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A B S T R A C T

Zero Defect Manufacturing (ZDM) is an emergent and disruptive paradigm that aims to optimize industrial
process efficiency and sustainability by leveraging innovative and sophisticated data-driven approaches. It is
a technology intensive concept that has the ambition of achieving and maintaining ‘‘first-time-right’’ quality
goals in spite of varying processes and input material. As a result, developing ZDM applications might become
overwhelming for small enterprises due to the multitude of diverse platform, the lack of know-how, and the
need to adapt general purpose solutions to meet their needs. The Big Data Innovation and Research Excellence
(Bi-Rex) is an Italian consortium that aims to accelerate the industrial innovation process of small enterprises.
Within this consortium we developed a Big Data platform that enables adaptive analytics at the IT/OT boundary
by leveraging innovative solutions for the safe and automatic deployment of data-driven apps, using MLOps
and DevOps techniques and technologies, and evaluated it in real use cases provided by the world leading
industrial partners involved in the project.
1. Introduction

Industry 4.0 defines the disruptive and revolutionary advancements
enabled by IoT in industrial scenario (Boyes et al., 2018; Hofmann
and Rüsch, 2017). In fact, IoT represents an extremely powerful, easily
adoptable, and cheap solution to interconnect production machines
and human operators, paving the way for new advanced production
chains and a new era of time-critical, context-aware services for the
industries (Corradi et al., 2019, 2021). The sensing capabilities of IoT
devices, in particular, enable the acquisition of large amounts of data,
which can then be stored and processed, thanks to big data tech-
nologies and techniques. This allows for extrapolation of information,
the development of data-driven applications, and the optimization of
manufacturing processes.

One of the most compelling yet challenging objectives of Industry
4.0 is Zero Defect Manufacturing (ZDM) (Powell et al., 2022). ZDM is
a new paradigm that advocates the complete elimination of defects
through the adoption of smart ‘‘predict and prevent’’ approaches. In this
context, ZDM represents a disruptive evolution of quality management
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strategies towards a ‘‘first-time-right’’ goal that considers customizable
manufacturing processes and production planning as well as quality
management and maintenance aspects.

ZDM is a technology intensive concept, that requires capillary sens-
ing, continuous data acquisition, and Big Data platforms implementing
sophisticated analytics by leveraging a range of ML and non-ML meth-
ods and techniques, including multilayer perceptrons, convolutional
neural networks, recurrent neural networks, support vector machines,
digital twins, etc. (Caiazzo et al., 2022). On top of this, the analysis of
information collected from industrial devices and processes presents an
additional set of peculiar challenges, due to imbalanced data sets and
data quality issues (imperfectly labeled data, missing data, etc.). The
significant efficiency and business opportunities involved addressing
these requirements have attracted a multitude of providers that have
proposed a wide range of proprietary and open source technologies.
However, most (if not all of) these technological solutions are very
sophisticated and present a steep learning curve and considerable
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barriers to entry. They thus represent a serious challenge for Small-
Medium Enterprises (SMEs) that might lack the sufficient know-how
to properly exploit these new technologies. In addition, the significant
cost of Research and Development (RnD) departments for business
innovation can represent an obstacle for SMEs that dispose of a limited
budget (Masood and Sonntag, 2020; Amaral and Peças, 2021).

To address this issue, as part of the Industry 4.0 government plan,
the Italian Ministry of Economic Development sponsored the founda-
tion of 8 national competence centers, i.e., public–private consortiums
that attract universities and industries, each one dedicated to a specific
thematic aspect of Industry 4.0. More specifically, the consortium
aims to increase cooperation between public and private sectors and
the transfer of skills, technologies, and resources with a strong drive
towards open innovation.

Big Data Innovation and Research Excellence (Bi-Rex) is the compe-
tence center with a specialized focus on Big Data. Located in Bologna,
the capital of Emilia-Romagna, a region of Italy which is well known
for its industrial excellences - especially in the automotive and pack-
aging sectors, Bi-Rex includes world known partners such Bonfiglioli
Riduttori, SACMI, Aetna Group, IMA, Philip-Morris International, etc.
Bi-Rex aims at contributing to the growth of the digital manufacturing
enterprises from an Industry 4.0 perspective, fostering technological
innovation processes through research and innovation grants co-funded
by the Italian Ministry of Economic Development.

This paper presents a novel logical architecture that emerged from
the joint work of 2 of the projects funded by Bi-Rex: Big Data for Manu-
facturing (BD4M) and Dynamic EdgE computing for Plant MONitoring
(DEEPMON). Those projects aimed at building a Big Data platform of
general applicability within Industry 4.0 domain, respectively focusing
on the 2 functional layer within a smart factory physical perimeter:
the Information Technology (IT) layer and the Operation Technology
(OT) layer. In addition, we further explored opportunities to implement
adaptive analytics at the IT/OT boundary by realizing an innovative
solution that enables the safe and automatic deployment of data-
driven apps, more specifically Machine Learning-based applications,
through their entire life-cycle using DevOps and MLOps techniques and
technologies (Kreuzberger et al., 2022).

Achieving proper convergence between the IT and OT layers and
using tools that help to implement the concept of ZDM drives the
manufacturing sector toward the goals proposed by the current tran-
sition to Industry 5.0 (I5.0). This companion revolution brings three
fundamental pillars that push the Industry 4.0 transition forward in the
modern industrial landscape (Breque et al., 2021). As we will see in the
following sections, our platform goes towards the goals proposed by
I5.0, favoring human centrality in the evolutionary process, without
neglecting the resilience of the resources and the sustainability of
industrial progress.

The Bi-Rex Big Data platform enables a more agile development-
to-production process of such applications enabling SMEs to benefit
from the extrapolated information from the collected data, permitting
the development of various useful applications for ZDM, ranging from
the optimization of industrial process to reduce waste and improve
sustainability to self-reconfigurable processes that aim to maintain
‘‘first-time-right’’ strategies in spite of varying conditions (input mate-
rial, degraded machine efficiency due to wear and tear, etc.) through
the use of AI and ML techniques (Powell et al., 2022). The comprehen-
sive solution achieved by the Bi-Rex Big Data platform, that emerged as
the integration of the outputs from the BD4M and DEEPMON projects,
is being deployed and evaluated in real use cases provided by those
projects’ world leading industrial partners.

