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Abstract
A problem with convolutional neural networks (CNNs) is that they require large datasets to obtain adequate robustness; on

small datasets, they are prone to overfitting. Many methods have been proposed to overcome this shortcoming with CNNs.

In cases where additional samples cannot easily be collected, a common approach is to generate more data points from

existing data using an augmentation technique. In image classification, many augmentation approaches utilize simple

image manipulation algorithms. In this work, we propose some new methods for data augmentation based on several image

transformations: the Fourier transform (FT), the Radon transform (RT), and the discrete cosine transform (DCT). These

and other data augmentation methods are considered in order to quantify their effectiveness in creating ensembles of neural

networks. The novelty of this research is to consider different strategies for data augmentation to generate training sets

from which to train several classifiers which are combined into an ensemble. Specifically, the idea is to create an ensemble

based on a kind of bagging of the training set, where each model is trained on a different training set obtained by

augmenting the original training set with different approaches. We build ensembles on the data level by adding images

generated by combining fourteen augmentation approaches, with three based on FT, RT, and DCT, proposed here for the

first time. Pretrained ResNet50 networks are finetuned on training sets that include images derived from each augmentation

method. These networks and several fusions are evaluated and compared across eleven benchmarks. Results show that

building ensembles on the data level by combining different data augmentation methods produce classifiers that not only

compete competitively against the state-of-the-art but often surpass the best approaches reported in the literature.

Keywords Data augmentation � Deep learning � Convolutional neural networks � Ensemble

1 Introduction

Deep learners, especially convolutional neural networks

(CNNs), are now the dominant classification paradigm in

image classification, as witnessed by the plethora of articles

in the literature that currently spotlight these networks.

Learners like CNN are attractive, in part, because the

architectures of these networks learn to extract salient

features directly from samples, thus bypassing the need for

human intervention in selecting the appropriate feature

extraction method for the task at hand. These learned

features have been shown to eclipse the power of hand-

crafted features chiefly because CNNs progressively

downsample the spatial resolution of images while at the

same time enlarging the depth of the feature maps.

Despite the strengths of CNNs, there are some signifi-

cant drawbacks. Because the parameter size of CNNs is

huge, these networks tend to overfit when trained on small

datasets. Overfitting reduces the classifier’s ability to
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generalize its learning so that it can correctly predict

unseen samples. Researchers are now pressured to collect

colossal datasets to accommodate the needs of deep

learners, as exemplified by the ever-growing dataset Ima-

geNet [1], which now contains over 14 million images

classified into 1000 plus classes. In many domains, such as

medical image analysis and bioinformatics (where samples

might only number in the hundreds), collecting sufficient

data for proper CNN training is prohibitively expensive

and labor-intensive. This need for enormous datasets also

requires that researchers have access to costly machines

with considerable computational power.

Several solutions to the problem of overfitting that

bypass the need for collecting more data have been pro-

posed. Two of the most powerful techniques are transfer

learning, where a given CNN architecture is pretrained on a

massive dataset and provided to researchers and practi-

tioners so that the network can be finetuned on smaller

datasets, and 2) data augmentation, which adds new data

points based on the original samples in a training set. Other

methods unrelated to the techniques employed here include

dropout [2], zero-shot/one-shot learning [3, 4], and batch

normalization [2].

This study focuses on data augmentation since it has

become a vital technology in fields where large datasets are

difficult to procure [5–7]. Data augmentation methods aim

at increasing the amount of training data by adding slightly

modified copies of already existing data or newly created

synthetic data from existing data. They act as a regularizer

and help reduce overfitting when training a machine

learning model. Not only does data augmentation promote

learning that leads to better CNN generalization, but it also

fixes the problem of overfitting by adding and extracting

information that is inherent within the training space. Data

augmentation (DA) is a key element in the success of CNN

models, as its use can lead to a faster convergence to

solution and better prediction accuracy.

In the literature (see surveys [5–7]), most of the work

focuses essentially on geometric transforms, statistical

methods for color modification, and, recently, also on

learned methods such as those based on GAN. To the best

of our knowledge, this is the first paper that reports a very

large study that deals with data augmentation approaches

based on feature transform, testing them in several datasets

spanning different applications.

