instead of a,(I) if there is no risk of confusion, and similarly for the others.

Proposition 6.15. Let m € Ind(F) be such that T'(n) is written as in formula (31). Using
notation (32), we have that:

(1) condition S1 implies that for all I € Z. we have

D3:D2203:D1+CL3:CQ—36L3:B3+26L3
:Cl+2B2+CL2+3bg:D0+01+Bg+bg:Oo+B1+b2+G3:O;

(2) condition S2 implies that for all I € I such that |I| > 1 we have
By + b1 4+ Gy = By + a1 + 2by + 3G3 = 2a5 + By 4 3bs = 3az + B3 = 0;
(3) condition S8 implies that for all I € I such that |I| > 3 we have
bo+Gi=ag+b+2Gy=a1 +by+3G3=ay+ b3 =a3 =0.
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Proof. We compute d)\Q( (&r3m)) and ZL(T(&7,1)) using (32). We have

(&ram)) = By + by + G2 + A[2Co + By — a; — Gs] 4+ X [3Dg + C1] + N’ D,

L
A
+ A+ O)([B1 + a1 + 2by + 3G35] + A[2C1 + 2By — 2a5] + N [3D; + 2C,] + 2X°D;)
+ (A + 0)*([2a2 4+ Ba + 3bs] + A[3B3 — 3as + 2C5] + A*[3Ds + 3C3] + 3M\°D;)
+ (A + 0)*([3as + Bs] + 2XC5 4+ 3A*D;),
and
d2
o (L(Enm))

= 200 -+ 231 -+ 2b2 -+ 2G3 + A |:6D0 + 401 + 232 - 2@2] + )\2 [6D1 -+ 202:| + 2)\3D2

+ (A +0)([2C1 + 4B, + 2a; + 6bs] + A[6D; + 8C, + 685 — 6as| + A*[12D, + 6C5] + 6)° D)

+ (A + ©)*([2Cs + 6as + 6B3] + A[12C5 + 6D5] + 18A°D;)
+ (A +©)*(2C;5 + 6AD;3).
The result follows. U

Let us show some other reductions on singular vectors.

Lemma 6.16. Let m € Ind(F') be a singular vector, such that T (m) is written as in formula
(31). For all I we have that vy 3 = 0.

Proof. By Proposition 6.15, we have 2a3(i) + B3(i) = 0 and 3a3(i) + Bs(i) = 0 for all i €
{1,2,3,4}. Therefore a3(i) = 0 which immediately implies v 3 = 0 for every L such that
|L| < 4.

Proposition 6.15 also provides Dy(1) + C1(1) + Ba(1) +b3(1) = 0, C1(1) +2B(1) + ao(1) +
3b3(1) = 0 and 2ay(1) + Ba(1) + 3b3(1) = 0. A linear combination of these equations gives us
Do(1) + as(1) + b3(1) = 0. Since Dy(1) = 0, we have

0=as(1)+bs(1) = — Z(_l)HlLl(fl * 1) @ VL2 — N23a @ Vizzaz = 0,
L

which 1mphes V1234,3 = 0. ]

Lemma 6.16 implies a3 = b3 = B3 = (3 = D3 = (G3 = 0 and so all equations in Proposition
6.15 can be significantly simplified. Next result provides a further semplification.

Lemma 6.17. Let m € Ind(F') be a singular vector such that T (m) is written as in formula
(31). For all I we have that vy = 0.

Proof. By Proposition 6.15 and Lemma 6.16 we know that Dy(z) + C (i) + Ba(i) = 0, C1(i) +
2B5(1) 4+ a2(i) = 0 and 2as(i) + B2(i) = 0 for all © € {1,2,3,4}. Moreover Dy(i) = 0 by
definition and from these equations we can deduce ay(z) = 0 for all i € {1,2,3,4} and, as in
the proof of Lemma 6.16 we can immediately conclude that vy o = 0 for every L such that
|L| < 4.

We now show that vi9342 = 0. By Proposition 6.15 we know that by(123) + G1(123) = 0
and since G1(123) = 0 by definition we have

0 = by(123)
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4

Z |L| < Z (0i€123 % OinL) @ v o + Z(ﬁrsfm?, *1N1) @ &rs o+ (Ea*nL) ® CUL,O>~
=1

L r<s

In this equation the unique term in 7, is
N4 @ Cp g

and so Cvy = 0.
By Proposition 6.15 we have that Co(1) + By(1) + b(1) = 0, Bi(1) + a1(1) + 2b2(1) = 0
and so Cp(1) — ay(1) — be(1) = 0. We have:

0= Co(1) — ar(1) — by(1)
- ZZ DM €1y %) @ €jvr0 — Z( 1) 8 (€950 % mp) @ Copg

1<J L

+ Z HlLl (&1 % ML) @ v 1 + Nosa ® V12349

The terms in 7934 in this expression are

M234 @ Cvp o + N234 @ V12342 = 0.

Since C'vpy = 0, we conclude that vi9342 = 0. O
By Lemma 6.17 we can deduce that ay = by = By = Cy = Dy = G5 = 0 for all I.

Lemma 6.18. Let m € Ind(F') be a singular vector such that T (m) is written as in formula
(31). For all L such that |L| <2, we have that v, = 0.

Proof. By Proposition 6.15 and Lemmas 6.16 and 6.17, we have ay(I) = 0 for all |I| > 3
which immediately implies vy ; = 0 for all L such that |L| < 1.

Let’s show the result for |L| = 2. By Proposition 6.15 and Lemmas 6.16 and 6.17, we know
that Bo(a) 4+ b1(a) = 0 for all a € {1,2,3,4}. Letting (a)® = (b, ¢, d) we have

0= Z(_l)HlLl <(fa * 1) ® twg o+ Z 0;(&ai * 1) @ VL — Z(fj * 1) ® fj,a-UL,o)
L i#a j#a

+ Z (_1>1+|L|aa77L VL1
|L|>2

The terms in 1y of By(a) are:

Na & ga,d'v@,O'

We have shown in Lemma 6.17 that Cvgy = 0 and so vpg = 0 if C' # 0. Nevertheless, if
C = 0 the A—action in Proposition 5.10 reduces to the A—action found in Theorem 4.3 of [1]
and one can obtain even in this case vy = 0 proceeding as in Lemma B.4 of [1].
Therefore, the unique term in 7, in the equation above is
DaMLy ® VL1 = 0,

where Ly = ad if a < d and Ly = da if a > d, and this implies vz, = 0. 0
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By Lemmas 6.16, 6.17 and 6.18 and the fact vp o = 0, for a singular vector m the expression
in (27) can be simplified as

T(m)=06 Z nL ®uL1+ Z nL @ v o. (33)
|L|>3 [L|>1

Therefore, from (33), we have that there can only be singular vectors of degree 3, 2 and 1.
Hence we have showed Theorem 6.9. Following the notation used in [1], we rewrite (33) in
the following way: for |L| = 3, n; will be written as ngy, where ()¢ = L, vy will be renamed
as v;1 and vy, o will be renamed as v;, so that they depend on one index; for |L| = 2, n,, will
be written as 1 j)e, where (7, 7)¢ = L, and vy o will be renamed as v; ;. In particular, by (33),
the singular vectors of degree 3, 2 and 1 are such that

degree 3: T(n) = O, nu)e @i + Y, 1 @ Vi,
degree 2: T(m) = On, @ v, + Zi<j N(i,j)e @ Vi,
degree 1: T'(m) = >, ng)e @ v;.
By Proposition 6.15 and Lemmas 6.16, 6.17, 6.18 we obtain the following result.

