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Abstract

The efficiency and quality of airport airside operations are frequently compromised by various, 
unexpected disruptive events such as bad weather conditions, lack of handling staff and/or resources, 
strikes, aircraft diversions or technical failures, which may reduce airport airside operating capacity 
and affect the punctuality and regularity of the operations. In particular, disruptive events could lead 
to a substantial deviation of aircraft operations from the schedule, by causing the reduction of the 
system capacity and, thus, increasing congestion and flight delays, which worsen the overall 
performance of the air transport system. In this paper, the effects of unexpected events, particularly 
magnitude and duration, affecting airport airside operations are estimated within a general framework 
based on an element-by-element approach, adopted for the detailed representation and simulation of 
aircraft airside operations. The impacts generated by airport airside unexpected disruptions are 
modelled by using a discrete-event simulation model, dealing with both aircraft landing-and-takeoff 
(LTO) cycles and turnaround operations, developed and applied to the test case of a large regional 
airport. 

 



1. Introduction

In recent years, the air traffic has been steadily growing in terms of both passengers and scheduled 
flights. In 2018, approximately 4.3 billion passengers used air transport scheduled flights, (+6.4 % on 
2017), the number of departures reached approximately 38 million globally and 58 million tons of 
freight were carried by air transport (IATA, 2018). According to recent studies, in the next years the 
air traffic growth is expected to continue, with an annual rate of more than 4% for passengers and 
approximately 3% for cargo (ACI, 2017; ICAO, 2018). 
Airports are crucial elements of the complex air transport system. They represent connection nodes 
where the continuous flow of arriving passengers is transformed into the set of discrete departures, 
i.e. scheduled flights. Airport operations rely on a complex architecture, in which different agents and
facilities interact with each other by producing a set of deeply related activities (Humphreys and
Francis, 2002; Ashford et al., 2013). Due to the high level of interconnection, if one of these elements
fails to perform properly and efficiently, consequences spread quickly across the other connected
activities. Furthermore, given the increasing number of aircraft movements and the size of recent
airplanes, airports operate closer and closer to their capacity and frequently become bottlenecks and
source of capacity constraints for the whole air transport network (Cohen and Paul, 2003). To be
successful in the air transport competitive market, growing pressure is put on the different agents to
conduct effective airport operations, as inefficiencies have important economic and social impacts
(Clark et al., 2018; Cook et al., 2012).
In the last years, airport operations all over the world have been often jeopardized by unexpected and 
severe disruptive events - such as extreme bad weather, natural disasters of failures of airport 
components - which caused unexpected loss of airport capacity and serious delays. Such 
unpredictable events are called “disruptions”, they can vary in size, cause and impact, can be 
interrelated and may occur simultaneously. In 2018, “a record number of adverse weather events and 
industrial actions severely disrupted network operations” (EUROCONTROL, 2018). Airport 
disruptions generally result in significant loss of airport capacity, sometimes causing the complete or 
partial closure of the airport, which implies diversion of current operations from the planned ones. 
Deteriorated airport operational performance generally results in flights delays, cancellations and 
diversions, which generate important economic losses and social impacts on the involved 
stakeholders: airport operators, airlines and passengers (Cook et al., 2009; Janic, 2009; Janic, 2015). 
As an example, according to some estimates provided by EUROCONTROL, one minute of flight 
delay costs European airlines 100€ on average, whereas each cancelled and diverted flight costs 
respectively 17,650€ and 7,400€ (EUROCONTROL, 2018). On the passengers’ side, disruptions are 
major sources of dissatisfaction, anxiety and stress (Cook et al., 2009). These effects become more 
evident if the disruption happens during arrival or departure peak periods (Shavell, 2001). Because 
of the close interconnectedness between arriving and departing flights, even if only one airport is 
directly disrupted, negative effects may spread and undermine the regularity of operations at other 
aerodromes (Wu and Caves, 2002). Some disruptions might be so serious that knock-on effects could 
affect flight operations in an entire region or country (O’Regan, 2011). Besides, ground delays imply 
also additional fuel consumption and increased local and global atmospheric pollution, with a direct 
environmental impact through CO2, CO, PM and NOx emissions (Postorino et al., 2019). 
Given the significance of the afore-mentioned impacts, growing interest on the topic has been 
expressed by the involved stakeholders and the research community, which recognized the need and 
significance of understanding how to reduce effects generated by disruptions. Some recent studies 
aim at evaluating the a-posteriori impacts caused by a specific disruptive event (Marzuoli et al., 2016) 
or focus on the estimation of the economic impacts due to the shutdown of an airport (Maertens et 
al., 2013; Serrano and Kazda, 2018). In Pejovic et al. (2009), also the impact in terms of CO2 
emissions is measured by using the RAMS Plus simulator. Several studies develop optimization 
strategies to relocate passengers and flights in light of an unexpected disturbance (Løve et al., 2002; 