2. Related works

Several publications have attempted to offer architectures for the
industries to adopt ZDM. Magnanini et al. (2020) present a reference
2

architecture for industries considering implementing zero-defect man-
ufacturing. The first step toward a data quality management system
in ZDM is introduced in Caccamo et al. (2021) that proposes a hybrid
design that lowers the limitations and constraints imposed by the needs
of the earlier architecture. The four key strategies in the ZDM idea
are detection, prediction, prevention, and repair which are presented
in detail in Powell et al. (2021) and Caiazzo et al. (2022).

A widely accepted truance is that, in order to be put into practice,
ZDM applications of the aforementioned tactics needs data analytics
based on a range of ML and non-ML methods and techniques, includ-
ing multilayer perceptrons, convolutional neural networks, recurrent
neural networks, support vector machines, digital twins, etc., in order
to extrapolate essential information to apply the ZDM strategies (Ca-
iazzo et al., 2022). In turn, the effective implementation of analytics
solutions requires Big Data platforms that are both functional and well
structured, since they will be used to collect, store, and process data
using a variety of algorithms and techniques.

One of the first work in this direction is presented in Gokalp
et al. (2016). Here, Golkalp et al. present a framework that provides
conceptual features to ease the adoption of Big Data techniques in
future Industry 4.0 enterprises. Another conceptual framework along
with its key technologies, applications and some practical scenarios are
presented by Zheng et al. in Zheng et al. (2018). These two works are
both valid and well done, but they still present a conceptual solution.

More in general, a panoramic and theoretic overview of digital
manufacturing for Industry 4.0 is presented by Gerrikagoitia et al.
in Gerrikagoitia et al. (2019). There are other relevant works in lit-
erature but they address specific use cases or focus in tackling specific
aspects of Big Data for the manufacturing. For example, in Bolla et al.
(2021), the Matilda platform is presented. This solution aims to enable
vertical applications for Industry 4.0 by mainly focusing on the Cloud-
5G connectivity aspects. In Villalonga et al. (2020), the authors present
a data-driven method for updating edge components in a Industry
4.0 Big Data architecture. This work is very valuable and similar to
a feature presented in our solution, but it is strictly focused on the
presented method. In Jaskó et al. (2020) is presented a remarkable
work strictly focused on MES functionalities and their requirements in
Industry 4.0, one of the aspect addressed in our proposed solution. Two
theoretical studies and literature reviews for Industry 4.0 paradigm
adoption in SMEs are presented in Han and Trimi (2022) and Moeuf
et al. (2018). While, on the other hand, two valuable examples of works
with a more practical focus are Nikishechkin et al. (2020) and Sahal
et al. (2020). In the first one, Nikishechkin et al. address the aspects,
requirements and functionalities needed to develop and implement In-
dustry 4.0 platforms for specific parameters monitoring scenarios. The
latter, however, addresses Big Data and stream processing platforms for
predictive maintenance use cases.

So far, the realization of Big Data solutions specifically designed to
enable ZDM, and thus considering continuously changing production
contexts, that demand fast react times, has received only limited atten-
tion from scientific literature. The development of innovative Big Data
methodologies and tools designed to continuously adapt to changes
in manufacturing processes, e.g., by re-training, re-deploying, or re-
tuning analytics and decision making, represents a key step towards
the fulfillment of the challenging ZDM vision and goals.

3. Leveraging DevOps and MLOps for adaptive data analytics in
the edge

Recently, in Industry 4.0 scenarios the needs for major data flow
control, industrial processes management, and IT/OT architecture re-
configuration are increasingly assuming a crucial role. These needs are
driven by the necessity to dynamically handle a continuously evolving
manufacturing context, that demands prompt reactions to changes. For
instance, heterogeneous raw input material, unexpected events on the
production lines, possible hardware faults, local machine’s settings,
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software component life-cycle, and so on, introduce dynamic aspects
in the manufacturing process that are very difficult to face for any
company, and even more for SMEs that cannot dispose of a large
amount of resources and often adopt a very own custom IT solution.

The impressive technological advances, especially at the IT level,
pave the way for the auto-reconfiguration of manufacturing processes
and the widespread adoption of predict and repair techniques. For
instance, if a production line or machine is using a specific sampling
rate for a particular feature and its value begins to stray from the
range, an ZDM-oriented analytics solution will generate an alert that
will cause the dynamic sampling rate to increase because it is essential
to better monitor the feature and avoid a serious fault. The system will
reconfigure the machinery after confirming the source of the problem,
mitigating and reducing any potential waste and product flaws. This
machinery’s settings reconfiguration aspect comes along with another
emerging concept in Industry 4.0 scenarios, the locality. Often, it is
necessary to change the settings just of a specific machine/production
line within the whole shop floor. This reconfiguration has to be led by
IT layer and deployed on the single OT edge component, locally. The IT
layer has the global vision of the whole shop floor with edge nodes, and
it is responsible to drive the reconfiguration and deployment operations
on the OT level.

The application of machine learning techniques represents another
remarkable Industry 4.0 scenario that highlights the necessity of con-
tinuous integration between IT and OT levels (see Fig. 1). Usually, the
OT level is responsible of collecting data from the field, processing
those data, storing data locally and finally uploading them to the IT
level/Cloud. OT edge nodes do not have enough resources to train
machine learning models, they need to receive the trained models from
the IT layer, but the IT layer needs data from OT to train the models,
hence the necessity to have a continuous integration and to adopt
DevOps techniques between IT and OT emerges and becomes concrete.