Proposition 6.19. Let m € Ind(F') be such that T'(n) is as in formula (33). Using notation
(32), we have that:

(1) condition S1 implies that for all I € I,
Cy=Dy=Dy=Cy+ By =0;
(2) condition S2 implies that for all I € T, with |I| > 1
By+ by =B+ a1 =0;
(3) condition S8 implies that for all I € T, with |I| >3
b+ G1=ayg+b =a, =0.

7. SINGULAR VECTORS OF DEGREE 2

The aim of this section is to classify all singular vectors of degree 2. We have that a singular
vector of degree 2 is such that:

i<j
We will assume for our convenience that v;; = 0 and v; ; = —wv;; for all 4, 7. We write the

vector m also in the following way:
i =(nz + i) (na + ins) @ wi + (N2 + i) (N — i) @ wa + (2 — im) (g + ing) @ ws ~ (35)
+ (n2 — im) (N4 — inz) @ wa + (2 +im) (N2 — i) @ ws + (N4 + i) (N2 — in3) @ we + O @ wy
=(—m3 + 1114 + 023 + N2a) @ w1 + (M3 + 14 — 1Nz + Noa) @ Wa + (M3 — 114 + N2 + 72a) ® W3
+ (=3 — ia — iz + N2a) @ Wy + (20 + 2in12) @ ws + (20 + 2inz4) ® we + O ® wr.
From these two expressions it follows that
V12 = 2iWs, (36)
V1,3 = W1 — W2 — W3 + Wy,

V14 = iw1 + iwg — ’iwg — iw4,
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Vg3 = Z"(Ul — iwg + iwg - iw4,
V24 = —W1 — W2 — W3 — Wy,
v34 = 2iwg,
Ve = 2ws + 2wg + wr.
Indeed, let us show for example one of the previous equations. In (34), let us consider
N3 @ V1,3 = Noa @ v13 . We have that T'(1:13) = —1n04 . In (35), the terms in 73 are:
—Th3 @ Wi + M3 @ W + Mg @ W3 — M3 & Wy,

therefore vy 3 = w1 — wy — w3 + wy.
In the following lemma we write explicitly the relations of Proposition 6.19 for a vector as in
formula (34).

Lemma 7.1. Let m € Ind(F') be such that T'(m) is as in formula (34). We have that:
1) condition S1 implies (for I =)

Z(fij * Nig)e) @ Eij i + N @ tu, = 0; (37)
i<

2) condition S2 implies that for all I such that |I| = 1,2

4
> [(fl *Ngye) @ Loy — (=DMY 0 ngigye) @ vig + (=D (i * ngye) @ Evig
i<j =1 Al

(38)

4
+ X|I|:2 5[(515 * n(i,j)c) ® Cvi,j:| - (_1)|I| Z(@zfl * 6177*) X Vs + Z(arsf * 77*) & grs'v* = 0;
=1

r<s

3) condition S8 implies that for all I such that |I| > 3
4
Z(—l)(”'(lllﬂw) [ — (=) Z(alfl * O jye) @ vij + Z(arsfl * i g)e) @ &rsiy  (39)
1<J =1 r<s
+ X113 €1(Ere * MG j)e) @ C’vm] = Xj1j=4€17x @ Cvx = 0.

The following result collects the crucial equations that we will use in the classification of
singular vectors of degree 2.

Lemma 7.2. Let m € Ind(F) be as in (34). Then for any permutation (a,b, c,d) of {1,2,3,4}
we have

Z(_l)a+j§ja‘vj,a = Ux; (40)

Jj#a

t.’UaJ) — Ua,b + Z (—1)a+jfaj.1)j7b = 07 (41)
Jj#a,b
Eap Vs + (—1)a+bt.va,b + Z (—1)b+jfaj.vj7b — Z (—1)a+j5bj.vj,a — £(ab)E(e,d)CVea = 0; (42)
Jj#a,b Jj#a,b
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i<y
(_1)b+cvb,c - <_1)a+cfab'va,c + <_1)a+b§ac'va,b + 5(a,b,c)<_1)a—"_dC’U(J,,d = O; (44)
Zf(ij)c.vivj + Cv, = 0. (45)
i<j
Finally:
e1.v, =0 es.v, =0 (46)
€1.V12 = —ivl,3 + v 3, €2.V1,2 = —VU14 — iv2,47
€1.01,3 = 1012, €2.V13 = —1U3 4,
€1.U14 = —U3 4, €2.V14 = V1,2,
€1.V23 = —V1,2, €2.V2 3 = U3 4,
€1.V24 = —1U34, €2.Ug 4 = 1V1 2,
€1.U34 = V14 + 1024, €2.U34 = V1,3 — V23,

where e; and ey are defined by (21) and (22).

Proof. We will repeatedly use Lemma 7.1.
e Equation (40). We consider Equation (38) with I = a:

4
D [Gaxmige) @ tvig+ Y O(EaxM6g)) @ vig+ > (&x i jye) @ Earvig] + Dathe @ va =0,

i<j =1 I#a

(47)

and, considering the terms in 7)), we obtain:

0= Z(fl * N(ta)e) @ Eal-Via + Z(fl * N(ad)e) @ Ear-Va + Oals @ Vs

I<a I>a
= Z(_l)ln(a)C & fl,a'vl,a + (_1)(1_17]((1)0 & V.
l#a

and Equation (40) follows.
e Equation (41). Consider the terms in 7). in Equation (47):

0 = Nafatye ® tVap = Ny @ Vap — Y (G nane) @ Gavip— Y (& xNpie) @ Eia-vsy

a#l,1<b a#l,1>b

= (=) ey @ tvap — (1) M0y ©vap — Y (=10 ® o

a#l,1<b
- Z (—1)'nwye ® Eia- vy
a#l, [>b

_ (_1\a—1 _ (_1)a—1 1\

= (=) 'y @ ey — (—1) ey ® vap + Y (=10 @ &avis,
I£ab

and Equation (41) follows.
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e Equation (42). We consider Equation (38) with I = ab and we assume ¢ < d with no loss
of generality. We have