Kohl et al., 2007, Voltes-Dorta et al., 2017). However, the above studies focus mainly on the general 
evaluation of the effects of a disruption, without modelling the airport airside system and the specific 
and comprehensive operational consequences of a disruption. An attempt is provided in Janic (2009), 
where a deterministic queuing approach is developed for airport operations affected by a large-scale 
disruptive event such as persistent heavy snowfalls or hailstorms. However, deterministic models do 
not incorporate stochastic phenomena inherent in most airside operations, delay dynamics and their 
propagation (Yan et al., 2002; Rodriguez-Sanz et al., 2018). 
The aim of this work is to propose a methodological framework to evaluate the effects generated by 
different types of potential disruptions affecting airport airside operations, by considering both 
landing and take-off (LTO) cycles, aircraft turnaround and the interrelations among them. The 
processes that make up these activities, and the related, involved resources, are represented according 
to an element-by-element approach (Postorino and Mantecchini, 2020) and simulated by using a 
discrete-event micro-simulation approach. 
Macroscopic and microscopic simulation models have been already proposed in the literature to study 
airside operations and the interaction with existent infrastructure (Martinez et al., 2001). In many 
cases the analysis focus only on the runway-taxiway-apron system (Bubalo et al., 2011; Zuniga et al., 
2011; Schinvald et al., 2016; Khammash et al., 2017) or on ground handling operations (Wu and 
Caves, 2004; Voulgarellis et al, 2005; Vidosavljevic and Tosic, 2010, Norin et al., 2012; Adeleye and 
Chung, 2006, Schultz, 2018), rarely considering both the processes as interrelated. However, only a 
few studies used a simulation approach to compute the consequences generated by potential airport 
disruptions (Damgacioglu et al; 2018).
The model proposed in this paper analyses the dynamics of each process as well as the whole system, 
in order to capture the consequences of disruptive events and potential knock-on effects on the 
different processes involved into the system. Moreover, constraints due to the limited infrastructure 
and amount of available resources of an airport are considered. Finally, some key performance 
indicators (KPIs) are defined to assess the effects of disruptions and possible areas of intervention by 
airport managers are identified. The methodology is applied to the case study of an Italian large 
regional airport, the Bologna “G. Marconi” Airport. 
The remaining of the paper is organized in the following way. Section 2 describes the methodological 
framework proposed and the airside operations model. Section 3 describes the application of the 
methodology to a case study together with the obtained results. Finally, Section 4 discusses the results 
and summarizes the main findings, by highlighting possibilities for new researches. 

2. Methodology
Airport disruption is a wide term which indicates unexpected events generally very different one from 
the other. Because of such diversity, the smooth functioning of airside operations may be hurt at 
different levels and moments of the process chain. The right understanding of which element is 
primary damaged, and how such damage causes performance inefficiencies of the related activities 
represents an important pre-requisite to identify proper actions and strategies to limit airside 
disruptions. Because of the complexity of the airside system, the methodological framework proposed 
in this work entails, as a first phase, the disaggregation of airside activities into a series of relevant 
sub-systems – components or elements. In the following sub-sections, the general element-by-element 
framework and its application to the airport airside are described.

2.1.  Element-by-Element methodological framework 



A complex system, like the airport airside, may be split into logical levels of components that have 
similar elements. Each element may be further split into subsystems up to the lowest hierarchical 
level referred to as “elementary” component. This is the base of the element-by-element (EbE) 
approach (Postorino and Mantecchini, 2020), which has been used here to identify which disrupted 
element provides the most relevant effect and how delays propagate among processes. In particular, 
airside activities have been divided into a first, highest, level of components with similar features, 
and each of them – or a part of them – have been additionally split into sub-activities, until the desired 
level of detail. Figure 1 illustrates the general framework of the EbE approach. The airside activity A 
is split into a first level of sub-activities A1,…, An. Then, each sub-activity Aj is further split into a 
second level of elements Ajr. Components at the lowest levels – called “elementary segments” – 
correspond to the disaggregation level relevant for the aim of the analysis, and they depend on a 
vector of factors F. 

Figure 1. Element-by-element approach. Adapted from Postorino and Mantecchini (2020)

Airport processes usually occur sequentially or in parallel, leading to more or less complex 
representations, where the input factors and resources allocated to a certain activity generate new 
outputs that determine 1) performance levels of the specific and isolated activity, 2) output(s) that 
serve as input for other sequential and connected activities, propagating efficiencies or inefficiencies 
in the overall network that represents the system.

The EbE decomposition model developed in this work – and detailed in the following Section 2.2 - 
describes these processes for two main systems composing airside operations, namely the landing 
and take-off operations and turnaround procedures, and represents operations from the instant an 
incoming aircraft approaches the local airspace to the take-off of departing flights. All relevant 
activities Aj and variables are incorporated into the model, included the distances between the runway-
taxiway-apron systems and the number of available stands. The elementary segments correspond to 
the ones that are directly affected by disruptions.

For the purposes of this work, the EbE approach, integrated with simulation, allows to identify the 
effects of the factors (Fi) on the specific activities (A) through the interconnected sub-activities (Aji), 
testing - in particular - the consequences of any disruption involving temporary deficiencies, 
unavailability or inefficiencies of these same factors. In other words, the EbE decomposition provides 
the framework to simulate activities and allows identifying explicitly the most critical “element” in 
the whole process. 



