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Abstract

The non-equilibrium phenomena that characterize the dynamics of an oscillat-
ing bubble in a liquid are generally very complex. In this work we study the
effects produced by the presence of a gas mixture in which the temperatures of
each species are taken into account. Acceleration waves are used to test the sta-
bilizing effects of the model and verify the possibility of shock formation within
the bubble. It is shown that the diffusion associated with the presence of multi-
ple temperatures cannot be neglected when describing what happens inside the
bubble, even in the sonoluminescence regime.

Keywords: Oscillating gas bubble, Acceleration wave, Euler gas, Multi-temperature
gas mixture

1 Introduction

The dynamics of gas bubbles oscillating in a liquid in the presence of a periodic
acoustic signal is a complex and fascinating topic that brings together different aspects
of physics and mathematics. It currently attracts a lot of attention given the enormous
number of applications in medicine, engineering, chemistry, etc. Consequently, the
literature on this subject is very extensive and we will only mention a few review
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works here [1–5], but many features (such as the gas dynamics inside the bubble) still
remain not entirely clear.

In particular, the behaviour of a gas enclosed in an oscillating bubble has often
been studied in the framework of an Euler gas, thus neglecting its thermal conductivity
and viscosity, while maintaining the hyperbolic structure of the balance laws. Under
these conditions of absence of dissipation, the possible formation of a shock inside the
bubble has been predicted as accompanying the observation of a flash of light in the
sonoluminescence regime (SL) [6–8]. In a previous work [9] we have already shown
that the dissipation associated to viscosity and thermal conductivity strongly inhibits
the shock formation, as suggested by several authors by means of different techniques
[4, 10, 11]. In [9], as in the present work, the verification was conducted through
the analysis of the acceleration wave behaviour. Acceleration waves (AW), also called
weak discontinuity or C1 discontinuity waves, are propagating surfaces representing
a particular solution of a PDE’s system. As a matter of fact, its field variables are
continuous everywhere, but their first order spatial derivatives can have a discontinuity
jump across the surface. AWs have been studied in different frameworks and here we
quote some works and applications in the case of gases [6, 9, 12–23].

While in the past we introduced rational extended thermodynamic models to
describe the phenomena involving heat conductivity and viscosity [9], now we focus
on the dissipation effects related to the presence of a multi-temperature gas mixture.
Usually a gas mixture, such as air, inside the bubble is modelled as a single gas with
average physical constants [7, 8]. The idea of focusing on a multi-temperature mixture
of Euler (MT) gases is related to the fact that the relaxation time associated with the
multiple temperatures could be longer than that of thermal conductivity or viscosity.
The effect we are about to describe is observable even when the molecular masses of
the components are equal, provided that they have different ratios of specific heats.
Hence, for instance, the simultaneous presence of monatomic and polyatomic gases in
the bubble could stabilize the bubble dynamics, including when heat conductivity is
neglected.

The paper is organized as follows. The AW theory is briefly presented in Sec. 2,
while Sec. 3 summarizes a simplified model of bubble oscillation and the qualitative
description of SL regime. The Euler gas mixture model with multi-temperature is
introduced in Sec. 4. Sec. 5 contains the analytical and numerical results together with
some remarks. Finally, the conclusions can be found in Sec. 6.

2 Acceleration wave theory

Let us consider a surface Γ that propagates in space. In front of the wavefront the
unperturbed field variables are known functions uu(z, t) of space z and time t, while
behind the wavefront the perturbed field variables are usually unknown. This surface
represents an acceleration wave if the discontinuity of the derivative of one or more field
variables occurs through it, while the field variables, u, themselves remain continuous.
The previous conditions could be written as

[[
u
]]
= 0 and

[[
∂u
∂ϕ

]]
= A ̸= 0, if ϕ(z, t) =

0 is the equation of the wavefront and
[[
·
]]
= (·)ϕ=0− − (·)ϕ=0+ represents the jump

across Γ. In this work we focus on spherical AWs travelling in the radial direction, so

2



that by introducing spherical coordinates we deal with a one-dimensional phenomenon,
for which the AW theory predicts that [12, 15, 16]:

� The normal velocity V = −ϕt/|∇ϕ| of the wave front coincides with the charac-
teristic speed of the hyperbolic PDE system evaluated in the unperturbed field
V = λ(uu).

