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HODOGRAPH CURVES IN EXPONENTIAL-POLYNOMIAL SPACES∗
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Abstract. In the past few decades polynomial curves with Pythagorean hodograph (PH curves)
have received considerable attention due to their usefulness in various CAD/CAM areas, manufac-
turing, numerical control machining, and robotics. This work deals with classes of PH curves built
upon exponential-polynomial spaces (EPH curves). In particular, for the two most frequently en-
countered exponential-polynomial spaces, we first provide necessary and sufficient conditions to be
satisfied by the control polygon of the Bézier-like curve in order to fulfill the PH property. Then,
for such EPH curves, fundamental characteristics like parametric speed or arc length are discussed
to show the interesting analogies with their well-known polynomial counterparts. Differences and
advantages with respect to ordinary PH curves become commendable when discussing the solutions
to application problems like the interpolation of first-order Hermite data. Finally, a new evalua-
tion algorithm for EPH curves is proposed and shown to compare favorably with the celebrated de
Casteljau–like algorithm and two recently proposed methods: Woźny and Chudy’s algorithm and
the dynamic evaluation procedure by Yang and Hong.

Key words. exponential-polynomial curves, B-basis, evaluation, stability, pythagorean hodo-
graph
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1. Introduction. Ordinary polynomial curve segments with the Pythagorean-
hodograph (PH) property have been extensively studied [3], and their construction
has been satisfactorily extended also to spaces spanned by algebraic-trigonometric
polynomials [2, 5, 6, 10, 11]. Although spaces spanned by algebraic-hyperbolic poly-
nomials have close analogies with the ones spanned by algebraic-trigonometric poly-
nomials (see section 2), on the one hand they offer complementary solutions and,
on the other hand, their handling might require some additional caution which is
important to underline. Indeed, in the remainder of this manuscript we first show
(see sections 3 and 4) that the constraints to be satisfied by the control points of
the algebraic-hyperbolic Bézier curve segments in order to achieve the PH property
mimic very closely the necessary and sufficient conditions known in the polynomial
and algebraic-trigonometric cases. In addition, the computed expressions for their
fundamental characteristics (parametric speed or arc length) seem to be very simi-
lar. But, when used in application contexts like interpolating C1 Hermite data (see
section 5), algebraic-hyperbolic Bézier curves allow one to get regular curves with-
out undesired loops or self-intersections, whose shapes differ from those achievable
by means of algebraic-trigonometric Bézier curves. For instance, when considering
the planar Hermite data of Figure 1, none of the four solutions (see [3, Chapter 25])
provided by the ordinary polynomial PH quintics are free of loops. Instead, when the
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Italy (lucia.romani@unibo.it).
‡Dipartimento di Matematica “Giuseppe Peano”, Università di Torino, Torino, Italy (alberto.
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PH
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Fig. 1. The four planar PH interpolants to the points r0 = (0.1,−0.5), r5 = (0.4, 0.15) and
associated first derivatives di = (−3.5, 10), df = (6.5, 2.3) (here plotted with a scale factor of 1/5 to
fit into the picture). As for the meaning of the notation ++, +−, −+, −− the reader can consult
[3, Chapter 25].

same Hermite problem is solved by using either algebraic-trigonometric PH (ATPH)
curves or algebraic-hyperbolic PH (EPH) curves, for suitable choices of the free pa-
rameter (which both families are equipped with) several good solutions exist (see
Figure 2). The further advantage offered by EPH curves is shown in Figure 3: when
the C1 Hermite data are sampled from some hyperbolic functions, then the EPH
Hermite interpolant is able to reconstruct such functions exactly (similar to what
ATPH curves do in the trigonometric case). These are of course practical reasons
that motivate the study of EPH curves.

An additional reason that prompted us to investigate algebraic-hyperbolic PH
curves arises from the observation that even if the hyperbolic cosine and sine are just
the opposite side of the exponential coin from the trigonometric cosine and sine, the
normalized B-basis (also known as Chebyshevian Bernstein basis) of the underlying
extended Chebyshev space is known to be affected by numerical instability when large
exponential shape parameters are selected [12]. Thus, one of the main goals of this
work is also to suggest a stable formulation of the normalized B-basis of the two
exponential-polynomial spaces (or, more precisely, algebraic-hyperbolic spaces) that
are most frequently encountered when working with nonpolynomial PH curves, so that
numerical instabilities are avoided. Furthermore, for such spaces, we aim at proposing
a novel evaluation algorithm that is stable for a wide range of the exponential shape
parameter, in contrast to the dynamic evaluation procedure in [15], and has a lower
computational time (see section 6), compared with the de Casteljau–like B-algorithm
[1, 7, 8, 9] (analogue of the de Casteljau algorithm for classical polynomial Bézier
curves), and with the algorithm introduced by Woźny and Chudy in [13].

2. PH curves in exponential-polynomial spaces: EPH curves. Let m ∈
N0 and ω ∈ R+, where N0 = N∪{0} and R+ denotes the set of positive real numbers.
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Fig. 2. Top: Planar ATPH interpolants (see [11]) to the same Hermite data of Figure 1. Pre-
cisely, on the left the solution ++ obtained with shape parameter α ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6}
and on the right the solution +− obtained with shape parameter α ∈ {0.6, 0.7, 0.8}. Bottom: Planar
EPH interpolants to the same Hermite data of Figure 1. Precisely, on the left the solution ++
obtained with the exponential shape parameter ω ∈ {8, 10, 15, 20, 30, 50, 100} and on the right the
solution +− obtained with the exponential shape parameter ω ∈ {3, 3.5, 4}. As for the meaning of
the notation ++, +− the reader can consult [11] and section 5, respectively.
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Fig. 3. Planar EPH Hermite interpolant (solution ++) to the points r0 = (0, (2ω)−1),
r5 = (1, (2ω)−1 cosh(2ω)) and associated first derivatives di = (1, 0), df = (1, sinh(2ω)) (here
plotted with a scale factor of 1/5 to fit into the picture), overlapping the function (2ω)−1 cosh(2ωt),
t ∈ [0, 1], for the following choices of the exponential shape parameter: ω = 0.25 (left), ω = 0.5
(center), ω = 1 (right).

Definition 2.1 (exponential-polynomial spaces). We define, in terms of m and
ω, the following spaces of exponential polynomials:

EPω
m := span

{
{1, t} ∪

m⋃
k=1

{ekωt, e−kωt}
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A3518 LUCIA ROMANI AND ALBERTO VISCARDI

and

OEPω
m := span

{
{1, t} ∪

m⋃
k=1

{e(2k−1)ωt, e−(2k−1)ωt}

}
.

We observe that

OEPω
0 = EPω

0 = span {1, t} , OEPω
1 = EPω

1 = span
{
1, t, eωt, e−ωt

}
,

but, for m > 1, OEPω
m ⊊ EPω

2m−1. Moreover, denoting with D the differential
operator d/dt, it is easy to check that

DEPω
m = span

{
{1} ∪

m⋃
k=1

{ekωt, e−kωt}

}
⊂ EPω

m,

D2EPω
m = span

{
m⋃

k=1

{ekωt, e−kωt}

}
⊂ DEPω

m,

and similarly

DOEPω
m = span

{
{1} ∪

m⋃
k=1

{e(2k−1)ωt, e−(2k−1)ωt}

}
⊂ OEPω

m,

D2OEPω
m = span

{
m⋃

k=1

{e(2k−1)ωt, e−(2k−1)ωt}

}
⊂ DOEPω

m.