The continuous integration and DevOps also enable the full soft-
ware components’ life-cycle management, scaling, and re-deployment.
However, managing ML-powered apps differs from managing regu-
lar apps, as ML-powered apps are typically made up of a variety of
software components and artifacts, as well as one or more Machine
Learning trained models. This pushes us to employ MLOps strategies
and techniques to manage and orchestrate the entire life-cycle of the
machine learning models, so that more accurate monitoring solutions
are needed for ML-powered apps in general and for the trained models
in particular. Because of this, monitoring represents the single most
crucial component of the machine learning process in production.
Monitoring enables us to identify any potential problems, such as data
and concept drift, model staleness, performance degradation, and other
issues. These issues can be countered by an effective monitoring process
of the following metrics: input metrics: data distribution, features range
of value, etc.; output metrics: accuracy, precision, recall, F1-score, etc.;
operational metrics: IO, CPU, Memory, throughput and latency of the ML
model end point, etc.

3.1. The OT level features

As discussed the OT features are strictly related to edge devices an
thus are related to low level problems to enable IoT.

3.1.1. Connectivity and communication
Enabling communication between different edge devices and be-

tween devices that compose the Industry 4.0 informatic sensing infras-
tructure. Therefore represent one of the most important backbones of
Industry 4.0 applications. In particular, this OT level feature includes
all solutions and strategies that enable the data flow between the
various components of the architecture and define common instruction
set to interact with edge devices. For example, the OT level includes
the communication protocol infrastructure, the data format adopted
to exchange information, and also all the communication technologies
adopted to enable connectivity. Moreover, the OT layer also enable
the connectivity between the edge devices and management solution
within the IT layer and the Cloud.
3

3.1.2. Data standardization and enrichment
Since the sensing layer of nowadays Industry 4.0 applications is

typically composed by devices heterogeneous in both nature and data
acquire. Such condition poses a challenge for future uses of such data.
Due to its proximity with data sources, the OT layer also includes the
necessary procedure of data standardization and their improvement via
metadata in order to simplify and foster the development of high level
applications.

3.1.3. Caching
Data memorization can be implemented within different levels of

an Industry 4.0 infrastructure. However, within each level it exhibits
different characteristics. Within the OT level, data memorization is
performed by limited storage resources that are deployed within the
sensing networks. As a result, in this layer the data is mainly cached
to then be forwarded toward the IT layer which can then elaborate the
sensed information. However, by means of OT caching, it is possible
to implement simple yet effective strategy to reduce network resource
consumption (i.e. data compression) and also increase data availability,
by decoupling the IT layer for edge devices that presents periodic
downtimes.

3.1.4. Devices orchestration and application specific features
Due to its close proximity to edge devices, both sensors and actua-

tors, the OT is also encharged to implement specific features tailored to:
devices nature, applications requirements, and users requirements. For
example, for production machines it can result useful enabling rapid
reconfiguration of the sensing resources (more samples within each
timeframe, more precision, etcetera) to better adapt to different produc-
tion stages. Similarly to reconfiguration, the OT layer also implements
the diverse process that devices might exhibit for firmware updates.

3.2. IT level features

Contrary to the OT, the IT is designed to implement high level
functionalities to support the development of new applications, training
machine learning models, while also providing effective tools for the
management of a whole production plant.

3.2.1. Data ingestion layer
Also the IT layer disposes of a specific set of mechanisms and

strategies to gather data acquired via edge devices connected to the
production machines. However, within the IT layer such procedure
is achieved via a proper ingestion layer which is designed to enable
further elaboration on the data gathered. Moreover, such ingestion
layer is not targeted only to connect to devices but also to more
complex data sources that Industry 4.0 architectures might present,
such as OT instances, databases, remote data lakes, and even enterprise
and business applications.

3.2.2. Data storing
Contrary to the OT level, the memorization of sensed information

within the IT level is not solely designed to optimize network usage and
provide a simple data filtering but also to support the application of
such information. In particular, within the IT level the data are stored
within data lakes which enable long term persistence, fault tolerance
strategies, and reliable endpoints for Industry 4.0 applications.

3.2.3. Data processing
While within the OT layer the data might be quasi-elaborated via

data standardization and enrichment procedures, the IT layer integrates
more sophisticated processes that allow the consumption of such data.
More specifically, the data processing within the IT layer includes the
further standardization of the data, since different data sources might
adopt different formats, and mechanisms that enable data analysis. For
example, the IT level implements mechanisms for querying the data
lake, implementing data aggregation, and so on. Finally, within the
IT layer, the data processing is also supported on both batched and
streamed data.
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Fig. 1. The IT and OT levels in a smart factory.
3.2.4. Data visualization
Another aspect that differentiates the IT layer from the OT layer

is the integration of solutions for data visualization. In particular, the
IT layer can also include User Interfaces that allow users to directly
interact with the data or utilize the data processing mechanisms and
APIs disposed by the adopted solution to extrapolate information of
interest. Moreover, due to the heterogeneity of the potential data
sources, the IT level solutions typically supports diverse views, which
can also be customize, that allow end-users, data analyst and even
business stakeholder to visualize the data stored within the local data
lake with at different level of abstraction.

3.3. Combining IT and OT for DevOps and MLOps functionality

The logical partition of the Industry 4.0 architecture in the two
layers: IT and OT, enables modern platforms to not only better orga-
nizing the process of acquisition, storing, elaboration and utilization
of production data, but also define solutions that support DevOps and
MLOps within the production plants perimeters.

In fact, combining DevOps and MLOps allows the management of
ML-powered applications, which typically consist of a software ap-
plication component and an ML model that powers the latter. Such
applications need three things in order to be supported: a comprehensive
view of the data generated within the manufacturing facility ; a sandbox
where DevOps products can be safely developed, tested, and polished; and
finally, a location with enough computing power to train, test, version,
and store the ML models. In this context, the IT layer covers all the re-
quirements for the supervision of multiple data sources, hence multiple
OT instances, and integrates all the required function to reorganize,
process, and analyze the data received. Moreover, since it is logi-
cally separated from the edge nodes, it defines a component in which
develop DevOps and MLOps functionalities.