� The jump vector A is proportional to the right eigenvectors corresponding to λ,
evaluated in uu, so that A = Ar(uu).

� The scalar amplitude A satisfies the Bernoulli equation

dA
dt

+ a(t)A2 + b(t)A = 0, (1)

if d/dt indicates the time derivative along the characteristic line (dx/dt = λ(uu))
and a(t) and b(t) are suitable functions of time.

From equation (1), the scalar amplitude of the jump is easily obtained as a function
of time by prescribing its initial value A(t = 0) = A0:

A(t) =
A0g1(t)

1 +A0g2(t)
with g1(t) = exp

(
−
∫ t

0

b(s)ds

)
and g2(t) =

∫ t

0

a(s)g1(s)ds.

(2)

Concerning the calculation of the Bernoulli’s coefficients a and b, for one-dimensional
waves and for a set of PDEs written as

∂tu+A(u, z, t)∂zu = T(u, z, t), (3)

it was shown that [16]

a(t) = ϕz(t)(∇uλ · r)
∣∣∣
u
,

b(t) =

{
r((∇ul)

T −∇ul) ·
du

dt
+ (∇uλ · r)(l · uz)−∇u(l ·T) · r+ l · d̃r

dt

}∣∣∣
u
,

(4)

if wz = ∂w/∂z for any w and ∇u· = ∂ ·/∂u. In addition, l(u, z, t) and r(u, z, t) denote
respectively the left and right eigenvector of A associated with the eigenvalue λ. For
any function w of the field variables we refer to the notation: w|u = w(uu), while
d·
dt = ∂t·+ λu∂z· and d̃·

dt = ( d·dt )|u=const. The left and right eigenvectors are prescribed
according to [9, 22], so that the scalar amplitude coincides with the acceleration jump

G =
[[

∂v
∂t

]]
= −λu

[[
∂v
∂z

]]
(where v denotes the gas velocity along the z direction), thus

making the result compatible with the Hadamard relation. A system of balance laws
commonly presents several AWs which travel at different characteristic speeds. Here
we will focus on the fastest wave, since it will be the only one to propagate in the
unperturbed solution in the presence of multiple waves.
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From (2) it is evident that the behavior of the scalar amplitude depends on its
value at the initial instant. In particular, there exists a critical value Acr such that
if A0/Acr > 1, the amplitude A(t) diverges after a critical time tcr, implying the
transformation of the AW into a shock wave. Concerning this phenomenon, therefore,
the study of the AWs can be considered as a study of the non-linear stability of the
unperturbed solution. It is easy to prove that Acr = − limt→∞ 1/g2(t).

3 A simplified model of a gas bubble oscillating
within a liquid

A gas bubble generated within a liquid is supposed to oscillate due to the presence
of a periodic acoustic signal. For the sake of simplicity the form of such a bubble is
assumed to be perfectly spherical, although several experimental data have shown that
during its oscillations the bubble changes its shape, especially when violent shrinkages
occur [3, 5]. The dynamics of bubble radius R(t) is commonly described by an ordinary
differential equation that accounts for the interaction between the gas bubble and the
surrounding liquid [3, 5]. One of the most famous model for R(t) is the Rayleigh-Plesset
(RP) equation, which is valid under the assumption of incompressibility of the liquid:

RR̈+
3

2
Ṙ2 =

1

ρL

(
Pg − PE + Pa(t)