Specifically, we focus on data augmentation techniques

for image classification. These techniques can be divided

into two broad types depending on whether the methods are

based on basic image manipulations (such as translating

and cropping) or on deep learning approaches [5]. The

main object of this study is to evaluate the feasibility of

building ensembles at the data level by adding augmented

images generated using different sets of image

manipulation methods, an approach that was taken in [8].

Unlike [8], however, this work performs a more exhaustive

study building ensembles of augmentation methods by

assessing over twice the number of techniques across ele-

ven (versus only four) benchmark datasets.

The remainder of this paper is organized as follows: in

Sect. 2, we review some of the best-performing data image

manipulation approaches. In Sect. 3, novel data augmen-

tation algorithms based on the radon transform (RT) [9],

the discrete cosine transform (DCT), and the Fourier

transform (FT) are proposed. As described more fully in

Sect. 3, ensembles are built with pretrained ResNet50s

finetuned on training sets composed of images taken from

the original data and generated by an augmentation tech-

nique. These networks and their fusions are evaluated on

the benchmarks described at the end of Sect. 3. In Sect. 4,

we compare the performance of individual augmentation

approaches and the ensembles built on them. The best

ensemble reported in this work either exceeds the perfor-

mance of the state-of-the-art in the literature or achieves

similar performance on all the tested datasets. In Sect. 5,

we conclude with a few suggestions for further research in

this area.

The main contributions of this study can be summarized

as follows:

• Presented is an extensive evaluation of common image

manipulation methods used for data augmentation

across eleven freely available and diverse benchmarks.

• Proposed are three new augmentation approaches

utilizing RT, FT, and DCT transforms.

• Demonstrated is the value of building deep ensembles

of classifiers on the data level by adding to the training

sets images generated using different data augmentation

approaches: the experimentally derived ensemble

developed in this work is shown to achieve state-of-

the-art performance on several benchmarks.

• Provided to the public at no charge is the MATLAB

source code used in the experiments reported in this

work (available at https://github.com/LorisNanni/Fea

ture-transforms-for-image-data-augmentation).

2 Related work

As mentioned in the Introduction, this study focuses on

building ensembles with augmentation methods produced

by the application of image manipulation methods. In [5],

these methods are divided into the following groups based

on: (1) simple geometric transformations, (2) randomly

erasing and cutting, (3) mixing images, (4) kernel filters,

and (5) color space transforms [5]. Most of these aug-

mentation algorithms are easy to implement. Practitioners

22346 Neural Computing and Applications (2022) 34:22345–22356

123

https://github.com/LorisNanni/Feature-transforms-for-image-data-augmentation
https://github.com/LorisNanni/Feature-transforms-for-image-data-augmentation


must be careful, however, when applying these image

manipulations to a sample because it is possible to produce

new images that no longer belong to the same class as the

original. Flipping an image of the number six, for instance,

would result in an image recognized as the number nine.

Flipping, especially along the horizontal axis, is one of

the simplest and most popular geometric transforms for

data augmentation [5], as are rotation (typically on the right

or left axis in the range [1�, 359�]) and translation (where

positional bias is avoided by shifting a sample up, down,

left, and right) [5]. A problem with translation is that it can

introduce undesirable noise [10]. Random cropping is

another simple technique that reduces the size of new

images, which is often needed to fit the input of a network.

Augmented data can also be generated by merely substi-

tuting random values in an image, as extensively evaluated

in [11]. In [12], the authors compared the performance of

these simple augmentation techniques with each trained on

AlexNet and assessed on two datasets, ImageNet and

CIFAR10 [13]: rotation was found to perform better than

translation, random cropping, and random values.

Random erasing [14] and cutting [15] occlude images;

these methods model what occurs regularly in the real

world, where objects are often only partially presented in

the visual field. A review of the literature on augmentation

methods based on this category can be found in [6]. Of

particular interest is the method proposed in [14] that

randomly erases an image with patches that vary in size.

This method of partially erasing images was evaluated on

ResNet architectures across three datasets: Fashion-

MNIST, CIFAR10, and CIFAR100. Results showed con-

sistent performance improvements.

Another simple method for constructing images is to

mix them. A simple way to accomplish this task is to

average the pixels between two or more images belonging

to the same class [16]. Alternatively, images can be sub-

mitted to a transform, and the resulting components can be

mixed, for example, by chaining, as in [17]. Masks can also

be applied. In [16], the authors combined images using

several image manipulation techniques: random images

were flipped and cropped, and then, the RGB channel

values for each pixel were averaged. Some nonlinear

methods for mixing images were proposed in [18], and

GANs were used in [18] to blend images.