The disruptive event modifies the state of one or more factors (red rectangle in figure 1) and generates 
loss of performance in its related elementary segment and then in the linked activity. For example, if 
the disruption corresponds to the failure of a ground vehicle, the elementary segment is the activity 
for which such vehicle is needed, and the state of the factor reflects the unavailability of such vehicle. 
Given the high interconnectedness between activities, such reduced performance propagates among 
connected activities, by causing ripple effects that may influence activities up to the highest level 
(dotted red arrow in figure 1). The loss of performance for a given activity is expressed by some 
selected Key Performance Indicators (KPIs) – defined in Section 2.4 – that evaluate the amount of 
delay caused by the disturbance. Delays, for both departure and turnaround operations, are the 
primary and most evident effect on airside efficiency. 

In this work, airside activities and disruptions are modelled by means of a discrete-event 
microsimulation model, implemented by using the software AnyLogic. Given the inherent 
complexity of the airport airside system, its dynamic and stochastic behavior, and the intrinsic 
variability of the delay propagation problem – which is even more evident in case of unexpected and 
uncontrollable disruptive events, when consequences with non-linear impacts are likely to arise 
(Damgacioglu et al., 2018) - simulation has been considered to be the most appropriate method for 
assessing the airport time-varying performances and analyzing the effects of unforeseen events. 

Figure 2 summarizes the adopted methodology, which might be used to complement DSSs by 
identifying the best actions to minimize airside delays. 

Figure 2. Methodological framework to estimate impacts of disruptions 

2.2.  Turnaround model within the EbE framework
By following the EbE approach, the high-level activities considered in this work are processes taking 
place during the LTO cycle, specifically: aircraft approaching, landing, taxi-in, turnaround, taxi-out 
and take-off. The attention here has been focused on turnaround operations, which allows to model 
the dependence of such activities from ground resources (operators and vehicles), and a more detailed 
level of decomposition has been considered for them. Thus, a second level of sub-activities describes 
aircraft handling at stands, including all relevant processes, such as passengers’ disembarking and 
boarding, baggage loading and unloading, cleaning and catering, refuelling, waste water and potable 
water replenishment. Each of these processes has been further split into a third and last level of 
activities – elementary segments – which directly depends on the availability of ground resources, 
i.e. the vector of factors (Figure 3). It is worthwhile to note that many other types of airport disruptive
events may be simulated within the proposed approach, by suitably setting the EbE structure.



Table 1 shows the decomposition of the turnaround activity (Al) into its sub-activities (Alm, Almn,…) 
and the factors required to perform them. 
Each one of the sub-activities can be performed only whether the resources necessary to undertake it 
are available (column “Factors” in table 1); if such resources cannot be used, the related processes 
are put on hold and have to wait until the necessary worker/equipment/infrastructure becomes 
available again. Resources are taken from the respective pool (blue rectangles in figure), whose 
capacity corresponds to the number of workers or equipment, or infrastructure characteristics of the 
airport under consideration. When an activity begins, the corresponding number of resources is 
occupied from the pool and, when the process is completed, they return available again (more details 
about the simulation of this process will be provided in the following section 2.3)

Figure 3. EbE framework for the LTO cycle main activity 

Table 1. Turnaround activities 
Factors

Sub-activity Alm Sub-activity Almn N° personnel 
units Equipment

Chocks on - 1 -
Stairs positioning 2

Disembarking
Passengers disembarking -

Stairs

Cleaning Cleaning 2 -
Catering truck connection
Departure catering loading
Arriving catering unloading

Catering

Catering truck disconnection

2 Catering Trucks

Water truck connection
Potable water replenishmentPotable Water
Water truck disconnection

1 Water Truck

Waste water truck connection
Waste water

Waste water
1 Waste water Truck



Waste water truck disconnection
Loader positioning

Arriving baggage/cargo 
unloading

Baggage/Cargo 
Unloading

Loader disconnection

3 Bulk/Container 
loader

Fuel truck connection
RefuellingRefuelling

Fuel truck disconnection
1 Fuel Truck

Loader positioning
Departing baggage/cargo 

loading
Baggage/Cargo 

Loading
Loader disconnection

3 Bulk/Container 
loader

Passengers boarding -
Passengers boarding

Stairs removing 2
Stairs

Chocks off - 1 -
Pushback - 1 Tractor

At a given airport, each aircraft must undergo each – or a subset - of these activities, in a given 
sequence. Let i(a,t) be an arriving aircraft, characterized by the unique tail number i, operated by 
airline a and which is of the specific type t, i.e. narrow or wide body. Arrivals follow the order of the 
schedule and aircraft i(a,t) approaches the terminal manoeuvring area of the airport at time tai: 

𝑡𝑎𝑖 = 𝑆𝑇𝐴𝑖 ― 𝑡𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ (Eq. 1)

where STAi is the Scheduled Time of Arrival (STA) of aircraft i(a,t). Each approaching aircraft is 
assigned to one of the runways of the airport; if such runway is not available, the aircraft waits by 
following a FIFO queue scheme; otherwise, bi(a,t) starts landing with a constant average deceleration 
di which depends on the length xr of the runway:

𝑑𝑖 =
1
2

(𝑣1 ― 𝑣2)2

𝑥𝑟
(Eq. 2)

where  is the speed at the beginning of the braking phase, after the flare distance (i.e. the distance 𝑣1
between the runway threshold and the actual touchdown point) and  is the aircraft speed at the end 𝑣2
of the braking phase (end of the landing). In the literature, average deceleration values varying in the 
range 1.9 – 2.3 m/s2 can be found (Kim et al., 1996). After the landing, the aircraft goes to its assigned 
stand by using the shortest taxiways path. Stand assignment, which is not dynamic, depends on the 
aircraft size and airline, i.e. aircraft operated by low cost airlines are generally assigned to farthest 
stands. 
Once arrived at the stand, ground handling operations are performed to prepare the aircraft for the 
successive departure. Turnaround sub-activities have to be performed in a precise chronological 
order: some of them have to be performed consecutively, others can be performed at the same time. 
After chocks positioning, passengers’ stairs are placed - or a boarding bridge is connected to the 
aircraft. Then, passengers de-boarding can start as well as baggage and cargo unloading. 
Simultaneously, potable water is replenished; waste water servicing can begin only when potable 
water replenishment is finished (IATA, 2008). Cleaning and catering activities begin at the end of the 
passengers’ disembarking process. Since refuelling generally is performed in the absence of 
passengers, it is assumed that such activity begins when the last passenger has left the aircraft. After 
the completion of the cleaning, catering and refuelling operations, passengers are boarded and, in the 
meantime, the cargo and baggage are loaded. Lastly, at the Scheduled Time of Departure STDi of 



aircraft bi(a,t), chocks are removed and pushback is performed with a duration tpushback. Seasonal 
activities such as conditioning and de-icing are not included in this model.
During taxi-out, the aircraft arrives at the head of its assigned departing runway, where it waits for a 
time tvortex to allow tail-vortices of the previous runway utilization to dissolve. Additional waiting 
times at the runway head may be due to expected landing of aircraft (approaching) within the next 
two minutes, because departing aircraft must give right-of way to landing ones. If the runway is 
available, the aircraft can take-off with an acceleration ai equal to:

𝑎𝑖 =
1
2

𝑣2
3

𝑥𝑟
(Eq. 3)

Where  is the length of the runway and  is the rotation speed.𝑥𝑟 𝑣3

2.3.  Simulation model 
To evaluate the effects of disruptions during turnaround activities, and according to the selected KPIs 
(section 2.4), the whole LTO has to be simulated, although the disruption concerns only some 
elements of the turnaround activity.
As first step, the airport airside layout is represented by a graph. In particular, there are nodes, where 
operations effectively take place, and unidirectional links, which are used by entities to move from 
one node to another. Aprons are implemented as nodes with a limited capacity equal to the 
corresponding number of stands. Each link is assigned a length, corresponding to the distance 
between the two connected nodes. Taxiways are links in this network.
Each runway can handle a maximum number of movements (arrivals and departures) per hour; 
moreover, if there are restrictions regarding the use of the runway, they are explicitly taken into 
account - for example, runways that do not have the requirements to handle wide-body aircraft, or 
limitations related to environmental issues. 
Each arriving aircraft (also defined as “Flight”) is generated according to a schedule, and processed 
in the simulation through a flowchart of processes. For each generated aircraft, the following 
information is stored in the Open Database Connectivity (ODBC): STA (Scheduled Time of Arrival), 
assigned runway to land, airline, ground handler, tail number of the aircraft, aircraft type (wide or 
narrow), STD (Scheduled Time of Departure), assigned apron and parking stand. 
For each runway, a Boolean variable (“runway free”) indicates whether the runway is free or not. At 
the end of the approaching phase, each generated aircraft is allowed to land only if the runway is not 
occupied, otherwise it waits until the runway becomes free again. If the runway is free, the landing 
phase starts and the Boolean variable is updated to take into account the new state of the runway 
(occupied), which comes back again to the free status after the aircraft exits and a suitable time tvortex 
has passed. Then, the aircraft arrives at the assigned stand, which becomes occupied and the apron 
available capacity decreases by one unit. If all the stands are occupied, the aircraft is sent to the nearest 
apron with one available stand. At the stand, each turnaround operation is implemented as separate 
process block. When entering each block, an aircraft seizes a given number of resource units, which 
belong to a set of “Resource Pools” with limited capacity, and after a given time releases them. If the 
pool is empty, the aircraft is put on hold. In disrupted conditions, the pool capacity decreases. One 
Resource Pool is defined for each of the following entities: handler operators, stairs, baggage loaders, 
water trucks, catering trucks, fuel tanks. When turnaround operations are completed, the aircraft move 
from its stand to the runway head by using as assigned path on the taxiway network. If the runway is 
occupied, the related Boolean variable is set accordingly and the aircraft is put on hold at the runway 
head. At the end of the take-off phase, i.e. when the departing aircraft clears the runway, the aircraft 



exits the system and data regarding the simulated departing time and potential departure delay are 
stored. A graphical overview of the model as implemented in AnyLogic is shown in Appendix B.