)
− 4ηṘ

ρLR
− 2ς

ρLR
+

R

ρLcL

d

dt
(Pg + Pa), (5)

where ρL is the mass density of the liquid around the bubble, cL its sound velocity,
η represents the shear viscosity of the liquid, while ς denotes the surface tension.
Moreover, PE is the ambient pressure at equilibrium, Pa(t) = Pa cos(ωt + φ0) is
the acoustic signal. Lastly, Pg is the gas pressure inside the bubble. In this respect
we remind that the RP equation is deduced under the homobaric hypothesis, i.e.
imposing that Pg is spatially homogeneous. Although in reality the gas pressure inside
the bubble should not be uniform, due to several factors such as the acceleration
of the bubble wall, it was verified that this effect is negligible, at least during the
bubble expansion and the early stages of its shrinkage [1, 24]. It was verified that the
homobaric hypothesis is not compatible with the physical conditions in the final stages
of a violent contraction. However, the RP equation maintains its validity [4, 11]: this
happens even in the presence of an AW, which generates an inhomogeneity in the
bubble during its propagation [9].

To make (5) a stand-alone equation, integrable without coupling it with other
equations (closure problem) it is necessary to express Pg as a function of R(t). The
simplest and most used technique fixes the dependence of the pressure on the bubble

radius as Pg = PE

(
RE

R(t)

)3κ

where κ equals 1 in the isothermal case or is γ = cV /cP

(the ratio of the specific heats) under adiabatic conditions.
The emission of light from cavitation bubbles, with time resolution from microsec-

onds to picoseconds, is a phenomenon called sonoluminescence, which is characterized
by two different regimes: multi-bubble sonoluminescence (MBSL), when the light emis-
sion comes from a cloud of bubbles, and single-bubble sonoluminescence (SBSL), when
the light emission occurs from a single bubble. Spectroscopic analyses of the emitted
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Fig. 1 Qualitative behaviour of bubble radius, R(t), in the presence of a periodic acoustic signal, Pa.

light have revealed high temperatures and pressures associated with SL, especially for
SBSL, when temperature up to 15000 K and pressures well over 103 atm are detected.
However, the core temperature and the pressure of the collapsing bubble could be
even higher, due to the presence of a region of optically opaque plasma which does
not allow observation [25]. Bearing in mind the very rapid oscillation of the bubble,
which occurs in time intervals of the order of microseconds, one can easily deduce
the extraordinary conditions of temperature variation with heating and cooling rates
of order of 1012 K/s [25]. A qualitative example of the non-linear oscillations of the
bubble close to the SL regime is presented in Figure 1. The initial radius value is the
equilibrium one RE that corresponds to the absence of external sound signal and to
the equilibrium of the bubble with the liquid. By activating the acoustic field Pa(t)
the bubble slowly increases its volume until it reaches the maximum radius RM . A
faster shrinkage follows the expansion, so that the R(t) returns to RE until it reaches
the minimum value Rm (for particular violent contractions Rm could be close to the
van der Waals hard core radius). Rebounds occur after this first contraction due to
inertial effects. When the bubble contracts and its wall still presents negative acceler-
ation (RM > R ≥ RE) it is possible, as a first approximation, to neglect the viscous
terms and the terms related to surface tension, as well as the effects produced by the
internal pressure of the bubble, the acoustic signal and their variations [2, 3]. If the
gas inside the bubble is supposed to be ideal, equation (5) is simplified as

1

2
R3Ṙ2 =

PE(R
3
M −R3)

3ρL
. (6)
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4 The equations of the gas mixture inside the bubble

To model the gas mixture we refer to the theory of homogeneous mixtures introduced
by Truesdell [26, 27] and developed by Mueller [28] in the context of rational thermo-
dynamics, following the idea that it is possible to write the balance laws typical of a
single gas for each component of the mixture. There is an immense literature on gas
mixtures that employs both macroscopic approaches related to continuum theory and
microscopic ones derived from kinetic theory [29–31].

In the present work we will refer to a MT model in which a different temperature is
attributed to each species composing the mixture [29, 31–39]. This approach typical of
plasma studies is capable of better representing non-equilibrium phenomena. We will
also neglect the effects of thermal conductivity and viscosity, focusing on a mixture of
Euler gases. In this way the resulting balance laws contain mass density, temperature
and velocity of each mixture component as field variables.