Kernel filters can also be applied to create new images

within a sample space. Filters are often used to sharpen or

blur images. Filters, such as Gaussian blur, are applied by

sliding an n 9 n window across the image. PatchShuffle,

proposed in [19], randomly swaps matrix values in the filter

window to make new images.

Novel color images can be created by means of color

space transformations. A positive side-effect of this tech-

nique is the removal of illumination bias [5].

Transformations of color space can involve making a his-

togram of pixels in a color channel and applying different

filters, much like those positioned over the lenses of

cameras to alter the characteristics of the color space in a

scene. Alternatively, color spaces can be converted into

other color spaces. Care must be taken when transforming

the color space, as it has been observed, for example, that

changing an RGB image to a grayscale image can reduce

the performance of a classifier [20]. New images can be

produced by adding noise to color distributions or by jit-

tering and adjusting the brightness, contrast, and saturation

of samples [12, 21]. These color adjustments run the risk of

removing valuable information. A review of color space

transforms for image augmentation and a comparison of

this type of image manipulation with geometric transforms

is available in [22].

Not all data augmentation techniques take into account

the entire training set. One popular technique in this vein is

PCA jittering [12, 21–24], which produces new images by

multiplying the PCA components by a small number. In

[22], only the first component, which contains the most

information, is jittered by being multiplied by a random

number selected from a uniform distribution. Finally, in

[23], an original image is transformed by PCA and DCT

and jittered by adding noise to all components before

reconstructing the image.

3 Materials and methods

3.1 Proposed approach

The method proposed here for building ensembles of deep

learners is illustrated in Fig. 1. A given training set is

augmented using n = 14 approaches, each detailed in

Sect. 3.2. These new training sets are then used to finetune

fourteen ResNet50s pretrained on ImageNet. In this work,

each pre-trained ResNet50 is finetuned with a batch size of

30 and a learning rate of 0.001. In the testing phase, each

unknown sample is classified by the 14 CNNs, and the

resulting scores are fused by the sum rule.

3.2 Data augmentation methods

In this section, we describe the data augmentation sets

(APPs1-14) explored in this study. APPs1-11 have been

detailed in [8], so they will receive less attention. APPs12-

14 are proposed here for the first time; these augmentations

are explained more fully and illustrated in Fig. 2 (resulting

images) and Fig. 3 (methods).

The method proposed here for building ensembles of

deep learners is illustrated in Fig. 1. A given training set is

augmented using n = 14 approaches, each detailed in
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Sect. 3.2. These new training sets are then used to finetune

fourteen ResNet50s pretrained on the following training

sets:

APP1 (number of new images generated: 3) takes a

given image and randomly reflects it top–bottom and left–

right for two new images. The third transform linearly

scales the original image along both axes with two factors

randomly extracted from the uniform distribution [1, 2].

APP2 (number of new images generated: 6) replicates

App1 with three additional manipulations: image rotation

(randomly extracted from [- 10, 10] degrees), translation

(along both axes with the value randomly sampled from the

interval [0, 5] pixels), and shear (with vertical and hori-

zontal angles randomly sampled in the interval [0, 30]

degrees).

APP3 (number of new images generated: 4) replicates

App2 without shear.

APP4 (number of new images generated: 3), proposed in

[23], applies a transform based on PCA, where the PCA

Fig. 1 Ensembles are built on

pretrained ResNet50s finetuned

on training sets composed of

original images combined with

images generated by several

data augmentation techniques

Fig. 2 Examples of an original image (lower left-hand side)

augmented on methods APP12 (top), APP13 (middle), and APP14

(bottom)

Original image DCT image 

Random set 
(same or different classes) 

DCT images 

Fusion mask 
(probability 0.2 at pixel level)

DCT Avg 

DCT Avg

IDCT

Augmented images #12 

RGB channels 
IRT RT

Radon images

Discarding 
angles 

Augmented images #13

FFT 

Discarding 
pixels 

IFFT 

Augmented images #14

RGB split 

Fig. 3 Schema for augmentation

sets APP12-14 (designated here

to save space as #12–#14)
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coefficients extracted from a given image are transformed

(1) by randomly setting to zero (with a probability of 0.5)

each element of the feature vector; (2) by adding noise to

each component based on the standard deviation of the

projected image; and (3) by selecting five images from the

same class as the original image, computing the PCA

vector, and randomly selecting components with a proba-

bility 0.05 from the original PCA vector and swapping

them out with some of the corresponding components of

the five other PCA vectors. The PCA inverse transform is

applied to the three perturbed PCA vectors of the original

image to produce the augmented images.