On the other hand, the OT layer, which is instantiated on top of each
production machine, is a component with a limited view on the overall
production plant but is able to meet all specific requirements of the
machine sensing devices and gracefully update parameters, reconfigure
devices, or even automatically update software components running on
edge nodes. Therefore, the OT is able to actively manipulate all edge
node in order to effectively and autonomously deploy and implement
the strategies and ML model finalized in the IT layer. As a result, via
the IT/OT architectural approach, SMEs can easily integrate Industry
4.0 functionalities while also gradually developing and improving their
private IT ecosystems. Another reason for separating the layers is that,
when compared to pure IT companies (e.g., social media, e-commerce,
4

and so on), SMEs cannot produce large amounts of data, so the BIG
data collected is insufficient to perform extensive and in-depth analysis,
such as using Deep Learning algorithms, which have proven to be very
successful in recent years, requiring only big data. To address this issue,
we must switch from a model-centric to a data-centric approach. The
latter promotes data enrichment, refinement, cleaning, and cleansing.
The separation between the two layers is essential, with each layer
attempting to enrich the collected data as much as possible using the
information and context in which it exists. E.g OT layer adding the
context information and the IT layer adding extensive statistics.

4. The Bi-Rex Big Data platform

The Bi-Rex Big Data platform emerged from the integration of the
outcomes from the Big Data for Manufacturing (BD4M) and Dynamic
EdgE computing for Plant MONitoring (DEEPMON) projects that were
financed by the research and innovation grants, co-funded by the Italian
Ministry for Economic Development. In these projects, the universities
of Ferrara and Bologna collaborated with a pool of world leading
industrial partners, such as Bonfiglioli Riduttori, SACMI, Aetna Group,
Philip-Morris International, Poggipollini, etc., to develop Big Data so-
lutions of general applicability and data-driven applications of specific
applicability to each Industry 4.0 domain. More specifically, BD4M
addressed the requirements at the IT level while DEEPMON focused
on OT layer features.

Within those projects, academic and industrial researchers worked
closely together by adopting an open innovation approach, which in
the manufacturing sector represents a remarkably innovative approach
to leveraging collaborative intelligence of various industries. This is in
contrast to the close innovation approach, which has always been the
way to go in industries, particularly in the Italian one.

The Bi-Rex Big Data platform represents a comprehensive vertical
solution capable of addressing the manufacturing industry needs to
support business applications such as Product Lifecycle Management
(PLM), Customer Relationship Management (CRM), and Enterprise Re-
source Planning (ERP). In addition, the Bi-Rex platform introduces an
innovative solution to enable adaptive analytics at both the IT and OT
levels.

4.1. BD4M

The BD4M project is designed to overcome the limitations of the
main analytic solutions available on the market by creating a general
purpose Big Data platform for Industry 4.0 applications. In particular, it
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integrates a series of tools and plug-and-play services that support the
4 main operations that Big Data applications exert on data: collection,
storage, processing, visualization and analysis.

Data collection is the comprehensive set of features and tools that
allows BD4M to gather data from heterogeneous sources such as sen-
sors, remote storage, the Cloud or other platforms, and allocate it
within the local storage service. To achieve this BD4M leverages on
common messaging solutions designed for Big Data applications. In
particular, BD4M implements both Kafka and MQTT brokers, which
allows the platform to connect to remote sources and transfer data in
a publish–subscribe fashion.

BD4M complete the ingestion process by also integrating specific
tools for storage the gathered data. In particular, BD4M disposes of
an internal data lake that allows for long-term storage of the data
providing a unique endpoint for Big Data applications to acquire data
of interest. Since BD4M ingestion process can interact with an highly
heterogeneous set of data sources, the platform also support the contex-
tual storage of the collected data in order to optimize the use of storage
resources.

The platform further supports the applications by also providing a
set of features and capabilities to process and analyze the data col-
lected. More specifically, it enables data manipulation and validation
from various types of machines at multiple levels of abstraction (sensor,
single machine, production line and finally multi-line or multi-plant)
via querying or more sophisticated known algorithms like map reduce.
In addition, the platform supports these operations on both structured
and unstructured data.

Finally, BD4M also includes end-user decision-making tools, al-
lowing the definition of comprehensive applications directly within
the platform. It also offers an internal customizable Web-based dash-
board service that allows raw and processed data to be visualized in a
human-readable format.

4.2. DEEPMON

DEEPMON is designed to mainly tackle the typical issues of any
industrial OT layer. DEEPMON consists of an edge computing archi-
tecture deployed close to industrial machines or production line on an
edge device at OT level. It is responsible of reading data from field,
enriching those data according with a company-provided data model
with a specific ETL module, storing and visualizing the processed data
on the edge. In addition, it provides an application service that enables
the OT-IT communication, this service is a messaging mechanism based
on Kafka. DEEPMON has the pivotal role of enabling Devops and MLops
operations on the edge node.

The logical architecture depicted in Fig. 2 has been implemented us-
ing the Siemens Industrial Edge1 (Siemens IE), more in details, Siemens
IE Simatic Edge (nanobox pc) as edge node device, and IE Man-
agement deployed on a VM in the private Cloud of Bi-Rex as a IT
component. The Simatic Edge is an edge node directly installed on the
machine/production line that runs the Siemens Runtime Environment.
This system, despite being proprietary, has some points of openness, for
example it is based on Docker Engine and it is able to run third-party
and self-developed applications. The IE Management is the component
at IT layer responsible of handling all the edge devices, deploying
field connectors and applications. It also manages all the security and
accounting aspects of the solution.

The primary OT level task is the field data connectivity. To read data
from the shop floor is not a trivial task since the reading process can be
very heterogeneous, because every machine can have its own specific
protocol and data model. We developed an OPC-UA connector since it
is one of the most used field communication protocol, and we tested
it by reading data from a real machine, the DMU 65 Monoblock (DMG

1 https://siemens.mindsphere.io/en/industrial-iot/industrial-edge
5

Fig. 2. Logical architecture for cloud-to-edge DevOps and MLOps functions.

