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Abstract
Enrichment designs with a continuous biomarker require the estimation of a threshold to determine
the subpopulation benefitting from the treatment. This paper provides the optimal allocation for
inference in a two-stage enrichment design for treatment comparisons when a continuous biomarker
is suspected to affect patient response. Several design criteria, associated with different trial
objectives, are optimized under balanced or Neyman allocation and under equality of the first two
empirical biomarker’s moments. Moreover, we propose a new covariate-adaptive randomization
procedure that converges to the optimum with the fastest available rate. Theoretical and simulation
results show that this strategy improves the efficiency of a two-stage enrichment clinical trial,
especially with smaller sample sizes and under heterogeneous responses.

Keywords
Biomarker; Covariate-adaptive randomization; Design of experiments; Enrichment; Precision
medicine.

1 Introduction
The identification of a benefitting subpopulation for a targeted therapy represents a critical facet of
precision medicine. Clinical trials that were once designed simply to determine the average effect of
the treatment among all diseased patients, must be adapted to incorporate heterogeneity induced by
genetic and other biomarkers. Many biomarkers are dichotomous (e.g., presence or absence) while
others are continuous (e.g., serum levels) and require estimation procedures to determine an appropriate
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discriminant to identify the benefitting subpopulation. In this latter case, several strategies have been
adopted. The most popular strategy consists of discretizing the continuous biomarker with a cutoff
elicited by the clinicians1,2. Others have proposed to set the cutoff equal to a quantile of the biomarker
distribution3 while much more limited work has been done to estimate the threshold directly on a
continuous scale4–6. This is the approach taken in this paper.

Determining the threshold of a continuous biomarker is often a requirement of precision medicine. Its
utility arises from the subgroup analysis commonly carried out at the end of each clinical trial and extends
to adaptive enrichment designs6,7. Enrichment can be traced to Simon and Maitournam’s8 and Wang et
al9, but the idea likely originated in oncology and several earlier papers10,11. An initial phase of a clinical
trial is conducted on a full population and, at the conclusion of the first phase, the biomarker threshold is
determined and consequently the benefitting patient subgroup. That subpopulation is enrolled in a second
phase, thus improving the likelihood of a therapy’s success.

For instance, in studies for depression, due to the complexity of this disorder, a number of biomarkers
are indicated in the reference literature to identify more treatment-responsive subgroups12,13. In a
randomized controlled trial to compare interpersonal psychotherapy (IPT) and cognitive behavioral
therapy (CT), no significant difference was found between IPT and CT in terms of improvement in
the disease severity score1 (measured by MADRS, i.e., Montgomery-Asberg Depression Rating Scale).
However, further analysis suggested that in more depressed patients (baseline MADRS score > 30),
CT induced a significantly better response than IPT. In the SMART-AV trial14, subjects with medically
refractive heart failure with severe left ventricular systolic dysfunction were recruited and a certain type
of defibrillator has been implanted. To find out the effect of optimizing the atrioventricular delay, two
methods (treatments) were compared against a fixed delay of 120ms (control). The primary endpoint, i.e.,
left ventricular end-systolic volume, did not significantly differ between the groups but previous scientific
knowledge15 suggested that patients with a QRS (i.e., waves Q, R and S of the electrocardiogram)
duration smaller than 150ms could be more likely to benefit from the treatments.

Despite the well-known potential benefits of an enrichment design, the complex experimental
framework poses new challenges and several complications need to be taken into account, even leading
to questioning whether and when it is worth enriching6. One of the major concerns of these procedures is
how “to make optimal decisions for updating the enrollment criteria”16, which is even more complicated
when the estimation of the threshold of a continuous biomarker is involved. This is an important aspect
of enrichment with potentially disastrous consequences if this is not done accurately17 and this work
provides the optimal design for inference on the threshold of a quantitative biomarker. Almost all the
recent papers on enrichment have been dedicated to analysis, while the optimal design problem has
received very little attention6; indeed, most of the existing proposals deal with dichotomous markers18

and balance the allocation among the treatment groups.
Before using a biomarker to drive the design of an enrichment study, an adequate understanding of

its relationship with the treatment should be reached. Advances in biomedicine and disease biology have
led to an increasing knowledge of the mechanism of action of new pharmaceuticals. However, even if a
biomarker is claimed to affect the response of patients to treatments, its validity should be assessed in a
specific study. A biomarker can be prognostic or predictive. A prognostic biomarker is correlated only
with the outcome and a predictive biomarker is correlated with the outcome and the treatment. Frieri et
al.17 gauge the predictive nature of the biomarker with the correlation coefficient of a bivariate normal
model (see also Lin et al.19). Spencer et al.4 use a beta-binomial prediction model and Jian et al.20 use

Prepared using sagej.cls



Baldi Antognini et al. 3

the hazard ratio for survival outcomes. In this paper, we use the treatment-by-covariate interaction from
a linear model, with both homoscedastic and heteroscedastic outcomes. There are many clinical trials
where, especially in the design phase, the primary outcome can be assumed normally distributed (like,
e.g., depression rating scales, change in tumor size21). In many other experimental settings, the responses
can be treated as approximately normal after suitable transformation or when they refer to measurements
of, for instance, physical and biological characteristics22. The study on depression comparing IPT and
CT and the SMART-AV trial can be taken as motivating examples.

The idea of finding optimal treatment allocation in a clinical trial with covariates originated in
Atkinson23. Only in his 2015 paper24, were treatment-by-covariate interactions explored. This paper
differs from our work in that he assumes that the investigator has control over the values of the covariates,
whereas in most clinical trials the covariates are inherent characteristics of the enrolled subjects, and
cannot be controlled except by restricting eligibility.

Azriel, et al.25 propose a design strategy with the aim of selecting the treatment with the best expected
response for a patient with certain covariates. They use the regret of a linear model as their design
criterion to minimize and found that the allocation rates depend on a set of given covariates only when
more than two treatments are compared. Under some assumptions, their optimal allocation problem is
equivalent to minimize the variance of the threshold estimator determining the benefitting subpopulation,
asymptotically. However, they do not consider an adaptive setting and the enrichment scenario.
In a two-arm clinical trial, we derive the optimal design for estimating/testing whether a benefitting
population exists; then we address optimal treatment allocation for the efficient estimation of the
biomarker threshold defining such benefitting subgroup. Section 3 deals with homoscedastic responses:
according to whether the interest is on the whole vector of model parameters or on a subset, the D-
and A- optimality criteria are optimized under the equality of i) the allocation proportions to the two
arms and ii) the first two empirical moments of the biomarker distributions. Under heteroscedasticity,
balanced treatment assignment should be replaced by Neyman allocation (Section 4). While we derive
the theoretical optimal designs, in practice a randomization procedure must be used to implement these
designs in a clinical trial26. In Section 5, we describe the types of randomization procedures necessary to
achieve the optimal design, at least asymptotically. These designs are from the class of covariate-adaptive
(CA) randomization procedures that balance the empirical moments of covariates asymptotically27. In
particular, we introduce a new CA randomization procedure that targets the optimal allocation and
balances the first two empirical moments of the biomarker distribution. At each step, this procedure
randomly promotes these goals by minimizing a distance metric between the current allocation and the
optimum. In contrast to many of the existing CA procedures, our new proposal allows convergence to
any a priori known target allocation, not necessarily balanced. Simulation results are reported in Section
6 and a general discussion and hints for future research concludes the paper (Section 7).

2 Preliminaries

2.1 Notation and Model
Suppose that for each subject entering the trial we observe a quantitative biomarker Z ∈ R that is
assumed to be a random variable not under the experimenters’ control, but it can be measured before
assigning a treatment. Subjects come sequentially to the trial and when the ith patient is ready to be
enrolled, her/his biomarker value Zi = zi can be recorded; then she/he is assigned to the treatment (T )
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or to the control (C) according to a given randomization rule, with δi = 1 or 0 if the subject is assigned
to T or C, respectively, and an outcome Yi is observed. We assume that Z1, Z2, . . . are independent and
identically distributed (iid) random variables with common density function f(z) such that E(Zi) = µZ

and var(Zi) = σ2
Z < ∞. Conditionally on the biomarker and the treatments, patients’ responses are

assumed to be independent, following the linear homoscedastic model

Yi = δi(µT + ziβT ) + (1− δi) (µC + ziβC) + σϵi, (2.1)

where the errors ϵi are iid standard normal random variables, µT and µC are the baseline treatment
effects, βT and βC are possibly different regression parameters, while σ2 is the common variance.

Under this model, the interaction between the treatments and Z is accounted for, so that patients
with different biomarker values may have different responses to the treatments. Thus, the vector ζt =
(µT , µC , βT , βC) is of interest since the relative efficacy of the treatments could depend on the values of
the biomarker. Indeed, for each value z, the superiority/inferiority of T with respect to C depends on the
sign of

θ(z) =E(Y | δ = 1, Z = z)− E(Y | δ = 0, Z = z) = µT − µC + z(βT − βC) = γ + zτ, (2.2)

where γ = µT − µC is the baseline treatment difference and τ = βT − βC represents the predictive
strength of the biomarker. Clearly τ plays a fundamental role:

• if τ = 0 (i.e., in the absence of treatment/biomarker interactions) then θ(z) = γ for any z; thus,
the relative superiority/inferiority of T with respect to C is the same for the whole population and
βT = βC = β is the common prognostic strength of the biomarker;

• if τ ̸= 0, by letting z∗ = −γ/τ be the solution of the equation θ(z) = 0, then z∗ represents the
biomarker threshold defining the subpopulation benefitting from T according to the chosen ethical
scenarios.