In a spherical oscillating domain it is convenient to write the equations of the
MT Euler mixture in spherical coordinates and assume a one-dimensional radial
dependence of the fields. To further simplify the mathematical description of the
phenomenon we also introduce a change of time-space variables {t, r} (with r radial
coordinate inside the bubble r ∈ [0, R(t)]), to the more comfortable {t′, x} if t′ = t
and x = r/R(t) with x ∈ [0, 1], so as to work in a constant bounded domain. Referring
to the works by Ruggeri and Simic on MT gas mixtures [31, 34, 35] the model system
becomes

∂tρ1 +
v1 − xṘ

R
∂xρ1 +

ρ1
R
∂xv1 = −2

ρ1v1
Rx

,

∂tv1 +
kBT1
m1ρ1R

∂xρ1 +
v1 − xṘ

R
∂xv1 +

kB
m1R

∂xT1 =
M1

ρ1
,

∂tT1 +
2T1
D1R

∂xv1 +
v1 − xṘ

R
∂xT1 = − 4T1v1

D1Rx
+

2E1
D1n1

,

∂tρ2 +
v2 − xṘ

R
∂xρ2 +

ρ2
R
∂xv2 = −2

ρ2v2
Rx

,

∂tv2 +
kBT2
m2ρ2R

∂xρ2 +
v2 − xṘ

R
∂xv2 +

kB
m2R

∂xT2 = −M1

ρ2
,

∂tT2 +
2T2
D2R

∂xv2 +
v2 − xṘ

R
∂xT2 = − 4T2v2

D2Rx
− 2E1
D2n2

,

(7)

where

M1 = ψv

(u2
T2

− u1
T1

)
E1 = ψT

( 1

T1
− 1

T2

)
,

ψv =
2m1m2

m1 +m2
TaΓ12, ψT =

3m1m2

(m1 +m2)2
kBT

2
aΓ12,

ψT =
3m1m2

(m1 +m2)2
T 2
aΓ12

(8)
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and ρi, ni, Ti and vi denote mass and number density, temperature and radial com-
ponent of the velocity of the i-species (i = 1, 2), while Ta is the average temperature.
Γ12 represents the volumetric collisional frequency, while ui = vi − v̄ is the diffusion
velocity of the i-component and v̄ the velocity of the mass centre defined below. More-
over, both gases are supposed to be ideal and polytropic so that the partial pressure
pi and the partial specific internal energy εi turn out to be

pi =
kB
mi

ρiTi, εi =
DikBTi
2mi

, with γi =
Di + 2

Di
(9)

if mi is the molecular mass of gas i, while Di are the corresponding molecular degrees
of freedom and kB the Boltzmann constant. The quantity associated to the entire gas
mixture that could be measured in an experiment are the total mass density ρ (or
number density n), the average temperature Ta and the mixture velocity (velocity of
the mass centre) v̄ that are defined as

ρ =

2∑
i=1

ρi, n =

2∑
i=1

ni, v̄ =
ρ1v1 + ρ2v2

ρ
, Ta =

D1n1T1 +D2n2T2
D1n1 +D2n2

. (10)

The following characteristic polynomial is associated to the PDE set (7)

P(λ) = P1(λ)P2(λ) with Pi(λ) = (λR− vi + Ṙx)(aiλ
2 + biλ+ ci) if i = 1, 2

ai = DimiR
2, bi = −2DimiR(vi − Ṙx), ci = −(Di + 2)kBTi +Dimi(vi − Ṙx)2,

so that the corresponding characteristic speeds are easily determined as

λ1 =
v1 − Ṙx

R
, λ2,3 = ± 1

R

√
(D1 + 2)kBT1

D1m1
+
v1 − Ṙx

R
,

λ4 =
v2 − Ṙx

R
, λ5,6 = ± 1

R

√
(D2 + 2)kBT2

D2m2
+
v2 − Ṙx

R
.

(11)

Hence, it can be concluded that the PDE system (7) is of hyperbolic type for any
values of the field variables with physical meaning (Ti > 0). Moreover it is verified
that if v1 = v2 and m1 ≃ m2, the highest characteristic speed is the one corresponding
to the species with the smallest value of Di, that is to say with the maximum ratio of
specific heats γi.

