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The problem of computing quantum mechanical propagators can be recast as a computation of a Wilson
line operator for parallel transport by a flat connection acting on a vector bundle of wave functions. In this
picture, the base manifold is an odd-dimensional symplectic geometry, or quite generically a contact
manifold that can be viewed as a “phase-spacetime,” while the fibers are Hilbert spaces. This approach
enjoys a “quantum Darboux theorem” that parallels the Darboux theorem on contact manifolds which turns
local classical dynamics into straight lines. We detail how the quantum Darboux theorem works for
anharmonic quantum potentials. In particular, we develop a novel diagrammatic approach for computing
the asymptotics of a gauge transformation that locally makes complicated quantum dynamics trivial.
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I. INTRODUCTION

A fundamental problem in quantum mechanics is to
compute correlators

hfje− i
ℏĤðtf−tiÞjii;

where the states jii and jfi are elements of some Hilbert
space H, the operator Ĥ is a quantum Hamiltonian, and ti
and tf are classical times measured in some laboratory. It
is useful to view the coordinates ti and tf as labels
belonging to points in an odd-dimensional phase-spacetime
manifold Z that corresponds to all possible classical
laboratory measurements of generalized times, positions,
and momenta. Then the unitary time evolution operator
expð− i

ℏ Ĥðtf − tiÞÞ can be replaced by a Wilson line,

Pγ exp

�
−
Z
γ
Â

�
:

Here Â is the connection form for a connection ∇ ¼ dþ Â
acting on sections of a Hilbert bundle (see [1] and also [2])
HZ, over the base manifold Z with Hilbert space fibers H.
Requiring that ∇ is flat (and if necessary, quotienting by
nontrivial holonomies), the correlator hfjPγ expð−

R
γ ÂÞjii

only depends on the endpoints of γ and points jii and jfi in
the fibers of HZ above these two endpoints:

We attach the moniker quantum dynamical system to the
data ðHZ;∇Þ of a Hilbert bundle equipped with a flat
connection ∇. The goal of this article is to use the gauge
covariance of Wilson line operators to map complicated
quantum dynamics to simpler ones.
The article is structured as follows: We first review how

to formulate a classical dynamical system in terms of an
odd-dimensional analog of a symplectic geometry. We then
explain, following [3], how to obtain a quantum dynamical
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system from the Becchi–Rouet–Stora–Tyutin (BRST)
quantization of a classical dynamical system. Here the
BRST charge corresponds to the flat connection∇. We then
treat the Hamiltonian-Jacobi theory in terms of contact
geometry. (Note that a modern treatment of Hamilton-
Jacobi actions and their formal quantization is given in [4].)
Thereafter we describe the quantum analog of the Darboux
theorem for quantum dynamical systems [5]. After that we
primarily focus on the quantummechanics of a particle on a
line. The underlying classical dynamical system gives
evolution on a three-dimensional phase-spacetime mani-
fold Z, for which we give an explicit account of the
(classical) Darboux theorem. The remainder of the article is
devoted to developing a diagrammatic calculus for com-
puting the asymptotics of the gauge transformations
appearing in the quantum Darboux theorem of [5], and
applying these to the computation of correlators.

II. DYNAMICAL SYSTEMS

Quite generally, dynamics is a rule governing the time
evolution of a system, so a dynamical system is a one-
parameter family of maps Φτ∶ Z → Z where points τ ∈ R
are viewed as times and Z is the state space of the system.
Fixing a point z0 ∈ Z and allowing τ to vary gives a
parametrized path γ∶ R → Z in Z with initial condition z0.
Thus, dynamics amounts to a set of parametrized paths
(locally) foliating the space Z. Often, Z is taken to be a
symplectic manifold or phase space, in which case it is
even-dimensional and points in that space label generalized
positions and momenta. However, to maintain general
covariance also with respect to choices of clocks, we shall
demand that Z is an odd-dimensional manifold which we
term a phase-spacetime. We shall therefore view dynamics
as a set of unparametrized paths (locally) foliating the odd-
dimensional phase-spacetime Z2nþ1.
In general it is unusual to know explicitly the map Φτ

determining a dynamical system; instead one has some
kind of local rule generating dynamics. For example, on a
phase-space or symplectic manifold one typically considers
a Hamiltonian vector field XH, specified by a Hamiltonian
function H, whose integral flow determines dynamics in
terms of parametrized paths. However, for Z a phase-
spacetime, we only need to determine unparametrized
paths. For that a local rule is generated by a maximally
nondegenerate (so rank 2n) two-form φ ∈ Ω2Z, because an
unparametrized path γ can be determined from the equation
of motion

φð_γ; ·Þ ¼ 0: ð2:1Þ

In the above _γ is the tangent vector to γ with respect to any
choice of parametrization.
Example 2.1. Massless relativistic particle: Let Z ¼

R7 ∋ ðk⃗; x0; x⃗Þ and

φ ¼ dk⃗ :∧ ðdx⃗þ k̂dx0Þ:

Then Eq. (2.1) is solved by

_γ ∝
∂
∂x0 − k̂ ·

∂
∂x⃗ ;

which is the tangent vector to the trajectory of a
massless particle in Minkowski space moving in the
direction k̂. ▪
When the two-form φ is closed, we may write down an

action principle for local dynamics, because locally φ ¼ dα
for some α ∈ Ω1Z. Then the action

S½γ� ¼
Z
γ
α

is extremized under compactly supported variations of
the path γ precisely when the equation of motion (2.1)
holds. Changing α by an exact term dβ does not change
the equation of motion. Because we wish to focus on
systems with an action principle, from now on, we shall
assume that φ is closed. When φ ∈ Ω2Z is closed and
maximally nondegenerate, we call ðZ;φÞ a dynamical
phase-spacetime. The closed, maximally nondegenerate
two-form φ is termed an odd symplectic form.
(Sometimes the additional data of a volume form is
added to the definition of an odd symplectic manifold;
see [6].) The data of α modulo gauge transformations
α ↦ αþ dβ, whose curvature φ ¼ dα is maximally non-
degenerate, also determines the dynamics, and we shall call
this a dynamical connection.
Given a dynamical system ðZ;φÞ, a function Q ∈ C∞Z

is said to be conserved when

LρQ ¼ 0;

for any vector field ρ obeying φðρ; ·Þ ¼ 0. Note that
LfρQ ¼ fLρQ for any f ∈ C∞Z. A vector field u is said
to generate a symmetry when

Luφ ¼ 0:

Conserved quantities and symmetries obey a Noether
theorem: Given Q conserved, any solution u to

dQ ¼ φðu; ·Þ ð2:2Þ

is a symmetry because Luφ ¼ dιuφ ¼ d2Q ¼ 0. Vector
fields fρ correspond to trivial (constant) conserved charges.
The equation displayed above is always solvable for u
because ιρdQ ¼ 0, and the solution for u is unique modulo
a term fρ. Conversely, given a symmetry u, then the one-
form φðu; ·Þ is exact because dιuφ ¼ Luφ ¼ 0. Hence,
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locally, there always exists a smooth conserved Q solving
the above display.
Experimentally, the initial conditions for a dynamical

system cannot be determined with infinite precision.
Instead, one associates an experimental uncertainty with
an open ball in Z about some initial point z0 ∈ Z.
Therefore, a notion of volume is needed to ascertain the
accuracy of such an initial measurement. Because φ is
maximally nondegenerate, the form φ∧n ∈ Ω2nZ is non-
vanishing. To make a top form, we need to exterior multiply
this by some one-form. When φ ¼ dα—which is certainly
true locally and for many physical systems the experimen-
tal apparatus can anyway only handle measurements in a
finite range—a natural choice is the one-form α, in which
case we define

Volα ¼ α ∧ φ∧n ∈ Ω2nþ1Z:

A priori, the “volume form” Volα need not be nondegen-
erate, and moreover it depends, up to an exact term, on the
choice of α according to Volαþdβ ¼ Volα þ dðβφ∧nÞ. For
some systems, it may suffice only to have a nondegenerate
volume form defined on suitable hypersurfaces of Z
by φ∧n, but generally we focus on systems where Volα
is a volume form and view the choice of α as part of the data
of the system required to give a good measurement theory.
The case where φ is globally the d of a given α and Volα is
nondegenerate is in some sense optimal. In this case α is
called a contact one-form. The data ðZ; αÞ is called a strict
contact structure, and the dynamics on Z determined by the
uniquely defined vector field ρ ∈ ΓðTZÞ such that

φðρ; ·Þ ¼ 0; αðρÞ ¼ 1;

are called Reeb dynamics. The vector ρ is then called the
Reeb vector field. The canonical parametrization of path γ
in Z such that

_γ ¼ ρ

is akin to that of geodesics in a Riemannian manifold by
their proper length. A contact structure ðZ; ξÞ is the data of
a hyperplane distribution ξ in TZ determined by the kernel
of a contact one-form. A useful starting reference describ-
ing contact geometry is [7].
Example 2.2. Massive relativistic particle: Let

Z ¼ R3 ∋ ðp; t; xÞ and

α ¼ pdx −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
dt:

Then

Volα ¼
m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p dp ∧ dt ∧ dx ≠ 0;

so α is a contact one-form. It not difficult to verify that the
Reeb trajectories correspond to those of a massm, relativistic
particle in two-dimensional Minkowski spacetime ▪

III. QUANTIZATION

Our main focus is on the quantization of dynamical
phase-spacetimes. We follow the treatment in [3]. The
framework is quite close to that developed by Fedosov for
deformation quantization of symplectic manifolds [8] (see
also [9]). To quantize a dynamical phase-spacetime ðZ;φÞ
we begin with an action on paths γ in Z,

S½γ� ¼
Z
γ
α;

where α is any primitive of φ, so

φ ¼ dα:

For locally supported variations of γ, the potential failure
of α to be unique or to exist globally is irrelevant. The
above action can be reformulated as a Hamiltonian system
on a coisotropic submanifold C of a larger symplectic
manifold Z, where

Z ¼ T�Z ⊕ ξ�:

In the above, ξ� is the bundle of hyperplanes in T�Z defined
by the kernel of the ray defined by the kernel of φ. So, for
example, if φðr; ·Þ ¼ 0 for the ray r, then ξ� ¼ ker r. In
the case that α is a global contact form, this is the dual
of the maximally nonintegrable distribution ξ defining a
contact structure. Motivated by this correspondence, we
call ξ� a codistribution. The direct sum above is the
Whitney vector bundle sum, so Z has base Z ∋ zi and
fiber R2nþ1 ⊕ R2n ∋ ðpi; saÞ. We call Z an extended
phase-space; it has a symplectic current (or Liouville
form) Λ obtained from the sum of the tautological one-
form on T�Z and the standard Liouville form λs on the R2n

fibers of ξ�. In local coordinates ðzi; pi; saÞ for Z,

Λ ¼ pidzi þ
1

2
sajabdsb:

This makes Z into a symplectic manifold. Here jab ¼ −jba
is an odd bilinear form defining the invariant tensor of
Spð2nÞ. Also, we employ the convention Xa ¼ jabXb.
A coisotropic submanifold C of this is determined by the
2nþ 1 first class constraints

Ci ¼ pi − Aiðz; sÞ;

where the one-form A ¼ αþ κðz; sÞ þ aðz; sÞ obeys the
Cartan–Maurer equation
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dAþ fA;∧AgPB ¼ 0: ð3:1Þ

Also, the leading fiberwise jet of the one-form κðz; sÞ must
obey the maximal rank condition

κðz; sÞ ¼ eaðzÞsa;
1

2
jabea ∧ eb ¼ φ;

and

aðz; sÞ ¼ Oðs2Þ: ð3:2Þ

In the above, the 2n one-forms ea are a basis, or adapted
coframe, for the codistribution ξ�, such that eaðρÞ ¼ 0. We
shall often refer to these as soldering forms. The extended
action for paths Γ in ξ, obtained by integrating out the
momenta pi by solving the constraints Ci, and given by

S½Γ� ¼
Z
Γ
ðλs þ AÞ;

then gives a (gauge) equivalent description of the dynamics
given by the original action S½γ� above. Moreover, the
constraints Ci are Abelian, so the classical Batalin–
Fradkin–Vilkovisky (BFV)-BRST charge is simply
QBRST ¼ ciðpi − Aiðs; zÞÞ where ci are ghosts. This charge
[10] is “nilpotent” (strictly its BFV Poisson bracket with
itself vanishes) by virtue of the Cartan-Maurer equation. In
the above discussion we have effectively converted a
system with a mixture of first and second class constraints
to one with only first class constraints, which is an example
of a general technique due to [11].
The extended action is easily quantized by viewing the

ghosts ci as one-forms on the base manifold Z (see for
example [12]), so that iℏ c

ipi becomes the exterior derivative d
acting on forms on Z and the fiber coordinates sa become
operators ŝa ∈ EndH acting on some choice of Hilbert space
H and subject to

½ŝa; ŝb� ¼ iℏjba:

In fact, since states are defined by complex rays,we only need
to consider the projective Hilbert space PðHÞ ∋ ½jψi� ¼
½eiθjψi� (for any real θ). We will abbreviate the notation
PðHÞ by H in what follows.
The BRST Hilbert spaceHBRST is then differential forms

on Z taking values in H. At ghost number zero, these are
sections of a Hilbert bundle HZ which is a vector bundle
with fibers given by H and base manifold Z. In general
BRST wave functions ΨBRST obey

ΨBRST ∈ ΓðHZÞ ⊗ ΩZ ¼ HBRST:

The ghost number grading for the above space is given by
form degree.

Note that the frame bundle of the dual ξ ≔ ðξ�Þ� of the
codistribution ξ� canonically defines a principal Spð2nÞ
bundle over Z, because φ endows ξ with a nondegenerate,
skew symmetric bilinear form. This canonically and glob-
ally defines the associated vector bundle with fibers given
by H. In turn, the principal bundle of orthonormal frames
with respect to the Hilbert space inner product has structure
group UðHÞ. Let us denote by HZ the associated vector
bundle with fibers H transforming under the fundamental
representation of UðHÞ. This is the bundle of wave
functions defined up to unitary equivalence where the base
manifold Z plays the role of a generalized time coordinate.
The quantum BRST charge is a flat connection form

on HZ; this extends by linearity to higher forms in HBRST.
It is given by

i
ℏ
Q̂BRST ¼ dþ Â≕∇;

where Â is the quantization of the classical solution
Aðz; sÞ to the CartanMaurer equation Eq. (3.1). It is a
one-form taking values in Hermitean operators on H, and
decomposes as

Â ¼ αId
iℏ

þ κ̂

iℏ
þ â: ð3:3Þ

We require that Â ∈ EndðΓðHZÞÞ ⊗ Ω1Z gives a solution
of the flatness condition

∇2 ¼ 0:

Given a connection form dþ Â, the map

κ̂∶ ΓðHZÞ ⊗ ΓðTZÞ → ΓðHZÞ

is called the quantum calibration map. We require that it
obeys the Heisenberg algebra, in the sense that for any
u; v ∈ ΓðTZÞ

κ̂ðuÞ ∘ κ̂ðvÞ − κ̂ðvÞ ∘ κ̂ðuÞ ¼ iℏφðu; vÞ:

This can be solved locally using the coframe by writing
κ̂ ¼ eaŝa. Therefore this map calibrates quantum oper-
ators ŝ to the underlying classical phase-spacetime
manifold Z. Indeed, the above map always exists,
because H comes equipped with a representation of
the Heisenberg algebra; this is uniquely defined up to
unitary equivalence by the Stone von Neumann theorem.
The map κ̂ is a symplectic analog of Clifford multipli-
cation for spinor bundles; see [13].
For any quantum system with a classical limit, or that

arises via quantization, there must be a flow with respect to
some parameter ℏ encoding how quantum quantities
respond to changes in ℏ. Therefore, we introduce a grading
operator
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gr ¼ 2ℏ
∂
∂ℏþ E;

where the operator E∶ ΓðHZÞ → ΓðHZÞ obeys

E ∘ κ̂ðuÞ − κ̂ðuÞ ∘E ¼ κ̂ðuÞ; ∀ u ∈ ΓðTZÞ:

This grading operator is also needed to state the quantum
analog of the classical higher jet condition in Eq. (3.2). For
example, in any choice of polarization ŝa ¼ ðŝA; ŝBÞ such
that ½ŝA; ŝB� ¼ iℏδAB acting on H ¼ L2ðRnÞ ∋ ψðsAÞ with
ŝAψ ¼ sAψ , ŝAψ ¼ ℏ

i ∂ψ=∂sA, the map E is given by

E ¼ i
ℏ

Xn
A¼1

ŝAŝA þ 2ℏ
∂
∂ℏ :

Let us say that an operator Ô ∈ EndðΓðHZÞ has
grade k when

gr ∘ Ôþ Ô ∘ gr ¼ kÔ:

We require that the operator â in Eq. (3.3) has a grade
greater than or equal to zero. Then, given the data of a
dynamical connection α and a quantization map κ̂, the
solution

∇ ¼ αId
iℏ

þ κ̂

iℏ
þ dþ â

to the flatness condition ∇2 ¼ 0 will be called a quantum
connection. When only a formal power series solution
for ∇ is given, we call this a formal quantum connection.
Note that the first and third terms of the above connection
are the starting points for the geometric quantization of
contact manifolds developed in [14]. Local existence of
formal quantum connections given the data ðZ; α; κ̂; grÞ is
not difficult to establish [3] (alternately, see the Darboux
construction of a flat quantum connection given in Sec. III
A). Indeed, when the calibration map is given by coframes,
the operator â can be expanded order by order in the
grading

â ¼ 1

iℏ

X
j;l≥0
jþ2l≥2

ℏl

j!
ωa1���aj ŝa1 � � � ŝaj :

In the above, the one-forms ωa1���aj are totally symmetric in
the labels a1;…; aj and are determined by solving a system
of algebraic, zero-curvature, equations.

A. Quantum Darboux theorem

Locally, the contact Darboux theorem states that there
exist coordinates ðπ⃗; χ⃗;ψÞ such that any contact form α can
be written as

α ¼ π⃗ · dχ⃗ − dψ :

Here the Reeb vector is ρ ¼ − ∂
∂ψ so that evolution is along

straight lines of constant π⃗ and χ⃗. In the case where only a
dynamical phase-spacetime ðZ;φÞ is given, because φ is
closed, we may always locally write φ ¼ dα0. Moreover, in
the case that α0 is not contact, because φ is nondegenerate,
we may add to α0 an exact term dβ such that α ¼ α0 þ dβ is
a contact form, at least locally. Therefore, the contact
Darboux theorem applies to dynamical phase-spacetimes
as well.
There is a quantum analog of the Darboux theorem for

formal quantum connections [5]. Before discussing this we
need to talk about gauge transformations for quantum
connections. In the previous section we stipulated that the
quantum connection ∇ was a flat connection form on the
bundle HZ. This is an associated vector bundle to a
principal UðHÞ bundle over Z. The connection form obeys
a self-adjoint condition

Âu ¼ Â†
u ∈ EndðΓðHZÞÞ;

for any u ∈ ΓðTZÞ. Here the adjoint is defined fiberwise
using the adjoint of H.
The quantum Darboux theorem states that locally any

pair of formal quantum connections, for a given choice
of dynamical phase-spacetime ðZ;φÞ, are formally gauge
equivalent [5]. The result is established inductively in the
grading gr by showing that there exists a formal UðHÞ
gauge transformation Û such that

Û∇Û−1 ¼ ∇D: ð3:4Þ

Here ∇D is a quantum connection whose quantum cali-
bration map κ̂ is closed so that

∇D ≔
α

iℏ
þ κ̂

iℏ
þ d

is obviously flat. To see that such a connection always
exists locally, one can use a Darboux coordinate ball, for
which φ ¼ dα and where α is a contact with coordinates
ðπ⃗; χ⃗;ψÞ such that

α ¼ π⃗ · dχ⃗ − dψ :

Then the quantum calibration map κ̂ ¼ eaŝa can be built
from closed coframes

ea ¼ ðdπ⃗; dχ⃗Þ:

The quantum calibration map for a general quantum
connection ∇ will not be given in terms of closed frames,
but an Spð2nÞ gauge transformation in the frame bundle
of ξ� can be employed to achieve this. Locally, as discussed
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earlier, this lifts to an Mpð2nÞ gauge transformation Û0.
The strategy to find Û is first to find the metaplectic
transformation Û0. Then,

∇0 ≔ Û−1
0 ∇DÛ0 ¼ ∇þ â0; ð3:5Þ

for some â0 of grade zero or greater. Thereafter one solves
for a formal gauge transformation Û1 of grade one higher,
given as a formal series in the grading, such that
Û−1

1 ∇0Û1 ¼ ∇. This means we must solve the equation

∇Û−1
1 ¼ Û−1

1 â0; ð3:6Þ

where ∇Û−1
1 ≔ ½∇; Û−1

1 � is the adjoint action of ∇. Note
that acting with ∇ again on the above, just returns ∇2

0 ¼ 0

as an integrability condition. The above display has a
formal (and possibly only local) solution for Û−1

1 [5]. The
proof is by induction in the grading.
A main aim of this article is to study explicit, global (but

possibly formal) solutions to the above equation for
quantum mechanical systems describing dynamics on a
line. Knowledge of the gauge transformation Û1 is power-
ful, because it relates nontrivial interacting systems to their
trivial Darboux counterparts. The first step is to study the
classical Darboux theorem for these models.

IV. CONTACT HAMILTON-JACOBI THEORY

Let us consider a one-dimensional system with time-
dependent Hamiltonian Hðp; q; tÞ. The standard Hamilton-
Jacobi theory for this system (see [4] for a modern
treatment) can be recovered by studying diffeomorphisms
on a three-dimensional dynamical phase-spacetime mani-
fold Z with local coordinates ðp; q; tÞ and odd symplectic
form

φ ¼ dp ∧ dq − dH ∧ dt

¼
�
dpþ ∂H

∂q dt

�
∧
�
dq −

∂H
∂p dt

�
:

This gives dynamics

_γ ∝
∂
∂t −

∂H
∂q

∂
∂pþ ∂H

∂p
∂
∂q ;

where ∝ denotes equality up to multiplication by some
nonvanishing function on Z. Calling the worldline param-
eter τ, and choosing this function to be unity, the equations
of motion are

∂t
∂τ ¼ 1;

∂p
∂τ ¼ −

∂H
∂q ;

∂q
∂τ ¼ ∂H

∂p :

In the gauge tðτÞ ¼ τ þ c these are the standard Hamilton
equations.
The odd symplectic form φ can be written as the exterior

derivative of the one-form

α ¼ pdq −Hðp; q; tÞdt: ð4:1Þ

Away from the zero locus of p ∂H
∂p −H, the above form is, in

fact, contact. The contact Darboux theorem ensures that
locally we can find a new local coordinate system ðπ; χ;ψÞ
such that

α ¼ χdπ − dψ : ð4:2Þ

Our aim in this section is to give an (as) explicit (as
possible) formula for the diffeomorphism bringing α, at
least on some open set U, to its Darboux form dis-
played above.
The Reeb vector for α as in Eq. (4.1) is given in these

Darboux coordinates by ρ ¼ − ∂
∂ψ, while in the original

coordinate system

�
p
∂H
∂p −H

�
ρ ¼ ∂

∂t −
∂H
∂q

∂
∂pþ ∂H

∂p
∂
∂q : ð4:3Þ

To proceed we need to know one conserved quantity
K ∈ C∞U,

LρK ¼ ιρdK ¼ 0: ð4:4Þ

This condition is always in principle locally solvable, but
not in terms of explicit first integrals. Explicitly, it amounts
to solving

∂K
∂t ¼ fH;KgPB;

where f·; ·gPB is the standard Poisson bracket
fq; pgPB ¼ 1, so fF;GgPB ¼ ∂F

∂q
∂G
∂p −

∂G
∂q

∂F
∂p.