APP5 (number of new images generated: 3) applies the

same perturbation method as those described in App4 using

the DCT transform rather than PCA. With APP5, the DC

coefficient is never changed.

APP6 (number of new images generated: 3) is applied to

color images. The three images are constructed by altering

contrast, sharpness, and color shifting. The contrast is

altered by linearly scaling the original contrast of the image

between the values a, the lowest value, and b, the highest

value allowed for the augmented image. Every pixel in the

original image outside this range is mapped to 0 if less than

a or 255 if greater than b. Sharpness is altered by blurring

the original with a Gaussian filter (variance = 1) and by

subtracting the blurred image from the original. The color

is shifted with three integer shifts from three RGB filters.

Each shift is then added to one of the three channels in the

original image.

APP7 (number of new images generated: 7) is applied to

color images. The first four augmented images are pro-

duced by altering the pixel colors in the original image

using the MATLAB function jitterColorHSV with ran-

domly selected values in the range of [0.05, 0.15] for hue,

in the range [- 0.4, - 0.1] for hue saturation, in the range

[- 0.3, - 0.1] for brightness, and in the range [1.2, 1.4] for

contrast. Image five is generated with the MATLAB

function imgaussfilt, where the standard deviation of the

Gaussian filter randomly ranges in [1, 6]. Image six is

generated by the MATLAB function imsharpen with

sharpening equal to two and the radius of the Gaussian

low-pass filter equal to one. Image seven applies the same

color-shifting detailed in App6.

APP8 (number of new images generated: 2) is applied to

color images and produces the two augmented images by

randomly selecting a target image belonging to the same

class as a given image followed by the application of two

nonlinear mappings: RGB histogram specification and stain

normalization using the Reinhard Method [25].

APP9 (number of new images generated: 6), proposed in

[8], applies two elastic deformations: one MATLAB

method that introduces distortions into the original image

and an RGB adaptation of ElasticTransform from the

computer vision tool Albumentations (available at https://

albumentations.ai/ accessed 01/15/22). Both methods

transform a given image by applying a randomly generated

displacement field to its pixels by a value extracted from

the standard uniform distribution in the range [- 1, 1] for

the first method or in the range of [- 1. ? 1] for the sec-

ond. The resulting horizontal and vertical displacement

fields are passed through three low-pass filters: (1) circular

averaging filter, (2) rotationally symmetric Gaussian low-

pass filter, and (3) rotationally symmetric Laplacian of

Gaussian filter. For more details, see [8].

APP10 (number of new images generated: 3), proposed

in [8], is based on DWT [26] (specifically, Daubechies

wavelet db1 with one vanishing moment). DWT produces

four matrices: the approximation coefficients (cA) and the

horizontal, vertical, and diagonal coefficients (cH, cV, and

cD, respectively). APP10 performs three perturbations on

these matrices to generate three new images. In the first

method, each element in the coefficient matrices is ran-

domly selected, with a probability of 0.5, to be set to zero.

In the second method, a constant is added to each element

that is calculated by summing the standard deviation of the

original image with a number randomly selected in the

range [- 0.5, 0.5]. In the third method, five images from

the same class as the original image are randomly selected,

and the DWT coefficient matrices are calculated for each

one. Elements of the original cA, cH, cV, and cD matrices

are then replaced, with a probability of 0.05, with values in

the matrices of the other five images. The three augmented

images are produced by applying the inverse DWT trans-

form on the three sets of perturbed matrices.

APP11 (number of new images generated: 3): was first

proposed in [8] and is based on the Constant-Q Transform

(CQT) [27]. After calculating the CQT arrays of a given

image, it undergoes the same perturbations to generate the

three images as in APP10. The three augmented images are

then produced by applying the inverse CQT transform on

the perturbed CQT arrays.