0=—n.® fab‘v* - (_1)a+b7]* X tﬂg,,b
- Z Z(aléabk x ?7(1'7]')5) ® fkl'v’i,j + €(a,b) (fcd * n(c,d)C) & C?)c’d.
i<j Ik
The coefficient of —n, in this expression is:
0= fab.v* + (—1)0L+bt,’0a7b — Z (_1>b+j€ja'vj,b + Z (_1>a+j§jb'vj,a _ 5(a,b)5(c,d)0vc,d~
j#ab j#ab

e Equation (43). This follows immediately by Equation (37).
e Equation (44). Equation (39) for I = abc provides

4
0= Z ( Z(@lgabc * aln(i,j)c) ® (%% + Z(arsgabc * n(i,j)c) b2 grs'vi,j + 6(a,b,c) (gd * n(i,j)c) X Ovi,j) .

i<j I=1 r<s

Considering the coefficients of (—1)*1(,. we have:
(_1)b+cvb,c - (_1)a+cfab-va,c + (_1)a+b€ac-va,b + 5(a,b,c)(_1)a+dcva,d = 0
e Equation (45). Equation (39) for I = 1234 is:

4
0=-— Z 2(8151234 * am(z‘,j)c) & ;5 + Z 2(67351234 * n(i,j)c) ® &ps-Vij — 1 @ Co,

1<y =1 i<j r<s
=1 ® Zf(z‘,j)c ® v ; — N @ Cuy.
i<j
e Equations (46). These equations are a consequence of SO, i.e. e;.m = ey.m = 0. Recall

that T'(e1.m) = T((—&s + i&az).m) = —(T'(§13371))jaz0 + i(T'(£23471) )]0 and so it can be
easily computed by means of Proposition 5.10. We obtain

0="T(e;.m)

= =N ®@e1.vy — (M — 1M2)Ns @ V12 — N3Ns @ €1.012 — 11304 @ V13 — Nols @ €1.V13
+ MmN ® V14 — M2z @ e1.014 + N3Ms ® Va3 — M1y @ €1.023
+imne @ Voy — N3 @ €1.V24 + (—N2ng — i113) @ V34 — MN2 @ €1.U34

= N @1V + MmN @ (V14 + V24 — €1.034) + 1173 @ (—€1.V2,4 — iVU34)
+ Ny @ (—v12 — €1.023) + Mol @ (—€1.014 — V3 4)
+ 1mans @ (—e1.v1,3 + 101 2) + M3Na @ (—€1.v12 — (V13 + Va3).

From the previous equation we obtain relations (46) for e;.

Equations (46) for es are obtained similarly.
U

Lemma 7.3. If m is a singular vector of degree 2 such that T'(m) is as in (34) then with
v, = 0.
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Proof. Let T'(ni) € Ind(F) be as in formula (34). We show that relations of Lemma 7.2 lead
to v, = 0. Let a,b € {1,2,3,4} with a < b and (a,b)¢ = (¢, d).
Considering Equation (41) and the same equation for reversed role of a and b we can deduce

0=— (=1)""2t 0,y + 2(—=1)" gy — Y ()" &0+ Y (1) &5,

J#ab JFab
We compare this with Equation (42) and obtain
ap Vs = (—1)Ptvgy + 2(=1) vy, + Coeg, (48)
since for a < b we have that €, p)g(c,a) = 1.
Now consider Equation (42):
0= Eap-vs + (=1) T twgy + > (=170 — (1) &;.050] — Cea. (49)

J#ab
We also consider (44) with a = j, b = a, ¢ = b and d = h and we substitute it into (49); we
obtain

Eab-vs =(=1)" Pt vgp 4+ 2(=1)"Pvap + > EGany(—1)" T Cjp + Cg (50)
j#a,b
:(—1)a+b+1t.va7b + 2(—1)a+bva » T+ Z jCUJ n T+ Z (—1)j+1CUj7h -+ C’Uc’d.
j<a or j>b a<j<b

Combining (50) and (48), we get:
(—1)a+b2t.va7b :4(—1)a+bv b + Z ]CUJ nt Z (—1)j+102)j7h.
j<a or ]>b a<j<b
Comparing this equation with (50) we obtain
Wwve = Y, (=1)YCojp+ > (=1 Cujp + 200y,
j<a or j>b a<j<b
which simplifies to
f%b.v* =0 (51)

for every a < b. This implies that, if v, # 0, then F' = (v,) has dimension 1 and so(4) acts
trivially on it. Moreover all the v, ;’s are scalar multiple of v, since F' = (v,).

By (40) we also have v, =, (—=1)""7§;,.v;, for every 1 < a < 4; then, since all the v,’s
are multiple of v,, we have a contradiction. O

By Lemma 7.3 we know that if (m) is a singular vector of degree 2 T'(n) has the following
form

T?L) = Z n(’i,j)c ® vi,j‘ (52)

1<j

Remark 7.4. Relations (46), by Lemma 7.3 and notation (36) are equivalent to the following:

1. Wy, = —WwWs — We, €2.W1 = Wy + Weg, (53)
€1. Wy = W5 — Weg, €9. W9 = Wy — Wg,
€1. W3 = 0, €2. W3 = 0,
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€1. Wy = O, €. Wy = O,
€1.Ws = W3 — Wy, €2.Ws = W3 + Wy,
€1.Wg = —W3 — Wy, €2.Wg = —W3 + Wy.

We represent these relations in the following diagrams

(wy) (w5 + we) (wy), (w2) (w5 — we) (w3)
\e_/ \e_/ \e_/ \e_/

Proof of Theorem 6.7. Throughout this proof we let u = (m,n, uo, 1) where m,n, o, i
denote the highest weights of F* with respect to hg, h,,t, C respectively. We split the proof
in four cases that we number by 1), 2), 3), 4).
1) Let Ws = Wg = 0.
We immediately have also ws = wy = 0 by (53).
la) Let w; # 0 and wy = 0.
By (53), we have that w; is a highest weight vector and, by (36),

Vi =v34 =0, V13 =Wy, V14 = Wy, Va3 = W1, Vg gy = —W1.

Equation (41) for a = 1,b = 3 gives (t — i12 — 1).w; = 0, Equation (44) for
a=1,b=2c=3gives (C —i&s+ 1).w; = 0, and Equation (44) for a = 3,b =
1,c =4 gives (C' — €34 + 1).wy = 0.

Recalling that h, = —ifi2 + 1§34 and h, = —i&2 — €34 we deduce that y =
(0,n,1—1%,—1— %) for some n € Zx.

A simple verification shows that these conditions lead to the vector

- . n
Maq = W11Wa21 @ Yy,

in M(0,n,1—%,—-1— %) for n € Z>o which is indeed a singular vector.
1b) Let w; = 0 and wq # 0.
By (53) we have that w, is a highest weight vector and, by (36),

Vg =034 =0, V13 = —wWa, V14 = 1Wy, Va3 = —1Wa, Vayq = —W3, V34 = 0.