Of course, when the Hamiltonian function H is time
independent, Hðp; qÞ is itself a solution. In what follows
we assume that a solution for K is known (possibly
approximately or even numerically). Then we make an
ansatz for the sought after diffeomorphism:

π ¼ Kðp; q; tÞ;
χ ¼ −tþ ϕðp; q; tÞ;
ψ ¼ λðp; q; tÞ: ð4:5Þ

Since Lρπ ¼ 0 ¼ Lρχ and Lρψ ¼ −1, using Eq. (4.3) we
must have
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∂K
∂t ¼ fH;KgPB;

∂ϕ
∂t ¼ fH;ϕgPB þ 1;

∂λ
∂t ¼ fH; λ; gPB þH − p

∂H
∂p :

Comparing the right-hand sides of Eqs. (4.1) and (4.2)
and using the Ansatz (4.5) give a triplet of partial
differential equations (PDEs) which we wish to use to
determine ϕ and λ:

K
∂ϕ
∂p −

∂λ
∂p ¼ 0;

K
∂ϕ
∂q −

∂λ
∂q ¼ p;

K
∂ϕ
∂t −

∂λ
∂t ¼ K −H: ð4:6Þ

Differentiating the second equation with respect to p and
the first with respect to q and then taking the difference
yields

fϕ; KgPB ¼ 1: ð4:7Þ

Assuming that the equation ε ¼ Kðp; q; tÞ can be solved
for p ¼ pðε; q; tÞ we can solve the PDE given by the above
display by first writing

ϕðp; q; tÞ≕ϕðKðp; q; tÞ; q; tÞ:

Using fK;KgPB ¼ 0, Eq. (4.7) now says that

ϕðε; q; tÞ
∂q

∂Kðp; q; tÞ
∂p

����
p¼pðε;q;tÞ

¼ 1:

Hence

ϕðε; q; tÞ ¼
Z

q dx
∂Kðp;x;tÞ

∂p

����
p¼pðε;x;tÞ

:

Similarly, multiplying the second equation in (4.6) by
∂K=∂p and the first by ∂K=∂q, the difference yields

Kfϕ; KgPB − fλ; KgPB ¼ p
∂K
∂p :

This can be solved for λðp; q; tÞ≕ λðKðp; q; tÞ; q; tÞ using
the same method employed for ϕ:

λðε; q; tÞ ¼
Z

q
dx

ε − p ∂Kðp;x;tÞ
∂p

∂Kðp;x;tÞ
∂p

����
p¼pðε;x;tÞ

:

In summary, the diffeomorphism to the Darboux coordinate
system is given by

π ¼ Kðp; q; tÞ;

χ ¼ −tþ
Z

q dx
∂Kðp;x;tÞ

∂p

����
p¼pðKðp;q;tÞ;x;tÞ

;

ψ ¼
Z

q
dx

Kðp; q; tÞ − ðp ∂Kðp;x;tÞ
∂p Þjp¼pðKðp;q;tÞ;x;tÞ

∂Kðp;x;tÞ
∂p jp¼pðKðp;q;tÞ;x;tÞ

: ð4:8Þ

Example 4.1. For a time independent Hamiltonian

H ¼ 1

2
p2 þ 1

2
q2 þ vðqÞ

we have

π ¼ 1

2
p2 þ 1

2
q2 þ vðqÞ;

χ ¼ −tþ
Z

q dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 − x2 þ 2ðvðqÞ − vðxÞÞ

p
≈ −t − arctan

p
q
−
Z

q
dx

vðqÞ − vðxÞ
ðp2 þ q2 − x2Þ3=2 ; ð4:9Þ

ψ ¼
Z

q
dx

x2 þ 2vðxÞ − 1
2
p2 − 1

2
q2 − vðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2 − x2 þ 2ðvðqÞ − vðxÞÞ
p

≈ −
1

2
pq −

Z
q
dx

1
2
ðp2 þ q2ÞðvðqÞ − 3vðxÞÞ þ x2vðxÞ

ðp2 þ q2 − x2Þ3=2 :

ð4:10Þ

The stated approximations are accurate in the limit when
the deformation of the harmonic oscillator vðqÞ ≪ q2. In
the harmonic oscillator limit when vðqÞ ¼ 0, it is easily
checked that indeed

α ¼ πdχ − dψ ¼ 1

2
ðp2 þ q2Þd

�
−t − arctan

p
q

�

− d

�
−
1

2
pq

�
¼ pdq −

1

2
ðp2 þ q2Þdt:

▪
Now that we can explicitly locally map a wide class of

classical dynamical systems to one another using the
Darboux theorem, we proceed to study the quantum analog
that was discussed in Sec. III A. We shall focus on the
quantum anharmonic oscillator.

V. THE QUANTUM ANHARMONIC OSCILLATOR

Let us consider the model with Hamiltonian

H ¼ 1

2
p2 þ VðqÞ; ð5:1Þ
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and a single-well potential V that is smooth, is concave up,
and obeys Vð0Þ ¼ V 0ð0Þ ¼ 0. The classical phase-space
curves for this model are concentric closed orbits. The
phase-spacetime is R3 ∋ ðp; q; tÞ and

φ ¼ ðdpþ V 0ðqÞdtÞ ∧ ðdq − pdtÞ:

In the Darboux coordinates ðχ; π;ψÞ, the physical trajec-
tories are straight lines. Clearly for this model, these can be
globally mapped to the trajectories in ðp; q; tÞ space. These
are helixlike and foliate the phase-spacetime.
Standard quantization of the Hamiltonian (5.1) replaces

the c-numbers p and q by quantum operators

p ↦
ℏ
i
∂
∂S ; q ↦ S;

acting on the Hilbert space H ¼ L2ðRÞ given by square
integrable, complex-valued functions of S. A common
choice of quantum Hamiltonian is then

Ĥ ≔ −
ℏ2

2

∂2

∂S2 þ VðSÞ: ð5:2Þ

In principle, the space of all quantizations of the classical
Hamiltonian in Eq. (5.1) ought to be encoded in the space
of flat quantum connections on the phase-spacetime. This
issue is of independent interest, but we avoid studying it for
now and instead focus on the simple quantization in the
above display.
Our aim is to compute the evolution operator

expð− iðtf−tiÞ
ℏ ĤÞ or its matrix elements

KðSf; Si; tf; tiÞ ≔ hSfj exp
�
−
iðtf − tiÞ

ℏ
Ĥ

�
jSii:

This the usual propagator problem in nonrelativistic quan-
tum mechanics, which can be handled perturbatively by
various quantum mechanical techniques. Here we want to
demonstrate a rather different approach based on the
quantum Darboux theorem.
First we need to rewrite the operator expð− i

ℏ Ĥðtf − tiÞÞ
as a path ordered line operator Pγ expð−

R
γ ÂÞ for a

quantum connection ∇ ¼ dþ Â acting on a Hilbert bundle
over phase-spacetime. For that, we need a solution for ∇
corresponding to the quantum Hamiltonian in Eq. (5.2). A
solution is given by [3]