We assume that larger outcomes are preferable, so that for any patient with z > z∗, θ(z) > 0 implies
that T is preferable to C, while θ(z) < 0 for those with z < z∗, meaning that C should be preferable for
this group (obviously, these conditions should be reversed if smaller outcomes are considered better).

Throughout the paper, In denotes the n-dim identity matrix and 1n is the n-dim vectors of ones.
After n assignments, by letting Yn = (Y1, . . . , Yn)

t, zn = (z1, . . . , zn)
t and δn = (δ1, . . . , δn)

t, then
model (2.1) can be rewritten in matrix form as Yn ∼ N

(
Xnζ, σ

2In
)
, where Xn = [δn : 1n − δn :

diag(δn)zn : diag(1n − δn)zn]. If (Xt
nXn)

−1 exists, then the maximum likelihood estimator (MLE)
and the least squared estimator of ζ coincides with ζ̂n = (µ̂Tn, µ̂Cn, β̂Tn, β̂Cn)

t = (Xt
nXn)

−1Xt
nYn

and var(ζ̂n) = σ2(Xt
nXn)

−1 = n−1M−1
n , where

Mn =
1

σ2


π 0 πmT (z) 0
0 1− π 0 (1− π)mC(z)

πmT (z) 0 πmT (z
2) 0

0 (1− π)mC(z) 0 (1− π)mC(z
2)

 (2.3)

is the average information matrix, π = n−1
∑n

i=1 δi is the proportion allocated to T ,
mT (z) = δtnzn/δ

t
n1n and mC(z) = (1n − δn)

tzn/(n− δtn1n) represent the biomarker’s
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empirical means in the two arms. Analogously, mT (z
2) = ztndiag(δn)zn/δtn1n and mC(z

2) =
ztndiag(1n − δn)zn/(n− δtn1n) represent the sample second moments in the two groups. We let
vj(z) = mj(z

2)−m2
j (z) be the sample variance of the biomarker in arm j (j = T,C).

Within this setting, we propose an enrichment strategy based on two stages that works as follows. The
first stage is designed for estimating or testing the predictive strength τ of the biomarker. At the end
of the first stage, the null hypothesis H0 : τ = 0 is tested: if rejected, then there exists a subpopulation
benefitting from the treatment T , while if H0 is not rejected the trial is stopped and the inferential goal
lies in the baseline treatment difference γ. More specifically,

• if H0 is not rejected, then the trial ends and the global superiority of T with respect to C is tested
through H ′

0 : γ ≤ 0 vs H ′
1 : γ > 0 (where 0 can be replaced by any specific minimum clinically

significant difference elicited by the investigator). If H ′
0 is not rejected, the trial is stopped for

futility (i.e., T can not be considered superior to C), while if H ′
0 is rejected, the subpopulation

benefitting from T coincides with the entire population.
• If H0 is rejected, the second stage could start in order to estimate the threshold z∗ = −γ/τ ,

which identifies the subpopulation of interest. This second stage is designed for optimal inference
about the threshold and, at the end of the study, a consistent estimator of z∗ is used to define the
subpopulation of interest.

Notice that, even if H0 is rejected at the end of the first stage, the magnitude of the ensuing subpopulation
as well as the impact of the enrichment strategy clearly depend on Pr(Z > z∗), which can be consistently
estimated by the corresponding percentage of observed subjects having the biomarker value over the
estimated threshold. If this estimate equals 0, it indicates that there is no benefitting subpopulation in
practice (and, consistently with the available information about the support of the biomarker, it could be
meaningless to continue the study). On the other hand, as this estimate grows a higher percentage of the
sample belongs to the estimated subpopulation benefiting from the treatment and so the importance of
the enrichment strategy also increases.

3 Optimal allocation for enrichment designs
After n assignments, under model (2.1) classical design criteria are D- and A-optimality, given
by det var(ζ̂n) = det

(
n−1M−1

n

)
and tr var(ζ̂n) = tr

(
n−1M−1

n

)
, respectively. These criteria are

particularly useful when the whole parameter vector ζ is of interest while, due to the role of βT and
βC , other criteria to be minimized in this setting are:

det var
(
β̂Tn, β̂Cn

)
and tr var

(
β̂Tn, β̂Cn

)
, (3.1)

which are examples of Ds- and As-optimality29 where only the estimation of the regression coefficients
(βT , βC) is considered. Moreover, for the peculiarity of enrichment designs other criteria of utmost
importance regard inference on the predictive strength τ as well as on the biomarker threshold z∗.

The following theorem

• provides the functional form of the above-mentioned criteria, also showing that
tr var

(
β̂Tn, β̂Cn

)
= var (τ̂n);
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• shows that a globally balanced design under which the sample means and variances of the
biomarker is the same in the two arms is universally optimal for model (2.1) and it is still optimal
for the estimation of the biomarker threshold.

Theorem 3.1. Under model (2.1), the optimality criteria of interest are given by

det var(ζ̂n) =
(
σ2

n

)4
1

π2(1− π)2vT (z)vC(z)
,

tr var(ζ̂n) =
σ2

n

[
1

π(1− π)
+

m2
T (z) + 1

πvT (z)
+

m2
C(z) + 1

(1− π)vC(z)

]
,

det var
(
β̂Tn, β̂Cn

)
=

(
σ2

n

)2
1

π(1− π)vT (z)vC(z)
,

tr var
(
β̂Tn, β̂Cn

)
= var (τ̂n) =

σ2

n

(
1

πvT (z)
+

1

(1− π)vC(z)

)
.

With regard to the estimation of the threshold z∗, by assuming τ ̸= 0, the MLE of z∗ is ẑ∗n = −γ̂n/τ̂n
and, via the classical first-order Taylor expansion,

var(ẑ∗n) ≈ n−1
(σ
τ

)2{ 1

π(1− π)
+

[
mT (z) +

γ
τ

]2
πvT (z)

+

[
mC(z) +

γ
τ

]2
(1− π)vC(z)

}
. (3.2)

For every sample size n, an allocation δ∗n such that

π = 1/2 and mT

(
zi
)
= mC

(
zi
)

for i = 1, 2 (3.3)

is optimal for estimation with respect to any convex criterion Φ = Φ(Mn) which is invariant with respect
to the label switching of T and C. Therefore, this design is optimal with respect to all the above-mentioned
criteria as well as for estimating the threshold z∗.

Proof. See Appendix A.1.

As previously discussed, in our framework the biomarker is a random variable not under the
experimenter’s control and, since it is ancillary to the likelihood, inference is conditional on the observed
biomarker values. Thus, by letting m(z) = n−1ztn1n, m(z2) = n−1ztnzn and v(z) = m(z2)−m2(z),
the (marginal) sample mean m(z) and sample variance v(z) are fixed quantities depending on the
enrolled patients; δn is the only component that can be chosen by the experimenter and, given m(z)
and v(z), the choice of π,mT (z) and vT (z) uniquely determines all the elements of Mn, since
m(z) = πmT (z) + (1− π)mC(z) and v(z) = πmT (z

2) + (1− π)mC(z
2)−m2(z), so that

vC(z) =
v(z)

1− π
− πvT (z)

1− π
− π[m(z)−mT (z)]

2

(1− π)2
. (3.4)

Thus,
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• every convex optimality criterion Φ = Φ(Mn) depends on the design only through the quantities
π,mT (z) and vT (z), that are free to vary;

• the optimal design in (3.3) can be restated as π = 1/2 and mT

(
zi
)
= m

(
zi
)

for i = 1, 2 (namely,
mT (z) = m (z) and vT (z) = v (z));

• even if the functional form of some criteria does not depend on the covariate means in the two
arms, due to constraint (3.4) the optimal design cannot simply require π = 1/2 and vT (z) =
vC(z); indeed in such a case, from (3.4), vC(z) = vT (z) = v(z)− [m(z)−mT (z)]

2 achieving
its maximum only when m(z) = mT (z) (i.e., if mT (z) = mC(z)).

As pointed out in the following remark, in some circumstances the optimal design can be interpreted as
a matching of an optimal marginal measure specifying the optimal value of π and an optimal conditional
measure that involves the equality of the sample moments of the biomarker in the two arms.

Remark 3.1. Let H = diag (mT (z),mC(z)), K = diag
(
mT (z

2),mC(z
2)
)
, P = diag(π, 1− π) be

2× 2 matrices and let Q = σ−2diag (P,P) and L =

(
I2 H
H K

)
, then Mn = QL. It is interesting

to notice that the inverse of the average information matrix M−1
n can be factorized as a product of

two components: L−1 depending on the sample moments of the biomarker in the two arms and Q−1

depending on the design only through π. Thus, if the optimality criterion is such that Φ(L−1Q−1) =
Φ(L−1)Φ(Q−1), the optimum (3.3) could be view as a design measure ξ∗δ|Z (conditional on the
covariates) which is proportional to the product between

• the optimal conditional measure of the biomarker in the two arms ξ∗Z|δ , which specifies the equality
of the sample moments in the two groups, and

• the optimal marginal measure of the design ξ∗δ giving the weights to T and C (i.e., the marginal
balance due to homoscedasticity).