Equation (41) for a = 1,b = 3 gives (t — i&2 — 1).wy = 0, Equation (44) for
a=1,b=2c=3gives (C+ iy — 1).ws = 0, and Equation (44) for a = 3,b =
1,c=4 gives (—=C + i34+ 1).wy = 0.

From these conditions, recalling that h, = —ii2 + &34 and hy, = —i&§12 — 134, We
deduce that p = (m,0,1 — %,1+ %) with m € Z>¢ and we obtain the singular
vector

- m
Mop = W11W12 & 7,

in M(m,0,1—%,1+%) with m € Z,.

1c) Let wy # 0 and wy # 0.
By (53), we have that both w; and w, are highest weight vectors of F', so that
wy; = awsy for some o # 0. By Equation (44) for a = 3,b = 2,¢ = 4 and for



Publishing

AlP

LUCIA BAGNOLI AND FABRIZIO CASELLI

a=4,b=1,c= 3 we obtain respectively
(—a—1—ilgy(—a+1)+C(—a+1))wy =0
and
(0 —1—iy(a+ 1)+ Cla+1))wy = 0.
The sum and the difference of these two equations show an evident contradiction.
2) Let ws # 0 and ws + wg = 0.
Since e;.ws = w3z — w4 and e;.wg = —w3 — w4 we deduce that wy = 0; we also know

that wy # 0 since e;.wy = 2ws.
2a) Let w; = 0 and ws # 0. By Remark 7.4 ws is a highest weight vector and

Equations (36) provide

V12 = 2iws, V13 = —Wg — W3, V14 = LWy — W3,
’023 = —iwg + Z"(Ug, ’UQA = —Wy — Ws, ’0374 = —22’(1)5

Let us compute the weight of wy and ws.
Equation (41) for a = 1,b = 3 gives t.(—wy — w3) + ws + w3 — & 2.(—iws + 1w3) +
£14.(—2iws) = 0, and for a = 2,b = 3 gives t.(—iwq +iw3) +iwy — iwz +E19.(—we —
wg) — 524.(—22"(1)5) =0.
Recalling the definition of ey in (22), we deduce from these equations that 2it.ws —
2iws — 2&19.w3 — 2ieq.ws = 0 that is equivalent to

(t + Zflg - 2)11)3 = 0.
Equation (44) for a = 1,b = 2, ¢ = 4 gives —wy — w3 + &12.(1we — tw3) — &14.21ws —
C(—wg —w3) =0, and for a = 2,b = 1, ¢ = 4 gives —iwy +iws + &1a.(—wy —w3) +
624.(27;1115) — C(—ZUJQ + Z'LU3) =0.
By these equations we obtain —2ws — 2i&15.w3 + 2e5.w5 + 2Cws = 0 that is
equivalent to

(—Z.fl’g -+ C’)w3 = 0.
Equation (44) for a = 3,0 = 1,¢ = 4 gives —i(we — w3) + 2i&13.w5 + E34. (w2 +
ws) +iC(we—w3) =0, and for a = 3,b = 2, ¢ = 4 gives —wy — w3 — & 3.(—2iw;) +
6374.(—7;71& + Z'LU3) — C(—wg — 'LUg) =0.
By these equations we obtain

(i€3.4 + C).ws = 0.

Hence, we conclude that p = (m,0,% + 2, %) for some m > 0 and since
dim F' > 3 (since, e.g., wq, wy and ws are linearly independent) we also have
m > 2. All these conditions lead to

- m m—1 m—2,_2
Moe = Wl @ T + (W11Weg + Warwin) @ T Te — wiwi2 @ )" “x3,

in M(m,0,% +2,—3) with m > 2, which is indeed a singular vector.

2b) Let wy # 0 or wy = 0. We show that in this case necessarily C' = 0 so the
A—action of Proposition 5.10 reduces to the action found in Theorem 4.3 of [1];
in that case it was shown that there are no singular vectors of degree 2.
Equation (44) for a = 1,b = 3, ¢ = 4 gives 2iws + &13.(1wq + twy —iws) + E14.(wy —
Wo — 'LUg) — QZC'LU5 =0.
Equation (44) for a = 2,b = 3, ¢ = 4 gives 2iws + &23. (w1 + wy + w3) — oy (1w —
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iws + tws) — 2iCws = 0.
We take the sum of these equations and get:
0= 4zw5 — iel.wl — iel.wg + ieg.wl — ieg.wz — 22fxw3 — 420?115

If wg = 0 we can conclude C' = 0 so we can assume w3 # 0 and w; # 0.
We observe that ws and w; are highest weight vectors so that they are scalar
multiples of each other. If we take the difference of the two equations above we
get f,.w; =0 and so we have C' = 0 also in this case.

3) Let ws = wg # 0.

This condition implies w; # 0 since ej.w; = —ws —wg, and w3 = 0 since e (w5 —wg) =
2’(1)3.
3a) Let wy = 0 and wy # 0. By Remark 7.4 wy is a highest weight vector and

3b)

Equations (36) reduce to:
V12 = 20Ws, V13 = W1 + Wy, V14 = 1W] — LWy,
Vg3 = W] — Wy, Vg g4 = —W1 — Wy, V34 = 20W5.

Let us compute the weight of wy.

Equation (41) for a = 1, b = 3 gives t.(w1 + wy) — w1 — wy — i&12.(w1 — wy) +
2i&14.ws5 = 0, and for a = 2,b = 3 gives it.(wy —wy) — i(wy —wy) + & (w1 +wy) —
27,-624.?1}5 = 0.

These two equations provide

(t 4 &2 — 2).wy = 0.

Equation(44) for a = 1,b = 2, ¢ = 4 gives —wy — wy + i&12.(w1 — wy) — 2i&14.w5 —
C(wy +wy) =0, and for a = 2,0 = 1,¢ = 4 gives i(—w; + wy) — &o.(w1 + wy) +
2i£24.w5 — ZC(’LUl — w4) =0.
These two equations provide

(1512 + C)w4 =0.

Equation (44) for a = 3,0 = 1,¢ = 4 gives —i(w; — wy) — 2i&13.w5 — E34.(wy +
wy) —1C(wy; —wy) = 0 and for for a = 3,b = 2, ¢ = 4 gives —w; — wy — 2ia3.1w5 +
i§34.(w1 - w4) - C’(w1 + U}4) = 0.

These two equations provide

(i€34 + C).wy = 0.

We conclude that p = (0, n, 5 +2, %) for some n > 0. Moreover, since w;, ws and
wy are linearly independent we have dim F' > 3 and so n > 2. All this conditions
lead to the vector

Maq = Wartia @ Y7 — (Waawr1 + Warwia) @ Y1~ 'ye — winwa @ Yy~ 3,

in M(0,n, § +2,%) with n > 2 which is indeed a singular vector.