Again, we observe that

DOEPω
0 = DEPω

0 = span {1} , DOEPω
1 = DEPω

1 = span
{
1, eωt, e−ωt

}
,

D2OEPω
0 = D2EPω

0 = {0} , D2OEPω
1 = D2EPω

1 = span
{
eωt, e−ωt

}
,

but, for m > 1, DOEPω
m ⊊ DEPω

2m−1 and D2OEPω
m ⊊ D2EPω

2m−1.

Definition 2.2 (PH curve in EPω
m). A parametric curve r : [0, 1] → Rd, d ∈

{2, 3}, is called a PH curve in EPω
m if and only if one of the following holds:

• (planar EPH curve) d = 2, r(t) = (x(t), y(t)), x, y ∈ EPω
m, with{

x′(t) = (a1(t))
2 − (a2(t))

2
,

y′(t) = 2a1(t)a2(t),
(2.1)

for some exponential polynomials a1, a2.
• (spatial EPH curve) d = 3, r(t) = (x(t), y(t), z(t)), x, y, z ∈ EPω

m, with x′(t) = (a0(t))
2
+ (a1(t))

2 − (a2(t))
2 − (a3(t))

2
,

y′(t) = 2 ( a1(t)a2(t) + a0(t)a3(t) ) ,
z′(t) = 2 ( a1(t)a3(t) − a0(t)a2(t) ) ,

(2.2)

for some exponential polynomials a0, a1, a2, a3.

Remark 2.3. The curves defined via (2.1) and (2.2) are regular if and only if the
exponential polynomials ak do not have a common root in [0, 1] (see, e.g., [3]).
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EPH CURVES A3519

In what follows we only consider the case d = 3, i.e., spatial curves: planar
curves (d = 2) can be easily obtained setting a0(t) = a3(t) = 0 since this condition
and (2.2) imply (2.1) along with z(t) being constant. From (2.2) then, it is easy
to get

(x′(t))
2
+ (y′(t))

2
+ (z′(t))

2
=

(
(a0(t))

2
+ (a1(t))

2
+ (a2(t))

2
+ (a3(t))

2
)2

.

Thus, the defining characteristic of a PH curve in EPω
m is the fact that the coordi-

nate components of its derivative (or hodograph) comprise a Pythagorean d-tuple of
functions in DEPω

m—i.e., the sum of their squares coincides with the perfect square
of a function in DEPω

m. By virtue of this remarkable property, the parametric speed
of the curve σ(t) = |r′(t)| satisfies

σ(t) = (a0(t))
2
+ (a1(t))

2
+ (a2(t))

2
+ (a3(t))

2
.

Clearly, a plethora of combinations of exponential polynomials ak exists so that (2.1)
and (2.2) identify PH curves in EPω

m. In order to simplify both the analysis and the
construction, it is easier to identify spaces so that for every choice of the exponential
polynomials ak belonging to such spaces we can guarantee the resulting curves to be
PH curves in EPω

m.

Proposition 2.4. Let Aω
m be either DEPω

⌊m/2⌋ or D2OEPω/2
⌊(m+1)/2⌋. Then, for

every a0, a1, a2, a3 ∈ Aω
m, (2.2) defines a PH curve in EPω

m.

Proof. From (2.2), since DEPω
m is a linear space, we only need to prove that(

DEPω
⌊m/2⌋

)2

⊆ DEPω
m and

(
D2OEPω/2

⌊(m+1)/2⌋

)2

⊆ DEPω
m.

Consider then, for αk, βk ∈ R, k = −⌊m/2⌋, . . . , ⌊m/2⌋,
⌊m/2⌋∑

k=−⌊m/2⌋

αke
kωt,

⌊m/2⌋∑
k=−⌊m/2⌋

βke
kωt ∈ DEPω

⌊m/2⌋.

We have ⌊m/2⌋∑
k=−⌊m/2⌋

αke
kωt

 ⌊m/2⌋∑
k=−⌊m/2⌋

βke
kωt

 =

⌊m/2⌋∑
j,k=−⌊m/2⌋

αjβke
(j+k)ωt ∈ DEPω

m,

since −m ≤ −2⌊m/2⌋ ≤ j + k ≤ 2⌊m/2⌋ ≤ m.
Similarly, for αk, βk ∈ R, k = 1− ⌊(m+ 1)/2⌋, . . . , ⌊(m+ 1)/2⌋, and

⌊(m+1)/2⌋∑
k=1−⌊(m+1)/2⌋

αke
2k−1

2 ωt,

⌊(m+1)/2⌋∑
k=1−⌊(m+1)/2⌋

βke
2k−1

2 ωt ∈ D2OEPω/2
⌊(m+1)/2⌋,

we have  ⌊(m+1)/2⌋∑
k=1−⌊(m+1)/2⌋

αke
2k−1

2 ωt

 ⌊(m+1)/2⌋∑
k=1−⌊(m+1)/2⌋

βke
2k−1

2 ωt


=

⌊(m+1)/2⌋∑
j,k=1−⌊(m+1)/2⌋

αjβke
(j+k−1)ωt ∈ DEPω

m,

since −m ≤ 1− 2⌊(m+ 1)/2⌋ ≤ j + k − 1 ≤ 2⌊(m+ 1)/2⌋ − 1 ≤ m.
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Examples of major interest that we consider are the following:
• m = 1: r(t) is a PH curve in EPω

1 = span{1, t, eωt, e−ωt}, its hodograph
r′(t) is in DEPω

1 = span{1, eωt, e−ωt}, and Aω
1 is either DEPω

0 = span{1} or
D2OEPω/2

1 = span{eωt/2, e−ωt/2};
• m = 2: r(t) is a PH curve in EPω

2 = span{1, t, eωt, e−ωt, e2ωt, e−2ωt}, its
hodograph r′(t) is in DEPω

2 = span{1, eωt, e−ωt, e2ωt, e−2ωt}, and Aω
2 is either

DEPω
1 = span{1, eωt, e−ωt} or D2OEPω/2

1 = span{eωt/2, e−ωt/2}.
For m = 1, Aω

1 = DEPω
0 corresponds to trivial line segments. Similarly, for m = 2,

Aω
2 = D2OEPω/2

1 leads to PH curves in EPω
1 ⊊ EPω

2 . In general, for m odd, Aω
m =

DEPω
⌊m/2⌋ describes curves which actually live in EPω

m−1 while for m even, this is the

case for Aω
m = D2OEPω/2

⌊(m+1)/2⌋. Therefore, from now on we only consider

Aω
m :=

{
DEPω

m/2 if m even,

D2OEPω/2
(m+1)/2 if m odd,

(2.3)

for which dim(Aω
m) = m + 1. Starting from {ak}3k=0 in Aω

m, (2.2) defines univocally
x′(t), y′(t), and z′(t) that belong to DEPω

m and finally, by integration, one can obtain
the analytic expressions of x(t), y(t), and z(t) in EPω

m. Then, for a fixed m, three
spaces need to be considered. For each of these spaces a B-basis (see [8]) is defined in
what follows using the notation summarized in Table 1. According to Definition 2.2,
Remark 2.3, Proposition 2.4, and (2.3), four functions a0, a1, a2, a3 in Aω

m having no
common roots define a PH curve r(t) = (x(t), y(t), z(t)) in EPω

m as in (2.2). Such a
curve can thus be associated to a function from the interval [0, 1] to the quaternions
in a natural way as follows.