For instance, in the case of D-optimality, det var(ζ̂n) = n−4 detL−1 detQ−1, where
detQ−1 = σ8[π(1− π)]−2 is minimized by π = 1/2 (which is the D-optimal design in the absence of
biomarkers, i.e., the optimal marginal measure ξ∗δ), while detL−1 = {vT (z)vC(z)}−1. Given π = 1/2,
from (3.4) we obtain {vT (z)vC(z)}−1 = {2vT (z)v(z)− v2T (z)− 2vT (z)[m(z)−mT (z)]

2}−1 so that
the optimum is achieved at v(z)− vT (z) = [m(z)−mT (z)]

2, namely when vT (z) = vC(z) (which is
the optimal conditional measure of the biomarker in the two arms ξ∗Z|δ).

Notice that this result extends the ones in Atkinson24, which hold when covariates are under the
experimenter’s control, to the case of uncontrollable random factors. Moreover, following this reasoning,
it is easy to derive optimal designs for more complex models. For instance, by adding in model (2.1) a
quadratic term for the biomarker, the information matrix is modified accordingly and the optimal design
measure ξ∗Z|δ also involves the equality of the third and fourth moments of the sample distribution of the
biomarker in the two arms, leading to the equality of all empirical moments as the model complexity
grows.

While a design satisfying condition (3.3) is optimal under a general class of criteria and it corresponds
to the (unique) D-optimal design, other criteria (like, e.g., Ds- and As-optimality) could be optimized
under weaker conditions, as the following proposition shows.
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Proposition 3.1. Under model (2.1), an allocation vector δ∗n such that

mT (z) = m(z) and πvT (z) = v(z)/2 (3.5)

is optimal with respect to all the criteria in (3.1).

Proof. See Appendix A.2.

Condition (3.5) is less restrictive than (3.3); indeed, from (3.4), (3.5) could be rewritten as mT (z) =
m(z) and π = vC(z)/[vT (z) + vC(z)]; therefore given the equality of the biomarker means in the two
arms, π = 1/2 ⇔ vT (z) = vC(z) = v(z), obtaining condition (3.3).

Remark 3.2. For estimation of the threshold, criterion (3.2) is minimized by every δ∗n such that
π = {1− [m(z)−mT (z)]k} /2 and

vT (z) =
2v(z)[mT (z) + γ/τ ]

(1− k)[m(z)−mT (z)][mT +mC + 2γ/τ ]
− 2[m(z)−mT (z)]

2

1 + k[m(z)−mT (z)]
,

where k = (mT + γ/τ)/vT (z). However, excluding the degenerate case mT (z) = mC(z) = m(z)
leading to condition (3.3), every other optimal allocation depends on the unknown parameters γ and τ ,
and therefore it can be implemented only through suitably chosen covariate-adjusted response-adaptive
(CARA) procedures, as we will discuss in Section 5.

By letting m(z) = mT (z) = mC(z) = 0 and v(z) = 1, Table 1 shows some configurations of the Ds

and As-optimal design in (3.5) minimizing criteria (3.1).

Table 1. Ds and As-optimal design in (3.5).

π 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
vT (z) 5.00 2.50 1.67 1.25 1.00 0.83 0.71 0.62 0.56
vC(z) 0.56 0.62 0.71 0.83 1.00 1.25 1.67 2.50 5.00

To determine if a subpopulation benefitting from the treatment exists instead of the whole parameter
vector ζ, the predictive strength τ of the biomarker plays a crucial role. Since ζ̂n ∼ N

(
ζ, n−1M−1

n

)
,

then
√
n(τ̂n − τ) ∼ N(0, ctM−1

n c), where ct = (0, 0, 1,−1). When σ2 is a priori known, the statistic

Wn =

√
nτ̂n
σ

[
1

πvT (z)
+

1

(1− π)vC(z)

]−1/2

is usually employed for testing the null hypothesis H0 : τ = 0 versus H1 : τ ̸= 0. Under H0, W 2
n is

distributed according to a (central) chi-square with 1 degree of freedom. Otherwise, if σ2 is unknown then
it should be consistently estimated by the usual residual sum of squares σ̂2

n = (Xnζ̂n −Yn)
t(Xnζ̂n −

Yn)/(n− 4) (in such a case Wn is distributed as a Student-t distribution with n− 4 degrees of freedom).

Proposition 3.2. A design δ∗n satisfying (3.5) maximizes the power of the test Wn.

Proof. See Appendix A.3.
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3.1 Efficiency
To evaluate the impact of marginal balance and covariate-balance in terms of estimation precision, in this
section we compare the performance of the optimal design δ∗n in (3.3) with respect to sets of allocations
that only partially satisfy conditions (3.3). Starting with the aim of estimating the whole parameter vector
ζ, the performances of an allocation δn are first assessed using D- and A-efficiency. Since the minimum
values of D- and A-optimality criteria (i.e., evaluated at the optimal design in (3.3)) are

det var(ζ̂n | δ∗n) =
(
σ2

n

)4
8

v2(z)
and trvar(ζ̂n | δ∗n) =

4σ2

n

(
m
(
z2
)
+ 1

v(z)

)
,

D- and A-efficiencies (namely the relative efficiencies of a generic design compared to the optimal one)
are respectively given by

ED(δn) =

{
det var(ζ̂n | δ∗n)
det var(ζ̂n | δn)

}1/4

= 2

[
vT (z)vC(z)π

2(1− π)2

v2(z)

]1/4
and

EA(δn) =
trvar(ζ̂n | δ∗n)
trvar(ζ̂n | δn)

=

4

(
m(z2)+1

v(z)

)
mT (z2)+1
πvT (z) + mC(z2)+1

(1−π)vC(z)

.

When π = 1/2, by (3.4) it follows that vC(z) = 2v(z)− vT (z)− 2[m(z)−mT (z)]
2; thus, both ED

and EA vanish as the covariate imbalance in the two groups grows. Moreover, if π = 1/2 and mT (z) =
mC(z) then vC(z) = 2v(z)− vT (z) and both ED and EA converge to 0 as the ratio vT (z)/v(z) tends to
its extremes values 0 and 2. Whereas, if the design is only covariate-balanced (i.e, mT (z) = mC(z) and
vT (z) = vC(z)), then ED =

√EA = 2
√

π(1− π), namely the estimation precision could be strongly
damaged in the presence of a significant marginal imbalance.

Besides D- and A-efficiency, a measure of efficiency of an allocation δn for the threshold estimation
is

Ez∗(δn) =
var(ẑ∗n | δ∗n)
var(ẑ∗n | δn)

=

4

{
1 +

[m(z)+ γ
τ ]

2

v(z)

}
1

π(1−π) +
[mT (z)+ γ

τ ]
2

πvT (z) +
[mC(z)+ γ

τ ]
2

(1−π)vC(z)

,

which depends also on γ and τ (unlike D- and A-efficiency).

Example 3.1. Assume an experimental scenario with n patients, in which m(z) = 0 and v(z) = 1
and we take γ = 0, corresponding to z∗ = 0. If π = 1/2, then mC(z) = −mT (z) and vC(z) = 2−
vT (z)− 2m2

T (z); when mT (z) = 0.5 and vT (z) = 1.47 (namely, mC(z) = −0.5 and vC(z) = 0.03),
then ED = 0.46, EA = 0.09 and Ez∗ = 0.19 (namely, all the measures of efficiency tend to degenerate
as vT (z) differs from vC(z)). Whereas if the design is only covariate-balanced (i.e, mT (z) = mC(z)
and vT (z) = vC(z)), then Ez∗ = EA = 4π(1− π), so if π = 0.2 then ED = 0.8 and EA = Ez∗ = 0.64.
Consider now an allocation such that π = 1/2 and mT (z) = mC(z), if vT (z) = 1.95 and vC(z) = 0.05
then ED = 0.56 and EA = 0.18.
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By taking into account the estimation of the regression coefficients (βT , βC), the Ds- and As-
efficiency of a design δn are

EDs
(δn) =

det var
(
β̂Tn, β̂Cn | δ∗n

)
det var

(
β̂Tn, β̂Cn | δn

)


1
2

=
2
√
π(1− π)vT (z)vC(z)

v(z)

and

EAs
(δn) =

trvar
(
β̂Tn, β̂Cn | δ∗n

)
trvar

(
β̂Tn, β̂Cn | δn

) =
var (τ̂n | δ∗n)
var (τ̂n | δn)

=
4π(1− π)vT (z)vC(z)

v(z)[πvT (z) + (1− π)vC(z)]
.

When mT (z) = mC(z), then vC(z) = [v(z)− πvT (z)]/(1− π) and therefore EDs
=
√

EAs
=

2v(z)−1
√

πvT (z)[v(z)− πvT (z)], which decreases as vT (z)/v(z) tends to be different from 1.

Example 3.2. Consider a clinical trial with n patients in which m(z) = 0 and v(z) = 1. Table 2-3 show
Ds- and As-efficiency when mT (z) = mC(z) (by fixing vT (z) = 0.1) and when πvT (z) = v(z)/2 (by
setting mT (z) = 0.4), respectively.

Table 2. Ds- and As-efficiency when mT (z) = mC(z).

π mT (z) mC(z) vT (z) vC(z) EDs
EAs

0.20 0 0 0.10 1.23 0.28 0.08
0.50 0 0 0.10 1.90 0.44 0.19
0.80 0 0 0.10 4.60 0.57 0.29

Table 3. Ds- and As-efficiency when πvT (z) = v(z)/2 .