Let wy # 0 or wy = 0.

We show that in this case necessarily C' = 0, so the A—action of Proposition 5.10
reduces to the action found in Theorem 4.3 of [1] and we already know that there
are no singular vectors of degree 2.
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Equation (44) for a = 1,b = 3, ¢ = 4 gives —2iws +i&13.(w1 +wy — wy) + E14. (w1 —
wy + wy) — 2iCws = 0, and for a = 2,b = 3, ¢ = 4 gives —2iws + &a3.(wy + wo +
w4) — 2'524.(’(1)1 — Wo — w4) - 220’(1)5 = 0.
Taking the sum of these equations we obtain
0= —4ZU}5 — iel.wl + ieg.wl — iel.wg
—deg.wy — 1(&1g — §oa + 1614 + i&a3) . wy — 4iCw;5
= —2if,.wy — 4iCws.
Therefore if wy = 0 we can conclude C' = 0. If wy # 0 and so we # 0 and both
wy and wy are highest weight vectors. We take the difference of the previous
equations and we obtain:
0 = (&3 + 23 + Eoa — i&1a) w1 + 1(E13 + 1€z — Eou + 1€14) w2
— (13 4 oa + 014 — 1o 3) Wy
= 2ifpwy + 2if, we +i(eg + e2).wy
= 2ifp.wy + 2if,.ws.
Since ws is a highest weight vector and w; is not, these two terms are both 0.

In particular, since wy is a scalar multiple of w, we have that f,.w, = 0 and we
conclude C' = 0 by a previous equation.

4) Let Ws 7£ :l:w6.

We show that in this case necessarily C' = 0, so the A—action of Proposition 5.10
reduces to the action found in Theorem 4.3 of [1] and we already know that there are
no singular vectors of degree 2.

Equation (44) for a = 1,b = 3, ¢ = 4 gives

—2iwg + i&13. (w1 + we — wg — wy) + &14. (W1 — wWo — w3 + wy) — 21Cw5 = 0,
and for a = 2,b = 3,¢c = 4 gives
—2iwg + Eog. (w1 + Wy + w3 + wy) — i€y (W1 — we + wz — wy) — 2iCws = 0.
These equations provide
2C0ws + fr.ws + fywy = 0. (54)
Equation (44) for a = 4,b=1,¢ = 2 gives
—2iws + &14.(w1 + wo + w3 + wy) — 1€oy. (W1 + wy — w3 — wy) — 2iCwg = 0,
and for a = 3,0 =1,c = 2 gives
—2iws + i&13. (w1 — we + w3 — wy) + Eo3.(w1 — Wy — w3 + wy) — 2iCwe = 0.
These equations provide
2Cwe + fyws — fywy =0 (55)

If wg = 0 or wy = 0 we immediate deduce by (54) and (55) that C' = 0, since
ws # twg. If wg # 0 and wy # 0 they are both highest weight vectors. Applying
e; = e, + €, to (54) we obtain

20(11)3 — w4) + hx.wg + hy.w4 =0
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and applying e; = e, — €, to (54) we obtain
2C (w3 + wyq) + hyws — hy.wy = 0.
From these equations we deduce 2C' +m = 0 and so C' < 0, and —2C' +n = 0 and so

C >0.
O
8. SINGULAR VECTORS OF DEGREE 3
The aim of this section is to classify all singular vectors of degree 3.
We have that a singular vector m of degree 3 is such that:
T(T?L) = @ Z 7](l)c & Uil + Z i & ’l)@(). (56)
We write the vector m also in the following way
m =(n2 + i) (e — im1) (N4 +in3) @ w1 + (M2 + 1) (N2 — im) (M4 — i13) @ Wwat (57)

(12 +1m3) (M2 — i13) (N2 + 1) @ w3 + (4 + i13) (N — i03) (N2 — im) @ Wyt
O +im1) ® ws + O (12 — i) ® we + O (s + 113) ®@ Wy + Oy — in3) @ Wy
=(20in3 + 201, — 2m7ns + 2imn21) @ wy + (=2iOn3 + 201 + 211 + 2imnN21s) © wat
(2iOm1 + 2012 — 2mn3ns + 2inenzng) @ ws + (=2iOn + 20n2 + 2m13na + 2inanzn.) © wa+
O(n2 +im) @ ws + O(12 — im) ® we + O(ns + in3) @ wr + Oy — i) ® ws.
From these two expressions it follows that
V10 = 2iws + 24wy, (58)
U0 = 2ws — 2wy,
U39 = 21wy + 21wy,
Vg0 = 2w1 — 2wo,
V1 = —2iw3 + 21wy — tws + (W,
Vg1 = 2w3 + 2wy + ws + We,
U3 = —2iw; + 21wy — 1wy + tws,
Vg1 = 2wy + 2wy + wy + ws.
Indeed, let us show for example one of the previous equations. In (56), let us consider 7, ®vs ¢.
We have that 7, is the Hodge dual of —n;34. In (57), the terms in 734 are:
—2M134 @ W3 + 21134 @ Wy,

hence vg g = 2ws — 2w4. Analogously for vy g, v3 and vgo. Moreover in (56), let us consider,
for example, ©n1)e ® v1; = Ongzs ® v1,1. We have that Onyss is the Hodge dual of —On;. In
(57), the terms in O, are:

2101 ® wy — 2107 ® wy + 1O @ w5 — 1O ® we,

hence vy 1 = —2iws + 2iwy — 1w + iws. Analogously for ve 1, v31 and vy.
In the following lemma we write explicitly some of the relations of Proposition 6.19 for a
vector as in formula (56).
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Lemma 8.1. Let m € Ind F' be a singular vector such that T(m) is as in formula (56). Then
1) For allb € {1,2,3,4} we have

0= Z {Z Gtk * 1i) @ &n-i0 — €6(Epye * M) @ Cuig + (§ % Niye) @ vy (59)

7 <k

+ Z(alfbk * 1(i)e) & flk-vi,1:| .
1£k

2) For all s € {1,2,3,4} we have
0= Z [ Esxmi) @ tvig +Zal ot X 1) ®Uzo+z O sk * Mi) @ &ie-vio (60)
14k
+ Z(alfs * OMye) ® Ui,1:| )
=1
For all b € {1,2,3,4} we have
0= Z [ b * Meiye) ® tv;q + Z 0ok * M(iye) ® &r-vin — (& * NGie) @ Um] . (61)

Ik
3) For all I such that |I| = 3 we have

O Z |:a771®vz0+z rsél*nz>®£rs Uz0+51(51”*77z>®cvz0:| (62)
r<s
For all I such that |I| = 4 we have
O = Z |: — 8//][ (24 UZ‘7() + Z(@Tsf * 7]@) X 57‘8.’01'70 — 8[7](i)c X OUZ‘71:| . (63)
% r<s