Definition 2.5. The function

A(t) := a0(t) + a1(t)i + a2(t)j + a3(t)k,

where i, j,k denote the so-called fundamental quaternion units (see, e.g., [3, section
5.3]), is called the preimage of r(t).

Expanding the coefficients of the preimage with respect to a B-basis of Aω
m as

ak(t) =
∑m

j=0 ak,jψ
ω
j,m(t), k ∈ {0, . . . , 3}, for some ak,j ∈ R, we can rewrite

A(t) =

m∑
j=0

Ajψ
ω
j,m(t), where Aj = a0,j + a1,ji + a2,jj + a3,jk.(2.4)

Moreover, we can compactly write the hodograph r′(t) = (x′(t), y′(t), z′(t)) of r(t)
with the pure vector quaternion

r′(t) = A(t)iA∗(t).(2.5)

Here and in the following, with an abuse of notation, we identify vectors in R3 and pure
vector quaternions via the natural bijection (x, y, z) ←→ xi+ yj+ zk. Accordingly,
in view of (2.5), the parametric speed of r(t) has the quaternionic representation

σ(t) = |r′(t)| = |A(t)iA∗(t)| = |A(t)|2 = A(t)A∗(t).(2.6)

Table 1
Notation used for the exponential-polynomial spaces and their respective B-basis.

space Aω
m DEPω

m EPω
m

dimension m+ 1 2m+ 1 2(m+ 1)

B-basis {ψω
j,m}mj=0 {φω

j,m}2mj=0 {ϕωj,m}2m+1
j=0
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3. PH curves in EPω
1 .

3.1. The normalized B-basis of the space EPω
1 . On the interval [0, 1] the

nonnegative exponential functions

ψω
0,1(t) =

e
ω
2 (1−t) − e−ω

2 (1−t)

e
ω
2 − e−ω

2
=

sinh
(
ω
2 −

ω
2 t
)

sinh
(
ω
2

) ,

ψω
1,1(t) =

e
ω
2 t − e−ω

2 t

e
ω
2 − e−ω

2
=

sinh
(
ω
2 t
)

sinh
(
ω
2

)(3.1)

define a B-basis of the extended Chebyshev spaceAω
1 = D2OEPω/2

1 = span{eω
2 t, e−

ω
2 t}.

However, note that {ψω
0,1(t), ψ

ω
1,1(t)} is not normalized since ψω

0,1(t) + ψω
1,1(t) ̸= 1 for

t ∈ (0, 1). By squaring an arbitrary function f ∈ Aω
1 , we obtain a function f2 that be-

longs to the exponential space DEPω
1 = span{1, eωt, e−ωt}. Since we assume ω ∈ R+,

DEPω
1 is an extended Chebyshev space that, on the interval [0, 1], admits a normalized

B-basis of the form

φω
0,1(t) =

(eω(1−t) − 1)2 eωt

(eω − 1)2
=

cosh(ω − ωt)− 1

cosh(ω)− 1
,

φω
1,1(t) =

(e−ωt − 1) (eωt − eω) (eω + 1)

(eω − 1)2
=

cosh(ω)− cosh(ωt)− cosh(ω − ωt) + 1

cosh(ω)− 1
,(3.2)

φω
2,1(t) =

(eωt − 1)2 eω(1−t)

(eω − 1)2
=

cosh(ωt)− 1

cosh(ω)− 1
.

The exponential functions {φω
0,1(t), φ

ω
1,1(t), φ

ω
2,1(t)} satisfy the following relationships

with the exponential functions {ψω
0,1(t), ψ

ω
1,1(t)}:

(
ψω
0,1(t)

)2
= φω

0,1(t), ψω
0,1(t)ψ

ω
1,1(t) =

1
2c1(ω)φ

ω
1,1(t),

(
ψω
1,1(t)

)2
= φω

2,1(t),(3.3)

with c1(ω) =
2

e
ω
2 + e−

ω
2

=
1

cosh
(
ω
2

) .
The antiderivative of f2 ∈ DEPω

1 is an exponential-polynomial function that be-
longs to the order-4 exponential-polynomial space EPω

1 = span{1, t, eωt, e−ωt}. The
exponential-polynomial functions

(3.4)

ϕω0,1(t) =
eω(1−t)−e−ω(1−t)−2ω(1−t)

eω−e−ω−2ω = sinh(ω−ωt)−ω(1−t)
sinh(ω)−ω ,

ϕω1,1(t) =
(e−ω−1)

(
(ω+1−eω)eωt+((ω−1)eω+1)eω(1−t)

)
+(eω−1)

(
ω(2t+(e−ω+eω)(1−t))+e−ω−eω

)
(ω+2+eω(ω−2)) (eω−e−ω−2ω)

= −ωt−ω(1−t) cosh(ω)+ω cosh(ω−ωt)+sinh(ω)−sinh(ωt)−sinh(ω−ωt)
(ω coth(ω

2 )−2)(ω−sinh(ω)) ,

ϕω2,1(t) =
(e−ω−1)

(
(ω+1−eω)eω(1−t)+((ω−1)eω+1)eωt

)
+(eω−1)

(
ω(2(1−t)+(e−ω+eω)t)+e−ω−eω

)
(ω+2+eω(ω−2)) (eω−e−ω−2ω)

= −ω(1−t)−ωt cosh(ω)+ω cosh(ωt)+sinh(ω)−sinh(ω−ωt)−sinh(ωt)
(ω coth(ω

2 )−2)(ω−sinh(ω)) ,

ϕω3,1(t) =
eωt−e−ωt−2ωt
eω−e−ω−2ω = sinh(ωt)−ωt

sinh(ω)−ω

define a normalized B-basis of the extended Chebyshev space EPω
1 on [0, 1]. For later

use we observe that for the antiderivatives of the basis functions of DEPω
1 we can

write
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A3522 LUCIA ROMANI AND ALBERTO VISCARDI

∫ t

0

φω
0,1(x)dx = c2(ω)

3∑
i=1

ϕωi,1(t),

∫ t

0

φω
1,1(x)dx =

c3(ω)

c1(ω)

3∑
i=2

ϕωi,1(t),(3.5) ∫ t

0

φω
2,1(x)dx = c2(ω) ϕ

ω
3,1(t),

with

c2(ω) =

∫ 1

0

φω
0,1(t) dt =

sinh(ω)− ω
ω(cosh(ω)− 1)

,(3.6)

c3(ω) = c1(ω)

∫ 1

0

φω
1,1(t) dt =

ω
2 coth

(
ω
2

)
− 1

ω
2 sinh

(
ω
2

) .

Remark 3.1. For all ω ∈ R+, we always have c1(ω), c2(ω), c3(ω) ̸= 0.

3.2. Geometric properties of Bézier-like curves in EPω
1 .

Definition 3.2 (Bézier-like curves in EPω
1 ). Given a control polygon with ver-

tices ri ∈ Rd, i = 0, . . . , 3, the associated Bézier-like curve in EPω
1 is defined as

r(t) =

3∑
i=0

ri ϕ
ω
i,1(t), t ∈ [0, 1].(3.7)

Proposition 3.3 (properties of Bézier-like curves in EPω
1 ). The Bézier-like

curve in (3.7) has the following properties:
(a) Convex hull property and geometric invariance property. The entire curve

lies inside the convex hull of its control points and its shape is independent of
the coordinate system, i.e., it is scale and translation invariant.