∇ ¼ dþ dq
iℏ

�
pþ ℏ

i
∂
∂S

�
−
dp
iℏ

S

−
dt
iℏ

�
1

2

�
pþ ℏ

i
∂
∂S

�
2

þ Vðqþ SÞ
�
≕ dþ Â: ð5:3Þ

Observe that along the path

γ ¼ fð0; q; tið1 − τÞ þ tfτÞ∶τ ∈ ½0; 1�g ∈ Z;

the connection potential

Â ¼ i
ℏ
Ĥqðtf − tiÞdτ;

where Ĥq ≔ − ℏ2
2

∂2
∂S2 þ VðSþ qÞ. It is tempting to take a

path γ along which both p and q vanish. However, we avoid
this choice because the Jacobian for a change of variables
ðp; qÞ ↦ ðπ;ϕÞ vanishes along such a path. Because
∂=∂S ¼ ∂=∂ðSþ qÞ, there is no difficulty working along
a path with constant q ≠ 0, because this just shifts the
variable S in wave functions.
The soldering forms for the above connection are given

by

ea ¼ ðdpþ V 0ðqÞdt; dq − pdtÞ≕ ðf; eÞ;
so that φ ¼ 1

2
jabea ∧ eb ¼ e ∧ f and j12 ¼ 1 ¼

−j21 ¼ j12 ¼ −j21. These forms vanish along γ. Also note
that ŝa ¼ ð−S; ℏi ∂

∂SÞ and ½ŝ1; ŝ2� ¼ −iℏ. It now follows that

Pγ exp

�
−
Z
γ
Â

�
¼ exp

�
−
iðtf − tiÞ

ℏ

Z
1

0

dτĤq

�

¼ exp

�
−
i
ℏ
Ĥqðtf − tiÞ

�
: ð5:4Þ

Our next goal is to find a gauge transformation mapping (at
least formally) the connection ∇ to a far simpler one.
Before doing that, it is useful to discuss quantum sym-
metries of this system.

A. Quantum Noether theorem

Since quantum dynamics is given by parallel transport
with respect to a quantum connection∇ ¼ dþ Â, quantum
symmetries ought to be given by operators Ô on the Hilbert
bundle that obey

∇∘ Ô ¼ Ô 0 ∘∇;

for any operator Ô 0, since if Ψ ∈ ΓðHZÞ solves ∇Ψ ¼ 0,
then so too does ÔΨ.
Such operators Ô are easy to construct: Let u ∈ ΓðTZÞ

be a vector field. Then, because ∇ is nilpotent, the operator
fιu;∇g commutes with∇. Acting on sections of the Hilbert
bundle, this gives the operator

Lu þ Âu:

Note that the Lie derivative is defined acting on sections of
∧• Z ⊗ HZ and is defined by the anticommutator fιu; dg.
Here we use that choosing the operator d in some gauge
defines a connection. The particular choice of gauge is
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often determined by the explicit form of the system under
study. Symmetries of the above type that hold for arbitrary
vector fields u are tautological, in the sense that the first
operator acts along the base Z, while the second acts on the
Hilbert space fibers in a way that exactly compensates the
former transformation. In BRST terms, these symmetries
are BRST exact. However, specializing to vector fields u
that solve

½Lu;∇� ¼ dβ
iℏ

ð5:5Þ

for some β ∈ C∞Z, we can define a conserved quantum
charge

Q̂u ≔ iℏfιu;∇g − iℏLu − β: ð5:6Þ

It is easy to verify that

½∇; Q̂u� ¼ 0:

Note that the leading term of Q̂u in the grading is αðuÞ − β
which gives a classical conserved charge Q that solves
Eq. (2.2) because

LρQ ¼ ιρdðιuαÞ − ιρdβ ¼ ιρLuα − ιριuφ − ιρdβ ¼ 0:

Here we used that Eq. (5.5) implies Luα ¼ dβ and
φðρ; ·Þ ¼ 0. Let us call vector fields u obeying Eq. (5.5)
quantum symmetries of ∇.

The simple model in the next example will be important.

Example 5.1. Let Z ¼ R3 ∋ ðπ; χ;ψÞ and

φ ¼ dπ ∧ dχ:

This equals dα where α ¼ πdχ − dψ is contact and the
coordinates ðπ; χ;ψÞ are Darboux. Then a quantum con-
nection is

∇D ¼ dþ dχ
iℏ

�
π þ ℏ

i
∂
∂S

�
−
dπ
iℏ

S −
dψ
iℏ

≕ dþ ÂD: ð5:7Þ

The vector fields

∂
∂π ;

∂
∂χ ;

∂
∂ψ ;

are quantum symmetries with β equaling χ, 0, 0, respec-
tively. Their conserved quantum charges are

Q̂ ∂∂π
¼ −χ − S; Q̂ ∂∂χ

¼ π þ ℏ
i
∂
∂S ; Q̂ ∂∂ψ

¼ −1: ð5:8Þ

Acting on the Hilbert bundle, these charges obey the
Heisenberg Lie algebra which is also the algebra of the
three contact Hamiltonian vector fields ∂

∂π þ χ ∂
∂ψ,

∂
∂χ

and ∂
∂ψ. ▪

Returning to the anharmonic oscillator, we note that
it has two nontrivial, independent, globally defined,
conserved charges. One of these is the Hamiltonian
H ¼ 1

2
p2 þ VðqÞ, or simply π in Darboux coordinates.

The other is t − ϕðp; qÞ, or equivalently −χ. This says that
the angle variable [see Eq. (4.8)]

ϕðp; qÞ ¼
Z

q dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2VðqÞ − 2VðxÞ

p ð5:9Þ

obeys ϕðp; qÞ ¼ tþ const. Or in other words, the
initial value of the angle variable is preserved along
classical paths.
It is interesting to study the quantization of the conserved

quantities H and t − ϕ. The former is simple because

½L ∂∂t
;∇� ¼ 0

for the quantum connection form given in Eq. (5.3).
Hence we can construct the quantum charge corresponding
to the strict contactomorphism generated by ∂

∂t. This gives

−Q̂ ∂∂t
¼ 1

2

�
pþ ℏ

i
∂
∂S

�
2

þ Vðqþ SÞ:

It is easy to verify that the above operator commutes
with ∇. Moreover, at p ¼ 0 ¼ q, this recovers the standard
quantum Hamiltonian Ĥ.
The quantum charge corresponding to t − ϕðp; qÞ

is more involved. The quantization given by the
quantum connection form ∇ in Eq. (5.3) does not obey
condition (5.5) for the vector field u ¼ ∂

∂π þ χ ∂
∂ψ. This does

not mean that there is no corresponding charge, but rather
that the formula (5.6) cannot be used. Instead, given a
quantum gauge transformation Û relating ∇ to ∇D as in
Eq. (3.4), then the quantum charge Û−1Q̂ ∂∂π

Û commutes

with ∇. Unfortunately we do not yet know the gauge
transformation Û. The computation of this operator is the
subject of the next section.

B. Quantum gauge transformation

Wewant to compute the quantum gauge transformation Û
given by a unitary endomorphism of the section space of the
Hilbert bundle ΓðHZÞ such that

∇ ¼ Û−1∇DÛ;

where ∇ is the connection form corresponding to that the
anharmonic oscillator in Eq. (5.3), while ∇D is the Darboux
connection in Eq. (5.7). For this we will work iteratively
order by order in the grading. The first step is to find a gauge
transformation relating the calibration maps of the two
connection forms.

