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A B S T R A C T

Deep generative models have shown impressive results in generating realistic images of faces. GANs managed to
generate high-quality, high-fidelity images when conditioned on semantic masks, but they still lack the ability
to diversify their output. Diffusion models partially solve this problem and are able to generate diverse samples
given the same condition. This paper introduces a novel strategy for enhancing diffusion models through
multi-conditioning, harnessing cross-attention mechanisms to utilize multiple feature sets, ultimately enabling
the generation of high-quality and controllable images. The proposed method extends previous approaches by
introducing conditioning on both attributes and semantic masks, ensuring finer control over the generated face
images. In order to improve the training time and the generation quality, the impact of applying perceptual-
focused loss weighting into the latent space instead of the pixel space is also investigated. The proposed solution
has been evaluated on the CelebA-HQ dataset, and it can generate realistic and diverse samples while allowing
for fine-grained control over multiple attributes and semantic regions. Experiments on the DeepFashion dataset
have also been performed in order to analyze the capability of the proposed model to generalize to different
domains. In addition, an ablation study has been conducted to evaluate the impact of different conditioning
strategies on the quality and diversity of the generated images.
. Introduction

Image synthesis has recently become a hot topic, mostly thanks to
he vast number of successful applications proposed in the literature.
mong the different generation tasks, several works have focused
ttention on semantic face image synthesis (Li et al., 2023; Tan et al.,
021; Rombach et al., 2022). Most of these solutions rely on GANs’
nd their ability to generate high-quality and high-fidelity results (Tan
t al., 2021; Li et al., 2019; Xiao et al., 2021). However, their uni-
odal nature prevents them from generating diverse samples (Wang

t al., 2022). Diffusion Models (DM) have proven to compete with GANs
n both quality and fidelity while being multi-modal generators (Ho
t al., 2020; Rombach et al., 2022; Wang et al., 2022; Choi et al.,
022; Dhariwal and Nichol, 2021). They are parametrized Markov
hains that optimize the variational lower bound on the likelihood
unction to generate samples matching the data distribution. In order
o generate an image, DMs iteratively refine a Gaussian noise via a
enoising process, that is implemented with a UNet (Ronneberger et al.,
015) backbone.

In this paper, we show how to achieve and surpass the actual state-
f-the-art for semantic face image synthesis, following three main eval-
ation criteria: quality, fidelity, and diversity. To improve the genera-
ion quality, a reweighed loss function is employed (Choi et al., 2022),

∗ Corresponding author.
E-mail address: giuseppe.lisanti@unibo.it (G. Lisanti).

which forces perceptual quality over unperceivable high-frequency de-
tails. Improved fidelity is achieved by utilizing a powerful conditioning
mechanism, which in this case is cross-attention (Vaswani et al., 2017),
in conjunction with semantically and spatially rich encodings. Diversity
is then examined by capitalizing on Diffusion Models’ innate ability
to generate multi-modal images. This is accomplished by applying
stricter or looser conditioning, resulting in more consistent or diverse
generated images, respectively. Finally, a method is proposed to har-
ness cross-attention for conditioning a diffusion model with multiple
features simultaneously, enabling a greater degree of control over the
generation process. In our solution, both facial attributes and semantic
masks are considered, but the same idea could be extended to any
other domain and set of features. For example, it could be possible to
condition a model with both a semantic layout and a certain time of the
day in order to generate landscapes with the right colors and shading or
combine sketches and textual descriptions in order to generate images
of suspects in the forensics field.

Our contributions can be summarized as follows:

• the analysis of perception prioritizing loss weighting (Choi et al.,
2022) in the latent space of Latent Diffusion Models (Rombach
et al., 2022), which enhances the quality of generated samples
without increasing the model’s size or training/sampling time.
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• a multi-conditioning solution to impose more strict and precise
control over the generated images. This mechanism lets the user
combine spatial-only conditioning (e.g., semantic masks), with
descriptive features (e.g., colors or level of detail from attributes).
Additionally, we show that multi-conditioning causes a slight de-
crease in quality but results in high fidelity on both the provided
conditioning.

• a state-of-the-art model for semantic face image synthesis, sur-
passing previous works in terms of generated images’ quality,
fidelity, and diversity.

. Related works

In the following, we provide an analysis of some of the most recent
orks related to the proposed solution.