(b) Symmetry. The control points r0, r1, r2, r3 and r3, r2, r1, r0 define the same
curve with respect to different parameterizations, i.e.,

3∑
i=0

riϕ
ω
i,1(t) =

3∑
i=0

r3−iϕ
ω
i,1(1− t), t ∈ [0, 1].

(c) Derivative formula.

d

dt
r(t) =

2∑
i=0

∆ri∫ 1

0
φω
i,1(x) dx

φω
i,1(t), t ∈ [0, 1],

where, for all i = 0, 1, 2, ∆ri = ri+1 − ri.
(d) Endpoint conditions.

r(0) = r0, r′(0) =
1

c2(ω)
(r1 − r0),

r(1) = r3, r′(1) =
1

c2(ω)
(r3 − r2).

Proof. See section SM1 for the proof.

3.3. Control polygons of PH curves in EPω
1 . To construct a PH curve in

EPω
1 , the functions a0, a1, a2, a3 are chosen in Aω

1 and thus

ak(t) = ak,0ψ
ω
0,1(t) + ak,1ψ

ω
1,1(t), k ∈ {0, . . . , 3},
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EPH CURVES A3523

for some ak,0, ak,1 ∈ R. Consequently, the associated preimage is

A(t) = A0ψ
ω
0,1(t) + A1ψ

ω
1,1(t),(3.8)

where

Aj = a0,j + a1,ji + a2,jj + a3,jk, j = 0, 1.(3.9)

Proposition 3.4. A PH curve r(t) in EPω
1 can be expressed in the Bézier-like

form r(t) =
∑3

i=0 riϕ
ω
i,1(t), with Bézier-like control points ri, i = 1, . . . , 3, given in

terms of the freely chosen integration constant r0, of the numbers in (3.6) and of the
coefficients of the preimage A(t) in (3.8) and (3.9) by

r1 = r0 + c2(ω)A0iA
∗
0, r2 = r1 + c3(ω)

1

2
(A0iA

∗
1 +A1iA

∗
0),

r3 = r2 + c2(ω)A1iA
∗
1.

(3.10)

Proof. See section SM2 for the proof.

Remark 3.5. Since, from (3.6), limω→0 c2(ω) = limω→0 c3(ω) = 1/3, (3.10) recov-
ers the well-known results of the cubic polynomial case when ω → 0; (see [3]).

3.4. Parametric speed and arc length in EPω
1 .

Proposition 3.6. The parametric speed of r(t) is a function in DEPω
1 with the

explicit expression σ(t) =
∑2

i=0 σiφ
ω
i,1(t), where

σ0 = |A0|2, σ1 = c1(ω)
1

2
(A1A

∗
0 +A0A

∗
1), σ2 = |A1|2.(3.11)

Proof. See section SM3 for the proof.

Proposition 3.7. The arc length function of r(t) is a function in EPω
1 having

the expression s(t) =
∑3

i=0 siϕ
ω
i,1(t), where

s0 = 0, s1 = s0 + σ0c2(ω), s2 = s1 + σ1
c3(ω)

c1(ω)
, s3 = s2 + σ2c2(ω).

Proof. See section SM4 for the proof.

Corollary 3.8. The total arc length of r(t) is

s(1) = s3 = (σ0 + σ2) c2(ω) + σ1
c3(ω)

c1(ω)
(3.12)

= c2(ω)
(
|A0|2 + |A1|2

)
+ c3(ω)

1

2
(A1A

∗
0 +A0A

∗
1).

Remark 3.9. When ω → 0, the total arc length formula in (3.12) yields s(1) =(
|A0|2 + |A1|2

)
/3+ (A1A

∗
0 +A0A

∗
1)/6, thus recovering the well-known result of the

cubic polynomial case [3].

4. PH curves in EPω
2 .

4.1. The normalized B-basis of the space EPω
2 . By squaring an arbitrary

function f ∈ Aω
2 = span{1, eωt, e−ωt}, we obtain a function f2 that belongs to the

exponential space DEPω
2 = span{1, eωt, e−ωt, e2ωt, e−2ωt}. Since Aω

2 = DEPω
1 we
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A3524 LUCIA ROMANI AND ALBERTO VISCARDI

can choose ψω
j,2(t) = φω

j,1(t), j ∈ {0, 1, 2} as in (3.2). Then, DEPω
2 is an extended

Chebyshev space that, on the interval [0, 1], admits a normalized B-basis of the form

φω
0,2(t) =

(
ψω
0,2(t)

)2
, φω

1,2(t) = 2ψω
0,2(t)ψ

ω
1,2(t),

φω
2,2(t) =

(
ψω
1,2(t)

)2
+ 2ψω

0,2(t)ψ
ω
2,2(t),

φω
3,2(t) = 2ψω

1,2(t)ψ
ω
2,2(t), φω

4,2(t) =
(
ψω
2,2(t)

)2
.

The inverse relationship between the exponential functions {φω
j,2(t)}4j=0 and the ex-

ponential functions {ψω
j,2(t)}2j=0 is instead given by(

ψω
0,2(t)

)2
= φω

0,2(t), ψω
0,2(t)ψ

ω
1,2(t) =

1

2
φω
1,2(t),

(
ψω
1,2(t)

)2
= q0(ω)φ

ω
2,2(t), ψω

0,2(t)ψ
ω
2,2(t) =

1

2
q1(ω)φ

ω
2,2(t),

ψω
1,2(t)ψ

ω
2,2(t) =

1

2
φω
3,2(t),

(
ψω
2,2(t)

)2
= φω

4,2(t),

with q0(ω) =
cosh(ω) + 1

cosh(ω) + 2
, q1(ω) =

1

cosh(ω) + 2
.

(4.1)

The antiderivative of a function in DEPω
2 is an exponential-polynomial function

that belongs to the order-6 exponential-polynomial space EPω
2 . The exponential-

polynomial functions

ϕω0,2(t) =
g0(ω − ωt)
g0(ω)

,

ϕω1,2(t) = g1(ω) sinh
(ω
2

) (
sinh4

(
ω − ωt

2

)
− sinh4

(ω
2

) g0(ω − ωt)
g0(ω)

)
,

ϕω2,2(t) = g2(ω)

(
− 16 sinh3

(
ω − ωt

2

)
sinh

(
ωt

2

)
+ g1(ω)g0(ω) sinh

4

(
ω − ωt

2

)
−g1(ω) sinh4

(ω
2

)
g0(ω − ωt)

)
,

ϕω3,2(t) = g2(ω)

(
− 16 sinh3

(
ωt

2

)
sinh

(
ω − ωt

2

)
+ g1(ω)g0(ω) sinh

4

(
ωt

2

)
−g1(ω) sinh4

(ω
2

)
g0(ωt)

)
,

ϕω4,2(t) = g1(ω) sinh
(ω
2

) (
sinh4

(
ωt

2

)
− sinh4

(ω
2

) g0(ωt)

g0(ω)

)
,

ϕω5,2(t) =
g0(ωt)

g0(ω)
,

(4.2)

with

g0(ω) = 3ω + sinh(ω)(cosh(ω)− 4), g1(ω) =
4

sinh(ω2 )
(
cosh(ω)− 3ω coth(ω2 ) + 5

) ,
g2(ω) =

sinh(ω2 )

3
(
3 sinh(ω)− ω(cosh(ω) + 2)