A mixture of Euler gases within a bubble has often been described as a single
perfect gas (SG) with mass density ρ, temperature T e velocity v [7, 8]. In such a case
the gas will be attributed a molecular mass equal to m̄ and a number of molecular
degrees of freedom equal to D̄ given by

m̄ =
n1m1 + n2m2

n
, D̄ =

n1D1 + n2D2

n
(12)

7



so that the gas equations reduce to Euler conservation of mass, momentum and energy:

∂tρ+
v − xṘ

R
∂xρ+

ρ

R
∂xv = −2

ρv

Rx
,

∂tv +
kBT

m̄ρR
∂xρ+

v − xṘ

R
∂xv +

kB
m̄R

∂xT = 0,

∂tT +
2T

D̄R
∂xv +

v − xṘ

R
∂xT = − 4Tv

D̄Rx

(13)

to which the characteristic speeds λ(S) correspond

λ
(S)
1 =

v − Ṙx

R
, λ

(S)
2,3 = ± 1

R

√
(D̄ + 2)kBT

D̄m̄
+
v − Ṙx

R
. (14)

In the following sections we will refer to this second hyperbolic dissipation-free model
as a term of comparison.

5 Acceleration waves propagating in an oscillating
bubble filled with a binary gas mixture

5.1 Preliminary assumptions

The oscillating bubble wall could act like a piston on the gas, generating an incoming
spherical AW. To simplify the study of such a wave, and in particular the determination
of the coefficients (4) and the behavior of the scalar amplitude (2), some reasonable
approximations are introduced here.

� The bubble radius is assumed to depend linearly on time:

R(t) = R0(1 + µt), (15)

where R0 is the initial bubble radius and Ṙ = R0µ can be evaluated referring to (6),
during the shrinkage. This linearity of R(t) holds true only for small time intervals,
consistent with the short time taken by AW to travel from the wall to centre of the
bubble.

� The unperturbed radial velocities of the components are equal and linear in x:

v1 = v2 = xṘ. (16)

� The relaxation terms (8) are linearized in the non-equlibrium variables as well,
referring to [29, 31] they can be reduced to (σ12 = (σ1 + σ2)/2 is the average
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molecular diameter and rm = m1/m2 the ratio of the molecular masses)

M1

ρ1
≃ v2 − v1

τv
,

2E1
n1

≃ T2 − T1
τT

1

τv
=

4
√
2π√

1 + r−1
m

√
kBT0m2n20σ

2
12,

1

τT
=

12
√
2π

rm(1 + r−1
m )3/2

√
kBT0
m2

n20σ
2
12.

1

τv
=

4
√
2π

rm
√

1 + r−1
m

√
kBT0
m2

n20σ
2
12

(17)

Hence, the relaxation times τv and τT are modelled as constant quantities, deter-
mined at established initial values of the average temperature T0 and the number
densities.

These simplifying assumptions allow a semi-analytical description of the AW, implying
the adiabaticity and the space homogeneity of mass density, temperature and pressure.

In order to determine the unperturbed solution, we prescribe the initial values of
equilibrium temperature of the two species Ti0 and of the corresponding mass densities
ρi0 (i = 1, 2). For the sake of simplicity, here we always assume that component 1 of
the mixture presents a number of degrees of freedom D1 > D2 (hence γ1 < γ2) and
that the masses of the two species are such that the maximum absolute values of the
characteristic speed is λ5 = |λ6| (rm > rγ if rγ = γ1/γ2). Since we are studying the
AWs propagating with a negative velocity, from now on we will focus our attention
on the wave corresponding to λ6.