.1. Denoising diffusion models

Recently, Diffusion Models (Sohl-Dickstein et al., 2015), have
chieved state-of-the-art results in various generative tasks, such as
mage Synthesis (Ho et al., 2020; Dhariwal and Nichol, 2021; Ho
t al., 2022), Image Inpainting (Rombach et al., 2022) and Image-
o-Image Translation (Wu and De la Torre, 2022). Ho et al. (2020)
erformed an empirical analysis to propose a reweighted loss function.
s an extension, Choi et al. (2022) generalized this concept in order to
stablish a Perception Prioritized (P2) Weighting of the training objec-
ive. Recently, Rombach et al. (2022) obtained outstanding results by
ntroducing a Latent Diffusion Model (LDM) in order to compress data
nd denoise them in a smaller latent space, reducing by a great margin
he amount of resources used for both the training and the sampling
tages. Wu and De la Torre (2022) analyzed the latent variables of
ifferent implementations of DMs (Song et al., 2020; Xiao et al., 2021)
o perform Unpaired Image-to-Image Translation. Our solution builds
pon (Rombach et al., 2022) and Choi et al. (2022) to obtain a model
hat is able to maximize the quality, fidelity, and diversity generation
riteria while also introducing a multi-conditioning mechanism.

Despite their astounding performance reported across several works,
iffusion Models come with a pretty heavy burden, which is mostly

epresented by the computational costs both at train and test time. For
his reason, several solutions that try to overcome this issue emerged
n the most recent years. This newer paradigm allows for avoiding
raining the whole Diffusion Model from scratch when a new condition
s introduced, lowering the computational requirement. It revolves
round the introduction of an additional neural network, much smaller
han the Diffusion Model, trained to inject the condition into pre-
rained DM (Ham et al., 2023; Zhang et al., 2023; Huang et al., 2023;
u et al., 2023; Liu et al., 2023; Mou et al., 2023). Among the solutions
ased on DMs, ControlNet (Zhang et al., 2023) and T2i-Adapter (Mou
t al., 2023) explored the possibility of using several conditioning
ethods, like semantic masks, text, Canny edges, human pose, and their

ombination, to control the output of a Stable Diffusion model. Differ-
ntly, FreeDoM (Yu et al., 2023) adopted this paradigm to introduce a
etwork capable of conditioning various diffusion-based architectures
nd conducted several experiments to demonstrate the adaptability of
heir solution. Collaborative Diffusion (Huang et al., 2023) proposed
o use a group of uni-modal pre-trained DM to achieve Multi-modal
ace generation. Despite the reduced computational requirements, these
olutions exhibit a drop in performance compared to solutions that have
een trained with a specific condition or a set of conditions as in our
roposed solution.

.2. Attributes controlled generation

Attributes Controlled Generation can both indicate synthesis and
diting. In the last few years, attributes-controlled image editing has
2

received a lot of attention (Choi et al., 2020; Gao et al., 2021; Hou
et al., 2022), while attributes-conditioned image synthesis has not been
of major interest. In Li et al. (2022), the authors proposed a text-to-
image generation process that relies on the text transposition of the
CelebA-HQ attributes and compared their results with other similar
studies (Xia et al., 2021; Li et al., 2019; Ruan et al., 2021).

Since the study conducted in this paper focuses on attributes-
conditioned image synthesis, we will compare the performance of our
model to the methods proposed in Xia et al. (2021), Li et al. (2019)
and Ruan et al. (2021) that are the closest to our solution, while the
approaches in Choi et al. (2020), Gao et al. (2021) and Hou et al. (2022)
are not directly comparable.

2.3. Semantic image synthesis

Over the years, semantic image synthesis has been mainly ad-
dressed by exploiting GAN-based models (Park et al., 2019; Zhu et al.,
2020, 2017; Tan et al., 2021; Richardson et al., 2021). Among these,
SPADE (Park et al., 2019) and SEAN (Zhu et al., 2020) focused on
generating unimodal images while other works like BycicleGAN (Zhu
et al., 2017) and INADE (Tan et al., 2021) explored multimodal gener-
ation, which consists in generating high-fidelity and diverse samples.
Recently, diffusion models have proved to obtain generation results
with higher diversity and fidelity (Rombach et al., 2022; Wang et al.,
2022). Wang et al. proposed Semantic Diffusion Model (SDM) (Wang
et al., 2022), for semantic image synthesis through DMs. SDM processes
the semantic layout and the noisy image separately, in particular, it
feeds the noisy image to the encoder stage of the U-Net model and
the semantic layout to the decoder, using multi-layer spatially-adaptive
normalization operators. This results in higher quality and semantic
correlation of the generated images.

Differently from these approaches, cross-attention (Vaswani et al.,
2017) allows more flexible and powerful control over the generation
results, enabling us to execute multi-conditioning of a DM by utilizing
both semantic layouts and facial attributes.

3. Multi-conditioning of latent diffusion model

This section initially offers an overview of latent diffusion models. It
then delves into a comprehensive explanation of the approach devised
for integrating semantic masks and attributes to influence the genera-
tion process. Lastly, it shows how the loss weighting method proposed
in Choi et al. (2022) can be integrated into the training of the proposed
model.