) ,
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EPH CURVES A3525

define a normalized B-basis of the extended Chebyshev space EPω
2 on [0, 1]. For later

use we observe that for the antiderivatives of the basis functions of DEPω
2 we can

write ∫ t

0

φω
0,2(x)dx = q2(ω)

5∑
i=1

ϕωi,2(t),

∫ t

0

φω
1,2(x)dx = q3(ω)

5∑
i=2

ϕωi,2(t),

∫ t

0

φω
2,2(x)dx =

q4(ω)

q1(ω)

5∑
i=3

ϕωi,2(t),(4.3)

∫ t

0

φω
3,2(x)dx = q3(ω)

5∑
i=4

ϕωi,2(t),

∫ t

0

φω
4,2(x)dx = q2(ω) ϕ

ω
5,2(t),

with

q2(ω) =

∫ 1

0

φω
0,2(t) dt =

g0(ω)

2ω(cosh(ω)− 1)2
,

q3(ω) =

∫ 1

0

φω
1,2(t) dt =

5 sinh(ω)− 3ω + (sinh(ω)− 3ω) cosh(ω)

ω(cosh(ω)− 1)2
,(4.4)

q4(ω) = q1(ω)

∫ 1

0

φω
2,2(t) dt =

ω(2 + cosh(ω))− 3 sinh(ω)

ω(cosh(ω)− 1)2
.

Remark 4.1. For all ω ∈ R+, we always have g0(ω), g1(ω), g2(ω) ̸= 0 as well as
q0(ω), q1(ω), q2(ω), q3(ω), q4(ω) ̸= 0.

4.2. Geometric properties of Bézier-like curves in EPω
2 .

Definition 4.2 (Bézier-like curves in EPω
2 ). Given a control polygon with ver-

tices ri ∈ Rd, i = 0, . . . , 5, the associated Bézier-like curve in EPω
2 is defined as

r(t) =

5∑
i=0

ri ϕ
ω
i,2(t), t ∈ [0, 1].(4.5)

Proposition 4.3 (properties of Bézier-like curves in EPω
2 ). The Bézier-like

curve in (4.5) has the following properties:
(a) Convex hull property and geometric invariance property. The entire curve

lies inside the convex hull of its control points and its shape is independent of
the coordinate system, i.e., it is scale and translation invariant.

(b) Symmetry. The control points r0, r1, . . . , r5 and r5, . . . , r1, r0 define the
same curve with respect to different parameterizations, i.e.,

5∑
i=0

riϕ
ω
i,2(t) =

5∑
i=0

r5−iϕ
ω
i,2(1− t), t ∈ [0, 1].

(c) Derivative formula.

d

dt
r(t) =

4∑
i=0

∆ri∫ 1

0
φω
i,2(x) dx

φω
i,2(t), t ∈ [0, 1],

where, for all i = 0, . . . , 4, ∆ri = ri+1 − ri.
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(d) Endpoint conditions.

r(0) = r0, r′(0) = 1
q2(ω) (r1 − r0),

r(1) = r5, r′(1) = 1
q2(ω) (r5 − r4).

Proof. See section SM5 for the proof.

4.3. Control polygons of PH curves in EPω
2 . To construct a spatial PH

curve in EPω
2 , the functions a0, a1, a2, a3 are chosen in Aω

2 and thus ak(t) =∑2
j=0 ak,jψ

ω
j,2(t), k ∈ {0, . . . , 3}, for some ak,j ∈ R. Consequently, the associated

preimage is

A(t) =

2∑
j=0

Ajψ
ω
j,2(t),(4.6)

where

Aj = a0,j + a1,ji + a2,jj + a3,jk, j = 0, 1, 2.(4.7)

Proposition 4.4. A PH curve r(t) in EPω
2 can be expressed in the Bézier-like

form r(t) =
∑5

i=0 riϕ
ω
i,2(t), with Bézier-like control points ri, i = 1, . . . , 5, given in

terms of the freely chosen integration constant r0, of the numbers in (4.1) and (4.4)
and of the coefficients of the preimage A(t) in (4.6) and (4.7) by

r1 = r0 + q2(ω)A0iA
∗
0, r2 = r1 + q3(ω)

1

2
(A0iA

∗
1 +A1iA

∗
0),

r3 = r2 + q4(ω)

(
1

2
(A0iA

∗
2 +A2iA

∗
0) +

q0(ω)

q1(ω)
A1iA

∗
1

)
,

r4 = r3 + q3(ω)
1

2
(A1iA

∗
2 +A2iA

∗
1), r5 = r4 + q2(ω)A2iA

∗
2.

(4.8)

Proof. See section SM6 for the proof.

Remark 4.5. Since, from (4.1) and (4.4),

lim
ω→0

q0(ω)

q1(ω)
= 2, lim

ω→0
q2(ω) = lim

ω→0
q3(ω) =

1

5
, and lim

ω→0
q4(ω) =

1

15
,

(4.8) recovers the well-known results of the quintic polynomial case when ω → 0; (see
[3]).

4.4. Parametric speed and arc length in EPω
2 .

Proposition 4.6. The parametric speed of r(t) is a function in DEPω
2 having

the expression σ(t) =
∑4

i=0 σiφ
ω
i,2(t), where

σ0 = |A0|2, σ1 =
1

2
(A1A

∗
0 +A0A

∗
1),

σ2 = q0(ω) |A1|2 + q1(ω)
1

2
(A2A

∗
0 +A0A

∗
2),(4.9)

σ3 =
1

2
(A1A

∗
2 +A2A

∗
1), σ4 = |A2|2.

Proof. See section SM7 for the proof.
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Proposition 4.7. The arc length function of r(t) is a function in EPω
2 having

the expression s(t) =
∑5

i=0 siϕ
ω
i,2(t), where

s0 = 0, s1 = s0 + σ0q2(ω), s2 = s1 + σ1q3(ω),

s3 = s2 + σ2
q4(ω)

q1(ω)
, s4 = s3 + σ3q3(ω), s5 = s4 + σ4q2(ω).

Proof. See section SM8 for the proof.

Corollary 4.8. The total arc length of r(t) is

s(1) = s5 = (σ0 + σ4)q2(ω) + (σ1 + σ3)q3(ω) + σ2
q4(ω)

q1(ω)

= q2(ω)
(
|A0|2 + |A2|2

)
+ q4(ω)

q0(ω)

q1(ω)
|A1|2 + q3(ω)

1

2
(A1A

∗
0 +A0A

∗
1)(4.10)

+ q3(ω)
1

2
(A1A

∗
2 +A2A

∗
1) + q4(ω)

1

2
(A2A

∗
0 +A0A

∗
2).

Remark 4.9. When ω → 0, the total arc length formula in (4.10) yields

s(1) =
1

5

(
|A0|2 + |A2|2

)
+

2

15
|A1|2 +

1

10
(A1A

∗
0 +A0A

∗
1)

+
1

10
(A1A

∗
2 +A2A

∗
1) +

1

30
(A2A

∗
0 +A0A

∗
2),

thus recovering the well-known result of the quintic polynomial case; (see [3]).