π mT (z) mC(z) vT (z) vC(z) EDs
EAs

0.20 0.40 -0.10 0.10 1.18 0.27 0.08
0.50 0.40 -0.40 0.25 1.43 0.60 0.43
0.80 0.40 -1.60 0.40 0.20 0.23 0.14

4 Optimal designs under heteroscedasticity
To generalize the previous results for possible heteroscedasticity of the two arms assume now that,
conditionally on the biomarker and the treatments, patient responses are normally independent outcomes
following

Yi = δi(µT + ziβT + σT ϵi) + (1− δi) (µC + ziβC + σCϵi) , (4.1)

where σ2
T and σ2

C are the variances of the responses in the two arms. Let Σn =
diag

(
δiσ

2
T + (1− δi)σ

2
C

)
i=1,...,n

, if (Xt
nΣ

−1
n Xn)

−1 exists then the estimator of the regression

coefficient now becomes ζ̂n = (Xt
nΣ

−1
n Xn)

−1Xt
nΣ

−1
n Yn with var(ζ̂n) = (Xt

nΣ
−1
n Xn)

−1 =
n−1M̃−1

n , where M̃n = σ2diag(S,S)Mn and S = diag(σ−2
T ;σ−2

C ).
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In this setting, the optimality criteria discussed in Section 3 can be directly obtained by simply
replacing Mn with M̃n. Regardless of the heteroscedasticity, as shown in the following theorem
the D and Ds-optimal designs are still the same as in the homoscedastic case; whereas, for A, As-
optimality and the estimation of the biomarker threshold, the optimal design combines Neyman allocation
πN = σT /(σT + σC) as marginal target with suitable covariate-balance conditions.

Theorem 4.1. Under model (4.1), the criteria for D and A-optimality become, respectively,

det var(ζ̂n) =
σ4
Tσ

4
C

n4π2(1− π)2vT (z)vC(z)
,

tr var(ζ̂n) =
σ2
T

π
+

σ2
C

1− π
+

σ2
T

π

(
m2

T (z) + 1

vT (z)

)
+

σ2
C

(1− π)

(
m2

C(z) + 1

vC(z)

)
.

Moreover,

det var
(
β̂Tn, β̂Cn

)
=

σ2
Tσ

2
C

n2π(1− π)vT (z)vC(z)
, (4.2)

tr var
(
β̂Tn, β̂Cn

)
= var (τ̂n) =

1

n

{
σ2
T

πvT (z)
+

σ2
C

(1− π)vC(z)

}
(4.3)

and

var(ẑ∗n) ≈ n−1

(
1

τ

)2
[
σ2
T

π
+

σ2
C

1− π
+

σ2
T

[
mT (z) +

γ
τ

]2
πvT (z)

+
σ2
C

[
mC(z) +

γ
τ

]2
(1− π)vC(z)

]
. (4.4)

For any n, δ∗n satisfying (3.3) is still D-optimal, while the A-optimal design satisfies

π = πN and mT

(
zi
)
= mC

(
zi
)

for i = 1, 2, (4.5)

which also optimizes the estimation of the biomarker threshold ẑ∗. Furthermore, δ∗n satisfying (3.5)
optimizes criterion (4.2), while every allocation such that

mT (z) = mC(z) and πvT (z) = πNv(z) (4.6)

minimizes (4.3) and also maximizes the power of the corresponding Wald test.

Proof. See Appendix A.4.

Therefore, the design is both A- and As-optimal, it minimizes the variance of the estimated
threshold and also maximizes the power of the Wald test. Clearly, when σ2

T = σ2
C condition (4.5)

coincides with (3.3). The relative efficiency of allocation (3.3) with respect to the optimal design (4.5)
under heteroscedasticity is EAs

= EA = Ez∗ = (σT + σC)
2/2(σ2

T + σ2
C), showing that the measures of

estimation efficiency reach the maximum when σT /σC = 1, while they drastically decrease as σT and
σC tend to differ; notice that the loss of efficiency is always lower than 0.5 (that represents the limiting
scenario under which the ratio σT /σC goes to 0 or to +∞). Thus, the estimation precision could be
extremely affected when balanced allocation is used as in standard practice, even if the covariate balance
is achieved.

The optimal allocations derived in this paper, in both the homoscedastic and heteroscedastic set-up,
are summarized in Table 4.
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Table 4. Optimal designs: summary. Condition II is weaker than I and condition IV is weaker than III.

I π = 1/2 mT (z) = mC(z) vT (z) = vC(z) (3.3)
II mT (z) = mC(z) πvT (z) = v(z)/2 (3.5)
III π = πN mT (z) = mC(z) vT (z) = vC(z) (4.5)
IV mT (z) = mC(z) πvT (z) = πNv(z) (4.6)

Objective Criterion Homoscedasticity Heteroscedasticity

Estimation

ζ
D I I
A I III

βT , βC
Ds II (I) II (I)
As II (I) IV (III)

z∗ var(ẑ∗) I III

Testing βT − βC = 0 power II (I) IV (III)

5 A new covariate-adaptive randomization procedure
As shown in Theorems 3.1 and 4.1, the optimal designs satisfying (3.3) and (4.5) could be considered the
benchmark for models (2.1) and (4.1), because they guarantee optimality with respect to all the above-
mentioned criteria (see also Table 4). However, such designs cannot be achieved (in general) for any
sample size, since the biomarker is not under the experimenter’s control, but they could be implemented
sequentially by forcing at each step the treatment assignment to approach the optimal asymptotically.
In what follows we introduce a new CA randomization procedure aimed at achieving a high-order
convergence to a desired optimal design of the form

π = π∗, mT (z) = m(z) and vT (z) = v(z), (5.1)

where the marginal optimal target π∗ is assumed to be a priori known. This clearly covers the optimal
design in (3.3) and also the one in (4.5) provided that the treatment variances are a priori known.

The key idea is to formalize at each step the performance of the design (in terms of its actual allocation)
as a point in an ideal space where each axis corresponds to a specific dimension related to the involved
constraints of the optimum. In this setting, the Euclidean norm of this vector is a measure of the distance
between the actual design and the optimum (i.e., the origin), which will be sequentially minimized by
forcing its reduction probabilistically.

With regard to the notation, due to the sequential evolution of the procedure, from now on we set
π = πn, mT (z) = mTn(z), mT (z

2) = mTn(z
2), m(z) = mn(z) and m

(
z2
)
= mn

(
z2
)
, to stress that

these quantities are evaluated at step n. Let us define Zn = [1n, zn, diag(zn)zn], rn = (1, zn, z
2
n)

t and

ut
n = (δn − 1nπ

∗)
t
Zn = n

(
πn − π∗, πnmTn(z)− π∗mn(z), πnmTn

(
z2
)
− π∗mn

(
z2
))

.

If un = (0, 0, 0)t the corresponding allocation attains its optimal value, so the procedure works on
sequentially minimizing the squared Euclidean norm ∥un∥2 = ut

nun.

Prepared using sagej.cls



Baldi Antognini et al. 13

When the (n+ 1)th subject with biomarker zn+1 joins the study, (s)he can be assigned to T or C and we
can compute the corresponding imbalances:

• if δn+1 = 1 then un+1|T = un + (1− π∗)rn+1 while
• if δn+1 = 0 then un+1|C = un − π∗rn+1;

thus ∥un+1|T ∥2 − ∥un+1|C∥2 = rtn+1 [2un + (1− 2π∗)rn+1] and therefore (s)he is randomly
forced to the treatment minimizing this difference by letting Pr(δn+1 = 1 | δn, zn+1) =
h
(
rtn+1 [2un + (1− 2π∗)rn+1]

)
, where

h(x) =

 π∗ + ε, if x < 0
π∗, if x = 0,
π∗ − ε, if x > 0

0 < ε < min{π∗; 1− π∗}. (5.2)

Theorem 5.1. Under the proposed sequential procedure, {un}n∈N is a Markov chain on R3

with u0 = (0, 0, 0)t and un+1 = un + (δn+1 − π∗)rn+1 a.s. for every n. Moreover, {un}n∈N is
bounded in probability with un = Op(1); therefore, as n → ∞, πn → π∗, mTn(z)−mCn(z) → 0 and
mTn

(
z2
)
−mCn

(
z2
)
→ 0 in probability.

Proof. See Appendix A.5.

When π∗ = 1/2, the proposed procedure corresponds to the Efficient Covariate-Adaptive Design30

which randomly assigns the subjects to the treatments via Efron’s allocation function31 in order
to converge to (3.3). Whereas, in the absence of biomarker Zn = 1n and rn = 1 for every n, so
un = n(πn − π∗). Thus, from (5.2), our proposal becomes a restricted randomization rule such that
Pr(δn+1 = 1 | δn) = h (2n(πn − π∗) + (1− 2π∗)). This clearly generalizes Efron’s biased coin design
(BCD) to the case of an a priori known target π∗ not necessarily balanced, also guaranteeing the same
order of convergence.

Remark 5.1. With respect to the design in (4.5), in the case of unknown treatment variances, as
well as for some less restrictive optimal conditions like, e.g., (4.6) and those of Remark 3.2, all these
optimal designs depend on the unknown model parameters and therefore they cannot be approached
asymptotically via CA procedures. These designs could be targeted by suitably chosen CARA procedures
that estimate at each step the unknown model parameters and then redirect the allocations towards
the optimum32. However, due to the use of the outcomes for estimation purposes, these procedures are
characterized by a slower convergence with respect to the proposed CA randomization.

6 Simulation results
This section is dedicated to the study of the behavior of the suggested CA procedure, referred to as
sequential efficient design (SED) in what follows, that aims at converging either to the optimal design in
(3.3) or in (4.5), namely to the allocations in I and III of Table 4. For the sake of comparison, we consider
CA procedures developed for balancing the allocation across continuous covariates, namely

• Atkinson’s23 optimal BCD (ATK), which sequentially minimizes the loss of estimation efficiency;
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• the CA randomization procedure proposed by Ma and Hu33 (MH), which minimizes the distance
between the covariate densities in the treatment groups (with biasing probability equal to 0.8).