3.1. Latent diffusion model

Rombach et al. introduced the Latent Diffusion Model (LDM) (Rom-
bach et al., 2022) to minimize DMs’ computational demands while
maximizing the generated samples’ quality. They proposed a general
purpose, perceptually focused Encoder () to project the high-quality
nput image from pixel space to a lower dimensionality, semantically
quivalent, latent space. The smaller input helps to speed up the
raining since it is possible to feed the model with bigger batches, but
he most important advantage can be observed during the sampling.
he iterative denoising process, indeed, usually requires about 500
teps. Therefore, reducing the Gaussian Noise size by a factor of 4, on
ach spatial dimension, results in a much faster sampling in the DM’s
pace. Additionally, both the Encoder and the Decoder only need a
ingle pass, meaning they bring a negligible overhead to the denoising
rocess computational cost. This Encoding–Decoding process separates
he semantic compression and perceptual compression phases. The first
s completely handled by the Encoder–Decoder while the latter is
anaged through the U-Net backbone, which can use all its parameters

o focus on the perceptual part of the denoising. Since LDM achieved
utstanding results for various Unconditioned and Conditioned tasks,
e decided to base our work on this framework.
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Fig. 1. Multi condition model schema. Single conditioning and Unconditioned generation are simplifications of this model.
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.2. Attributes and mask conditioning

Conditioning a generative model consists in injecting some kind of
nformation, such that the generated samples will reflect this property.
n GANs this information is usually injected exploiting a normalization
ayer, like semantic region-adaptive normalization in SEAN (Zhu et al.,
020), spatially conditioned normalization in SCGAN (Wang et al.,
021) and instance-adaptive denormalization in INADE (Tan et al.,
021). DMs use a similar process to inject information into the denois-
ng process. For example, Dhariwal and Nichol (2021) proposed the
daptive group normalization (AdaGN) to condition the DM on both
he class embedding and the time-step after each group normalization
ayer, while Wang et al. (2022) proposed the multi-layer spatially-
daptive normalization in order to feed the segmentation masks into the
ecoder stage of the denoising U-Net. Rombach et al. (2022), instead,
xploited the transformer (Vaswani et al., 2017) as a flexible and
owerful conditioning mechanism to be applied to a subset of layers
f the U-Net. It is composed of three distinct components, the first of
hich is a self-attention mechanism, computed on the set of features

rom the relative U-Net layer. The output of the self-attention is then
ummed to the input features via residual connection and provided
s input to a cross-attention mechanism which combines information
rom the previous layer and the condition. The output is again summed
o the input of the cross-attention and passed through an expansion–
ompression feed-forward neural network (Vaswani et al., 2017) which
rovides the output, that represents the conditioned set of features. Our
olution follows this approach in order to condition the model with:
i) an encoding of binary attributes; (ii) an encoding of segmentation
asks; (iii) a sequence obtained as the concatenation of the encoding

rom both attributes and segmentation masks (Fig. 1).
As described above, among the different layers composing the trans-

ormer, the cross-attention (CA) is the one responsible for the injection
f the condition and is defined as:

𝐶𝐴(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(𝑄𝐾𝑇

√

𝑑

)

⋅ 𝑉 ,

𝑄 ∈ R𝜙×(ℎ⋅𝑑), 𝐾 ∈ R𝜓×(ℎ⋅𝑑), 𝑉 ∈ R𝜓×(ℎ⋅𝑑),
(1)

here 𝑑 is the dimension of each attention head output (i.e., 𝑑 = 64 as
n Vaswani et al. (2017) and Rombach et al. (2022)), ℎ is the number
f attention heads, 𝐾, 𝑉 ∈ R𝜓×(ℎ⋅𝑑) are computed from the encoded
onditioning while 𝑄 ∈ R𝜙×(ℎ⋅𝑑) is a representation obtained from the
orresponding U-Net layer on which the transformer is applied. The
imension 𝜙 results from flattening the U-net activations of the relative

layer, while the dimension 𝜓 represents the length of the conditioning
equence.

The final output of the conditioning 𝐶𝐴(𝑄,𝐾, 𝑉 ) will have the same
imension as the initial input 𝑄 ∈ R𝜙×(𝑑⋅ℎ) and will be provided as
onditioned input to the next layer of the U-Net. It can be observed
 t

3

that the output shape does not depend on the conditioning sequence
length 𝜓 , and this allows providing a variable set of conditions. In our
solution, three different conditioning are considered:

• binary attributes conditioning, which is obtained through an MLP
that maps the 40 attributes to 𝑎 ∈ R𝜓𝑎×(𝑑⋅ℎ);

• mask conditioning, 𝑚 ∈ R𝜓𝑚×(𝑑⋅ℎ), which is obtained by feeding
the semantic mask to a ResNet-18;

• multi-conditioning, 𝑚𝑐 ∈ R(𝜓𝑎+𝜓𝑚)×(𝑑⋅ℎ), which is obtained by
concatenating the two encodings along the 𝜓 axis;

For the last point, in order to preserve more high-level semantic
patial information, the ResNet-18 features before the Global Average
ooling layer have been extracted. Working with 256 × 256 images,
he ResNet-18 encoder maps the masks 𝑚 ∈ R256×256×18 into 𝑚 ∈
(8⋅8)×(𝑑⋅ℎ). Consequently, the multi-condition encoder will generate

𝑚𝑐 ∈ R(1+64)×(𝑑⋅ℎ), which is composed by one embedding for the
attributes and 64 for the flattened masks features. The whole pipeline

ith the conditioning mechanism is illustrated in Fig. 1.