APP12 (number of new images generated: 5) is a new

method proposed here based on DCT and the random

selection of other images. Three novel images are extracted

from the same class as the original image and two from a

different class. The original image and the five selected

images are projected on the DCT space, with each element

of the five images having a probability of 0.2 of being

averaged with the original DCT element. Notice that this

approach is cumulative, as can be observed in the follow-

ing pseudo-code:
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IDCT is applied at the end. Since there are three chan-

nels for each color image, these perturbations are applied to

each channel independently.

APP13 (number of new images generated: 3) takes an

original image and builds 3 augmented images, using the

Radon transform, as can be observed in the following

pseudo-code:

where randSel(num, range) randomly select num values

in a range.

The first image is produced with the Radon transform

(RT), which projects the original image’s intensity along a

radial line oriented at a specific angle (angles with values

between [0, 179]), but, for the first image, twenty angles

are randomly selected and discarded. Then, the image is

back-projected with the inverse RT (IRT). The second

image is generated in the same way as the first, but all

angles are used to project the image with RT, after which

15% of the angle values (that is, the columns of the pro-

jected image) are set to zero before IRT is applied. The

third image is like the first in that 20 angles are randomly

selected and discarded in the projection step, and, like in

the construction of the second image, only 15% of the

angles (columns of the projected image) are set to zero

before IRT is applied.

APP14 (number of new images generated: 2) The first

image is generated using the Fast Fourier Transform (FFT).

After FFT is applied, 50% of the coefficients are randomly

set to zero before performing the inverse FFT. The second

image is built by applying DCT; next, a square low-fre-

quency filter (size 40 9 40) is applied on the DCT image

before performing the inverse DCT:

where randomMask(image, prob) returns a random pixel

mask which is of the same size as the image and prob is the

probability of each pixel to be 1.

3.3 Datasets

In this work, ensembles of augmentation methods are tes-

ted and compared with the literature on eleven benchmark

datasets for image classification (see Table 1).

In Table 1, the following information is reported for

each dataset: a short name, the original dataset name (if

provided in the reference), the number of classes and

samples, the size(s) of the images, the testing protocol, and

the original reference. The abbreviations for the testing

protocols in Table 1 are detailed as follows:

• 5CV,10CV represents fivefold and tenfold cross-

validation.

• Tr-Te represents a dataset that is pre-divided into

training and testing sets. For LAR, a threefold division

is provided by the authors. For PBC, the official

protocol specifies that 88% of the images be included in

the training set and 12% in the test set, with both sets

maintaining the same sample per class ratio as in the

original dataset. END includes a training set of 3302

images and an external validation set of 200 images.

The performance indicator typically reported on these

datasets is accuracy, which measures the rate of correct

classifications. For the GRAV dataset, four different views

are extracted at different durations from each glitch/image;

therefore, the final score is obtained by combining the four

classification scores via the average rule. Validation of the

superiority of one method over the others is provided by

the Wilcoxon signed rank test [39].
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4 Experimental results

We start our experiments by comparing the performance of

the augmentation sets with ResNet50 (see Table 2), along

with the results of these approaches on the following

ensembles:

• EnsDA_A: this is the fusion by sum rule among all the

ResNet50 trained using App1-11; each ResNet50 is

trained with a different data augmentation approach.

The data augmentation methods based on color spaces

(App6-8) are not reported on VIR, HE, and MA since

they are gray-level images.

Table 1 Description of the eleven datasets used in this study

Short name Full name #Classes #Samples Image size Protocol Refs.

VIR Virus 15 1500 41 9 41 10CV [28]

BARK Bark 23 23,000 * 1600 9 3800 5CV [29]

GRAV Gravity 22 8583 470 9 570 Tr-Te [30]

POR Portraits 6 927 From 80 9 80 to 2700 9 2700 10CV [31]

PBC Peripheral blood cell classification 8 17,092 360 9 363 Tr-Te [32]

HE 2D HELA 10 862 512 9 382 5CV [33]

MA Muscle aging 4 237 1600 9 1200 5CV [34]

BG Breast grading carcinoma 3 300 1280 9 960 5CV [35]

LAR Laryngeal dataset 4 1320 1280 9 960 Tr-Te [36]