Mori2), installed in the Bi-Rex tech lab. Once the data has arrived on the
edge node, it is delivered to the edge microservices using MQTT. The
first service that processes and transforms data is a ETL module. This
service is responsible of enriching and integrating the raw data read
according a configurable data model. The ETL module is a dockerized
application developed by DataRiver s.r.l.3 called MOMIS (Magnotta
et al., 2018). MOMIS is a data integration service that consumes the
raw data via MQTT, enriches them with meta information through a
configuration file and then sends the transformed data to the Storage
Service via HTTP/REST and to the IT layer via Kafka. MOMIS provides
a contextual meaning and standardization to the simple raw data
coming from the field.

We developed and deployed on the OT edge node a Storage Service
to provide degree of consistency and persistence closer to the field. In
this way other modules can consume the data received and perform
some action such as visualization and execution of machine learning
models. This helps in finding errors or failures from machines, avoiding
the propagation of errors to the upper layer. Another crucial role of
the edge Storage Service is to provide data persistency to tackle edge
node connection discontinuity. During periods of disconnection, the
Storage Service save and store data so that it can be transmitted to
IT when connectivity is restored. The Storage Service is composed by
a No-Sql DB and a HTTP front-end written in node that exposes all the
database CRUD operations via HTTP/REST. The node server makes the
entire systems independent from the specific database and this allow
to change its implementation without any consequence on the other
services. We adopted MongoDB as proof of concept inside the Storage
Service.

Finally, DEEPMON provides an interface that enable the dynamic
and run-time deployment of new services or configuration from IT layer
directly to the OT node.

5. Automatic deployment of DevOps products and ML models in
the Bi-Rex platform

We specifically designed the Bi-Rex platform to support the auto-
matic deployment of new or updated services and ML modules. This

2 https://it.dmgmori.com/
3 http://www.datariver.it

https://siemens.mindsphere.io/en/industrial-iot/industrial-edge
https://it.dmgmori.com/
http://www.datariver.it
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functionality is provided by an innovative component, called MLOPS-
DEVOPS Controller (MDC), which cooperates with DEEPMON and
BD4M. MDC enables the automatic and dynamic service and ML model
deployment by including and exploiting the UC and MIINT middleware
modules. The latter acts as a bridge with state-of-the-art industrial edge
devices, such as those produced by Siemens.

Powell et al. (2022) proposed a framework for further classifying
the existing literature on ZDM. The cooperation between BD4M and
DEEPMON with the MDC and UC module enables the Bi-Rex solu-
tion to be compliant with Zero Defect Manufacturing. Based on this
framework, our applied solution focuses on the product, process, and
people at the strategic, tactical, and operational levels, both single-stage
and multi-stage, using various technologies such as AI, Big Data, and
ML/DevOps.

Using the Bi-Rex platform will allow companies like Bonfiglioli
Riduttori4 and SACMI5 to employ data-driven and machine learning
pplications to optimize their operations and increase efficiency. Bon-
iglioli Riduttori, which manufactures gearboxes, wants to use data
o develop and deploy a predictive service to forecast possible faulty
earboxes without the necessity of passing them through a testing
achine. This would optimize and speed up the production process,
hich can be very costly. SACMI, a manufacturer of ceramic production
lants, wants to use ML-based applications to optimize the Continua+
ine6 and assist operators in minimizing defects and rejects during the
rocess of finding the optimal configuration of the production line. This
ould lower operating costs and make the production process more

ustainable.
With the help of the Bi-Rex platform, SMEs should be able to quickly

nd effectively integrate Zero Defect Manufacturing (ZDM) solutions
nto both new and pre-existing production processes. This cuts down
n the time and resources needed to produce high-quality products

‘first-time-right’’. The Bi-Rex solution can keep track of the product
rom the raw materials all the way through to the finished, marketable
roduct. The MLOPS-DEVOPS Controller can be used to deploy and
pdate current services and ML models, which can then be used to
utomatically and dynamically adjust the process parameters.

.1. BD4M and DEEPMON composition for an IT/OT architecture

Thanks to their design, BD4M and DEEPMON represent two ef-
ective components to define a comprehensive IT/OT architecture for
ndustry 4.0. BD4M covers all the requirements required by an IT layer
ince it is able to supervise multiple data sources, hence multiple OT in-
tances, and integrates all the required function to reorganize, process,
nd analyze the data received. On the other hand, DEEPMON, which is
nstantiated on top of each production machine, is a component with

limited view on the overall production plant but it is able to meet
ll specific requirements of the machine sensing devices and gracefully
pdate parameters, reconfigure devices, and even automatically update
oftware components running on edge nodes.

Hence the cooperation between these two platforms defines a com-
rehensive vertical solution mainly enabled by the BD4M ingestion
ayer. In particular, thanks to the BD4M ingestion layer, diverse DEEP-
ON instances, which are related to different machines, are able to

orward data to a shared data lake, where both consumers and devel-
pers can access, manipulate, and utilize the collected data for both
evOps and machine learning, creating innovative apps increasing the
alue to the business.

The communication between the two platform is achieved by a
essage-oriented middleware which decouples various data sources

rom the consumer, making our general architecture fitting most of the

4 https://www.bonfiglioli.com
5 https://www.sacmi.com
6

6

https://www.youtube.com/watch?v=Bxu9fXBXzOQ
work machines and the several monitoring and actuation tools present
in the different industrial environments. More specifically, we opted for
Apache Kafka, an open source messaging broker that enables the com-
munication between multiple producers and consumers. This tool sup-
ports the durable retention of messages and permits to handle a huge
amount of data. Moreover, since both BD4M and DEEPMON have been
designed as primary stand-alone platforms, and thanks to the adoption
of a message-oriented communication middleware, the composition
between the two can be achieved by a fully distributed architecture,
for example, by deploying BD4M in Cloudlets if the computational
resources within the production plant are insufficient.