5. First-order Hermite interpolation by EPH curves. As in the polyno-
mial case (see, e.g., [3, Chapter 28.1]), PH curves in EPω

1 could offer the possibility
to interpolate G1 Hermite data (i.e., endpoints and associated unit tangent vectors)
at most. PH curves in EPω

2 are thus the simplest EPH curves that one could use to
match C1 Hermite data. The problem of interpolating C1 Hermite data consists in
constructing EPH curves that interpolate prescribed endpoints r0, r5 and first deriv-
atives at these endpoints, hereinafter denoted by di, df , respectively. For the sake
of conciseness, we also introduce the following abbreviations that do not specify the
dependence on ω:

I0 := q2(ω), I1 :=
1

2
q3(ω), I2 :=

1

2
q4(ω), I3 :=

q0(ω)

q1(ω)
q4(ω).

Proposition 5.1. The PH curves r(t) in EPω
2 solving the first-order Hermite

interpolation problem r(0) = r0, r′(0) = di, r(1) = r5, r′(1) = df , have control
points given by (4.8) with

A0 =
√
|di|

i+wi

|i+wi|
exp(η0i), A2 =

√
|df |

i+wf

|i+wf |
exp(η2i),

A1 = −I1
I3

(A0 +A2) +

√
|c|
I3

i+wc

|i+wc|
exp(η1i),

(5.1)

where

c := I3(r5 − r0) + (I21 − I0I3) (di + df ) + (I21 − I2I3) (A0iA
∗
2 +A2iA

∗
0),(5.2)

and
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A3528 LUCIA ROMANI AND ALBERTO VISCARDI

• (λi, µi, νi), (λf , µf , νf ), (λc, µc, νc) are the direction cosines of di, df , and
c, respectively;

• wi = λii+ µij+ νik, wf = λf i+ µf j+ νfk, wc = λci+ µcj+ νck are unit
vectors in the directions of di, df , and c, respectively;

• η0, η1, η2 are free angular variables in [−π/2, π/2].
Proof. In view of (2.5) and (4.6), interpolation of the end-derivatives yields the

equations

A0iA
∗
0 = di, A2iA

∗
2 = df ,(5.3)

for A0 and A2, where di and df are known pure vector quaternions. Moreover,
interpolation of the endpoints r0 and r5 gives the condition∫ 1

0

A(t)iA∗(t) dt = r5 − r0

= I0A0iA
∗
0 + I1(A0iA

∗
1 +A1iA

∗
0) + I2(A0iA

∗
2 +A2iA

∗
0)(5.4)

+ I3A1iA
∗
1 + I1(A1iA

∗
2 +A2iA

∗
1) + I0A2iA

∗
2.

Recalling the result in [3, Chapter 28] and [4, section 3.2], the quaternion equations
(5.3) can be solved directly obtaining

A0 =
√
|di|

i+wi

|i+wi|
exp(η0i) and A2 =

√
|df |

i+wf

|i+wf |
exp(η2i).(5.5)

Knowing A0 and A2, the solution of (5.4) for A1 may appear more difficult. However,
by using (5.3) and making appropriate rearrangements, (5.4) can be rewritten as

(5.6) (I1A0 + I3A1 + I1A2)i(I1A0 + I3A1 + I1A2)
∗ =

= I3(r5 − r0) + (I21 − I0I3) (di + df ) + (I21 − I2I3) (A0iA
∗
2 +A2iA

∗
0).

Equation (5.6) is of the form ÂiÂ∗ = c (exactly as (5.3)) where

Â := I1A0 + I3A1 + I1A2.(5.7)

Note that c is a known pure vector quaternion. Exploiting (5.5) we can write

A0iA
∗
2 + A2iA

∗
0 =

√
(1 + λi)|di|(1 + λf )|df |(axi+ ayj+ azk),

where

ax = cos(∆η)− (µiµf + νiνf ) cos(∆η) + (µiνf − µfνi) sin(∆η)

(1 + λi)(1 + λf )
,

ay =
µi cos(∆η)− νi sin(∆η)

1 + λi
+
µf cos(∆η) + νf sin(∆η)

1 + λf
,

az =
νi cos(∆η) + µi sin(∆η)

1 + λi
+
νf cos(∆η)− µf sin(∆η)

1 + λf
,

with ∆η := η2 − η0. Finally, writing c = cxi+ cyj+ czk, the solution of (5.6) for A1

is

A1 = −I1
I3

(A0 +A2) +

√
|c|
I3

i+wc

|i+wc|
exp(η1i),

which concludes the proof.
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Table 2
All possible sign combinations of A0, A1, A2 and their effects on the associated expressions.

A0 A1 A2 A0iA∗
1 +A1iA∗

0 A0iA∗
2 +A2iA∗

0 A1iA∗
2 +A2iA∗

1

+ + + + + +
+ + - + - -
+ - + - + -
+ - - - - +
- + + - - +
- + - - + -
- - + + - -
- - - + + +

Remark 5.2. When ω → 0 the result of Proposition 5.1 gets back the well-known
result of the quintic polynomial case treated in [4].

Remark 5.3. The three angular variables η0, η1, η2, associated with the quater-
nions A0, A1, A2 respectively, do not identify independent degrees of freedom. In-
deed, the control points of spatial EPH Hermite interpolants depend only on ω and
the difference of the angles η0, η1, η2. Thus, without loss of generality, we can assume
η1 to be fixed and, by introducing the notation ∆η = η2 − η0 and ηm = (η0 + η2)/2,
write η0 = ηm−∆η/2, η2 = ηm+∆η/2. Moreover, while the choice ηk ∈ [−π/2, π/2],
k ∈ {0, 1, 2}, covers all possible different solutions of the Hermite interpolation prob-
lem, these are also recovered by the choice ηk ∈ [0, π], k ∈ {0, 1, 2}. Indeed, if we
substitute Ak with Aki, k ∈ {0, 1, 2}, in (4.8) we obtain exactly the same control
points. However, doing so, (5.1) has to be multiplied from the right by i, which leads
to exp((ηk + π/2)i) instead of exp(ηki), k ∈ {0, 1, 2}.

Remark 5.4. As already observed, to recover the result for the planar case with
a0(t) = a3(t) = 0, we need to have A0,A1,A2 ∈ span{i, j}. Therefore we must
have η0, η1, η2 ∈ {0, π} (see Remark 5.3). Even if the possible combinations of ηk,
k ∈ {0, 1, 2}, are eight, due to (4.8) we obtain only four different curves. Indeed, if we
reason on the signs of Ak, k ∈ {0, 1, 2}, we get the results collected in Table 2. Thus,
as stated in Remark 5.3, one can obtain the four different planar Hermite interpolants
by fixing η1 = 0 and then choosing η0, η2 ∈ {0, π}. Since fixing η1 = 0 means taking
A1 with the sign +, we refer to the four possible planar solutions with the notation
++, +−, −+, −− to specify the four possible combinations of the signs of A0 and
A2 that one could consider.

Figure 2 shows, in the second row, an application of Proposition 5.1 for planar
Hermite data, while an application for spatial Hermite data is illustrated in Figure 4.

6. Evaluation of EPH curves. In order to evaluate EPH curves two consider-
ations have to be done. On the one hand, looking at the expressions of the normalized
B-basis 3.4 and 4.2, it is clear that they are not suited for computations when ω is
large. The strategy to avoid this problem is to express all the functions involved as
a ratio of exponential polynomials, simplifying the dominant growth term. Unfortu-
nately, the resulting expressions are very long. For this reason they are not presented
here, but they can be found in section SM10.