Proof. These are particular cases of Proposition 6.19. In particular we have (59) is Cy(b) +
By(b) =0, (60) is Bo(s) + bi(s) =0, (61) is By(b) + a1(b) = 0, (62) is bo(I) + G1(I) = 0 for
|I| = 3 and (63) is by(I) + G1({) = 0 for |I| = 4. O

Lemma 8.2. Let m € Ind F' be a highest weight singular vector such that T(ni) is as in
formula (56). Then for every (a,b, c,d) permutation of {1,2,3,4} we have

Vg1 = (=1)**12Cw, 0. (64)
t.Vq,0 — 2040 + Eap-Vbo = 0 (65)
Ve,0 + ca-Va,0 + Eeb-tpo = 0, (66)
Ebe-Vd,0 + €(ab,e)CVa = 0. (67)
Moreover C' (resp. t) acts as multiplication by % (resp. 2) on F.
Finally:
e1.v1,0 = —Usp, €2.01,0 = —1U4, (68)
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€1.V20 = 13,0, €2.V20 = —V4,0,
€1.U3,0 = V1,0 — W20, €2.V30 = 0,
€1.V40 =0 €2.V40 = U1 9 + V2,

where ey and ey are defined by (21) and (22).

Proof. @ Equation (64). We consider the difference between (59) and (61). We assume
(a,c,d) = (b)°. We have that:

4
— (& Nwye) @ Vb1 = Y Y (& *715) © Evi0 — E5(Eaca ) @ Cugp.

=1 I<k
It is equivalent to:
(& * N(p)e) @ vy = — Z(fblk * Nt k)e) @ Eik-Vibik)e,0 — EMbacd @ Cpp. (69)
I<k
Let us focus on Equation (60) for s # b. We have:

4
0:28577 ®vz1+255*m ®tvzo+zzal 551*772 ®Uz0+zz&*m ®€slvzo
1=1 i=1 [=1 i=1 l#s
(70)

The terms in 7)) of this equation are:
sNpye @ Vp1 + Z(fl * Ns,b,1)e) @ Est- V(s p1ye,0 = 0.
I#s,b
We take the sum over s # b and, as in [1], using (69) we obtain:

0= Z(fs * OsT(p)e) ® Up1 + Z Z (Est x Ns,pi)e) @ Es1-Vs,,0),0
s#b s#b 1#s,b

=31y @ vp1 + 2 Z(fsz * (s ,p)e) @ Esi-Vsb1)e,0

s<l
=Ny @ (%,1 - 2€(b)cvb,0)-
Equation (64) follows.
e Equation (65). Given r # s € {1, 2, 3,4}, the terms in 7y, of (70) are:
Nsr ® t-vr,O + Z al (ésl * 777") & /UT,O — Nsr ® ésr-vs,o =0.
l#s,r
This condition is equivalent to:
t'vr,O - 2’07‘70 - gsr‘vs,o =0

which is Equation (65).
e Equations (66) and (67).
Let us analyze Equation (62) for I = abc. We obtain:

ZZ 8l£abc*al772 ®Uz0+z rsfabc*nz)(gérs U'LO_'_Zg(abc) éd*nz) ®CU20 = 0.

=1 =1 r<s
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Looking at the coefficients of 7,, and 7,4 we obtain Equations (66) and (67):
Ve,0 + fca-va,o + fcb-vb,o = Oa
gbc‘vd,O + 6(t/‘L,l),c)C%)c7,,0 =0.

e C'=+1/2and t=5/2.
Using (64), Equation (63) for [ = 1234 is:

4 4 4
0=-— Z 2(5151234 * Om;) @ vig + Z Z(ars§1234 * 1) @ &ps Vo — C Z Niye @ Vi1

i=1 I=1 r<s i=1 i
=123 ® (1 + 2C%)vg0 + 41010 + Eaa-V20 + E43.V30)
— 24 @ ((1+ 202)03,0 + &31.01,0 + E32.2,0 + E34.040)
+ 3 ® (1 + 202)02,0 + &91.01,0 + €23.03,0 + E24.040)
— 13a @ ((1+ 202)01,0 + &12.020 + 1330 + E14.V40)-
Therefore for every a = 1,2,3,4 we have (1 + 2C?%)v,0 + Z#a Eab-Vp0 = 0 and by Equation
(65) we deduce (7 + 2C? — 3t).v,0 = 0. This implies that ¢ acts as 5(7 + 2C?) on F.
Equation (66), for a =2,b=3,¢=1, is:
v1,0 + &13.030 + §12.V20 = 0.
Using (65) and the fact that ¢ acts as £(7 + 2C?), we get
0 =v1,0 + &13.v3,0 + E12.02,0

1+ 20C? 1 —4C?
V1,0 = 3

=U1,0 — 2

V1,0-
From this we deduce that C = j:% and so t acts as %

e Equations (68). The fact that m is annihilated by e; = —&;3 + i&23 provides:

4
0=— Z Z(ﬁl(—fm + 1€a3) *x Oi1;) ® V0 + Z Z(ﬁrs(—fm + ia3) * 1) ® &rs-Vio

i 1=1 i r<s
=13 ® V19 — 1 @ €1.01,0 — N3 @ Vg9 — N2 @ €1.V20 + (=M + iM2) @ U39 — N3 @ €1.U39
— Mg @ e1.V40
=—1 ® (e1.v10 + V30) + M2 ® (ivs9 — €1.V90) + N3 @ (V1,0 — V20 — €1.V30) — N1 ® €1.V40.
Equations (68) for e; follow. Equations for e, are obtained similarly. U

Remark 8.3. Let us point out that relations (64) are equivalent to the following, using
notation (58):

—2iw3 + 2iwy — iws + 1wg = 2C(2iw3 + 2iwy),
2wz + 2wy + wy + wg = —2C (2w — 2wy),
—2iw; + 2iwy — iwy + twg = 2C (20w + 2iwy),
2wy + 2wy + wr + wg = —2C (2w, — 2wy).
Thus, we obtain:
ws = —(2 4 4C)ws, (71)
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We = —(2 - 40)11)4,
wy = —(2 4 4C)wy,
wg = —(2 - 40)11)2

Equations (68) are therefore equivalent to the following, using notation (58):

€1.W1 = Wy, €2. W1 = —Wy, (72)
€1.- Wy = Wy, €2. Wy = Wy,

€1.W3 = —wW; — Wy, €2.W3 = —wW1 + W,

€1. Wy = O, €. Wy = 0.

We represent these relations in the following diagram

el <—w1 - w2>
wy
o < >

We are now ready to prove the stated classification of singular vectors of degree 3.
Proof of Theorem 6.8. Let u = (m,n,5/2,C'), with C = £1/2, be the highest weight of F
with respect with (hy, hy,t,C). We observe that ws # 0 otherwise m = 0.