2.4.  Disrupted turnaround condition and KPIs evaluation
Let r be the general resource, which can refer for example to ground vehicles or ground operators. 
When the airport is working under normal conditions, the number of resources that can be deployed 
is equal to the capacity of the resource pool, R. The disruptive event d occurring at the considered 
airport is here modelled as the reduction in the amount of available resources of the airport. The 
disruptive event causes a degradation of the service from the undisrupted value, by reducing the size 
of the resource pool. 
When the disruption occurs, the number of available resources Ru - where the subscript u refers to the 
undisrupted situation - is reduced by a percentage Pd and the impaired amount of resources Rd 
becomes: 

𝑅𝑑 = 𝑅𝑢 ∗ (1 ― 𝑃𝑑/100) (Eq.4)

If all resources in the pool are occupied, activities have to wait until the required resources are 
available again. This causes delays on the successive activities. 
The impact caused by this type of disruption has been evaluated as the variation in performance 
expressed by a set of selected indicators taking into account delays at various levels, in particular:

1) Number of flights (%) departing late NL
2) Total and average departure delay  and 𝐷𝐸𝐿𝐷𝐸𝑃,𝑇𝑂𝑇 𝐷𝐸𝐿𝐷𝐸𝑃
3) Variation in Average Turnaround Time

First of all, impacts are evaluated in terms of departure delay, a widely adopted indicator for airport 
airside efficiency (EUROCONTROL, 2018; Andersson Granberg and Munoz, 2013). It is assumed 
that a flight i is departing late if its actual time of departure (ATDi) is more than 15 minutes higher 
than its STDi. Then, the delay of the departing flight i(a,t) is:

{ 𝐷𝐸𝐿𝐷𝐸𝑃,𝑖 = 0 𝑖𝑓 𝐴𝑇𝐷𝑖 ― 𝑆𝑇𝐷𝑖 ≤ 15′

𝐷𝐸𝐿𝐷𝐸𝑃,𝑖 = 𝐴𝑇𝐷𝑖 ― 𝑆𝑇𝐷𝑖 [𝑚𝑖𝑛𝑢𝑡𝑒𝑠] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (Eq.5)

and the total and average departure delay are given by, respectively: 

𝐷𝐸𝐿𝐷𝐸𝑃,𝑇𝑂𝑇 = ∑
𝑁𝐿

𝐷𝐸𝐿𝐷𝐸𝑃,𝑖 (Eq.6)

𝐷𝐸𝐿𝐷𝐸𝑃 =
𝐷𝐸𝐿𝐷𝐸𝑃,𝑇𝑂𝑇

𝑁𝐿
(Eq.7)

where NL is the total number of flights departing late NL during the period of analysis T = 24h. 
In addition, the variation in the average turnaround time in the aftermath of the disruption is evaluated. 
Turnaround time TATiu of aircraft i(a,t), under normal working conditions, is computed as the sum of 
the durations tn of all turnaround activities Almn: 

𝑇𝐴𝑇𝑖𝑢 = ∑
𝑛

𝑡𝑛 (Eq.8)

daily operations are carried out as specified in the schedule and turnaround time is the minimum time 
required to accommodate the aircraft and prepare it for the following flight. The average turnaround 
time is then given by:  



𝑇𝐴𝑇𝑢 =
1

𝑁𝑇𝑂𝑇

𝑁𝑡𝑜𝑡

∑
𝑖 = 1

𝑇𝐴𝑇𝑖𝑢 (Eq.9)

where NTOT is the total number of processed flights during the period of analysis T. 
Disturbances may cause an increase in turnaround time, which may or not result in departure delays. 
In fact, delays in turnaround operations may be balanced by buffer times that are often included in 
the schedule (Malandri et al., 2019, 2020; Wu, 2008). The variation in average turnaround time ∆

, given a disruption d, is evaluate as follows: 𝑇𝐴𝑇𝑑

∆𝑇𝐴𝑇𝑑 =
𝑇𝐴𝑇𝑑 ― 𝑇𝐴𝑇𝑢

𝑇𝐴𝑇𝑢
(Eq.10)

3. Case study: Bologna “G. Marconi” Airport

Bologna “Guglielmo Marconi” Airport (BLQ/LIPE) is an international airport in northern Italy. It is 
located approximately 6 km far from the centre of the city of Bologna. In 2018, it was ranked eight-
busiest Italian airport, with more than 8.5 million passengers handled (+4% compared to previous 
year) of which 77% on international flights, and almost 70,000 movements (ENAC, 2019). In 2019, 
the airport has served more than one hundred destinations. Bologna airport has one runway (12/30 
oriented, length 2,803 meters) with a capacity of 24 movements/hour. The airside layout, shown in 
figure 4, encompasses a ground network composed of one taxiway, ten Rapid Exit Taxiways (RET), 
three aprons used for scheduled airline services with a total of 29 aircraft parking stands, of which 3 
for wide-body aircraft. Ground operations are operated by 2 different handling companies. 