5.2 Unperturbed solution

Under the previous hypotheses it is possible to easily derive the equations for the
unperturbed solution uu = (ρ1u, v1u, T1u, ρ2u, v2u, T2u):

ρ1u = ρ10
R3

0

R3
, ρ2u = ρ20

R3
0

R3

v1u = v2u = xṘ = xR0µ,

∂tT1u = −6T1uṘ

D1R
+
T2u − T1u
D1τT

,

∂tT2u = −6T2uṘ

D2R
− (T2u − T1u)rn

D2τT
,

(18)

if ni0 = ρi0/mi denote the initial value of the number of the i-component, so that
rn = n10/n20 represents the ratio of the concentrations of the two gases. It can be
easily verified that if Ṙ = R0µ ̸= 0 the solution T1u = T2u is impossible if the two
mixture components present different specific heats (and so different Di). In Figs. 2-4
we show the qualitative behaviour of T1u and T2u during the propagation of the AW
towards the bubble centre if a linear shrinkage of the bubble is taken into account.
Such a propagation occurs immediately after an isothermal transformation, so that
T10 = T20 = T0 = 300K are the initial values of the temperature used to integrate

9
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Fig. 2 The case of a bubble of radius R(t) (with equilibrium radius RE = 1µm) filled by a gas
mixture of CO2 and He (rm = 11) with the same number density (rn = 1). The figure shows the
behaviour of the AW front (rwf (t)) in (t, r) time-space variables during its travel from the bubble
wall to the centre. Moreover one can find the plot of the average temperature of the gas mixture and
of the corresponding temperatures of the two species, besides their difference.

(18). The role of the parameters RE , rn and rm is studied. We fix D2 = 3 (monatomic
gas) and D1 = 6; RM = 10RE and the initial radius R0 = 7.7RE in all the figures. In
addition, rm = 11 (a mixture of carbon dioxide and helium) in Figs. 2 and 4, while
rm = 1.1 (a mixture of carbon dioxide and argon) in Fig. 3. The ratio rn is prescribed
to be 3 in Fig. 4 on the top and to be 1 in the remaining cases. Finally RE is equal to
1µm in all the figures except Fig. 4 on the bottom, where it is assumed to be 10µm.
The figures show a rapid growth in temperature compatible with what was observed
experimentally for SL regime, as already described in Sec. 3 [25]. The temperature
difference T2−T1 increases as the bubble radius decreases, since in smaller bubbles the
gases are further from equilibrium. Differences in number densities and in molecular
masses could exacerbate the phenomenon, as well.

5.3 Calculation of Bernoulli coefficients

Referring to the fastest AW with unperturbed characteristic speed

λu = − 1

R

√
(D2 + 2)kBT2u

D2m2
(19)
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Fig. 3 The case of a bubble of radius R(t) (with equilibrium radius RE = 1µm) filled by a gas
mixture of CO2 and Ar (rm = 1.1) with rn = 1. The figure shows the behaviour of the AW front
(rwf (t)) during its travel from the bubble wall to the centre. Moreover one can find the plot of the
average temperature of the gas mixture and of the corresponding temperatures of the two species,
besides their difference.
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Fig. 4 The case of a bubble with equilibrium radius RE = 1µm on the top and RE = 10µm (on
the bottom) filled by a gas mixture of CO2 and He (rm = 11) with rn = 3 on the top and rn = 1
on the bottom. The figure shows the behaviour of the average temperature of the gas mixture and of
the corresponding temperatures of the two species.
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and corresponding right and left unperturbed eigenvectors

ru =

(
0, 0, 0,− ρ2u

λ2uR
,− 1

λu
,− 2T2u

D2λ2uR

)
, lu =

(
0, 0, 0,

kBl5T2u
λum2ρ2uR

, l5,
kBl5
λum2R

)
,

(20)

with l5 = −D2λ
3
um2R

2(D2λ
2
um2R

2 + (D2 + 2)kBT2u)
−1. The equation of the

corresponding wave front in (x, t) variables is formally written as

xwf (t) = 1 +

∫ t

0

λu(s)ds (21)

and can be determined numerically once equations (18) are solved. The corresponding
Bernoulli’s coefficients are obtained from (4)

a = −D2 + 1

D2λuR
,

b =
3(D2 + 1)Ṙ

2D2R
+

λu
xwf

+
−(D2 − 2)T1u + (D2 + 2)T2u
2D2(D2 + 2)kBn20T2uτT

+
1

2τvm2n20
.

b =
3(D2 + 1)Ṙ

2D2R
+

λu
xwf

+
−(D2 − 2)T1u + (D2 + 2)T2u

4D2(D2 + 2)r−1
n T2uτT

+
1

2τvr
−1
m r−1

n

.

b =
3(D2 + 1)Ṙ

2D2R
+

λu
xwf

+
−(D2 − 2)T1u + (D2 + 2)T2u

4D2(D2 + 2)r−1
n T2uτT

+
1

2τvr
−1
m r−1

n

.