On the other hand, computational problems also arise for small values of ω.
Unfortunately, this issue cannot be solved like the previous one with an analytic
trick. A way to proceed in this case is to consider for each basis function ϕωi,m(t) its
corresponding Taylor expansion Tω

i,m(t) at ω = 0 up to a certain order, and then to
rely on an efficient algorithm for polynomial evaluation. This is a fair strategy, even
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A3530 LUCIA ROMANI AND ALBERTO VISCARDI

Fig. 4. One-parameter families of spatial EPH Hermite interpolants to the data r0 = (0, 0, 0),
r5 = (1, 1, 1), di = (−0.8, 0.3, 1.2), df = (0.5,−1.3,−1), defined by fixing η1 = −π/2, ∆η = π/3
and ηm = −π/2 (left), ηm = −π/10 (center), ηm = 3π/10 (right). The family members of each
subfigure are obtained with ω ∈ {0.1, 3, 6, 12, 24}, where a bigger value of ω results in a straighter
curve connecting the two endpoints.

from a theoretical point of view, since, for ω → 0, the considered EPH spaces become
exactly polynomial spaces. In our numerical computations we considered fifth-order
Taylor expansions which, for completeness, can be found in section SM9.

Here we propose a new ad hoc pointwise evaluation algorithm and we compare it
with the de Casteljau–like B-algorithm [7] and the recent method proposed by Woźny
and Chudy in [13]. For the sake of brevity, we only provide a sketch of these two
algorithms in Algorithms 6.1 and 6.2, where the auxiliary functions λωi,j,m and hωj,m
are constructed following the strategies detailed in [7] and [13], respectively. In order
to implement the methods, we recall that all the functions involved must be rewritten
in a stable form as the basis functions in section SM10.

Each of these methods has a different running time and a different behavior as ω
approaches 0. As shown in this section, the newly proposed algorithm yields the best
results on both fronts and therefore we suggest it as the go-to evaluation algorithm
for EPH curves.

We recall that, fixed d ∈ {2, 3} and m ∈ {1, 2}, our interest here is to evaluate the

curve r(t) =
∑2m+1

i=0 riϕ
ω
i,m(t), at a given t̂ ∈ [0, 1], for a set of control points ri ∈ Rd,

i = 0, . . . , 2m + 1. The de Casteljau’s algorithm finds the value of r(t̂) computing
recursively 2m+1 new sets of points, {rki }

2m+1−k
i=0 , k = 1, . . . , 2m+1, each having one

Algorithm 6.1 de Casteljau–like

Acquire r00 := r0, r
0
1 := r1, . . . , r

0
2m+1 := r2m+1, t̂

for k = 1, . . . , 2m+ 1 do
for i = 0, . . . , 2m+ 1− k do
rki ←− (1− λωi,2m+1−k,m(t̂)) rk−1

i + λωi,2m+1−k,m(t̂)rk−1
i+1

end for
end for
return r2m+1

0

Algorithm 6.2 Woźny–Chudy

Acquire q0 := r0, r1, . . . , r2m+1, t̂
for k = 1, . . . , 2m+ 1 do
qk ←− (1− hω2m+1−k,m(t̂))qk−1 + hω2m+1−k,m(t̂)rk

end for
return q2m+1
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EPH CURVES A3531

Fig. 5. Geometrical comparison between the Woźny–Chudy evaluation algorithm (first row)
and the new proposed method (second row) when applied to a curve in EPω

1 (first column) and a
curve in EPω

2 (second column).

point less than the previous one. At each level k, the new set of points is obtained
as a convex combination of two consecutive points in the previous level. Instead of
computing smaller and smaller sets of control points, Woźny and Chudy’s method
consists in 2m+ 1 convex combinations, each of them adding the contribution of one
of the initial control points. A graphical layout of the algorithm can be seen in the
first row of Figure 5.

The new algorithm hereby proposed somehow combines the approaches of both
de Casteljau and Woźny–Chudy. The idea is to first compute a new set of control
vertices, {r1i }2mi=0, starting from the initial control points, similar to a de Casteljau
step. These new vertices are computed such that the associated polynomial Bézier
curve of degree 2m has the same evaluation as r(t) at the desired point t̂ ∈ (0, 1), i.e.,

r(t̂) =
∑2m

i=0 r
1
iBi,2m(t̂) with Bi,2m(t̂) =

(
2m
i

)
t̂i (1− t̂)2m−i, where the right-hand side

can be efficiently computed via Woźny–Chudy for polynomial curves, which is much
faster than its specialized version for EPH curves. The detailed steps of the method
are described in Algorithm 6.3, where, for m = 1,

τω0,1(t) =
ϕω0,1(t)

(1− t)2
, τω2,1(t) = 1 −

ϕω3,1(t)

t2
,

τω1,1(t) =
ϕω0,1(t) + ϕω1,1(t) − (1− t)2

2t(1− t)
= 1 −

ϕω2,1(t) + ϕω3,1(t) − t2

2t(1− t)
,

and, for m = 2,

τω
0,2(t) =

ϕω
0,2(t)

(1− t)4
, τω

1,2(t) =
ϕω
0,2(t) + ϕω

1,2(t) − (1− t)4

4t(1− t)3
,

τω
2,2(t) =

∑2
i=0 ϕ

ω
i,2(t) − (1− t)4 − 4t(1− t)3

6t2(1− t)2
= 1 −

∑5
i=3 ϕ

ω
i,2(t) − 4t3(1− t) − t4

6t2(1− t)2
,

τω
3,2(t) = 1 −

ϕω
4,2(t) + ϕω

5,2(t) − t4

4t3(1− t)
, τω

4,2(t) = 1 −
ϕω
5,2(t)

t4
.
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Algorithm 6.3 New proposal

Acquire r0, . . . , r2m+1, t̂
if t̂ = 0 then
return r0

else if t̂ = 1 then
return r2m+1

else
for j = 0, . . . , 2m do
r1j ←− τωj,m(t̂)rj +

(
1− τωj,m(t̂)

)
rj+1

end for
if t̂ ∈ [0.5, 1) then

q0 ←− r10, h0 ←− 1 and D ←− 1−t̂
t̂

for k = 1, . . . , 2m do

hk ←−
(
1 + kD

(2m+1−k)hk−1

)−1

and qk ←− (1− hk)qk−1 + hkr
1
k

end for
else if t̂ ∈ (0, 0.5) then

q0 ←− r12m, h0 ←− 1 and D ←− t̂
1−t̂

for k = 1, . . . , 2m do

hk ←−
(
1 + kD

(2m+1−k)hk−1

)−1

and qk ←− (1− hk)qk−1 + hkr
1
2m−k

end for
end if
return q2m

end if

As for the basis functions, the stable expressions for {τωj,m(t)}2mj=0 exploited in our
implementation can be found in section SM11. A graphical layout of the algorithm
can be seen in the second row of Figure 5.

Remark 6.1. The functions τωj,m(t̂) have removable discontinuities in t̂ = 0 and

t̂ = 1. These are bypassed by the first two “if”s in Algorithm 6.3. In theory, one should
be careful to evaluate for t̂ close to 0 or 1, e.g., approximating each τωj,m(t̂) with its
truncated Taylor expansion. In practice, while using MATLAB, problems occur only
for values of t̂ which are extremely close to 0 and 1. For instance, evaluation of PH
curves in EPω

2 for values of t̂ close to 0 starts giving problems at t̂ ≈ 10−80. Since
this limitation does not affect its practical use, for the sake of simplicity, Algorithm
6.3 does not include any modification to handle that situation.