Figure 4. Bologna “G. Marconi” Airport airside layout 

The simulation refers to an average peak summer day and for a period T=24 h. The flight schedule 
has been obtained by data available from Flightradar24 (www.flightradar24.com) and for each flight 
the following information are included: STA, flight number, airline, aircraft type (narrow or wide 
body) and tail number i. The latter is used to match the arriving aircraft with its next scheduled 
departure, in order to account for aircraft rotation. The schedule includes also the STD of the aircraft 
next departure. During the considered day, 107 flights are scheduled to arrive and 109 to depart, with 
a total of 216 movements during T (= 24 h). The scheduled traffic is composed of 96% narrow body 
aircraft, with a share of 35% of low-cost airline movements. 



The assumption is made that runway 12 is used for landings as well as take-offs. Starting from Eq.1, 
aircraft are simulated at the beginning of the approaching phase, 2 minutes (tapproach) before their 
STA. At STA, if the runway is free, the aircraft starts landing with a speed v1=75 m/s and occupies the 
runway. Under normal operating conditions, no arrival delay is considered, thus ATA = STA, where 
the ATA (Actual Time of Arrival) is the time the flight touches down. Between two subsequent 
runway utilizations, a time tvortex must be considered, which is assumed to be equal to 60 seconds after 
narrow-body aircraft, 90 seconds after wide-body ones, in accordance with minimum separation 
standards (ICAO, 2007). On RETs and taxiways, aircraft move with a constant speed v2 = 15 m/s and 
reach the assigned apron in approximately 3 minutes. 
At stands, turnaround operations are performed by the handling companies operating at the airport. 
The following resources are assumed to be available during the simulated day: 20 personnel units, 6 
fuel tanks, 10 bulk loaders, 6 water trucks, 16 stairs, 6 catering trucks. Such values are considered 
constant during the entire simulation period and personnel rotation is considered. The duration of 
each turnaround activity is assumed to be stochastic and described by a distribution function (see 
Appendix A); furthermore, some activities (potable and waste-water, refuelling, baggage and cargo 
loading/unloading) take double time for wide body aircraft. Time values are derived from aircraft 
manuals and literature (AIRBUS, 2017; Bevilacqua et al., 2015; Schmidt, 2017; Malandri et al., 
2019), except for baggage unloading and loading operations that were calibrated for Bologna Airport 
(Briccoli et al., 2018). 
Starting from the above assumptions, the simulation has been performed by using AnyLogic. To 
validate the simulation model, the STD is compared to aircraft’s Actual Time of Departure (ATD) to 
check the consistency between the simulated times and real data and to verify that everything happens 
according to the schedule. Furthermore, to understand the extent to which the model depicts actual 
airport operations, the following checks are made, in order to ensure that: first, no ground activity 
takes place outside the simulation period; second, activities are carried out in the right order (e.g. 
refuelling takes place between de-boarding and boarding); third, each activity duration is consistent 
with literature and aircraft handling manuals. Since the developed model is stochastic, several runs 
have been performed to increase the accuracy of the results. In particular, the simulation has been 
repeated 20 times, to obtain an error lower than 5% for the average turnaround time and average 
departure delay. Figure 5 shows simulated (dashed line) vs scheduled (grey bars) aircraft departures 
during the simulation period T. As expected, in the absence of disruptions daily operations are carried 
out as planned, by confirming the average goodness of the model in reproducing real operations as 
well as the appropriateness of the amount of resources to accomplish on time the required activities. 
Peak periods can be observed between 10 AM and 1 PM, with 25 arrivals and 24 departures) and 
from 4 PM to 7 PM (20 arrivals and 24 departures. Turnaround operations have an average duration 

= 44 minutes (minimum 29 and maximum 55 minutes), which is consistent with real operations 𝑇𝐴𝑇 
and in line with previous literature (Fricke and Schultz, 2009; Mota et al., 2017).
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Figure 5. Arrivals and departures (simulated and scheduled) per hour during the simulation period. 

Two different disruptive events are then simulated for the case study, both related to turnaround 
operations. In the first case, it is assumed that some ground vehicles are not available, for instance 
because of a technical failure or unscheduled maintenance. In the second case, the amount of 
personnel in service has been assumed lower than planned, for example for ground handlers’ 
industrial actions. In both cases, various scenarios are examined by varying the amount of resources 
by different percentages Pd, according to Eq. 4, for the entire simulation period T. Table 2 and 3 show, 
respectively, the number of operators and ground vehicles for the different scenarios. As described in 
section 2, impacts are evaluated by computing the number of delayed flights, the average delay and 
the change in average turnaround time. 

Table 2. Number of personnel units for the different scenarios 

100 - Pd (%) 100 90 80 70 60 50

Personnel units 20 18 16 14 15 10

Table 3. Number of ground vehicles for the different scenarios 

100 - Pd (%) 100 90 80 70 60

Stairs 16 15 12 11 10

Baggage loader 10 9 8 7 6

Fuel truck 6 6 5 4 3

Water truck 6 6 5 4 3

Catering truck 6 6 5 4 3

This simulation considers the number of available ground vehicles being lower than under normal 
operating conditions. Figure 6 shows the cumulative number of flight departures during the 
simulation period, in the baseline case and in the disrupted scenarios, which considers several values 
of Pd. Values in Figure 6 refer to average results. With a 10% and 20% decrease of ground vehicles, 
no delay is observed, and the number of departing flights are equal in baseline and disrupted scenarios. 