QUANTUM DARBOUX THEOREM PHYS. REV. D 103, 105021 (2021)

105021-9



1. Metaplectic transformation

To begin with, we need the relation between the
soldering forms ðdπ; dχÞ of the Darboux connection ∇D
to those—given by ðdpþHqdt; dq −HpÞ—of ∇. (For
brevity, from now on we often denote partial derivatives by
subscripts.) This is given by�

dπ

dχ

�
¼ ∂ðπ;ϕÞ

∂ðp; qÞ
�
dp

dq

�
− dt

�
0

1

�

¼
�
πp πq

ϕp ϕq

��
dpþHqdt

dq −Hpdt

�
:

The above display was computed using Eq. (4.5) special-
ized to the case K ¼ Hðp; qÞ for which the functions ϕ
and λ are t-independent. In the above

U0 ¼
∂ðπ;ϕÞ
∂ðp; qÞ ¼

�
πp πq

ϕp ϕq

�
ð5:10Þ

is the Jacobian of the change of variables ðp; qÞ → ðπ;ϕÞ.
Notice also that the last equality was achieved using that the
Poisson bracket of fπ; HgPB ¼ 0 and fϕ; HgPB ¼ 1 [see
Eq. (4.7)]. This implies that

detU0 ¼ 1:

Hence the matrix U0 is Spð2Þ-valued with respect to the
antisymmetric bilinear form

J ¼
�

0 1

−1 0

�
≕ ðjabÞ:

Wewant to intertwine the Spð2Þ group elementU0 expressed
in the fundamental representation in Eq. (5.10) to an operator
Û0 acting on sections of the Hilbert bundle. This operator
must obey

Û−1
0

�
dχ
iℏ

ℏ
i
∂
∂S −

dπ
iℏ

S

�
Û0 ¼

dq −Hpdt

iℏ
ℏ
i
∂
∂S

−
dpþHqdt

iℏ
S:

That is, the operator Û0 transforms the Darboux solderings to
those of∇. The map from the matrixU0 to the operator Û0 is
the intertwiner from the fundamental representation of Spð2Þ
to its metaplectic representation on the projective Hilbert
space PðHÞ. Note that strictly only the double coverMpð2Þ
of Spð2Þ has a metaplectic representation on the Hilbert
space, but upon projectivizing, this gives a unitary Spð2Þ
representation. Formally, the projectivemetaplectic action of
any Spð2Þ matrix V is determined by the formulas

d� 1 0

t 1

�
¼ exp

�
itℏ
2

∂2

∂S2
�
;

d�
e−l 0

0 el

�
¼ exp

�
−lS

∂
∂S

�
;

d� 1 u

0 1

�
¼ exp

�
iu
2ℏ

S2
�
:

The action of these operators on wave functions ψðSÞ can be computed using suitable Fourier transforms. In particular (up
to irrelevant normalizations),

d� 1 0

t 1

�
ψðSÞ ¼

Z
dS0e

iðS−S0Þ2
2ℏt ψðS0Þ;

d�
e−l 0

0 el

�
ψðSÞ ¼ ψðe−lSÞ;

d� 1 u

0 1

�
ψðSÞ ¼ e

iu
2ℏS

2

ψðSÞ: ð5:11Þ

Also, again up to an irrelevant normalization,

d� 0 1

−1 0

�
ψðSÞ ¼

Z
dS0e− i

ℏSS
0
fðS0Þ: ð5:12Þ

For future use, note that at the level of the Lie algebra spð2Þ—recycling the hat notation for this—one has

d�−a b

c a

�
¼ iℏc

2

∂2

∂S2 − a
�
S
∂
∂Sþ 1

2

�
þ ib
2ℏ

S2 ¼ 1

2!iℏ
Mabŝaŝb: ð5:13Þ

In the above ðMa
bÞ ≔ ð−ac b

aÞ and Ma
b ≕ jbcMac.

Also note that if AD − BC ¼ 1, then

d�A B

C D

�
∘
�
−αSþ β

ℏ
i
∂
∂S

�
∘
d�
D −B
−C A

�
¼ −½Aαþ Bβ�Sþ ½CαþDβ�ℏ

i
∂
∂S : ð5:14Þ
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The above formula is the intertwiner between the fundamental representation of Spð2Þ and its projective metaplectic
representation.
By now we have achieved that

Û−1
0 ∇DÛ0 ¼

pdq −Hdt
iℏ

þ dq −Hpdt

iℏ
ℏ
i
∂
∂S −

dpþHqdt

iℏ
Sþ

d�
ϕq −πq
−ϕp πp

�
∘ d ∘

d�
πp πq

ϕp ϕq

�
:

The difference between ∇0 and ∇ in Eq. (3.5) is given by [see also Eq. (5.3)]

â0 ¼
d�
ϕq −πq
−ϕp πp

��
d
d�
πp πq

ϕp ϕq

��
þ dt
iℏ

�
−
ℏ2

2

∂2

∂S2 þ v2ðq; SÞ
�
:

In the above v2 ≔ Vðqþ SÞ − VðqÞ − V 0ðqÞS, and the above-displayed operator only has terms of grade zero and higher.
To complete the computation of â0, we must calculate Û−1

0 dÛ0. Because this one-form is Lie algebra-valued, we instead
compute U−1

0 dU0. Note that the matrix U0 in Eq. (5.10) only depends on the variables p and q, or equivalently only on the
pair ðπ;ϕÞ. Moreover, χ ¼ −tþ ϕ, so observe that—acting on functions that depend only on ðp; qÞ—the exterior derivative
can be written

d ¼ dπ
∂
∂π þ ðdχ þ dtÞ ∂

∂ϕ :

Moreover,

∂
∂π ¼ ϕq∂p − ϕp∂q ¼ fϕ; ·gPB;

∂
∂ϕ ¼ −V 0∂p þ p∂q ¼ −fπ; ·gPB:

Then, using fϕ; πgPB ¼ 1, after some computation, it follows that

U−1
0

∂
∂πU0 ¼

�−ϕpq −ϕqq

ϕpp ϕpq

�
¼ −JHessðϕÞ; U−1

0

∂
∂ϕU0 ¼

�
πpq πqq

−πpp −πpq

�
¼ JHessðπÞ; ð5:15Þ

where the Hessian matrix HessðfÞ ≔ ðfppfpq
fpq
fqq
Þ. Because the

Hessian is symmetric, it follows that JHessðfÞ ∈ spð2Þ.
Using Eq. (5.13), orchestrating the above computations

gives

â0 ¼
d�
0 V 00

−1 0

�
dχ þ

d�−ϕpq −ϕqq

ϕpp ϕpq

�
dπ þ dt

iℏ
v3ðq; SÞ;

where v3 ≔ Vðqþ SÞ − VðqÞ − V 0ðqÞS − 1
2!
V 00ðqÞS2 and

the angle variable is given explicitly in Eq. (5.9).
Happily—and necessarily on general grounds—the first
two terms in the above display have grade zero and lie in
the codistribution. Assuming real analyticity of VðSÞ, the
last term has grades one and higher. Next we need to

compute the higher order gauge transformation Û1 subject
to Eq. (3.6).

2. Higher order gauge transformations

To compute Û1 we work in a formal power series in the
grading. Examining (3.6), we see that it is simpler to
compute Û−1

1 , which we expand as

Û−1
1 ¼ 1þWabcŝaŝbŝc

3!iℏ
þ � � � :

Here Wabc is some totally symmetric tensor to be deter-
mined. Then the lowest order contribution to Eq. (3.6)
implies that

�
eaŝa
iℏ

;
Wbcdŝbŝcŝd

3!iℏ

�
¼ eajabWbcdŝcŝd

2!iℏ
¼

d�
0 V 00

−1 0

�
dπ þ

d�−ϕpq −ϕqq

ϕpp ϕpq

�
dχ: ð5:16Þ
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Using Eqs. (5.13) and (5.15) and calling Πa ¼ ðπ;ϕÞ and
∂a ¼ ð∂p; ∂qÞ we have that

Wabc ¼ jfe∂aΠe∂b∂cΠf:

Moreover, using that ∂ ½aΠe∂b�Πf is proportional to the
Poisson bracket of Πe and Πf, and that fϕ; πgPB ¼ 1, it
follows that Wabc is totally symmetric.
We now examine higher order terms in Û−1

1 . Let us call
the grade one object

Ŵð1Þ ≔
Wabcŝaŝbŝc

3!iℏ
ð5:17Þ

and search for the grade two correction

Û−1
1 ¼ 1þ Ŵð1Þ þ Ŵð2Þ þ � � � :