.3. Perception prioritized loss weighting

Choi et al. (2022) analyzed the performance of the different stages
f the DMs denoising process. By using perceptual measures like
PIPS (Zhang et al., 2018), they separate the diffusion process into
hree stages, parametrized on a Signal-to-Noise Ratio (SNR) (Kingma
t al., 2021) depending on the variance schedule. These stages define
hen different levels of detail are lost during the diffusion, or vice-versa
hen they are generated in the denoising process. In the first stage of
enoising, coarse details like color and shapes are generated. Then, in
he content stage, more distinguishable features come up. In the final
tage, the fine-grained high-frequency details are refined and most of
hem are not perceivable by the human eyes.

To this end, a Perception Prioritized (P2) Weighting of DM’s loss
unction has been introduced:
𝑡
𝑃2 =

1
(𝑘 + 𝑆𝑁𝑅(𝑡))𝛾

𝐄𝐱,𝝐

[

‖𝝐 − 𝝐𝜃(𝐱𝑡, 𝑡)‖2
]

(2)

here k is a stabilizing factor that avoids exploding weights for small
NR values, usually set to 1, and 𝛾 is an arbitrary exponent that gives
ore or less importance to the re-weighting.

Our solution explores the possibility of employing this loss weight-
ng in the latent space of LDM,1 instead of the pixel space as performed
n Choi et al. (2022). This is achieved by modifying the original loss
ormulation of (Rombach et al., 2022):
𝑡
𝐿𝐷𝑀 = 𝐄(𝑥),𝑦,𝝐∼ (0,1),𝑡

[

‖𝝐 − 𝝐𝜃(𝐳𝑡, 𝑡, 𝜏𝜃(𝑦))‖2
]

(3)

1 For the detailed mathematical derivation, please refer to the supplemen-
ary material.
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by introducing the weighting factor from Eq. (2):

𝐿𝑡𝐿𝐷𝑀 = 𝐄(𝑥),𝑦,𝝐∼ (0,1),𝑡

[

‖𝝐 − 𝝐𝜃(𝐳𝑡, 𝑡, 𝜏𝜃(𝑦))‖2

(𝑘 + 𝑆𝑁𝑅(𝑡))𝛾
]

. (4)

In both Eqs. (3) and (4), 𝑧𝑡 is the latent representation of the input
image obtained by the Encoder  at diffusion timestep 𝑡, 𝜏𝜃 is the
condition encoder model and 𝑦 is its input which, for the proposed
method, can be a segmentation mask or an attribute array.

4. Experimental results

This section reports on a set of experiments conducted to vali-
date the proposed approach. First, some details about the datasets
and settings used in all experiments are provided. Then, quantita-
tive and qualitative generation results with unconditioned models and
with models conditioned using attributes, semantic masks, or both are
discussed.
Dataset. All experiments were conducted on the CelebAMask-HQ
(Lee et al., 2020) and DeepFashion (Liu et al., 2016) datasets. The
CelebAMask-HQ samples have been divided in a train/validation split
of 25.000/5.000, as in LDM (Rombach et al., 2022), while for Deep-
Fashion 11.500 samples have been used for training and 1.200 for
validation. All images have been resized to 256 × 256 pixels and
256 × 384 pixels for CelebAMask-HQ and DeepFashion, respectively.
Metrics. Visual quality has been assessed by computing the Fréchet
Inception Distance (FID) (Heusel et al., 2017) and Kernel Inception
Distance (KID) (Bińkowski et al., 2018). Since, for conditioned tasks, it
is also important to validate the correspondence between the generated
samples and the condition, an accuracy score has been computed for
the samples conditioned by masks, attributes or both.

As an additional correspondence metric, the mean Intersection over
Union (mIoU) of segmentation masks obtained from mask-conditioned
and multi-conditioned generation have also been measured. This has
been computed using off-the-shelf segmentation models2 to extract
semantic masks from the generated images and compare them to their
relative ground truth masks on which they were originally conditioned.

Finally, to evaluate diversity among samples conditioned on the
same set of features, the LPIPS (Zhang et al., 2018) metric has been
employed. In particular, for each conditioning method, the LPIPS has
been computed among 10 samples.

In all tables, when a number follows a metric’s name, it means that
all results shown in that table are computed on that specific amount
of samples. For unconditioned generation, the metrics have been com-
puted on 50K generated samples, while for conditioned generations we
sample as many images as in the validation set (e.g., 5K samples), using
the set of attributes or masks provided with the validation samples.
Each table includes metrics denoted by ↑ if higher is better, ↓ if lower
is better.