1) Let wy = 0.
la) Let wy = 0 and wy # 0. By Equations (72), we have that w; is a highest weight
vector. By (58) we have:

V1,0 = 2iws, V2,0 = 2ws, V30 = 2iwy, V4,0 = 2wy,
V11 = 4iCW3, Vo1 = —4Cw3, V3,1 = 4ij1, V41 = —4C'LU1
Equation (65) for a = 3,b = 4 gives —{34.v30 = (2 —t).v40 which is equivalent to
(i€34 — 1/2).wy = 0.

Equation (67) for a = 3,b =1, ¢ = 2 gives —&12.v40—Cvs ¢ = 0 which is equivalent
to

(—iflg + C)'LUl =0.

These equations imply (h, + C' 4+ 1/2).w; = 0 and so n + C' + 1/2 = 0 which
implies C' = —1/2 (since n > 0) and n = 0. Similarly the same equations imply
m+ C —1/2=0 and so m = 1 and hence p = (1,0,5/2,—1/2).

By Equations (72) we know that 2e,.ws = ej.w3 + es.w3 = —2w;. Hence wz =
— fz.wq. All these conditions lead to the vector

M3q = W11 WopW1 @ T1 + Worwipwi @ v9 € M(1,0,5/2,—1/2),

which is indeed a singular vector.
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1b)

1c)

1d)

LUCIA BAGNOLI AND FABRIZIO CASELLI

Let w; = 0 and wy # 0. By Equations (72), we have that wy is a highest weight
vector. From (58) we have:
V1,0 = 20ws, Va9 = 2wz, V30 = 21Ws, V40 = —2W3,
V11 = 42.011)3, Vo1 = —4011)3, V31 = 42'C'w2, Vg1 = 4011)2
Equation (65) for a = 3,b = 4 gives —&34.050 = 2v49 — t.v4 Which is equivalent
to
(2'534 + 1/2)w2 = 0.
Equation (67) for a = 3,b =1, ¢ = 2 gives —&12.v40—Cvs ¢ = 0 which is equivalent
to
(iflg + C)'LUQ =0.

These equations imply (h, — C 4+ 1/2).ws = 0 and so (m — C' + 1/2) = 0. Since
m > 0 and C' = £1/2 we necessarily have C' = 1/2 and m = 0. The same
equations also imply n — C' — 1/2 = 0 and hence we have n = 1.
By Equations (72) we know that 2e,.ws = e1.w3 — es.w3 = —2w,. Hence wy =
—fy.wg.
These conditions lead to the vector

Mgy = Wi Wiz @ Y1 + Wigwanwi @ Yo € M(0,1,5/2,1/2),

which is indeed a singular vector.
Let wy # 0, we # 0. By Equations (72), we know that w; and wy are highest
weight vectors.
Equations (67) for a = 3,b = 1,¢ = 2, using (58) gives

—iflg.(wl — wg) + O(wl + wg) =0
Equation (67) for a = 4,b = 1,¢ = 2, using (58), gives

—Zflg.(wl + wg) + C(w1 — wg) =0
These two equations lead to C' = 0 which is a contradiction since C' = +1/2.
We suppose w; = wy = 0. By Equations (72), we know that ws is a highest
weight vector.
Equation (66) for a = 2,b = 3,¢ = 1, using (58), gives

which implies m +n + 2 = 0, a contradiction.

2) Let wy # 0. By Equations (72), we have that w; # 0, wy # 0, wz # 0 and that wy is

a highest weight vector.
Equation (66) for a = 1,b = 3,¢ = 2 gives

—Ws3 + Wy — ngg.(wl + wg) + Zflg.(wg + w4) = 0,

and for a =2,b=3,c =1 gives

—ws3 — wy + 1&12.(w3 — wy) — &13.(w1 + we) = 0.

These equations imply

0 :2’(1)4 — €e1.Ww] — e1.wy + 22{12.11)4 = 22{12.’&)4.
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Equation (67) for a = 1,b = 3, ¢ = 4 gives

—i34. (w3 — wyg) + C(ws + wy) = 0,
and for a = 2,0 = 3,c = 4 gives

—i&3.4- (w3 + w4) + C(ws — wy) = 0.
These equations imply

(ng4 + C)w4 =0

We deduce that m + C' =0 and —n + C' = 0, hence C' = 0, a contradiction.

9. SINGULAR VECTORS OF DEGREE 1

The aim of this section is to classify singular vectors of degree 1. Let us consider a vector
m € Ind(F) of degree 1 such that T'(m) is of the form:

T(m) = Z Niiye ® V. (73)

We write m as:
m= (1 —im) @wi + (1 —in3) ® wa + (2 +im1) @ Wy + (N4 + in3) @ Wy (74)
Hence :
v1 = i(wy — Wy), Ve = wy + Wy, vz =i(wy — Ws), Vg = Wy + Wo. (75)

Indeed, let us show one of these relations. In (73), let us consider 7)) ® v;. We have that
N)e = N34 is the Hodge dual of —n;. In (74), the terms in 7, are —in; @ wy +in; @ w;. Hence
v; = i(w; — wy). The other relations in (75) are obtained analogously.

In the following lemma we write explicitly some of the relations of Proposition 6.19 for a
vector as in formula (73) that we need.

Lemma 9.1. Let m € Ind(F) be a highest weight singular vector such that T(m) is as in
(73). Then for all a € {1,2,3,4} we have

4
0= Z |:(£a * 77(2)6) R t.v; + Z(alfal * n(z)c) X v; + Z(@l&k * n(z)c) X flk: /Ui:| . (76)
@ =1 £k

and for every permutation (a,b, c,d) of {1,2,3,4} we have

0= Z [Z(arsfabc * 77(1)6) ® frs-vi + Eabe (fd * 77(1)5) & C'U'Li| . (77)

i r<s
Proof. Equation (76) is obtained by By(a) + b1(a) = 0 and Equation (77) is obtained by
bo(abc) + G (abe) = 0 in Proposition 6.19. Note that by(a) = 0 and G;(abc) = 0 since i has
degree 1 and so the previous equations reduce to By(a) = 0 and by(abc) = 0. O
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Lemma 9.2. Let m € Ind(F) be a highest weight sungular vector such that T'(m) is as in
(73). Then for every permutation (a,b,c,d) of {1,2,3,4} we have

(—1)%.v, + Z(—l)kfak.vk =0; (78)
k#a
(—=1)%apve + (—=1)%qvp + (1) et — €(apey(—1)Cvg = 0. (79)
Moreover
€1.U1 = —Vs, €9.V1 = Z"U4, (80)
e1.V9 = —1vs3, €9.Uy = —1Uy,
€1.V3 = U1 + Z"UQ, €9.V3 = O,
€1.04 = 0, €9.V4 = —ivl + V2,

where ey and ey are defined in (21) and (22).