Also, let us decompose

â0 ¼ að0Þ þ að1Þ þ � � � ;

where

âð0Þ ¼
� d0 V 00

−1 0

�
dχ þ

d�−ϕpq −ϕqq

ϕpp ϕpq

�
dπ and

âð1Þ ¼
dt
3!iℏ

V 000ðqÞS3:

Along, similar lines, the grade zero part of ∇ in Eq. (5.3) is

∇ð0Þ ≔ d −
dt
iℏ

�
−
ℏ2

2

∂2

∂S2 þ
1

2
V 00ðqÞS2

�
:

Then, at grade one, Eq. (3.6) demands that�
eaŝa
iℏ

; Ŵð2Þ

�
¼ −½∇ð0Þ; Ŵð1Þ� þ âð1Þ þ Ŵð1Þâð0Þ: ð5:18Þ

To solve the above equation it is important to remember
that Û−1

1 must be a unitary operator. Thus we must require

ðÛ−1Þ−1 ¼ 1 − Ŵð1Þ − Ŵð2Þ þ Ŵ2
ð1Þ � � � ¼ 1þ Ŵ†

ð1Þ þ Ŵ†
ð2Þ

þ � � � ¼ ðÛ−1Þ†; ð5:19Þ

so the Hermitian part of Ŵð2Þ is given by

HeðŴð2ÞÞ ¼
1

2
Ŵ2

ð1Þ:

The anti-Hermitian part aHeðWð2ÞÞ is still undetermined.

However Eq. (5.16) says that ½eaŝaiℏ ; Ŵð1Þ� ¼ âð0Þ so
Eq. (5.18) then gives

�
eaŝa
iℏ

; aHeðŴð2ÞÞ
�
¼ −

�
∇ð0Þ þ

1

2
âð0Þ; Ŵð1Þ

�
þ âð1Þ:

ð5:20Þ

To proceed we need to compute the right-hand side of the
above expression. This is a tractable computation, but
clearly as we move to even higher orders the complexity of
such computations will grow dramatically. Hence, we
digress to develop a diagrammatic representation of the
operator-valued differential forms appearing in the above
discussion.

3. Heaven and earth diagrams

Recall that Πa ≔ ðπ;ϕÞ and ∂a ≔ ð∂p; ∂qÞ. Let us depict
the tensor obtained from partial derivatives on Πa by

Here the solid lines correspond to the indices a1;…; an, and
these may be permuted at no cost because partial deriv-
atives commute. The tensor jab and its inverse jab are
denoted by directed line segments

Concatenated lines indicated index contractions so, for
example,

and

ð5:21Þ

The identity above allows the depicted concatenation to be
removed from a diagram. Also, note that reversing the
direction of any arrow multiplies the tensor depicted by a
minus sign.
More complicated diagrams obtained by such concate-

nations have the drawback that symmetry of external legs
may be broken, and thus it may no longer be possible to
uniquely associate a tensor with such a picture. Moreover,
we are typically interested in Hilbert space operators taking
values in differential forms built from tensors made from
derivatives and products of Πa’s. Hence we adopt a
“heaven and earth notation” in which a line attached to
the earth (a horizontal green line) denotes contraction with
the operator ŝa. Similarly, a line attached to heaven denotes
contraction with a differential form, the choice of which
will be labeled when this is not clear. For example,
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and

Now, the Poisson bracket fϕ; πg ¼ 1 implies that
∂aΠcjcd∂bΠd ¼ jba, so we have the diagrammatic
identity

ð5:22Þ

Similarly ∂aΠcjab∂bΠd ¼ jcd implies

ð5:23Þ

These relations imply two identities for heaven and earth
diagrams

The last equalities used that ½ŝa; ŝb� ¼ iℏjba and
jabdΠa ∧ dΠb ¼ 2φ.
Since a solid line attached to a solid dot denotes a partial

derivative of Π, there are further identities following from
the product rule of, for example, the schematic type
ð∂ΠÞð∂2ΠÞð∂3ΠÞ ¼ ∂ðð∂ΠÞ2ð∂3ΠÞÞ − ð∂2ΠÞð∂ΠÞð∂3ΠÞ−
ð∂ΠÞ2ð∂4ΠÞ. Hence, in a heaven and earth diagram, we can
remove a leg from a solid dot and produce (minus) a sum of
diagrams with that leg attached to all other solid dots plus a
term where this derivative acts on the whole diagram. The
latter is denoted by a solid line that ends midair between
heaven and earth, and which denotes a partial derivative
acting to the right. An example is the following identity:

The last equality used that ŝa∂aiℏ ¼ 0. The above is a
diagrammatic demonstration that the tensor Wabc ¼
jfe∂aΠe∂b∂cΠf is totally symmetric. To emphasize this
we diagrammatically denote

We need one further ingredient to attack Eq. (5.20): the
exterior derivative. For that we note that acting on functions
that are independent of t, we have

d ¼ dπ∂π þ dϕ∂ϕ ¼ dπfϕ; ·gPB − dϕfπ; ·gPB
¼ dΠajba∂cΠbjcd∂d:

Thus we have the diagrammatic notation for the exterior
derivative

Before proceeding, we need one further diagrammatic
identity expressing that ½ŝa; ŝb� ¼ iℏjba, namely

ð5:24Þ

where the shaded blobs denote the (unspecified) remainder
of the diagram.
Now we are ready to diagrammatically compute the

right-hand side of Eq. (5.20). We begin with ½d; Ŵð1Þ�:
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Now let Ωa be any pair of differential forms. Then we have the following identities:

Hence

Here we used that and ¼ 0. For the remaining commutator terms in Eq. (5.20)

we need the following computation:
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Now note that

and

where dTa ≔ ð0; dtÞ≕ dΠa − dXa. Here Xa ¼ ðπ; χÞ. Thus

A check of this result is that it is anti-Hermitian. This amounts to reversing the order of all the legs attached to the earth and
then using the identity in Eq. (5.24) to restore these to the original pictures.
Now, using the Poisson bracket identity in Eq. (5.22) and the identity dXa ¼ ∂bΠaeb, or in diagrams

we have

Hence we compute
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Here we used Eqs. (5.21) and (5.23) as well as the identity

Similarly

Thus we learn

Note that it is not difficult to see that the right-hand side above is anti-Hermitian using the identity

Let us define
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where both sides of this diagrammatic picture define a
totally symmetric rank four tensor. Then is not difficult to
check that

ð5:25Þ

It is interesting to study even higher orders. For example,
to compute Ŵð3Þ, one can first consider the next order in
Eq. (5.19) which determines

HeðŴð3ÞÞ ¼
1

2
ð−Ŵ3

ð1Þ þ Ŵð1ÞŴð2Þ þ Ŵð2ÞŴð1ÞÞ:

The remaining difficulty now is to calculate the heaven and
earth diagrams for aHeðŴð3ÞÞ. Clearly this is possible but
tedious. We have verified that in the model harmonic
oscillator case where VðqÞ ¼ 1

2
q2, the obvious conjecture

that symmetrizing the diagram

computes aHeðŴð3ÞÞ, in fact, fails. The problem of com-

puting an all order expression for Û is related to the
problem of finding deformation quantizations for Poisson
and symplectic structures. These problems are solved by
Kontsevich’s formality theorem [15], which is neatly
explained by the perturbative expansion of an all orders
Poisson sigma model performed by Cattaneo and
Felder [16]. It is possible that those ideas could be applied
to the computation of a formal asymptotic series result for the
gauge transformation Û.