Triz Gastric lesion types 4 574 352 9 240 10CV [37]

END Histopathological endometrium images 4 3502 640 9 480 Tr-Te [38]

Table 2 Performance accuracy

(in %) of data augmentation sets

(APP1-14) and defaults

DataAUG VIR HE MA BG LAR POR Bark Grav TriZ END PBC

NoDA 85.53 95.93 95.83 92.67 94.77 86.29 87.48 97.66 98.97 55.50 98.98

App1 87.00 95.12 95.00 93.00 92.95 87.05 89.60 97.83 99.13 56.00 98.93

App2 86.87 96.63 95.83 94.00 95.08 85.97 90.17 98.08 99.13 51.50 99.08

App3 87.80 95.12 95.00 94.00 94.55 87.05 89.45 97.99 98.96 56.50 98.88

App4 86.33 95.23 93.33 92.33 94.62 84.90 87.91 97.74 98.08 75.00 98.74

App5 86.00 95.35 91.25 91.33 95.45 86.41 87.61 97.83 98.43 77.50 98.74

App6 ** ** ** 92.33 94.39 87.37 88.63 98.08 98.43 75.00 98.78

App7 ** ** ** 93.33 95.08 88.13 89.28 97.99 98.61 81.00 98.98

App8 ** ** ** 90.67 94.70 86.06 87.29 97.74 98.26 80.50 98.35

App9 85.67 95.58 94.17 91.67 95.15 86.19 88.86 98.24 98.95 69.50 98.93

App10 84.20 95.81 91.25 88.67 93.64 85.10 86.39 98.41 99.31 62.00 98.64

App11 85.47 95.35 91.25 92.67 95.98 86.71 89.20 97.91 99.48 80.00 98.69

App12 86.73 95.23 91.67 90.33 95.45 85.63 86.81 97.49 97.90 71.00 98.78

App13 86.20 94.77 92.92 91.67 95.15 85.76 88.40 98.08 98.08 75.00 98.69

App14 85.27 95.47 91.25 93.33 93.71 87.26 87.84 97.91 98.43 84.00 98.83

DivAUG [40] 86.07 95.23 90.83 89.33 96.29 86.52 *** *** *** *** ***

EnsDA_A 90.00 96.51 97.08 94.00 96.29 89.21 91.27 98.33 99.13 76.00 98.98

EnsDA_B 90.20 96.63 97.08 94.00 96.14 89.96 91.00 98.24 99.13 77.50 99.08

EnsDA_C 89.33 96.51 97.08 93.67 96.74 90.07 91.38 98.33 99.13 71.50 99.12

Ens_Base(14) 89.73 96.40 97.50 93.67 96.14 88.02 90.66 98.08 98.78 50.50 98.88

Ens_Base(11) 89.73 96.28 97.50 93.67 95.91 87.58 90.67 98.16 98.78 50.00 98.74

Ens_Base(5) 89.60 95.93 96.67 93.33 96.14 87.48 90.66 97.99 98.78 49.00 98.78

Bold values indicate best result in each column, each column reports the performance of a different dataset

**Augmentations that work on color images were not run on gray-level images

***Computation time exceeded resources
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• EnsDA_B: this fusion is the same as EnsDA_A except

for the addition of ResNet50s trained with the new

augmentation methods App12-14.

• EnsDA_C: this is the fusion by sum rule among those

methods not based on feature transforms. Each

approach is iterated twice (three times for datasets

VIR, HE, and MA since they are gray-level images;

they are trained three times so that the size of the

ensemble EnsDA_C is similar to EnsDA_B).

• EnsBase(X): this is a baseline ensemble intended to

compare/validate the performance of EnsDA_* (i.e.,

1–3 above); EnsBase(X) combines (via sum rule) X

ResNet50 networks trained separately on App3, which

produces the best average performance compared with

all the other data augmentation sets.

The label NoDA in the first row of Table 2 is a stand-

alone ResNet50 trained without data augmentation.

Several conclusions can be drawn by examining

Table 2:

• The best augmentation set varies with each dataset: in

some, the best approach is a feature transform (see

GRAV, Triz, and END); in others, a color-based

method (see POR), and for some, the best performance

is obtained using affine transformations.

• Considering a stand-alone CNN, in some datasets (see

PBC), the performance of NoDA is similar to that of the

best App augmentation sets.