With a 30% decrease, a slight offset is noticed from 10 AM until the end of the day. The higher 
deviation shows up during the peak period between 10 AM and 1 PM, because the high congestion 
contributes to lengthen the service time and thus increases the delay. However, such delay is absorbed 
within the simulation period, because in the evening the traffic to be handled is lower and 
inefficiencies accumulated previously can be recovered. The same comment can be made for the case 
with 60% resources available, where the curve shows a higher deviation during peak hours – 
especially between 6 and 7 PM - which is recovered faster during the evening. As shown in Table 4, 
the simulated disruptions involving the number of available vehicles has small impacts (about 1 
minute) on both average turnaround time and average delay, with only a slight increase in the number 
of aircraft departing late. With a 60% of available ground vehicles, there is a change of just 77 seconds 
(2.88%) compared to the baseline case, which is linked to the good daily schedule of operations. 
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Figure 6. Cumulative number of departures during the simulation period with different numbers of 
ground vehicles 

Table 4. KPIs as a function of the different amount of available resources (vehicles)

SCENARI
O

baseli
ne

90% 
vehicles

80% 
vehicles

70% 
vehicles

60% 
vehicles

Average 
TAT

00:44:
33 00:44:33 00:45:14 00:45:34 00:45:50

St. Dev. 
TAT

00:35:
48 00:35:45 00:35:31 00:35:46 00:35:44

Average 
Delay

00:04:
42 00:04:29 00:04:58 00:05:16 00:05:37

St. Dev. 
Delay

00:08:
28 00:08:09 00:08:37 00:09:12 00:09:30

% Dep on-
time

14.15
% 14.15% 16.04% 16.98% 18.87%

When the disruption involves ground operator personnel, the situation becomes more critical, as 
personnel units perform actions for longer time windows than vehicles. Figure 7 shows the cumulative 
number of aircraft departures when the number of operators is lower than the baseline situation, by 



decreasing available personnel units at constant steps equal to 10%. As before, values are averaged 
over the different experiments performed for each simulation. With a 10% decrease some delay 
occurs (35% of flights delayed, as shown in Table 5). With further decreases (20% and 30%), delays 
become significant and propagate during the entire day. In all these cases, however, delays are 
absorbed during the evening period and all scheduled flights depart before midnight. These situations 
could still be managed, although around 50% aircraft depart late (see Table 5) when there are 70% 
available operators. Particularly, 54 flights are delayed by more than 1,5 h. Below a certain threshold 
(60%), the situation worsen dramatically (average turnaround of more than 4 hours) and many flights 
depart after midnight (approximately 20%) or could be cancelled. Table 5 reports the average 
turnaround times computed for each scenario. Results show that serious operational inefficiencies 
arise when the number of available operators decreases. With a reduction of 10%, turnaround time 
increases by 6 minutes (13%), while further reductions generate significantly longer turnaround 
times. In this case, each activity put on hold due to missing workforce blocks all the following 
activities for the same aircraft and delay becomes more significant. 

By considering both 80% personnel and 80% vehicles, such balanced reduction of personnel and 
vehicles has almost the same effect than a reduction of the same size of workforce only, thus 
suggesting that major impacts are caused by the ground personnel shortage. 
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Figure 7. Cumulative number of departures during the simulation period with different number of 
available personnel units 

Table 5. 

KPIs as a function of the different amount of available resources (personnel units)