Moreover, for the homoscedastic scenario, we include the permuted block design with block size 4
(PBD) intending to balance the two treatments, while in the the heteroscedastic set-up we consider the
PBD with block size b aimed at achieving Neyman allocation πN within each block (PBDb,N ). Note
that complete randomization was also included in the simulations but has been omitted from the tables
and figures, as the results were inferior to those of the permuted block design. All trials have been
simulated 20000 times assuming standard normal biomarker distribution. The first stage has the aim
of estimating/testing τ and, if τ = 0 is rejected, a second stage is performed with the aim of estimating
the biomarker threshold. A shiny web app to implement the sequential efficient design is available at
https://rfrieri.shinyapps.io/SequentialEfficientDesignApp/.

6.1 Estimation efficiency and power of stage 1
The measures of estimation efficiency (EDs

and EAs
for the regression coefficients and ED and EA for ζ)

do not depend on γ and τ so we set γ = 0 and τ = 1 in this study. In the homoscedastic case (where σ = 1
is assumed), π∗ = 1/2 and we set ε = 0.3 for SED. Figure 1 reports the behavior of the efficiencies with
n varying between 20 and 100. The SED is superior to all the competitors, especially for small sample
sizes and when A-optimality is of interest.

The results of the same study for the heteroscedastic case with σT = 3 and σC = 1 are displayed
in Figure 2. Since the D- and Ds- optimal allocations are such that π∗ = 0.5 (Theorem 4.1), the SED
is gauged to achieve this target with ε = 0.3. To target the A- and As- optimal designs, the SED was
instead implemented with π∗ = πN = 3/4 and ε = 0.15. In terms of Ds- and D- optimality, the PBD is
associated with the lowest estimation efficiency. Instead, our proposal attains larger values of EAs

and EA
with respect to ATK and MH procedures for which the efficiency is below 0.8; PBD4,N performs quite
well but it is still dominated by SED.

To analyze the performances of the above-mentioned procedures in terms of power at the end
of stage 1, we set βC = 0.2, βT = 0.8, 1, 1.2, 1.4, µT = µC = 1, and α = 0.05. Table 5 shows the
simulated average power of the test Wn, denoted by P(δn). For the homoscedastic case (with σ = 1),
π∗ = 0.5 and we set and ε = 0.3. Under heteroscedasticity, we set σC = 1 and σT = 2, 3, 4, so that
π∗ = πN = 0.67, 0.75, 0.8 and ε = 0.15. Table 5 shows that for a fixed value of βT , the higher σT is,
the higher the required sample size becomes to achieve similar values of the power. For homoscedastic
responses, the three CA randomization procedures strongly outperform the PBD in terms of power, with
P(δn) that tends to assume similar values as βT gets closer to βC . Under heteroscedasticity, in some
experimental settings, the gain of power in adopting the SED is over the 10% with respect to ATK and
MH that seem to be inadequate for hypothesis testing in the heteroscedastic set-up. The power induced
by the PBDb,N reaches higher values and, especially for higher σT /larger sample sizes, the values are
similar to the ones obtained with our procedure. However, as is well-known, under the PBDb,N the
allocation could be highly predictable. For instance, if b = 4 and πN = 3/4, if the first patient of the
block is assigned to C the next three assignments to complete the block will be completely deterministic.
The lack of randomness in the assignments leaves the experimental procedure open to selection bias,
that could affect the validity of the trial’s analysis and results28,31.
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Figure 1. Ds- and As-efficiency for the estimation of the regression coefficients (βT , βC), (EDs and EAs ) and
D- and A- efficiency for the estimation of ζ, (ED and EA) with σ = 1. SED is performed with π∗ = 1/2 and
ε = 0.3.
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Design: ATK MH PBD SED

6.2 Estimation efficiency for the threshold at stage 2

After stage 1, an independent stage 2 is carried out to estimate the threshold. In Table 6 we set σC = 1,
βC = 0.2 and βT = 1.4, 1.2, 1, 0.8; for each experimental scenario we consider three possible choices
of the µ’s: µT = 1.4 and µC = 1, µT = µC = 1 and, finally, µT = 1 and µC = 1.4, leading to different
values of z∗ (reported in the table). For SED we set ε = 0.3 in the homoscedastic case, while when
σT = 2, 3, 4, then π∗ = πN = 0.67, 0.75, 0.8 and we set ε = 0.15. For decreasing βT , the threshold
tends to assume more extreme values (when γ ̸= 0). In the homoscedastic set-up, the empirical variance
of the estimated threshold is very similar across the CA procedures and the PBD. However, it should
be considered that the SED is superior in terms of estimation efficiency (see Figures 1 and 2). The case
of heterogeneous responses underlines the advantages of adopting the proposed CA design, which is
associated with smaller var(ẑ∗n) and the gain drastically increases as σT differs from σC . The PBDb,N

is the procedure that presents values of the simulated average variance smaller with respect to those
achieved under ATK and MH.
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Figure 2. Ds- and As-efficiency for the estimation of the regression coefficients (βT , βC), (EDs and EAs ) and
D- and A-efficiency for the estimation of ζ, (ED and EA), with σT = 3, σC = 1. To target the D and Ds-
optimal designs the SED has been implemented with π∗ = 1/2 and ε = 0.3; to target the A and As- optimal
designs the SED has been implemented with π∗ = πN = 3/4 and ε = 0.15.
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Figure 3 displays the efficiency in the threshold estimation Ez∗ which depends on γ/τ : by setting
γ = 0 then z∗ = 0 regardless of τ . The results are consistent with those previously obtained and similar
considerations hold: while for the homoscedastic case the CA randomization procedures guarantee very
high efficiency, under heteroscedasticity Ez∗(δn) < 0.8 for all the designs aside from the SED and the
PBD4,N .
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Table 5. Stage 1: Power P(δn) with α = 0.05 and βC = 0.2. With regard to SED, in the homoscedastic case
(σ = 1) we set ε = 0.3, while in the remaining scenarios (σC = 1 and σT = 2, 3, 4) we set ε = 0.15.

βT = 1.4 βT = 1.2 βT = 1 βT = 0.8

n 25 50 75 100

σ = 1

PBD 0.761 0.906 0.766 0.530
SED 0.796 0.920 0.783 0.554
ATK 0.785 0.918 0.782 0.535
MH 0.777 0.916 0.778 0.540
n 50 75 100 125

σT = 2

PBD3,N 0.762 0.795 0.733 0.593
SED 0.778 0.801 0.746 0.599
ATK 0.743 0.766 0.704 0.556
MH 0.737 0.754 0.698 0.559
n 100 125 175 200

σT = 3

PBD4,N 0.829 0.780 0.734 0.553
SED 0.837 0.786 0.751 0.555
ATK 0.755 0.693 0.652 0.473
MH 0.754 0.692 0.656 0.469
n 150 200 250 350

σT = 4

PBD5,N 0.823 0.792 0.707 0.613
SED 0.830 0.800 0.713 0.619
ATK 0.706 0.678 0.581 0.487
MH 0.679 0.673 0.577 0.487

Figure 3. Efficiency in terms of threshold estimation (Ez∗ ) when γ = 0. For the homoscedastic model, σ = 1,
π∗ = 1/2 and ε = 0.3; for the heteroscedastic model σT = 3, σC = 1, π∗ = πN = 3/4 and ε = 0.15.
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Table 6. Stage 2: var(ẑ∗n) with βC = 0.2. With regard to SED, in the homoscedastic case (σ = 1) we set
ε = 0.3, while in the remaining scenarios (σC = 1 and σT = 2, 3, 4) we set ε = 0.15.

Design βT = 1.4 βT = 1.2 βT = 1

z∗ -0.33 0 0.33 -0.4 0 0.4 -0.5 0 0.5

n 40 50 75

σ = 1

PBD var(ẑ∗n) 0.109 0.099 0.111 0.131 0.134 0.129 0.144 0.122 0.144
SED var(ẑ∗n) 0.106 0.096 0.103 0.125 0.127 0.125 0.141 0.120 0.142
ATK var(ẑ∗n) 0.107 0.099 0.107 0.127 0.130 0.126 0.142 0.122 0.146
MH var(ẑ∗n) 0.108 0.099 0.106 0.126 0.128 0.128 0.145 0.121 0.147

n 45 55 80

σT = 2

PBD3,N var(ẑ∗n) 0.234 0.228 0.225 0.267 0.264 0.274 0.292 0.297 0.300
SED var(ẑ∗n) 0.221 0.220 0.219 0.267 0.261 0.271 0.286 0.289 0.287
ATK var(ẑ∗n) 0.244 0.249 0.247 0.283 0.291 0.293 0.315 0.327 0.320
MH var(ẑ∗n) 0.250 0.248 0.255 0.290 0.298 0.287 0.316 0.327 0.320

n 75 85 95

σT = 3

PBD4,N var(ẑ∗n) 0.250 0.253 0.258 0.316 0.330 0.315 0.424 0.435 0.428
SED var(ẑ∗n) 0.249 0.245 0.248 0.309 0.316 0.312 0.417 0.426 0.415
ATK var(ẑ∗n) 0.307 0.308 0.301 0.377 0.387 0.371 0.491 0.506 0.492
MH var(ẑ∗n) 0.305 0.301 0.308 0.374 0.383 0.370 0.492 0.503 0.488

n 75 90 100

σT = 4

PBD5,N var(ẑ∗n) 0.377 0.387 0.381 0.442 0.434 0.443 0.564 0.576 0.575
SED var(ẑ∗n) 0.376 0.373 0.370 0.431 0.430 0.436 0.533 0.553 0.551
ATK var(ẑ∗n) 0.466 0.480 0.473 0.541 0.538 0.563 0.650 0.647 0.662
MH var(ẑ∗n) 0.462 0.476 0.472 0.539 0.550 0.529 0.666 0.672 0.661
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7 Discussion
With the advent of precision medicine, the determination of certain candidate biomarkers has prompted
research in enrichment designs. However, the optimal design problem for enrichment trial has received
little attention and most of the existing proposals adopt balanced allocation among the treatment groups
and deal with dichotomous markers6. Instead, when the biomarker is defined on a continuous scale,
a threshold to discriminate the benefitting subpopulation has to be estimated. Optimal allocations for
inference on the threshold are provided in this paper. The biomarker is accounted for as a random variable
and, since it is ancillary to the likelihood, inference is conditional on its observed values. The optimal
design problem for the estimation of a threshold to identify the benefitting subpopulation is innovative
and it is different from others because the experimenter cannot directly control the biomarker values of
future enrolled patients.