• In general, though, the ensembles strongly boost the

performance of NoDA: both Ens_Base(11) and

Ens_Base(14) outperform NoDA with a p value of

0.1, and all the EnsDA_* outperform NoDA with a p

value of 0.001. Across all the datasets, the EnsDA_*

ensembles obtain an accuracy higher than or equal to

that obtained by NoDA.

• EnsDA_C outperforms Ens_Base(14) with a p value of

0.1. Both EnsDA_A and EnsDA_B (which include the

augmentation methods based on the feature transform

approaches) outperform Ens_Base(14) with a p value of

0.05. Among the different tested ensembles, our

suggested approach is EnsDA_B since it obtains the

highest average performance among the EnsDA_*

(EnsDA_A: 93.34%, EnsDA_B: 93.54%, EnsDA_C:

92.98%, EnsBase(14): 90.76%).

The approach proposed in [40] selects only a subset of

images from a larger set of built images. Here, as a base,

we use a large dataset made up of the images created by all

the methods belonging to EnsDA_B, but it produced no

improvement in performance compared to EnsDA_B; for

this reason, and for the sake of reducing computation time,

it was tested only on a subset of all the datasets.

A second experiment was performed to confirm the

previous results on a different architecture. In Table 3, the

same ensembles reported in Table 2 are evaluated using

mobileNetV2 [41] instead of ResNet50. MobileNetv2 is a

lightweight architecture that produces results comparable

to heavy architectures using far less computational

resources.

The results in Table 3 substantially confirm conclusions

reported in Table 2, viz., the proposed approaches for data

augmentation are valid methods for increasing diversity

among classifiers and designing high-performing ensem-

bles: EnsDA_* outperform EnsBase(14) with a p value of

0.1.

Even if accuracy is probably the most used performance

indicator for classification problems, it is not the most

suitable for comparing classifiers. The area under the curve

(AUC) is preferred as a standard measure in tests of pre-

dictive modeling performance. The AUC is an estimate of

the probability that a classifier will rank a randomly chosen

positive instance higher than a randomly chosen negative

instance. In this work, we use the one’s complement of

AUC, i.e., the error under the ROC curve (EUC): EUC =

1 - AUC. Thus, in Tables 4 and 5, the performance of the

proposed approaches in terms of EUC is reported. Because

EUC is an indicator for binary classifiers, in multiclass

problems, the average value of one-versus-all EUC is used

(the rocmetrics MATLAB function has been employed).

The results in Tables 4 and 5 largely reflect the trend of

accuracy, namely, that the proposed ensembles based on

data augmentation outperform both base ensembles and

stand-alone approaches.

Table 3 Performance accuracy

(in %) using MobileNetv2 as a

model

MobileNet VIR HE MA BG LAR POR Bark Grav TriZ END PBC

EnsDA_A 85.27 96.16 95.83 93.00 96.21 88.56 91.20 98.16 98.25 86.00 99.17

EnsDA_B 84.47 95.47 96.25 93.33 95.98 88.55 90.95 98.24 98.26 87.00 99.22

EnsDA_C 74.73 96.63 95.00 93.33 95.76 87.91 91.56 98.16 98.25 86.50 99.22

Ens_Base(14) 47.60 95.00 97.50 92.67 95.30 85.96 91.04 98.16 98.26 83.00 99.37

Ens_Base(11) 47.60 95.00 97.08 92.67 94.85 85.86 91.10 98.16 98.26 82.50 99.27

Ens_Base(5) 47.53 95.47 96.25 93.00 94.32 85.64 90.90 97.99 98.26 82.50 99.27

Bold values indicate best result in each column, each column reports the performance of a different dataset
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The results reported in Tables 4 and 5 substantially

confirm previous conclusions:

EnsDA_A and EnsDA_B outperforms (considering

EUC) EnsBase(14) with a p value of 0.1 in both the tested

Table 4 EUC (1-AUC) using

ResNet50 as a model
ResNet50 VIR HE MA BG LAR POR Bark Grav TriZ END PBC

EnsDA_A 1.37 0.24 0.27 2.39 0.12 1.75 1.38 0.23 0.04 10.73 0.01

EnsDA_B 1.33 0.23 0.27 2.50 0.11 1.68 1.40 0.22 0.05 9.24 0.01

EnsDA_C 1.42 0.20 0.11 3.14 0.17 1.71 1.37 0.30 0.07 9.89 0.01

Ens_Base(14) 1.36 0.23 0.21 2.42 0.12 2.45 1.56 0.31 0.13 20.48 0.03

Ens_Base(11) 1.37 0.27 0.23 2.38 0.15 2.48 1.55 0.29 0.12 20.94 0.03

Bold values indicate best result in each column, each column reports the performance of a different dataset