SCENARIO baseline 90% 
personnel

80% 
personnel

70% 
personnel

60% 
personnel

80% vehicles 
80% personnel

Average TAT 00:44:33 00:50:33 01:04:40 02:07:07 04:04:16 01:05:22

St. Dev. TAT 00:35:48 00:35:50 00:37:42 00:45:27 01:39:33 00:37:34



Average Delay 00:04:42 00:10:06 00:19:05 01:11:17 02:38:41 00:19:41

St. Dev. Delay 00:08:28 00:12:14 00:21:16 00:47:58 01:57:24 00:21:20

% DEP on-time 14.15% 34.91% 48.11% 77.36% 67.92% 52.83%

4. Discussion and conclusions

Results obtained from the application described in section 3 allow gaining some important insights. 
As a first comment, the effects of disturbances on airside operations largely depend on the type of 
disruption and the affected factors, which have been identified within the proposed EbE approach. In 
fact, as the application to the test case has showed, different factors affected by disruption produce 
different impacts on the same elementary segment. While the unavailability of a certain number of 
ground vehicles affects slightly the normal operability, so that the performance is almost the same 
between baseline and disrupted scenario, disruptions involving ground personnel are much more 
relevant and produce significant impacts. In the tested case, also for disruption affecting 50% of 
vehicles, delays on turnaround activities are not excessive, and only a few flights depart late. On the 
contrary, if just a slight disruption involves ground personnel the performance is highly compromised 
and delays propagate during the entire day. In fact, simulations have showed that if only 20% of 
personnel units are not operational, almost 50% scheduled flights are forced to depart late. When the 
number of available ground operators is about 60%, delays become unbearable and flights may be 
delayed until uncongested periods (i.e. in the evening) or even cancelled. In this situation, the average 
turnaround is more than three times longer than in the baseline scenario, a significant number of 
flights experience considerable delays, and both airline and handler suffer from financial losses. In 
addition, in case of a high number of cancellations, the apron physical capacity would lack and aircraft 
would be forced to stay on the ground until airlines’ re-scheduling of the new departing flight. The 
identification of factors for elementary segments within the EbE approach has allowed to identify 
which one is more relevant when concurrent disruption may occur. In the tested case, the 
simultaneous occurrence of both disruptive events – vehicles and ground personnel – has showed that 
ground personnel are a key parameter for containing delays. It is worthwhile to note that this result 
depends on the airport features of the tested case, such as layout, number of runways and 
configuration of the ground network, which have been considered as a fixed input in the simulation 
model. However, the important result is that the adopted segmentation of activities within the EbE 
framework has allowed to identify which factor is more relevant in case of disrupted conditions, by 
keeping unvaried some other airport features. In addition to previous comments, the simulation 
approach has detailed each activity coherently with the EbE structure that has been defined for the 
LTO cycle and the turnaround activity in particular. By setting a suitable framework within the 
AnyLogic tool, the stochastic nature of the airport activities and sub-activities have been simulated 
by proper functions.

To summarize, the methodology developed in this work is able to represent the complex airside 
processes at successive levels of detail, which at the end focus on the elementary segments and 
relevant factors where effective actions may be adopted. Together with the EbE segmentation 
approach, the dynamic and stochastic nature of airside (elementary) activities has been simulated in 
order to estimate how delays propagate from one activity to the other. This methodological framework 
may complement a Decision Support Systems (DSS) helping airport and handling operators to 
develop strategic planning of the service, to achieve enlarged system robustness and to minimize loss 
of efficiency. Further developments are expected in this field. While in this study impacts have been 



estimated as delays, which are considered to be the primary, direct effect of disruptions, however, 
impacts of disruptions are manifold and further research might include the estimation of pollutant and 
noise externalities and the impacts perceived by the different stakeholders due to service disruptions 
and traffic departing in late evening. In addition, the simulation model and the EbE structure could 
include also seasonal activities (i.e., de-icing and air conditioning) and constraints on workforce shifts 
and rotas. Although this work focuses on the disruptions that can occur during the aircraft turnaround 
process, the same methodological approach can be adopted to evaluate the effects of any disruptive 
event that can affect other phases of the LTO cycle and, more in general, any other airport air-side 
process

Appendix A - Distribution functions for turnaround activity

Sub-activity Alm Sub-activity Almn tn

Chocks on - 30 secs
Stairs positioning TRIANGULAR (1.8, 2, 2.3 min)

Disembarking
Passengers disembarking 20 pax/min

Cleaning Cleaning TRIANGULAR (13, 16.5, 19.5 min)
Catering truck connection TRIANGULAR (0.85, 1.05, 1.2 min)
Departure catering loading TRIANGULAR (7,8, 9 min)
Arriving catering unloading TRIANGULAR (3, 4, 5 min)

Catering

Catering truck disconnection TRIANGULAR (0.95, 1.15, 1.3 min)
Water truck connection TRIANGULAR (0.65, 0.8, 0.95 min)
Potable water replenishment TRIANGULAR (4, 5, 6 min)Potable Water
Water truck disconnection TRIANGULAR (0.45, 0.6, 0.85 min)
Waste-water truck connection TRIANGULAR (0.65, 0.8, 0.95 min)
Waste-water TRIANGULAR (4, 5, 6 min) Waste-water
Waste-water truck disconnection TRIANGULAR (0.45, 0.6, 0.85 min)
Loader positioning TRIANGULAR (40, 60, 80 sec)
Arriving baggage/cargo 
unloading TRIANGULAR (5, 7, 9 min)Baggage/Cargo 

Unloading
Loader disconnection TRIANGULAR (40, 60, 80 sec)
Fuel truck connection TRIANGULAR (0.7, 0.9, 1.2 min)
Refuelling TRIANGULAR (7, 8, 9 min) Refuelling
Fuel truck disconnection TRIANGULAR (1.0, 1.2, 1.4 min) 
Loader positioning TRIANGULAR (40, 60, 80 sec)
Departing baggage/cargo loading TRIANGULAR (5, 7, 11 min) Baggage/Cargo Loading
Loader disconnection TRIANGULAR (40, 60, 80 sec)
Passengers boarding 12 pax/min

Passengers boarding
Stairs removing TRIANGULAR (1.0, 1.3, 1.6 min)

Chocks off - 30 secs
Pushback TRIANGULAR (3.0, 4.0, 5.0 min)

Appendix B – Graphical overview of the model implemented in AnyLogic
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HIGHLIGHTS 

 A framework is proposed to determine impacts of airport airside disruptions
 Airport airside operations are modelled  by using an element-by-element approach
 A discrete- event simulation model is built of both LTO and turnaround operations
 The model allows to capture knock-on effects on successive operations
 The methodology is illustrated through the case study of a large Italian airport