Analytic and numerical results demonstrate a remarkable gain in terms of estimation efficiency of
model parameters and threshold of a continuous biomarker when the optimal allocation is implemented
via the proposed covariate-adaptive randomization, especially in the case of heterogeneous responses
and for smaller sample sizes. As far as power and variance of the estimated threshold are concerned, the
proposed design as well as other covariate-adaptive procedures guarantee good performance compared to
the permuted block design in the homoscedastic set-up. Whereas, under deviations from this setting, our
new covariate-adaptive randomization outperforms other designs: its use becomes extremely important
to carry out an efficient clinical trial under heteroscedasticity, as our procedure allows targeting
unequal allocation, at the same time balancing over the first two empirical moments of the biomarker’s
distribution.

The simulation study also demonstrates that, for estimating the threshold accurately, a moderate
number of patients is required to be enrolled in the trial. Usually, these preliminary studies are performed
on a tiny sample but, since the estimated threshold is defined to be employed for future clinical
experiments and drug use, an adequate sample size should be achieved17 and the proposed randomization
allows maximizing efficiency of the study. Important parameters that have been found to affect the design
of enrichment trials are the variance of the outcome and the biomarker prevalence in the benefitting
subgroup. Within our setting, the impact of the enrichment strategy can be assessed by the sample
proportion of patients with biomarker values above the threshold; values close to 0 or 1 lead to the
question of whether or not is worth enriching, depending on the gravity/rarity of the disease and/or cost
of evaluating the biomarker, and/or side effects of the treatment6,16,17.

Note that the optimal design for the heteroscedastic model requires prior knowledge of the ratio of the
outcome variances in both treatments. However, variances are rarely known in designing any clinical trial,
and in practice, we make a best guess based on the literature or the investigator’s knowledge, and this is
what we use in sample size computations. We often investigate the change in sample size or power if our
best guess is wrong, and this traditional method of sample size computation applies here as well. From
a design perspective, optimal designs in the heteroscedastic case will depend directly on the variances,
and initially these can be a best guess from the literature or a preliminary study, and Neyman allocation
would be a ratio of the guessed standard deviations. Adaptive designs, as mentioned in Remark 5.1, can
adaptively update these guesses using the sequentially accrued data.

The issue of deriving the optimal sample size for a two-stage enrichment trial has been addressed
by Frieri et al.17 in a related context. The analog of their approach to the one adopted in this paper
would be to find the sample size that guarantees a desired power in testing whether a benefitting
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subpopulation exists for stage 1 (i.e., the minimum n guaranteeing a given simulated average power
of the test H0 : τ = 0 vs H0 : τ ̸= 0) and that bounds the variance of the estimated threshold for stage
2 (i.e., the minimum n for which var(ẑ∗) is less than a desired upper bound, for instance via (4.4)).
Another possible approach in the case of heteroscedasticity for sample size selection could be a maximin
strategy34,35. For instance, given a fixed total variance σ2

T + σ2
C , the experimenter could derive σ2

T /σ
2
C

that maximizes var(τ̂n) within a plausible range of variance ratios. Then, given this choice, the optimal
design could be selected by minimizing the variance of τ̂n, guaranteeing a power level at the smallest
sample size.

In the case of more complex models, drawing design considerations becomes more complicated.
For instance, the optimal allocation for estimating the threshold in a generalized linear models is still
unknown. Further work aimed at filling this gap would be particularly useful to promote an efficient
implementation of enrichment trials and to support precision medicine. Another useful extension for a
more accurate identification of the benefitting subpopulation, would be to derive the optimal design when
many predictive biomarkers (continuous and/or categorical) are included in the model, with potential
interactions among them.
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A Appendix

A.1 Proof of Theorem 3.1
We firstly derive the expressions for the considered optimality criteria. Recalling that H =
diag (mT (z),mC(z)), K = diag

(
mT (z

2),mC(z
2)
)
, P = diag(π, 1− π), Q = σ−2diag (P,P) and

L =

(
I2 H
H K

)
. Let us also define V = diag (vT (z), vC(z)) = K−H2, then

M−1
n = L−1Q−1 =

(
V−1KP−1 −V−1HP−1

−V−1HP−1 V−1P−1

)
where

L−1 =


mT (z2)
vT (z) 0 −mT (z)

vT (z) 0

0 mC(z2)
vC(z) 0 −mC(z)

vC(z)

−mT (z)
vT (z) 0 1

vT (z) 0

0 −mC(z)
vC(z) 0 1

vC(z)

 and V−1P−1 = σ2

(
1

πvT (z) 0

0 1
(1−π)vC(z)

)
.

Therefore det var(ζ̂n) = n−4 detL−1 detQ−1, where detQ−1 = σ8[π(1− π)]−2 and detL−1 =
(detV)−2 det(K−H2) = (detV)−1 = [vT (z)vC(z)]

−1.
Moreover, tr var(ζ̂n) = n−1

[
trV−1KP−1 + trV−1P−1

]
, where

tr
[
V−1KP−1

]
= σ2

{
mT (z

2)[πvT (z)]
−1 +mC(z

2)[(1− π)vC(z)]
−1
}

and
tr
[
V−1P−1

]
= σ2

{
[πvT (z)]

−1 + [(1− π)vC(z)]
−1
}
.

By letting Dt =

(
0 0 1 0
0 0 0 1

)
, criteria (3.1) simply become

det var(β̂Tn, β̂Cn) = det
(
n−1DtM−1

n D
)
= det

(
1

n
V−1P−1

)
=

(
σ2

n

)2
1

π(1− π)vT (z)vC(z)
,
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tr var(β̂Tn, β̂Cn) = tr
(
1

n
V−1P−1

)
=

σ2

n

(
1

πvT (z)
+

1

(1− π)vC(z)

)
.

With regard to the estimation of z∗ (assuming τ ̸= 0), the MLE of z∗ is ẑ∗n = −γ̂n/τ̂n.

Let At =

(
1 −1 0 0
0 0 1 −1

)
, then

var(γ̂n; τ̂n) = n−1AtM−1
n A =

σ2

n


mT (z2)
πvT (z) + mC(z2)

(1−π)vC(z) −mT (z)
πvT (z) −

mC(z)
(1−π)vC(z)

−mT (z)
πvT (z) −

mC(z)
(1−π)vC(z)

1
πvT (z) +

1
(1−π)vC(z)


and, via the classical first-order Taylor expansion,

var(ẑ∗n) ≈τ−2

[
var(γ̂n)−

2γCov(γ̂n, τ̂n)

τ
+

γ2var(τ̂n)
τ2

]
so (3.2) follows from simple algebra. By assuming δ∗n in (3.3), the ensuing information matrix is

M∗
n =

1

2σ2

(
I2 m(z)I2

m(z)I2 m(z2)I2

)
, (A.1)

and M∗
n is invariant with respect to the label switching of T and C. At the same time, for any given

design δn generating an information matrix Mn in (2.3), by the simultaneous permutation of the first
two rows and two columns as well as the bottom two rows and the two right-hand columns of Mn, we
get the information matrix M̆n corresponding to the design δ̆n = 1n − δn which switches T and C.
Clearly Φ(M̆n) = Φ(Mn) and Mn + M̆n = 2M∗

n, so that by convexity

Φ(M∗
n) = Φ

(
2−1

[
Mn + M̆n

])
≤ 2−1

[
Φ(Mn) + Φ(M̆n)

]
= Φ(Mn).

With regard to the estimation of z∗, let bt = (1,−γ/τ) and b̃t = btAt, then criterion (3.2) can
be restated as btAtM−1

n Ab = b̃tM−1
n b̃, which is a convex function invariant with respect to label

switching of T and C (indeed, the roles of T and C are exchangeable in var (γ̂n/τ̂n), that is still the same
under the treatment switching). Thus, the optimal design is still the one in (3.3).