Table 5 EUC using

MobileNetv2 as a model
MobileNet VIR HE MA BG LAR POR Bark Grav TriZ END PBC

EnsDA_A 2.35 0.17 0.20 3.06 0.24 2.04 1.26 0.31 0.06 4.79 0.02

EnsDA_B 2.24 0.17 0.16 2.77 0.23 1.96 1.30 0.29 0.07 4.63 0.02

EnsDA_C 3.71 0.22 0.14 3.14 0.20 2.10 1.24 0.36 0.06 4.73 0.01

Ens_Base(14) 17.46 0.24 0.19 2.32 0.28 2.74 1.34 0.34 0.17 6.72 0.01

Ens_Base(11) 17.56 0.24 0.22 2.36 0.32 2.75 1.36 0.33 0.17 6.96 0.01

Bold values indicate best result in each column, each column reports the performance of a different dataset

Table 6 Performance as a measure of accuracy (in %) compared with the best in the literature

DATASET ResNet50 MobileNetV2

EnsDA_B EnsDA_B [42] [43] [44] [45] [46] [28] [45] [47]

VIR 90.20 84.47 89.60 89.47 89.00 88.00 87.27 87.00*** 86.20 85.70

LAR** EnsDA_B EnsDA_B [48] [36]

96.09 95.98 95.2 92.0

POR EnsDA_B EnsDA_B [31]

89.96 88.55 90.08

BARK EnsDA_B EnsDA_B [49] [50] [51] [29]

91.00 90.95 48.90 85.00 90.40 85.00

PBC EnsDA_B EnsDA_B [52] [53]

99.08 99.22 99.30 97.94

GRAV EnsDA_B EnsDA_B [30]

98.24 98.24 98.21

Triz EnsDA_B EnsDA_B [37]****

99.13 98.26 87.00

END EnsDA_B EnsDA_B [38]

77.50 87.00 76.91

HE EnsDA_B EnsDA_B [54] [55] [35] [56]

96.63 95.47 98.30 94.40 84.00 68.30

MA EnsDA_B EnsDA_B [54] [57] [56]

97.08 96.25 97.90 53.00 89.60

BG EnsDA_B EnsDA_B [35] [48]

94.00 93.33 96.30 95.00

**On LAR, F1 is the performance measure

***The method in [28] combines descriptors based on both object scale and fixed scale images

****Only handcrafted features are used
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network topologies (MobileNetV2 and ResNet50).

EnsDA_B obtains an average performance better than that

obtained by EnsDA_A.

In Table 6, our best ensemble is compared with the best

methods reported in the literature on the same datasets. As

can be observed, our proposed method obtains state-of-the-

art or similar performance. Note that the performance

indicator is the F1-measure with the LAR dataset because

that is the measure that is reported most commonly in the

literature for this dataset.

In Fig. 4, we evaluate the disagreement of predictions

on different CNNs to evaluate their degree of diversity

[58]. The cosine similarity among scores is calculated for

eight networks: the first five are networks trained sepa-

rately on App3 (we used POR dataset for this experiment).

In contrast, the last three are trained on an augmented

dataset by APP12, APP13, and APP14, respectively. As

can be observed from Fig. 4, the dissimilarity among

scores is maximized in the last three rows/columns, prov-

ing the higher diversity among classifiers.

5 Conclusion

In this study, we compare combinations of pretrained

ResNet50s finetuned on training sets with the addition of

some of the best-performing image manipulation methods

for generating new images. The performance of these

networks and their fusions were compared across eleven

benchmarks representing diverse image classification tasks.

This study shows that constructing ensembles of deep

learners on the data level by adding images generated by

different data augmentation techniques increases the

robustness of CNNs. Given the breadth in the diversity of

the selected benchmarks, the approach taken here for

building CNN ensembles should work on most image

problems.
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