In all tables, ‘‘d.’’ and ‘‘s.’’ denote that the result has been obtained
using a deterministic (𝜂 = 0.0) or a stochastic (𝜂 = 1.0) sampling,
respectively.
Train and test settings. The LDM’s pre-trained encoder () has been
used to map images from the pixel space to a VQ-regularized latent
space with a reduction factor of 4, hence performing diffusion and
denoising on a 64 × 64 space. The latent space denoising U-Net (𝐔),
the image decoder (), the attributes encoder (𝑎), the ResNet-18
mask encoders (𝑚, 𝑚𝑛𝑝) and the multi-condition encoder 𝑚𝑐 have
all been trained from scratch for all our models. In particular, each
model has been trained for 500 epochs considering a variance schedule
of 1000 denoising steps, as in Choi et al. (2022). At test time, all
samples are generated with 500 DDIM (Song et al., 2020) denoising
steps, following Song et al. (2020) and Choi et al. (2022). It is worth
highlighting that the solution proposed in Choi et al. (2022), at test
time, uses a different number of sampling steps depending on the
dataset under analysis. However, for the experiments conducted on
CelebAMask-HQ, 500 denoising steps have been employed and for this
reason, we employed the same number of sampling steps at test time.

2 Available at: https://github.com/zllrunning/face-parsing.PyTorch.
 e
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Fig. 2. FID 10K at various training epochs for LDM baseline and our P2 weighted LDM
(Ours).

Table 1
Qualitative metrics computed on 50K samples.

Method FID 50K↓ KID 50K↓

PGGANb (Karras et al., 2017) 8.00 –
DDGANa (Xiao et al., 2021) 7.64 –
UDMb (Kim et al., 2021) 7.16 –
WaveDiffa (Phung et al., 2022) 5.94 –
LDMb (Rombach et al., 2022) 5.11 –
StyleSwinc (Zhang et al., 2022) 3.25 –

P2 (Choi et al., 2022) 13.20 –
LDM d. 5.88 0.0034
LDM s. 6.60 0.0036
Ours d. 5.42 0.0032
Ours s. 6.15 0.0033

a Means the corresponding result is taken from Rombach et al. (2022).
b Means the corresponding result is taken from Phung et al. (2022).
c Means the corresponding result is taken from Zhang et al. (2022).

4.1. Unconditioned image synthesis

The aim of this experiment is to analyze the improvement obtained
by introducing P2 Weighting (Choi et al., 2022) into LDMs. The base-
line LDM and the P2 weighted model have been trained from scratch.
For the latter 𝛾 = 0.5 was used, as suggested in Choi et al. (2022)
for CelebA-HQ. The two models have the exact same architecture and
are both trained for 500 epochs, the only difference is in the objective
function.

Fig. 2 shows the FID performance for different training checkpoints
on 10K images generated with deterministic sampling (𝜂 = 0.0). We
sed linearly spaced checkpoints (epochs 100, 200, 300, 400, 500).
2 improves the baseline FID at each checkpoint by 0.5 points until
ivergence (around epoch 300), without increasing the model’s number
f parameters or its sampling time.

Table 1, instead, reports the FID and KID results, also compared to
revious works. Here, for each model, 50K samples have been gener-
ted using 500 DDIM (Song et al., 2020) steps, both deterministically
𝜂 = 0.0) and stochastically (𝜂 = 1.0). These results show that the
roposed LDM, both with and without P2 weighting, obtains lower
IDs compared to most of the existing solutions. The sole approach
hat manages to attain a lower FID score in unconditioned generation is
tyleSwin Zhang et al. (2022). Nevertheless, it is essential to note that
ur solution has primarily been tailored for conditioned generation,
here it achieves state-of-the-art results.

Some qualitative samples generated from the same latent, consider-
ng the best training checkpoints for both the P2-weighted model and
he baseline LDM are shown in Fig. 3. It is possible to appreciate that,
fter 100 epochs, the proposed model has already reached satisfying
eneration stability while the baseline is still trying to converge.

From now on, our solution with the P2 weighting scheme will be
mployed in all subsequent experiments.

https://github.com/zllrunning/face-parsing.PyTorch
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Fig. 3. Unconditioned samples from LDM and the P2 weighted model (Our) at various
epochs (columns). All the samples are generated from the same latent. * denotes the
checkpoint used in the evaluation.

Table 2
FID, KID, accuracy (Acc.), and LPIPS for attributes conditioned synthesis (bottom) and
text conditioned synthesis (top).
Source: The text-conditioned results (top) are taken from StyleT2I (Li et al., 2022).