A.2 Proof of Proposition 3.1
Due to the convexity of Φ and the linearity of Mn in terms of π, mT (z) and mT

(
z2
)

(or vT (z)), we could
proceed with standard derivation techniques to find the minimum; by noticing that boundary solutions of
the form π = 0, 1 or vi(z) = 0 (for i = T,C) are not allowed, since they induce the singularity of Mn

and the divergence of each criterion, it is sufficient to show that the Jacobian of criteria (3.1) vanishes
under (3.5). Starting with Ds-optimality, minimizing det var

(
β̂Tn, β̂Cn

)
is equivalent to maximizing

π(1− π)vT (z)vC(z) and from (3.4) it corresponds to maximize

g = g(π,mT (z), vT (z)) = πvT (z)

[
v(z)− πvT (z)−

π[m(z)−mT (z)]
2

(1− π)

]
.
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Since
∂g

∂mT (z)
= 2π2vT (z)

(m(z)−mT (z))

1− π
,

then ∂g/∂mT (z) = 0 ⇐⇒ mT (z) = m(z). Moreover,

∂g

∂vT (z)
= π

{
v(z)− πvT (z)−

π[m(z)−mT (z)]
2

(1− π)

}
− π2vT (z)

and, when mT (z) = m(z), then ∂g/∂vT (z) = 0 ⇐⇒ vT (z) =
v(z)
2π . Finally,

∂g

∂π
= vT (z)

[
v(z)− πvT (z)−

π[m(z)−mT (z)]
2

(1− π)

]
− πvT (z)

[
vT (z) +

[m(z)−mT (z)]
2

(1− π)2

]
,

that vanishes when mT (z) = m(z) and vT (z) = v(z)/2π.
Analogously, to derive the As-optimal design we should minimize

h = h(π,mT (z), vT (z)) =
1

πvT (z)
+

1

v(z)− πvT (z)− π[m(z)−mT (z)]2

(1−π)

.

Now,
∂h

∂mT (z)
= − 2π[m(z)−mT (z)]

(1− π)
[
v(z)− πvT (z)− π[m(z)−mT (z)]2

(1−π)

]2
and ∂h/∂mT (z) = 0 ⇐⇒ mT (z) = m(z). In addition,

∂h

∂vT (z)
= − 1

πvT (z)2
+

π[
v(z)− πvT (z)− π[m(z)−mT (z)]2

(1−π)

]2
and when m(z) = mT (z) then

∂h

∂vT (z)
=

− [v(z)− πvT (z)]
2
+ π2vT (z)

2

πvT (z)2 [v(z)− πvT (z)]
2 = 0 ⇐⇒ vT (z) = v(z)/2π.

Finally, since

∂h

∂π
= − 1

π2vT (z)
+

vT (z) +
[m(z)−mT (z)]2

(1−π)2[
v(z)− πvT (z)− π[m(z)−mT (z)]2

(1−π)

]2
then ∂h/∂π = 0 when mT (z) = m(z) and vT (z) = v(z)/2π.
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A.3 Proof of Proposition 3.2
When the common variance σ2 is a priori known, under the alternative hypothesis W 2

n is distributed
according to a non-central χ2

1 with non-centrality parameter

nτ2

ctM−1
n c

=
nτ2

σ2
(

1
πvT (z) +

1
(1−π)vC(z)

) .
Thus, for every sample size n, if the design satisfies (3.5) then from Proposition (3.1) the non-centrality
parameter is maximized, leading to the maximization of the power of Wn.

When σ2 is unknown, the Wald statistic

W 2
n =

nτ̂2n

σ̂2
n

(
1

πvT (z) +
1

(1−π)vC(z)

)
converges under H0 to a (central) chi-square with 1 degree of freedom. Assuming that
limn→∞ n−1Xt

nXn = σ2M∗ in probability, with limn→∞ π = π∗ ∈ (0; 1) and limn→∞ vj(z) =
varj(Z) > 0 (j = T,C), under a sequence of contiguous alternatives of the form H1 : τ = τ∗/

√
n (with

τ∗ ̸= 0), W 2
n converges in distribution to a non-central χ2

1 with non-centrality parameter

τ∗2

ctM∗−1c
=

τ∗2

σ2
(

1
π∗varT (Z) +

1
(1−π∗)varC(Z)

) ,
Thus, from the previous arguments, the corresponding optimal design is the one that satisfies (3.5)
asymptotically.

A.4 Proof of Theorem 4.1
Since M̃n = σ2diag(S,S)Mn, then the D-optimality criterion for model (4.1) is

det var(ζ̂n) = det(n−1M̃n
−1

) =
(
nσ2

)−4
detL−1 detQ−1 detS−2 =

(
σ2
Tσ

2
C

)2
n4π2(1− π)2vT (z)vC(z)

,

so that, from Theorem 3.1, an allocation δ∗n satisfying (3.3) is still D-optimal.
With regard to A-optimality, tr var(ζ̂n) = n−1tr(M̃−1

n ), where tr(M̃−1
n ) = tr(V−1KP−1S−1) +

tr(V−1P−1S−1); recalling that K = V +H2, then

tr(M̃−1
n ) = tr(P−1S−1) + tr(V−1H2P−1S−1) + tr(V−1P−1S−1)

=
σ2
T

π
+

σ2
C

1− π
+

σ2
T

π

(
m2

T (z) + 1

vT (z)

)
+

σ2
C

(1− π)

(
m2

C(z) + 1

vC(z)

)
,

so that, from (3.4),

tr(M̃−1
n ) =

σ2
T

π
+

σ2
C

1− π
+

σ2
T

π

(
m2

T (z) + 1

vT (z)

)
+ σ2

C


[
m(z)−πmT (z)

1−π

]2
+ 1

v(z)− πvT (z)− π[m(z)−mT (z)]2

(1−π)

 . (A.2)
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Due to the convexity of Φ and the linearity of M̃ in terms of π, mT (z) and mT

(
z2
)
, it is sufficient to

show that the Jacobian of (A.2) vanishes under (4.5). Let Λ = m(z)−mT (z), then

∂tr(M̃−1
n )

∂π
= −σ2

T

π2
+

σ2
C

(1− π)2
− σ2

T

π2

(
m2

T (z) + 1

vT (z)

)
+

σ2
C[

v(z)− πvT (z)− πΛ2

(1−π)

]×
{
2Λ(m(z)− πmT (z))

(1− π)3
+

(
vT (z) +

Λ2

(1−π)2

)(
[m(z)−πmT (z)]2

(1−π)2 + 1
)

[
v(z)− πvT (z)− πΛ2

(1−π)

] }
,

moreover,

∂tr(M̃−1
n )

∂mT (z)
=

2σ2
TmT (z)

πvT (z)
+

2σ2
Cπ

(1− π)
[
v(z)− πvT (z)− πΛ2

(1−π)

]2{− [m(z)− πmT (z)]×

[
v(z)− πvT (z)−

πΛ2

(1− π)

]
+

([
m(z)− πmT (z)

1− π

]2
+ 1

)
Λ

}
,

and

∂tr(M̃−1
n )

∂vT (z)
= −σ2

T

π

m2
T (z) + 1

vT (z)2
+ σ2

Cπ


[
m(z)−πmT (z)

1−π

]2
+ 1[

v(z)− πvT (z)− πΛ2

(1−π)

]2
 .

It’s easy to show that when π = πN ,mT (z) = m(z) and vT (z) = v(z), then

∂tr(M̃−1
n )

∂π
=

∂tr(M̃−1
n )

∂mT (z)
=

∂tr(M̃−1
n )

∂vT (z)
= 0.

As far as threshold estimation is concerned,

var(γ̂n; τ̂n) = n−1AtM̃−1
n A =


σ2
TmT (z2)
πvT (z) +

σ2
CmC(z2)

(1−π)vC(z) −σ2
TmT (z)
πvT (z) − σ2

CmC(z)
(1−π)vC(z)

−σ2
TmT (z)
πvT (z) − σ2

CmC(z)
(1−π)vC(z)

σ2
T

πvT (z) +
σ2
C

(1−π)vC(z)

 ,

and var(ẑ∗n) in (4.4) follows via simple algebra. Analogously to the homoscedastic case, the right-hand
side of (4.4) could be expressed as b̃tM̃−1

n b̃, namely this is a convex function and therefore it is sufficient
to show that its Jacobian vanishes under condition (4.5). From (3.4),

τ2b̃tM̃−1
n b̃ =

σ2
T

π
+

σ2
C

1− π
+

σ2
T

[
mT (z) +

γ
τ

]2
πvT (z)

+
σ2
C

[
m(z)−πmT (z)

(1−π) + γ
τ

]2
v(z)− πvT (z)− π[m(z)−mT (z)]2

1−π

and, for ease of the presentation, let us also denote the 4th term of the summation by

Ψ = Ψ(π,mT (z), vT (z)) =
σ2
C

[
m(z)−πmT (z)

(1−π) + γ
τ

]2
v(z)− πvT (z)− π[m(z)−mT (z)]2

1−π

.
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Since
∂τ2b̃tM̃−1

n b̃

∂π
= −σ2

T

π2
+

σ2
C

(1− π)2
−

σ2
T

[
mT (z) +

γ

τ

]2
π2vT (z)

+
∂Ψ

dπ
, where

∂Ψ

dπ
= σ2

C

2
[
m(z)−πmT (z)

(1−π) + γ
τ

]
Λ

(1−π)2

[
v(z)− πvT (z)− πΛ2

1−π

]
+
(
vT (z) +

Λ2

(1−π)2

) [
m(z)−πmT (z)

(1−π) + γ
τ

]2
[
v(z)− πvT (z)− πΛ2

1−π

]2 ,

and
∂τ2b̃tM̃−1

n b̃

∂mT (z)
=

2σ2
T

[
mT (z) +

γ
τ

]
πvT (z)

+
∂Ψ

∂mT (z)
, where

∂Ψ

∂mT (z)
= σ2

C

−2π
1−π

[
m(z)−πmT (z)

(1−π) + γ
τ

] [
v(z)− πvT (z)− πΛ2

1−π

]
− 2Λπ

1−π

[
m(z)−πmT (z)

(1−π) + γ
τ

]2
[
v(z)− πvT (z)− πΛ2

1−π

]2 ,

and finally

∂τ2b̃tM̃−1
n b̃

∂vT (z)
= −σ2

T

[
mT (z) +

γ
τ

]2
πvT (z)2

+
πσ2

C

[
m(z)−πmT (z)

(1−π) + γ
τ

]2
[
v(z)− πvT (z)− πΛ2

1−π

]2 .