C. Correlators

We are now ready to compute the evolution operator,
which using Eq. (5.4) is given by

KðSf; Si; tf − tiÞ ≔ hSfj exp
�
−
iðtf − tiÞ

ℏ
Ĥq

�
jSii

¼ hSfjPγ exp

�
−
Z
γ
Â

�
jSii:

Here γ is any path between zi ¼ ð0; q; tiÞ and zf ¼
ð0; q; tfÞ [expressed in the ðp; q; tÞ coordinate system].
For the moment, let us focus on the quantity on the right-
hand side in the more general case that zi and zf are any two
points in the manifold Z. In the previous section we
computed the gauge transformation Û such that

ÛPγ exp

�
−
Z
γ
Â

�
Û−1 ¼ Pγ exp

�
−
Z
γ
ÂD

�
;

where ÂD is the quantum connection potential in Darboux
form as in Eq. (5.7). The above operator is easy to compute
(see, for example, [5]): Consider γ to be a path beginning at
zi ¼ ðπi; χi;ψ iÞ and ending at zf ¼ ðπf; χf;ψfÞ. Because
the connection ∇ is flat, we may take the path γ to be
particularly simple, for example, one along which first only
ψ changes by amount ψf − ψ i, then π by πf − πi, and
finally χ by χf − χi. This gives

Pγ exp

�
−
Z
γ
ÂD

�
¼ exp

�
ψf − ψ i þ πfðχf − χiÞ

iℏ

�

× exp

�
ðχf − χiÞ

∂
∂S

�

∘ exp

�
πf − πi

iℏ
S

�
:

Because γ is a path between zi ¼ ð0; q; tiÞ and zf ¼
ð0; q; tfÞ, takingH ¼ 1

2
p2 þ VðqÞwithVð0Þ ¼ 0, the above

becomes [see Eq. (4.10)] simply a translation operator,

Pγ exp

�
−
Z
γ
ÂD

�
¼ exp

�
ðtf − tiÞ

�
VðqÞ
iℏ

−
∂
∂S

��

≕ exp

�
−
iðtf − tiÞ

ℏ
ĤD

�
: ð5:26Þ

We also need to compute ÛjSii. Viewed as a wave function,
the state jSii is represented by δðS − SiÞ. Now, remember that

Û ¼ Û0ð1þ Ŵð1Þ þ Ŵð2Þ þ � � �Þ;

where Û0 is the metaplectic representation of the matrix U0

given in Eq. (5.10). Becausep and q do not change along the
path γ, at both the start and the endpoint we have
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U0 ¼
�

0 V 0ðqÞ
− 1

V 0ðqÞ 0

�
:

Then using Eq. (5.14), we have

Û−1
0 ∘Pγ exp

�
−
Z
γ
ÂD

�
∘ Û0

¼ exp

�
tf − ti
iℏ

ðVðqÞ þ V 0ðqÞSÞ
�
:

Next we imagine rewriting the remainder of the gauge
transformation in normal order, i.e.,

1þ Ŵð1Þ þ Ŵð2Þ þ � � � ¼ ∶WNðS; PÞ∶;
where our normal ordering convention is

∶SkPl∶ ¼ Sk
�
ℏ
i
∂
∂S

�
l
:

Then, if jPii and jPfi are eigenstates of the momentum
operator ℏ

i
∂
∂S, we have

hPfjPγ exp

�
−
Z
γ
Â

�
jPii

¼ e
VðqÞΔt

iℏ

Z
dSe−

iV0ðqÞΔtS
ℏ W�

NðS; PfÞWNðS; PiÞ

≕ e
VðqÞΔt

iℏ F ½W�
NðS; PfÞWNðS; PiÞ�ð−V 0ðqÞΔtÞ;

where Δt ≔ tf − ti and F denotes the Fourier transform

F ½fðxÞ�ðkÞ ≔ R
dxe

ikx
ℏ fðxÞ. To obtain the position space

propagator two further Fourier transforms are needed, and
this yields

KðSi; Sf;ΔtÞ ¼ F ½W�
NðS; P0ÞWNðS; PÞ�

× ð−Sf; Si;−V 0ðqÞΔtÞ; ð5:27Þ
where the variables ðP0; P; SÞ are the respective Fourier dual
variables to ðSf; Si;−V 0ðqÞΔtÞ. The above Fourier convo-
lution result for quantum mechanical propagators is a very
strong result, but it comes with a caveat which we now
describe.
The equality in the above convolution result assumes that

we can find an exact expression for the operator Û1.
However, in general, only an asymptotic series expression
for Û1 will exist. To see why this is, it is useful to study the
harmonic oscillator example VðqÞ ¼ 1

2
q2. In that case the

operator Û1 must solve the condition

Û−1
1 ∘ exp

�
Δt
iℏ

�
1

2
q2 þ qS

��
∘ Û1

¼ exp

�
Δt
iℏ

�
−
ℏ2

2

∂2

∂S2 þ
1

2
ðqþ SÞ2

��
:

Because the spectrum of the harmonic oscillator
Hamiltonian is discrete, while that of the operator qS is
continuous, no unitary operator Û1 solving the above
operator equation can exist. However, there is an asymp-
totic series solution. Let us complete our study of the
quantum Darboux theorem by demonstratng how these
asymptotics work for the harmonic oscillator.
The first three asymptotic orders of the operator Û were

computed for general models using heaven and earth
diagrams in Sec. V B 3. To explicate this series it is useful
to introduce the new variables

σ ≔
Sffiffiffi
ℏ

p ; ε ≔
ffiffiffi
ℏ

p

q
;

in terms of which the display before last becomes

Û−1
1 ∘ exp

�
−iΔt

�
1

2ε2
þ σ

ε

��
∘ Û1

¼ exp

�
−iΔt

�
1

2ε2
þ σ

ε
−
1

2

∂2

∂σ2 þ
1

2
σ2
��

: ð5:28Þ

For the harmonic oscillator, the pair Π ¼ ðπ;ϕÞ ¼
ð1
2
p2 þ 1

2
q2;− arctan p

qÞ. Hence, at the starting point of a

path γ with p ¼ 0, the operator Ŵð1Þ given in Eq. (5.17)
becomes

Ŵð1Þ ¼
ε

3!

� ∂3

∂σ3 − 3σ2
∂
∂σ þ 3σ

�
;

while the anti-Hermitian part of Ŵð2Þ given in Eq. (5.25) is

aHeðŴð2ÞÞ ¼
ε2

4!

�
2σ

∂3

∂σ3 þ 6σ3
∂
∂σ þ 3

∂2

∂σ2 þ 9σ2
�
:

Thus

Û1 ¼ 1þ Ŵð1Þ þ aHeðŴð2ÞÞ þ
1

2
Ŵ2

ð1Þ þOðε3Þ

¼ 1þ ε

3!

� ∂3

∂σ3 − 3σ2
∂
∂σ þ 3σ

�

þ ε2

4!

�
1

3

∂6

∂σ6 − 2σ2
∂4

∂σ4 þ 3σ4
∂2

∂σ2 − 6σ
∂3

∂σ3

þ 18σ3
∂
∂σ − 6

∂2

∂σ2 þ 15σ2
�

þOðε3Þ: ð5:29Þ

It is not difficult to check that

Û†
1Û1 ¼ 1þOðε3Þ;

and that
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Û†
1 ∘ σ ∘ Û1 ¼ σ þ ε

2

�
−

∂2

∂σ2 þ σ2
�
þOðε3Þ: ð5:30Þ

Note that as mentioned in the previous section, it can easily
be checked that the antiHermitian part of Ŵð3Þ is not given
solely by the five point diagram displayed there.
Now, for the sake of generality, imagine that we had

solved for Û1 asymptotically to order εk in the above
display. Then, introducing the variable

δ ≔
Δt
ε
;

we can develop an asymptotic series expansion in ε in the
scaling limit where δ is held fixed for the evolution operator
on the left-hand side of Eq. (5.28),

e−
i
2
δ
εÛ−1

1 ∘ exp½−iδσ� ∘ Û1

¼ e−
i
2
δ
ε exp

�
−iδ

�
σ þ ε

2

�
−

∂2

∂σ2 þ σ2
�	�

þOðεkÞ:

Equation (5.30) ensures that the gauge transformation
given in (5.29) solves the above displayed equality of
asymptotic series for the case k ¼ 3.
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