Method FID ↓ KID ↓ Acc. (%)↑ LPIPS ↑

ControlGAN (Li et al., 2019) 31.38 – – –
DAE-GAN (Ruan et al., 2021) 30.74 – – –
TediGAN-B (Xia et al., 2021) 15.46 – – –
StyleT2I (Li et al., 2022) 17.46 – – –

Ours d. (conditioned with 𝑎) 8.83 0.0028 90.53 –
Ours s. (conditioned with 𝑎) 9.18 0.0028 91.14 0.549

4.2. Attributes conditioned synthesis

This section shows how a simple attributes encoding can success-
fully condition DMs via cross-attention, both quantitatively and quali-
tatively. The attributes encoder is implemented as a simple MLP which
maps the set of 40 binary attributes into an embedding of dimension
𝑑 = 512 which is fed to the diffusion model via cross-attention, as
detailed in Section 3.2. We did not find any significant previous work
on this specific task, the closest family of solutions performs text-to-face
generation by conditioning the models on prompts usually formed by
the keywords corresponding to the name of the binary attributes, as in
StyleT2I (Li et al., 2022).

Table 2 shows that the proposed conditioned model outperforms
these solutions in terms of FID. It is important to highlight that the
methods introduced by Li et al. (2019), Ruan et al. (2021), Xia et al.
(2021) and Li et al. (2022) do not work directly on the raw set of
attributes, as in our solution, but perform some pre-processing which
may limit the capability of the model to generate samples that reflect
the original attributes.

In addition, to assess the conditioning fidelity of the proposed model
a ResNet-18 network has been fine-tuned, on the CelebA-HQ train-
ing set, to perform a multi-label attribute classification. The classifier
obtains a 90.85% accuracy on the ground truth validation images,
while the samples generated by the proposed model (i.e., obtained by
conditioning with the set of attributes from the validation set) obtain
a classification accuracy of 90.53%, which confirms the capability of
our model to generate samples which reflect the provided attributes.

Fig. 4 shows some samples generated from the same noise. It could
be observed that the generated faces share a similar physiognomy,
which differs just for the presence or absence of different attributes.
This behavior was also observed in Wu and De la Torre (2022).

4.3. Semantic image synthesis

As for the attributes conditioned synthesis discussed in Section 4.2,
it is possible to employ cross-attention for injecting semantic infor-

mation into our model. This time, the encoder backbone is a pruned

5

Table 3
FID, accuracy (Acc.), mean Intersection over Union (mIoU) and LPIPS for masks
conditioned synthesis. Ground-Truth refers to masks parsed from the original validation
set.

Method FID ↓ Acc. (%) ↑ mIoU (%) ↑ LPIPS ↑

Pix2PixHDa (Wang et al., 2018) 23.69 95.76 76.12 –
SPADEa (Park et al., 2019) 22.43 95.93 77.01 –
SEANa (Zhu et al., 2020) 17.66 95.69 75.69 –
GroupDNetb (Liu et al., 2019) 25.90 – 76.10 0.365
INADEb (Tan et al., 2021) 21.50 – 74.10 0.415
SDMb (Wang et al., 2022) 18.80 – 77.00 0.422
pSp (Richardson et al., 2021) 82.93 – – –
Collaborative (Huang et al., 2023) 11.86 – – –
Ours d. (conditioned with 𝑚) 8.49 91.36 75.14 –
Ours d. (conditioned with 𝑚𝑛𝑝) 8.43 93.77 78.67 –
Ours s. (conditioned with 𝑚) 8.41 91.52 75.80 0.469
Ours s. (conditioned with 𝑚𝑛𝑝) 8.31 93.91 79.06 0.446

Ground truth 0.0 95.51 81.79 –

a Denotes results taken from SEAN (Zhu et al., 2020).
b Denotes results taken from SDM (Wang et al., 2022).

ResNet-18, with 18 input channels representing binary masks, one for
each available part of the face, background excluded. Two different
conditions have been tested depending on the layers of the ResNet-
18 encoder from which the features are extracted. The first version,
𝑚, is the full ResNet-18 backbone except for the classification layer,
while the second, 𝑚𝑛𝑝, also discards the Global Average Pooling layer,
in order to preserve spatially relevant semantic information. The cor-
responding latent encodings are 𝑚 ∈ R1×1×512 and 𝑚𝑛𝑝 ∈ R8×8×512,
which differ just for the spatial size.

In Table 3 it is possible to observe that both FID and conditioning
fidelity are higher when 𝑚𝑛𝑝 is employed, which demonstrates the
capability of the cross-attention mechanism to leverage the information
provided by the larger number of embeddings. Moreover, both con-
ditioning methods outperform previous works by Wang et al. (2018),
Park et al. (2019), Zhu et al. (2020), Liu et al. (2019), Tan et al. (2021),
Wang et al. (2022) in terms of FID. This may be related to the fact
that the conditioning is very powerful, and both LDM and P2 optimize
human perception. So, the generated images are both faithful (due to
conditioning) and realistic (LDM + P2). Furthermore, by using a strong
conditioning method, the distribution of generated images, at least in
terms of facial shape, faithfully follows the original examples, further
improving the FID.