When π = πN ,mT (z) = m(z), vT (z) = v(z), then ∂τ2b̃tM̃−1
n b̃

∂π =
∂τ2b̃tM̃−1

n b̃
∂mT (z) =

∂τ2b̃tM̃−1
n b̃

∂vT (z) = 0.

With regard to Ds-optimality,

det var
(
β̂Tn, β̂Cn

)
=det

(
n−1DtM̃−1

n D
)
=
[
nσ2

]−2
det
(
DtM−1

n diag(S−1,S−1)D
)

=
[
nσ2

]−2
det
(
σ2V−1P−1S−1

)
=

σ2
Tσ

2
C

n2π(1− π)vT (z)vC(z)
,

which, from Proposition 3.1, is minimized by δ∗n satisfying condition (3.5). Finally,

tr var
(
β̂Tn, β̂Cn

)
= tr

(
n−1DtM̃−1

n D
)
=

tr
(
DtM−1

n diag(S−1,S−1)D
)

nσ2

=
tr
(
σ2V−1P−1S−1

)
nσ2

=
1

n

{
σ2
T

πvT (z)
+

σ2
C

(1− π)vC(z)

}
,

which also coincides with var (τ̂n). Thus, to derive the As-optimal design

h̃ = h̃(π,mT (z), vT (z)) =
σ2
T

πvT (z)
+

σ2
C

v(z)− πvT (z)− π[m(z)−mT (z)]2

(1−π)

has to be minimized. Since ∂h̃
∂mT (z) = −2πΛσ2

C

/
(1− π)

[
v(z)− πvT (z)− πΛ2

(1−π)

]2
then

∂h̃/∂mT (z) = 0 ⇐⇒ mT (z) = m(z). In addition, ∂h̃
∂vT (z) = − σ2

T

πvT (z)2 +
σ2
Cπ[

v(z)−πvT (z)− πΛ2

(1−π)

]2
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and, by solving ∂h̃/∂vT (z) = 0 we obtain πvT (z) = πNv(z) or πvT (z) = v(z)[σT /{σT − σC}];
clearly, this latter solution is admissible only when σT > σC , but under this setting
(1− π)vC(z) = −v(z)[σC/{σT − σC}] < 0 which is impossible. Thus, the only admissible solution is
πvT (z) = πNv(z). Finally,

∂h̃

∂π
= − σ2

T

π2vT (z)
+ σ2

C

vT (z) +
Λ2

(1−π)2[
v(z)− πvT (z)− πΛ2

(1−π)

]2
vanishes when mT (z) = m(z) and πvT (z) = πNv(z).
Taking now into the problem of testing H0 : τ = 0 versus H1 : τ ̸= 0, under model (4.1)

√
n(τ̂n − τ) ∼

N(0, ctM̃−1
n c), where

ctM̃−1
n c =

σ2
T

πvT (z)
+

σ2
C

(1− π)vC(z)
.

Thus, the proof follows directly from Proposition 3.2 by noticing that, when the treatment variances are

a priori known, the Wald statistic becomes Wn =
√
nτ̂n

{
σ2
T

πvT (z) +
σ2
C

(1−π)vC(z)

}−1/2

, while when σ2
T

and σ2
C are unknown they should be replaced by consistent estimates.

A.5 Proof of Theorem 5.1
Following Theorem 4.5 of Meyn and Tweedie36, a Markov chain {Xn}n∈N on a general state-space X
is bounded in probability if i) Xn is a T-chain and ii) Xn satisfies a positive drift condition, namely there
exists a norm-like function V : X −→ R+ such that, for some η > 0 and a compact set C ∈ B(X) (where
B(X) is the Borel sigma algebra), we have

∆V (Xn) := E[V (Xn+1) | Xn]− V (Xn) ≤ −η, Xn ∈ Cc. (A.3)

Let now rt =
(
1, z, z2

)
and I{E} be the indicator function of the event E. The one step transition kernel

for {un}n∈N is

P (x, A) = Pr(un+1 ∈ A | un = x) =

∫
Pr(un+1 ∈ A | un = x, Zn+1 = z)f(z)dz

=

∫ {
h
[
2rtx+ (1− 2π∗)rtr

]
I{x+ (1− π∗)r ∈ A}

+
(
1− h

[
2rtx+ (1− 2π∗)rtr

])
I{x− π∗r ∈ A}

}
f(z)dz.

To prove that {un}n∈N is a T-chain we need to show that there exists a sampling distribution α and a
substochastic transition kernel T (x, ·) such that for any A ∈ B(X), Kα(x, A) =

∑∞
i=1 P

i(x, A)α(i) ≥
T (x, A), where T (·, A) is a lower semicontinuous (LSC) function with T (x,X) > 0 for all x ∈ X. By
taking α(1) = 1 and 0 otherwise, then Kα(x, A) = P (x, A); if we set T (x, A) = (π∗ − ε)

∫
I{x+

(1− π∗)r ∈ A}f(z)dz, then P (x, A) ≥ T (x, A), recalling that h(x) ≥ π∗ − ε > 0 for any x ∈ R.
Since the indicator function of any open set is LSC, then T (x, A) is always LSC. Indeed, if A is an
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open subset then

lim
y→x

inf T (y, A) = (π∗ − ε) lim
y→x

inf

∫
I{y + (1− π∗)r ∈ A}f(z)dz

≥ (π∗ − ε)

∫
lim
y→x

inf I{y + (1− π∗)r ∈ A}f(z)dz

≥ (π∗ − ε)

∫
I{x+ (1− π∗)r ∈ A}f(z)dz = T (x, A).

(A.4)

Moreover, (A.4) holds even if A is not an open subset; indeed, T (x, A) does not change since the closure
of A has zero Lebesgue measure. Finally notice that T (x,X) > 0 since x+ (1− π∗)r ∈ R3 a.s. Thus,
{un}n∈N is a T-chain.

In addition, condition (A.3) is satisfied by choosing V (un) = ∥un∥2. Indeed, the one-step drift is

∆V (un) = E[V (un+1)− V (un) | un] = E [E[V (un+1)− V (un) | un, Zn+1 = z]]

=

∫
E[V (un+1)− V (un) | un, Zn+1 = z]f(z)dz,

where, letting ωn = 2rtun + (1− 2π∗)rtr, the inner expectation is equal to

E[V (un+1)− V (un) | un,Zn+1 = z, δn+1 = 1]h(ωn)+

E[V (un+1)− V (un) | un,Zn+1 = z, δn+1 = 0][1− h(ωn)].

Since E[V (un+1)− V (un) | un, Zn+1 = z, δn+1 = 1] = 2(1− π∗)rtun + (1− π∗)2rtr and
E[V (vn+1)− V (un) | un, Zn+1 = z, δn+1 = 0] = −2π∗rtun + π∗2rtr, then

E[V (un+1)− V (un) | un, Zn+1 = z] = ωnh(ωn)− 2π∗rtun + π∗2rtr,

i.e., by simple algebra, ωn {h(ωn)− π∗}+ π∗(1− π∗)rtr, so that

∆V (un) =

∫
ωn {h(ωn)− π∗} f(z)dz + π∗(1− π∗)

∫
rtrf(z)dz.

Note that ωn {h(ωn)− π∗} ≤ 0, since ωn {h(ωn)− π∗} = 0 if and only if ωn = 0 and it is negative
otherwise. Indeed, when ωn < 0, it is equal to ωnε, while if ωn > 0 it is equal to −ωnε, so that
−ωn {h(ωn)− π∗} = |ωn| [h(−|ωn|)− π∗]. To verify condition (A.3), we need to show that, for a
compact set C, ∆V (un) ≤ −η, namely∫

|ωn| [h(−|ωn|)− π∗] f(z)dz ≥ η + π∗(1− π∗)

∫
rtrf(z)dz, on Cc. (A.5)

Let Z∗ = {z : |2(1, z, z2)un + (1− 2π∗)(1, z, z2)(1, z, z2)t| > 0} ⊂ R, then Pr (Zn ∈ Z∗) > 0 and
the LHS of (A.5) is equal to

∫
Z∗ |ωn| [h(−|ωn|)− π∗] f(z)dz. Let C = {un : max |2(1, z, z2)un +

(1− 2π∗)(1, z, z2)(1, z, z2)t| ≤ κ, z ∈ Z∗} be the compact set; in Z∗, the linear transformation un →
2rtun + (1− 2π∗)rtr is injective and corresponds to an induced norm of un, so that for every un ∈ Cc∫

Z∗
|ωn| [h(−|ωn|)− π∗] f(z)dz > κ [h(−|κ|)− π∗] Pr (Zn ∈ Z∗);

so condition (A.3) is verified since κ [h(−|κ|)− π∗] increases in κ, while the right-hand side of (A.5) is
bounded. Thus, {un}n∈N is bounded in probability with un = Op(1) and therefore n−1un = op(1).
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