Proof. Equation (78) follows by considering the terms in 7234 in (76).
For equation (79) we can assume a < b < ¢ with no loss of generality. Equation (76) becomes

0= Net(c)e ® éab‘vc + M7 (b)e & fca‘vb + NaTl(a)e & gbc‘va — €(a,b,c)NdT)(d)e ® Cvd)

which is equivalent to (79).
The fact that m is annihilated by e; implies

4
0=-— Z Z(al(—flg + 1€a3) * OiMiye) @ v; + Z Z(ars(—flg + €23) * Neiye) @ &rs Vi
i I=1
=124 @ (V1 + V2 — €1.03) + Noza ® (—v3 — €1.01) + N34 @ (—iv3 — €1.V2) + Nia3 @ (—e1.v4).

i r<s

Therefore:
€1.U1 = —U3,
€1.V2 = —Z"U3,
e1.v3 = v + ’M)Q,
e1.vg = 0.
Equations (80) for ey follow similarly. O

Remark 9.3. By (75), Equations (80) are equivalent to:

€1.w, = 0 €. W1 = O, (81)
€1. Wy = W1 €2. W2 — W1

61.@1 = Wy — '&72 62.@1 = —Wy — '&72

61.@2 = —Wq 62.@2 = W1

We represent these relations in the following diagram
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€1 <w2 B {52> €1
w T
eg\ /62

(wy + Wa)

By (75), Equations (78) can be rewritten in the following equivalent way

(t — i&12). Wy = — fo.Wo + fyy.wo, (82)
(t —i&34). Wy = — fjwq — €,.1071,

(t +1i&12). w1 = €z.we — €. W2, (83)
(t +1i€34).wo = ey + fpwy

Proof of Theorem 6.6. As usual we denote by pu = (m,n, ug, C') the highest weight of the
Verma module containing the singular vector mi. Let us first observe that, by Equations (81),
we have that if w; # 0 then wy # 0.

1) Let w; = wy = 0.
By Equations (81), we obtain that if wy # 0, then w; # 0. Hence, there are two subcases.

la)

1b)

Let wy # 0 and wy = 0.

By Equations (81) we know that w; is a highest weight vector. Let us compute its
weight. By (75) we know that vy = —iwy, vy = wy,v3 = 0,04 = 0.

Equation (79) for a = 1,b = 3, ¢ = 4 gives

(—i&s34 + C)wy = 0.

min m_n)

Equation (82) gives (t—i&12).w; = 0. These two conditions imply p = (m, n, ==, 72

with m,n € Z>o.

These conditions lead to the vector

m4+n m-—n
2 72

).

b4 m,.n
M1, = wy @ 'y € M(m,n, —

which is indeed a singular vector.

Let ’&71 7é 0 and wg 7é 0.

Equations (81) imply that ws is a highest weight vector, let us compute its weight.
By (75), we know that v = —i@l,vg = 1251, V3 = —i@g,m = ’&72.

Equation (79) for a = 1,b = 2, ¢ = 3 gives

—i€12.Wy + §13.W1 — i§23.w1 + Cwy = 0,
and for a = 1,0 = 2,¢c =4 gives
—&10.Wy + 14w — i€og. w1 — iCwy = 0.
These two equations imply
0 = —2i&9.wy + 2CWy — (1 + €3).wy = 2(—i&19 + C + 1).wWs.
that is equivalent to:

(—if1y + C +1).wy = 0.
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Equation (82) provides
(t — ifg4).'&72 = —€x.'&71 = '&72

and so these equations imply p = (m,n,1+4 250 -2 — 1) for m,n > 0. We point
out that m € Z-q since e,.w, = —wq # 0.

These conditions lead to the vector
m-+n m-—n

2 72 )

- m, n m—1 n
My = Wop ® 'Yy — w1 ® 7' xeyy € M(m,n, —

which is indeed a singular vector.
2) Let wy # 0 and wq # 0.

By (81) we have wy # 0 w; # 0 and that w; is a highest weight vector.
By (75), Equation (79) for a = 1,b = 3,¢ = 4 gives

(=613 — i&1a) wz + (€13 + 1&14) W + (€34 + C)wy + (=34 + C).wy = 0,
and for a = 2,0 = 3,c =4 gives

(=623 — €as) Wz + (—€a3 + i24) W2 + (=E&34 +iC) w1 + (—&34 — iC).wy = 0.
By these equations we deduce

(e1 4 e2).wy + (61 — €3).Wo + 2(i€34 + C).wy = 2(i&34 + C).wy = 0.
Moreover, Equation (83) provides
(t + i&19) w1 = 2wy.

These conditions imply that p = (m,n, m;r" +2,7%5™). Note that m,n > 0 since e,.w; =
wy # 0 and e,.wy = —w; # 0.
All these conditions lead to the vector

Mie = oy @ 2{'yy — wip @ 2" Tayy — war @ 2'Y7 ™ ya + w1 @ 27 oyl s
m+n n—m
2
2 +5 2 )
which is indeed a singular vector.
3) Let wy; = 0 and ws # 0. Note that wy # 0, since (e; — es).w; = 2ws # 0 by (81).
3a) Let wy = 0.
Note that ws is a highest weight vector by (81). Let us compute its weight.
Using (75), Equation (79) for a = 1,b = 2, ¢ = 3 gives
i§12.wa + &13.W01 — 1€93.w1 + Cwy = 0

and Equation (79) for a = 1,b = 2, ¢ = 4 gives

€ M(m,n,

—&12.wy + &ig.wy — i€gg.wy + iCwy = 0.
These two equations imply
0 = 2i€ 15wy — €1.W1 + €9.W; + 2Cwy = 2(i&15 — 1 + C).wo
and Equation (83) provides
(t + 1€34) . wo = wo.
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These equations imply p = (m,n, 5™ + 1, m;” + 1), with m,n > 0. Moreover we

have n > 0 since, by (81) e,.w; = ws # 0.
All these conditions lead to the vector

— m, n m, n—1
mld:wu@wl Uq —w11®x1 n yQEM(m,n,

which is indeed a singular vector.
By Equations (81), wy and ws are highest weight vectors. Let us compute their weight.
By (75), Equation (79) for a = 1,b = 2,¢ = 3 gives

1€12.Wwg — 1&12. W + &13.W1 — t€a3.wq + Cwy + Cwy = 0,
and Equation (79) for a = 1,b = 2, ¢ = 4 gives
—&12.wp — 512-&72 + 514-{171 - Z'524-&71 +iCwy —iCwy =0
These two equations imply
(i€12 — 1+ C)awy =0
and
and in particular C' = 0. But, for C' = 0, the A—action of Proposition 5.10 reduces

to the action found in Theorem 4.3 of [1] where the vectors of degree 1 were classified
and this case was ruled out.
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