To analyze the ability of the proposed model to adapt to noisy
masks, a second experiment has been conducted in which: (i) a face
parsing model is employed to extract the segmentation masks from the
validation set (instead of extracting the mask from the generated image
as in the previous experiment); (ii) these masks are used to condition
the model (instead of using the ground-truth validation masks); (iii)
5K samples are generated using the new imperfect masks. The FID
obtained for this experiment, 8.20, is lower than the one obtained with
the default masks, indicating a good ability of the proposed model to
adapt to imperfect masks. The last row of Table 3 shows the accuracy
and mIoU for the masks generated at point (i).

A diversity study has also been conducted using LPIPS (Zhang et al.,
2018) as the metric. Ten samples were generated for each segmentation
mask in the validation set and were used to compute an intra-class
diversity score for each class. The average LPIPS results compared to
previous works are reported in Table 3. Note that, LPIPS have been
computed only on samples generated using stochastic samplers because
of the greater differences that could show up in the samples due to the
variance and hence more complex latent. These results show that the
proposed solution surpasses the previous methods, both GANs and DMs
based, on the quality, and diversity of the generated images. As regards
fidelity the proposed solution shows a slightly lower performance in
terms of accuracy and a higher result in terms of mIoU.

It can be observed that fidelity and diversity show an inverse
behavior depending on the degree of conditioning applied to the model.
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Fig. 4. Generation examples obtained from the same latent (i.e., the same initial noise) using a deterministic DDIM. Each sample is conditioned on a random set of attributes
chosen from the validation set.
Fig. 5. Samples generated using 𝑚𝑛𝑝 with their relative semantic masks.
On one hand, the model conditioned with 𝑚, uses only 1∕64𝑡ℎ of the
mbedding compared to 𝑚𝑛𝑝, which results in a less accurate encoding
or semantic masks. This is reflected in a higher LPIPS and lower
idelity, expressed by both accuracy and mIoU. On the other hand,
sing more spatially relevant conditioning allows for improving the
esults in terms of fidelity while observing a reduction in the capability
f the model to diversify the generated images. Fig. 5 shows some
amples conditioned with 𝑚𝑛𝑝. Non-centered faces, glasses and hats do
ot pose any problems.

Lastly, we conducted an additional experiment exploiting the source
ode and weights available for Collaborative Diffusion (Huang et al.,
023) and pixel2style2pixel (pSp) (Richardson et al., 2021). For this
xperiment, we generated 5K samples using the semantic masks from
he validation set as the condition. The FID computed for both models
s highlighted in Table 3. The solution from Richardson et al. (2021)
i.e., pSp) obtains the worst FID among all solutions. This result con-
irms the performance reported in Ham et al. (2023) and is mainly
aused by the limitation of the training-free GAN-based solution.

In addition, in Fig. 6 we show some qualitative samples generated
sing these two solutions in comparison with samples generated by our
odel. It is possible to observe that the samples generated by Huang

t al. (2023) exhibit some artifacts when the pose of the face is not
rontal. This phenomenon is less noticeable in the samples generated
y our solution. It is also possible to notice that the images generated
y Richardson et al. (2021) in some cases are not faithful to the masks

sed for conditioning.

6

Fig. 6. Qualitative comparison between images generated using our model (i.e., Ours),
Collaborative Diffusion (Huang et al., 2023) and pSp (Richardson et al., 2021). The
three models were conditioned using the relative semantic mask (top row).

4.4. Multi condition image synthesis

As explained in Section 3.2, it is possible to exploit a property of
cross-attention to inject two or more different sets of feature embed-
dings into any model, before providing them as a condition into the
transformer.
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Table 4
Comparison across various metrics for different Condition Encoders. FID and KID metrics are for sample quality, mask accuracy, attributes
accuracy and mIoU are for correspondence and LPIPS for diversity. All the metrics are evaluated on 5K samples against their respective 5K
images from the validation set, except for LPIPS which is computed on sets of 10 images for each of the 5K validation images and features.
(top) attributes conditioning. (middle) masks conditioning. (bottom) multi-conditioning.
Condition Enc. FID ↓ KID ↓ Attr. Acc. (%) ↑ Masks Acc. (%) ↑ mIoU (%) ↑ LPIPS ↑

𝑎 d. 8.33 0.0028 90.53 – – –
𝑎 s. 9.18 0.0028 91.14 – – 0.549
𝑚 d. 8.49 0.0024 – 91.36 75.14 –
𝑚 s. 8.41 0.0023 – 91.52 75.80 0.469
𝑚𝑛𝑝 d. 8.43 0.0025 – 93.77 78.67 –
𝑚𝑛𝑝 s. 8.31 0.0021 – 93.91 79.06 0.446
𝑚𝑐 d. 8.39 0.0024 90.27 93.90 78.68 –
𝑚𝑐 s. 8.39 0.0022 90.19 94.06 79.20 0.432