(22)

We observe that both coefficients depend on parameters and unperturbed temperature
of component 2 (the one corresponding to the fastest AW). The coefficient b is also
function of the unperturbed temperature of component 1, or, which is the same, of the
unperturbed average temperature. This fact is related to the non-stationary structure
of the unperturbed solution (18).

5.4 Numerical analysis of some physical cases

In 1978 it was first demonstrated [14] that spherical AWs travelling towards the centre
exhibit a singularity that is peculiar to this geometry. This fact implies the formation of
shock waves for any initial negative scalar amplitude A0 [6, 9, 14]. On the other hand,
it is possible to verify that this phenomenon occurs in a very small neighbourhood
around the centre of the sphere, but a continuum mechanics theory such as the one
we are using is unable to predict phenomena that occur on spatial scales smaller than
the kinetic diameter (d) of a molecule. What should happen is a reflection of the AW
before reaching such a neighbourhood. For this reason here we will refer to the concept
of special critical amplitude which corresponds to the greatest negative value of A0 for
which shock formation is observed before the wavefront reaches the distance d from
the centre. From (2), it is easily demonstrated that

∃t∗ ∈ R+ : R(t∗)xwf (t
∗) = d and A∗

cr = −1/g2(t
∗).
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Fig. 5 −A∗
cr values for the MT (continuous line) and the SG (dotted line) models, compared with

−R̈. On the left the case R0 ≃ RM , on the right R0 ≃ RE (close to the sonoluminescence zone).
Case 1 a mixture of CO2 and Ar; Case 2: a mixture composed by CO2 and He.

In the last figure we present an example of calculation of A∗
cr (d ≃ 2 × 10−10m)

for two different gas mixtures composed by CO2 and Ar (case 1) and CO2 and He
(case 2), prescribing rn = 3, RE = 10µm, σ12 ≃ 3 × 10−10m, D1 = 6, D2 = 3. The
values are evaluated during the shrinkage in two different phases: R0 ≃ RM (on the
left) and R0 ≃ RE (on the right). Moreover, the calculations are performed taking
into account two different models: the MT Euler one (solid line) and the SG Euler
equations (dotted line). The system (7) requires numerical integrations in order to
determine the explicit expression of the wave front, the Bernoulli’s coefficients and
the function g2(t), while for the SG Euler balance laws (13) we refer to previous
analytical results in [9]. Shock formation is assumed to be possible if the acceleration
of the bubble wall R̈ (black line) is negative and comparable to the value of A∗

cr. From
Fig. 5 it is evident that this case only occurs for the SG model and when R0 ≃ RE ,
since the special critical amplitude usually differs by several orders of magnitude from
the wall acceleration (estimated through (6) approximation). One can conclude that
the dissipation gives rise to a highly stabilizing effect and tends to inhibit the onset
of shocks. This phenomenon is even more evident for small bubbles, where the wave
propagation times are comparable with the relaxation times of model (7) with (17).

6 Conclusions

What elements are indispensable for modelling the gas inside a bubble that oscillates
periodically in a liquid? To contribute to the complex answer to this question, we have
studied the case of a MT binary mixture of Euler gases. Through the AWs instrument
it is possible to demonstrate that the dissipation linked to the temperature difference
plays an important role, among other things by inhibiting the shock formation. The
dynamics of the gas and, therefore, also that of the bubble appear to be the result
of the competition between the dissipations, which tend to bring the system back to
an equilibrium state, and the periodic oscillation, which incessantly restores the non-
equilibrium conditions. The topic will be the subject of further study in a forthcoming
work.
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