5.2. MLOPS-DEVOPS controller and automatic deployment workflow

While the upstream of information is managed by the BD4M in-
gestion layer, in order to define a comprehensive and vertical solution
we developed a component, called MLOPS-DEVOPS Controller (MDC),
which realizes the monitoring, (re)configuration, and (re)deployment
of software components implementing the adaptive data analytics,
leveraging methodologies and tools from the MLOps and DevOps
worlds. This design has been fostered by the variety of different
environments which characterize SMEs.

In turn, MDC is composed by two main modules, the Update Con-
troller (UC) and the MIINT Middleware. In addition, this service also
contains a container registry that provides an internal reliable storage
for Docker images and ML models for supporting the UC and MIINT
Middleware operations. MDC is the component that enables the au-
tomatic and dynamic deployment of services, new or updated, and
ML models directly on the DEEPMON edge nodes without the need of
human assistance. Indeed, it plays a crucial role of enabling Devops
functionalities on the edge devices within the OT layer. It is responsible
to trigger the automatic deployment of a new service, to update an
already deployed service, or even to automatically deploy a new config-
uration for the edge running services. All these operations are typically
edge platform dependent, and this could result in a big constraint
in an even more heterogeneous industrial scenario. To overcome this
limitation, MDC includes and exploits the MIINT Middleware modules
that exposes Standard API to perform the above mentioned operation
in fully platform-agnostic manner (Venanzi et al., 2021). By giving
more detail, MIINT middleware is a service oriented architecture (SOA)
middleware typically deployed at IT level that has the pivotal role of
abstracting the underneath edge layer implementation by exposing a
set of REST Standard APIs that allows to automatically and dynamically
manage any industrial edge platform. MIINT middleware is composed
by micreservices and it is exploited to deploy new services and ML
models on the DEEPMON edge nodes, as well as to update the current
deployed ones. In order to do so, MIINT middleware includes and
interacts with a management component provided by SIEMENS; the
Industrial Edge Management. MIINT acts as a bridge with the SIEMENS
edge solution by interacting with the SIEMENS Edge Management. In
the two following sub sections we detail better these two components
and how they work.

5.2.1. Update controller
The Update Controller (UC) is a module of the MLOPS-DEVOPS

Controller (MDC) component deployed into IT layer, it is responsible
for checking the presence of an updated version of a service or Machine
Learning (ML) model and deploy it on the DEEPMON edge node.
The Update Controller plays a crucial role as a monitoring system to
apply MLOps principles in our architecture, more precisely, its job is
to continuously keep in check the BD4M container repository for a
new version of a ML model or service. These new ML models and/or
service updates are generated by BD4M architecture, that receives data
from DEEPMON and checks for possible model drifts or performance

degradation that can often occur in manufacturing scenarios.

https://www.bonfiglioli.com
https://www.sacmi.com
https://www.youtube.com/watch?v=Bxu9fXBXzOQ
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When BD4M detects a model drift, that can simply occur by chang-
ing the type of the used material, or a drop in model performance,
it re-trains the model with the new data and makes the new model
available. Once the UC detects this new model or service updated
version, it downloads the model/service version and triggers the MIINT
Middleware module for deploying the new model/service and updating
the DEEPMON behavior on the edge node. In summary, the UC has the
job of monitoring the BD4M repository and checking if a new service
version or ML model is available for the system, and then it invokes the
MIINT Middleware module for updating the edge node ML processes,
and services.

5.2.2. Siemens industrial edge adoption in Bi-Rex solution
Due to the widespread adoption of SIEMENS products adopted for

IIoT in SMEs, we integrated Industrial Edge platform, which allows to
manage both the production lines and the gathered raw data stored
within the cloud service with ease. SIEMENS Industrial Edge solution is
composed by two main entities, the Industrial Edge Management (IEM)
and the Industrial Edge Device (IED), running the SIEMENS Industrial
Edge Environment. Usually, in a typical SIEMENS Edge Deployment
there is an instance of IEM and one or more instances of IEDS, where
IEM has visibility of all IEDs and it is responsible of piloting them,
deploying field connectors and application, and handling security and
updating activities. While, on the other hand, the IEDs directly interacts
with industrial machinery, runs edge services, and manages all the
sensing and actuating tasks. The Bi-Rex solution has been deployed
on the SIEMENS Edge solution stack, in particular, DEEPMON is runs
on a IEDs and it exploits all the functionalities provided by SIEMENS
to gather data from the field and for running edge services and ML-
powered applications, while MDC includes IEM to manage all the
plant’s nodes and it triggers the automatic and dynamic deployment
of services and ML models.

Typically, both of these two entities are managed, and all the tasks
are piloted, by a human operator from a Web Graphical User Interface
(GUI) without leaving space to any kind of automation and dynamicity.
To tackle this strong constraint, SIEMENS developed a set of REST APIs
to automate the piloting of IEM and IEDs and exclusively provided them
to us asking for beta testing for the project. These APIs directly and
programmatically interact with IEM and IED by enabling the remote
and dynamic piloting and deploying of services and configurations.
We used them to develop and deploy our vertical Bi-Rex solution, and
finally we reported some feedback to SIEMENS.

More in detail, this set of REST APIs enables three categories
of functionalities: Authentication, Device Management, and Service/
Application management. The Authentication category provides all
those set of functionalities to log the user and permit him to perform
all other operations, to invoke any other API the user must be authen-
ticated. The Device Management APIs enable an authenticated user
to fully control the status and the life-cycle of the edge devices. For
example, these functionalities allow to create, delete, and activate the
edge devices. Finally, the Service/Application subset of APIs allows
to un/deploy services and applications on the devices, to update a
service/application to a new version, to reconfigure a running service,
and to check the applications/services status.