Ground truth 0.0 0.0 90.85 95.51 81.79 –
Fig. 7. Qualitative samples generated from our model conditioned using both attributes and masks 𝑚𝑐 with, in the bottom-right, the validation set images from which the
egmentation mask and attributes have been taken.
Fig. 8. Qualitative samples showing the ability of our model to diversify its generated samples. (left) the reference image from the validation set. (top row) the images generated
when conditioning our model on the reference image’s attributes. (central row) the images generated when conditioning our model on the reference image’s semantic mask. (bottom
row) the results obtained with our multi-condition encoder, using both attributes and semantic masks.
In our experiments the attributes embedding, 𝑎 ∈ R1×512, and
he flattened version of the mask embedding, 𝑚𝑛𝑝 ∈ R(8⋅8)×512 are

combined. This results in a multi-condition embedding 𝑚𝑐 ∈ R65×512

btained via concatenation.
Table 4 reports the results obtained using the multi-conditioned

odel against the attributes-conditioned and the mask-conditioned
odels. It is worth highlighting that, the high fidelity observed on
7

both attributes and masks results in lower FID and LPIPS, compared
to single-conditioned models.

Fig. 7 shows some multi-conditioned examples generated by exploit-
ing the segmentation masks and attributes of a face from the validation
set.

In order to compare the results obtained by the proposed model
while using different conditioning, Fig. 8 shows the images generated



G. Lisanti and N. Giambi Computer Vision and Image Understanding 244 (2024) 104026
Fig. 9. Unconditioned samples on DeepFashion.
Fig. 10. Multi-conditioned samples on DeepFashion. The top row shows validation images, the bottom row contains the samples generated on the corresponding set of masks and
attributes.
F
c
w

with the different modalities starting from the same attributes and
mask.

5. Swapping components between masks

To further explore the ability of the proposed model to adapt to
incoherent masks, we conducted an experiment swapping some com-
ponents (i.e., mask channels) between pairs of segmentation masks and
used the resulting mixed mask as conditioning. From Fig. 11 it is pos-
sible to observe that the proposed solution can generate samples that
highly correspond to the relative mask but, at the same time, it tries
to correct those face components that are no longer coherent with the
rest of the mask. It is worth noting that this experiment was conducted
considering two differently oriented faces and no pre-processing was
performed on the mixed masks.

6. Additional experimental results on DeepFashion

This section reports on some additional experiments performed on
DeepFashion (Liu et al., 2016), a dataset that, differently from CelebA-
HQ does not focus on human faces. This dataset has been selected
because it provides semantic masks and attributes, allowing us to
directly apply the multi-conditioning. These experiments have been
performed to analyze the capability of the model to adapt to other
domains. In addition, DeepFashion’s images are rectangular, hence it is
also possible to experiment with different ratios from the default square
images.

Two experiments have been conducted, one for unconditioned gen-
eration and one for multi-conditioned generation using both attributes
and semantic masks. The unconditioned and multi-conditioned models

have been trained for 150 epochs on the subset of the dataset that u

8

Fig. 11. Samples generated by conditioning on incoherent segmentation masks, result-
ing from mixing differently oriented masks’ components. On the left, are the real images
from the validation set from which the mask was taken. On the right, the swapped
masks are shown (top and bottom), and their relative generated samples just above or
below.

provides both semantic masks and attributes. The unconditioned model
has been used to generate 50K samples while the multi-conditioned
model was used to generate one sample for each attribute-mask pair.
ig. 9 shows some unconditioned samples, while Fig. 10 shows multi-
onditioned samples against their corresponding original images from
hich the conditioning was taken. The FID score was determined
sing the same procedure as CelebA-HQ. Specifically, for unconditioned
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generation, the FID score was calculated by comparing it to the entire
dataset, resulting in a score of 4.15. In the case of multi-conditioned
generation, the FID score was computed by comparing it to the valida-
tion set, which constitutes 10% of the entire dataset, yielding a score of
17.32. This disparity between the unconditioned and conditioned FID
scores is attributed to the limited representation of the validation set,
which consists of only 1200 images. Typically, FID scores are calculated
based on sets containing at least 10K samples, often 50K.

7. Conclusion

In this paper, a solution for face generation using diffusion models
conditioned by both attributes and masks is introduced. The proposed
solution has been trained by re-weighting the loss terms of an LDM in
a perception-prioritized fashion showing that this allows achieving a
higher quality of the generated samples. In the conditioned generation,
first attributes and segmentation masks are considered and studied
separately. Then, a novel approach to multi-condition a generative
model that exploits cross-attention to join the two conditions (i.e., at-
tributes and semantic masks) is introduced. Both the single-conditioned
and multi-conditioned models have been evaluated on a various range
of metrics to assess quality, fidelity and diversity on CelebA-HQ. An
evaluation on a different dataset, namely DeepFashion, has also been
conducted in order to show the capability of our solution to generalize
to different domains. We plan to investigate and analyze more efficient
techniques for encoding the different conditions as well as extending
the proposed solution to consider and combine more conditions.
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