6.1. Comparing the three evaluation methods. We start comparing the
behavior of the three methods as ω goes to 0. In order to do so, we computed,
for 500 equispaced values of ω ∈ (0, 2], the maximum over 100 curves with random
control points uniformly distributed in (0, 1)d of the relative error in the infinity norm
committed by each method in approximating the fifth-order Taylor expansion of the
curve at ω = 0. In other words, in Figure 6, one can see, for d = 3 and m ∈ {1, 2},
the behavior of the function

ρd,m(ω) := max
{ri}2m+1

i=0 ∈R

∥∥∥ ∑2m+1
i=0 riT

ω
i,m(t)

∣∣∣
z
−

∑2m+1
i=0 riϕ

ω
i,m(t)

∣∣∣
z

∥∥∥
∞∥∥∥ ∑2m+1

i=0 riTω
i,m(t)

∣∣∣
z

∥∥∥
∞

,(6.1)
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Fig. 6. The function ρd,m(ω) in (6.1) for d = 3 and m ∈ {1, 2} computed with three different
methods (the de Casteljau–like B-algorithm, the Woźny–Chudy algorithm, and the new proposed
method) and using the direct evaluation of (3.4) and (4.2) as a benchmark.

Table 3
Estimated ω = argminω∈(0,2] ρd,m(ω) for ρd,m(ω) in (6.1) with d = 3 and m ∈ {1, 2} for the

three considered methods and the direct evaluation of (3.4) and (4.2) as a benchmark.

m de Casteljau–like Woźny–Chudy New proposal Direct evaluation
1 0.2760 0.2200 0.0960 0.2120
2 1.1160 0.3800 0.1840 0.3680

where R is a collection of 100 random sets of 2m + 2 control points in (0, 1)d,

z = [k/500]500k=0, and
∑2m+1

i=0 riϕ
ω
i,m(t)

∣∣
z
is computed with each of the three consid-

ered methods. From a theoretical point of view, as ω gets closer and closer to 0, an
exact evaluation of the curve should approach the evaluation of the polynomial curve
obtained substituting each basis function ϕωi,m with its corresponding Taylor polyno-
mial, and thus we should get ρd,m(ω) → 0 for ω → 0. Since stability for small ω is
not achievable, we have that, for each method, the value of ρd,m(ω) decreases until
a certain threshold is met, under which ρd,m(ω) starts to increase and the method
becomes unreliable. In particular, from Figure 6 it is possible to see how the newly
proposed algorithm is the one that can get the closest to 0 without having numerical
issues. For the sake of completeness the points of minimum found for each graph are
reported in Table 3. Therefore, the proposed method is the one that allows exact
evaluation for the largest subset of ω ∈ R+.

Concerning the running time of the three algorithms, fixed d = 3 and m ∈ {1, 2},
for each ω ∈ {0.0960+2k}50k=−50 we evaluated 10000 random curves at 501 equispaced
points in [0, 1]. The results are visible in Figure 7, where again the new proposed
algorithm is the best performing one in both scenarios and for every value of ω we
considered. We observe that the slope around ω = 103 is due to the fact that most of
the exponential functions involved in the computations become very small and thus
are set to 0, speeding up most computations. All numerical experiments were done
in MATLAB 2021b on a laptop equipped with an Intel Core i7-10870H CPU and 32
GB RAM.

6.2. A note on a fourth algorithm. We conclude this section with a short
discussion about the dynamic evaluation algorithm presented in [14, 15] which, al-
though it can be specialized for EPH curves, presents stability issues for large values
of ω. To explain why this is the case, we begin with a brief review of the method.
First, it must be that det([r2m−d+2, . . . , r2m+1]) ̸= 0. Then the method evaluates r(t)
in k ∈ N \ {1} equispaced points over [0, 1], finding yi = r(ih) ∈ Rd, i = 0, . . . , k − 1,
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Fig. 7. Running times in seconds of the three considered methods for the evaluation of 10000
random curves, varying ω in {0.0920 + 2k}50k=−50, for d = 3 and m ∈ {1, 2}.

where h = 1/(k − 1). Once the matrices R1 := [r0, . . . , r2m−d+1] ∈ Rd×(2m−d+2) and
R2 := [r2m−d+2, . . . , r2m+1] ∈ Rd×d are defined, the problem is lifted to dimension

2m+2, where the new control points are the columns of R := [
R1, R2

I2m−d+2, O(2m−d+2)×d
] ∈

R(2m+2)×(2m+2), where I2m−d+2 is the (2m− d+ 2)-dimensional identity matrix and
O(2m−d+2)×d is the (2m − d + 2) × d matrix of zeros. It is easy to see that R is

invertible with R−1 = [
O(2m−d+2)×d, I2m−d+2

R−1
2 , R−1

2 R1
]. Now consider the following recursion:

z0 = R e1, zi = M zi−1 = Mi z0, i = 1, . . . , k − 1,(6.2)

where e1 = [δ1,j ]
2m+2
j=1 , δi,j being the Kronecker delta, M = RCω

h,mR−1, and Cω
h,m ∈

R(2m+2)×(2m+2) is the unique matrix such that ϕω0,m(t+ h)
...

ϕω2m+1,m(t+ h)

 = Cω
h,m

 ϕω0,m(t)
...

ϕω2m+1,m(t)

 , 0 ≤ t+ h ≤ 1, t ∈ [0, 1].

Then yi =
[
Id, Od×(2m+2)

]
zi, i = 0, . . . , k − 1. In other words, once we have the

evaluations of the lifted curve {zi}k−1
i=0 , we only need to consider the first d components

to find the solution for the initial low-dimensional problem.
Let us now focus on the space EPω

1 . To use the previous method we need to
compute the matrix Cω

h,1. Since

B


ϕω0,1(t)
ϕω1,1(t)
ϕω2,1(t)
ϕω3,1(t)

 =


1
t
eωt

e−ωt

 with B =


1 1 1 1
0 c2(ω) 1− c2(ω) 1
1 1 + ωc2(ω) eω(1− ωc2(ω)) eω

1 1− ωc2(ω) e−ω(1 + ωc2(ω)) e−ω


and 

1
t+ h
eω(t+h)

e−ω(t+h)

 = Ĉω
h,1


1
t
eωt

e−ωt

 with Ĉω
h,1 =


1 0 0 0
h 1 0 0
0 0 eωh 0
0 0 0 e−ωh

 ,
we have that

ϕω0,1(t+ h)
ϕω1,1(t+ h)
ϕω2,1(t+ h)
ϕω3,1(t+ h)

 = Cω
h,1


ϕω0,1(t)
ϕω1,1(t)
ϕω2,1(t)
ϕω3,1(t)

 with Cω
h,1 = B−1 Ĉω

h,1 B.
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In particular, it can be shown that

Cω
h,1(4, 4) =

sinh(ω(1 + h)) − ω(1 + h)

sinh(ω) − ω
=

eω(1+h) − e−ω(1+h) − 2ω(1 + h)

eω − e−ω − 2ω

= eωh 1 − e−2ω(1+h) − 2ωe−ω(1+h)

1 − e−2ω − 2ωe−ω
= O(eωh) for ω → +∞,

since h ∈ (0, 1]. This fact propagates to M and its powers during the recursion (6.2)
which ends with Mk−1 having an element that is O(eω), making the computations
numerically unstable already for ω of order 101. In a similar way it is possible to
check that the same happens for the space EPω

2 . Thus, it is not advisable to use this
evaluation method in the context here described.
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