5.2.3. MLOPS-DEVOPS workflow
To summarize, The BD4M platform receives enriched data from

DEEPMON, it analyzes them and checks if there is some ML model
drift or performance degradation. If so, BD4M create a new service
version or re-trains the ML model of the ML-powered application and
publishes it on its repository. The UC, inside the MDC, detects the
repository update, downloads the image and triggers the DEVOPS or
MLOPS operation on the MIINT middleware. The MIINT middleware
module transforms the received request and invokes the remote pi-
loting REST APIs on the IEM. Finally, the deployment API sends the
command to IEM to deploy the new service/model on the IED by
7

Fig. 3. MLOPS-DEVOPS Workflow.

updating DEEPMON processes. In addition to these steps, the shop floor
operator and/or the domain specialist can develop a new ML model
or Service image and upload it directly into the repository. The whole
MLOPS-DEVOPS workflow is depicted in Fig. 3. In particular, the figure
highlights that the full workflow has six distinct steps:

1. DEEPMON on the Siemens IED reads data from the field machin-
ery

2. DEEPMON’s Momis service enriches the raw data with meta-data
of company’s datamodel

3. BD4M’s services analyze the enriched data received and if it
detects a model drift, BD4M re-trains the ML model and saves
it on the repository

4. The UC continuously monitors the BD4M repository for a new
service version or ML model

5. If UC detects a new service version or ML model, it downloads
it and triggers the MIINT middleware

6. MIINT middleware pilots the IEM by invoking the deployment
request for a new deployment on the DEEPMON IED

In addition to the above described six steps, we added step 0 to
underline where the human factor is involved in the loop. It is worth to
be noticed that the operator can trigger the MLOPS-DEVOPS workflow
at any time by uploading a new model/image on the repository, or
he/she can star-up the whole process by doing it at the beginning.
From the point of view of Industry 5.0 pillars, we want to underline
that our model helps the operators to have a central role in the factory
operation without having to be expert technicians in virtualization
technologies. Our MIINT Middleware and UC components can take
charge of change detection and automatically expose new updates and
features in the deployment (see steps from 3 to 6 in Fig. 3), allowing
OT-level workers to be agnostic with respect to knowledge of the
tools used internally by our platform. Furthermore, our deployment
goes toward a sustainable industry thanks to the aim of ZDM to have
a zero-waste production plant. Ultimately, we respect the resilience
principle of the I5.0 transition by implementing a deep knowledge of
the draft in plant operations that could lead to unplanned downtime,
mitigated by the ML continuous analysis of the production plant’s
working parameters.

6. Bi-Rex solution implementation, experimental tests, and results

In this section, we show the potential of the integrated Bi-Rex solu-
tion. Then, we will present our testbed arrangement and the extensive
testing of our implementation. We tested the scaling capability of our
middleware in order to understand the load peak that the Siemens
Industrial Edge platform can manage.
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Fig. 4. Query builder features.

6.1. Bi-Rex platform visualization capabilities

In the next paragraphs, we will show the advanced monitoring func-
tions of the Bi-Rex platform. We reiterate that the platform is capable
of managing the variations that occur on the production lines under
monitoring in order to correct or improve the behavior of running
applications on Siemens devices and on the edge of the network. Our
platform is in line with the concept of the closed-loop control system,
reiterated by the Industry 4.0 transition, which aims to minimize hu-
man interventions and try to bring production lines as close as possible
to the definition of zero defect manufacturing.

Fig. 4 shows the great possibilities that the powerful query builder
offers to the final users of the Bi-Rex platform. By means of queries
written in MongoDB Query Language (MQL),7 users can selectively
create graphs based on the data received by the devices at the edge
of the network.

Instead, Fig. 5 shows two examples of complete dashboards built
with the query builder. Through the visualization tool used, it is possi-
ble to continuously update the graphs in order to detect any data drifts
and then prepare a new model or a new configuration to be updated
automatically on the devices responsible for gathering and tagging the
data coming from work machines.

In the next sections, we will test the operation of the application
and configuration update loop based on the needs that arise during
the production cycle itself, without the need to carry out cumbersome
post-analysis evaluation or even to have unexpected downtime of the
production lines.

6.2. Middleware performance tests

We arranged a testbed deployment composed of an Ubuntu virtual
machine running our Miint Middleware (Venanzi et al., 2021) that
receives the requests for deployment of new services on the Siemens

7 https://www.mongodb.com/
8

Fig. 5. Full output dashboards.

on premise installation. We used the IaaS OpenStack8 to provision
the virtual machine running the Miint Middleware with the following
characteristics:

• Operating System: Ubuntu 20.04 LTS,
• Hard Disk: 150 GB,
• RAM: 16 GB,
• CPU: 4vCPU.

The Miint Middleware component is the access point for all the
clients that want to interact with the edge ecosystem, in our case the
Siemens Industrial Edge. It provides a REST API interface that masquer-
ades the direct access to the edge environment. Our deployment allows
decoupling of the callers from the particular subsystem that manages
the gathering of work machines data at the edge of the network. In this
way, the data collection subsystem becomes completely independent

8 https://www.openstack.org/

https://www.mongodb.com/
https://www.openstack.org/
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from the caller, and we can in the future replace it with whatever
technology we want simply by changing the business logic executed
by the controller following the receipt of a particular REST call.

The use case we tested covers the steps depicted in Fig. 3. The
deployment we used in the tests includes a physical Siemens edge node
on OT level, namely Siemens SIMATIC IPC227E, and a VM running
the Miint Middleware on IT level. This is the minimal deployment
for running our deployment performance test. The actual deployment
of the presented architecture can manage many node devices at OT
level, while at IT level, BD4M and MLOPS-DEVOPS Controller are
components based on the Service Oriented Architecture (SOA) principle
and they can be deployed in a distributed fashion on many VMs or even
in the cloud. As stated in Section 6.1, from the data sets stored in the
BD4M platform, some drifts may emerge from the normal operation
of the working machines at full capacity. Through the graphic display
of the trend of the parameters under observation and the execution
of ML algorithms that analyze the trend of the data coming from the
work machines, the Bi-Rex platform can establish control thresholds
and take corrective actions when these are exceeded. In these cases, it
is essential that the platform acts in a targeted and fast way to correct
the gathering of data or the tagging of the same at the OT layer, where
the applications run.

We consider the case of an out-of-scale parameter and the need
to update an application that acts as a connector at the OT layer, so
that the data can be read at a higher frequency, solving the problem
found at the IT level. We want to test the scaling capability of the Miint
Middleware in receiving and forwarding simultaneous requests coming
from the Update Controller in order to update running applications on
the edge of the network. Based on the type of request, our middleware
service executes corresponding commands on the Siemens Industrial
Edge Management (IEM). In this test, we simulated the requests for
deployment of a connector on the Siemens Industrial Edge Device
(IED) with updated configurations with respect to the older version.
We measured the time between the deployment request and the REST
response stating that the IEM took charge of the request. We send
asynchronous requests, i.e., we send requests to deploy a new service
without being aware of any other requests managed by the Siemens
ecosystem at that moment. In this way, we want to simulate a typ-
ical asynchronous and sequential request submission model. To send
asynchronous REST requests we built a Collection with the Postman
tool9 and scripted the asynchronous execution of the calls using a
Postman CLI, i.e., Newman,10 and a script executed with node.js.11 The
Collection contains a POST REST request that provides a compose.yml
file used by Siemens to deploy the corresponding service on the device.

Fig. 6 shows the different trends of the round trip time belonging
to the requests sent with different delays from each other. With round
trip time we refer to the time needed by the middleware to process the
service deployment request and to deliver it to the Siemens Industrial
Edge platform, plus the time to deliver back the ACK answer. More in
detail, the round trip time is calculated from when the script sends the
request to when it receives the answer from the IEM. The round trip
time is actually the time required for the IEM to take charge of the
execution of the service deployment request. Each series is identified
by a different delay between the requests. For each series, we sent 20
asynchronous requests and we repeated the test ten times. So each point
in the graphs is the average round trip time of ten tries. The abscissa
axis shows the timestamp regarding the sending of each request, while
the ordinate axis shows the round trip time

As we can see in Fig. 6, our Miint Middleware is scalable and
capable of managing all requests sent to it with the selected delays.
We tried lowering the delay from 5 to 0.25 s between consecutive

9 https://www.postman.com/
10 https://github.com/postmanlabs/newman
11
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https://nodejs.org/
requests. The response of the Siemens subsystem occurs with good
linearity within 30 and 31 s. In Fig. 6, particularly for use cases where
the delay is 5 s and 2 s, we find peaks that are configured in the range
of 2.5% of the total time (see in Fig. 6 the values at timestamps 30, 35,
and 40 in the case of using 5 s of delay, and for timestamps equal to 32,
34, and 36 in the case of using 2 s of delay). Given the general purpose
nature of the devices in question, we think that these values of variance
are entirely negligible and dependent on the processes that the Siemens
devices are performing at that particular time and the requests queue
load on the Siemens Industrial Edge Management.

In the face of a low delay between successive requests, we noticed
a drop in some requests from Siemens Industrial Edge as it was unable
to manage them. More precisely, under a delay of a second between
subsequent requests, Siemens Industrial Edge drops some of them.
We discovered the dropping of the requests using the packet capture
mechanism on the machine running the middleware, by executing the
tcpdump12 command. We found that our middleware forwards all the
packets to the Siemens IEM, but not all the requests are executed, so
we can state that the drop is done from the Siemens counterpart.

In Fig. 7 we show the number of requests performed successfully
(y-axis) for each group of 20 requests sent at related delays (x-axis).
By increasing the delay between subsequent calls, which take place
asynchronously anyway, the success rate increases, settling at 100% of
the calls when the delay increases beyond one second.

7. Conclusions

To accelerate the adoption of ZDM, with significant advantages in
terms of efficiency and sustainability, it is crucial to provide adaptive
Big Data solutions designed for industrial applications. In particular,
supporting SMEs in the process of revolutionizing their infrastructure
represents a key step to enable local economies thriving.

With this goal in mind, the Bi-Rex consortium developed a compre-
hensive and vertical Big Data solution that addresses the data analytics
needs at both the IT and OT layers. Our solution also includes a
mechanism for safely and automatically reconfiguring, retraining, and
redeploying analytics-oriented software components at the industrial
edge, enabling a more agile development-to-production process.

In accordance with the classification proposed by Powell et al.
(2022), the Bi-Rex Big Data platform represents a single-stage and
multi-stage solution based on Big Data Analytics and Machine Learning
technologies that can be applied at the strategic, tactical, or operational
level for long, mid, or short term decisions.

Our proposal aligns with Powell et al.’s (2022) vision of ZDM
as a multi-faceted approach that considers the product, process, and
people at various stages of the value chain, and it provides a possible
implementation of the reference architecture for ZDM proposed in Mag-
nanini et al. (2020). More specifically, the Bi-Rex Big Data platform
aims at advancing ZDM with a particular focus on the zero waste
value chain and ‘‘first-time-right’’ concept that follows the principle of
feedback loop described in Myklebust (2013) for enabling Dev/MLOps
operations and providing machine or production line reconfiguration
features. The proposed solution includes DEEPMON, which provides
data standardization and integration, as well as storage and visualiza-
tion services, enabling DevOps and MLOps operations on the node.
BD4M, on the other hand, offers IT support, analysis features, and
end-user decision-making tools, and is also responsible for triggering
Dev/MLOps operations, making the solution scalable. The Bi-Rex Big
Data platform aims to overcome the global challenges of adopting ZDM
by providing SMEs with an easily configurable, all-in-one solution that
can facilitate the adoption of ZDM in their environments and reduce
the digital divide.

12 https://www.tcpdump.org/

https://www.postman.com/
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Fig. 6. Trends of Miint Middleware responses for different delays.
Fig. 7. Dropped packets rate.
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