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Abstract: Fluid-structure interaction (FSI) problems are of great interest, due to their applicability in
science and engineering. However, the coupling between large fluid domains and small moving solid
walls presents numerous numerical difficulties and, in some configurations, where the thickness
of the solid wall can be neglected, one can consider membrane models, which are derived from
the Koiter shell equations with a reduction of the computational cost of the algorithm. With this
assumption, the FSI simulation is reduced to the fluid equations on a moving mesh together with a
Robin boundary condition that is imposed on the moving solid surface. In this manuscript, we are
interested in the study of inverse FSI problems that aim to achieve an objective by changing some
design parameters, such as forces, boundary conditions, or geometrical domain shapes. We study
the inverse FSI membrane model by using an optimal control approach that is based on Lagrange
multipliers and adjoint variables. In particular, we propose a pressure boundary optimal control
with the purpose to control the solid deformation by changing the pressure on a fluid boundary. We
report the results of some numerical tests for two-dimensional domains to demonstrate the feasibility
and robustness of our method.

Keywords: fluid–structure interaction; Koiter membrane monolithic formulation; adjoint equations;
optimal control

1. Introduction

Recently, numerical simulations of fluid–structure interaction (FSI) problems have
gained popularity in the research community due to a large variety of possible applications,
which range from wind turbines and aircraft to hemodynamics. In FSI models, the fluid
changes the tensional state of a solid structure that is left free to move and deforms the
fluid flow domain. Many approaches have been proposed and implemented to model the
behavior of the interaction between a fluid and solid, and a large variety of articles and
books is available on this topic [1–5]. A first attempt to classify the FSI algorithms can
be made while considering the kind of coupling between fluid and solids. In partitioned
approaches, the equations of fluid mechanics, structural mechanics, and mesh motion
are solved sequentially. This allows re-using existing fluid and structure solvers, such as
commercial software (e.g., Ansys [6], etc.). However, convergence difficulties are sometimes
encountered, most commonly when the added mass effect is not negligible or when an
incompressible fluid is fully enclosed by the structure. The interested reader in partitioned
approaches can see [7–10]. In monolithic approaches, the equations of fluid, structure, and
mesh motion are solved simultaneously, in a fully-coupled fashion, see [11–13]. The main
advantage is that these solvers are more robust and many of the problems encountered with
the staggered approaches are avoided. However, strongly-coupled approaches necessitate
writing a fully-integrated FSI solver, which virtually precludes the use of existing fluid and
structure solvers.
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It can be easily understood the interest among the scientific community towards meth-
ods that try to combine the stability and convergence properties of monolithic approaches,
with the reduced computational costs that are required by partitioned ones. In this context,
this work is based on the reduction of the dimensionality of the solid, through a model
derived from the Koiter shell equations [14,15]. This model has many applications in
vascular dynamics, where a fluid interacts with a thin membrane that mainly deforms in
the normal direction [16,17]. To couple the fluid and structure domains, the Koiter shell
equations are embedded into the fluid equations as a Robin boundary condition [18,19].
The fluid–structure coupling conditions are automatically treated in an implicit way as for
monolithic approaches, so that the stability of this numerical scheme is preserved.

In this paper, we investigate a class of FSI steady inverse control problems modeled by
the Koiter shell equations. We use a Lagrange multiplier approach and keep a monolithic
formulation in velocity-displacement fields that implicitly takes care of the force balance.
We introduce an auxiliary velocity field that keeps the optimality system in the state and
adjoint variables symmetric. We propose solving a stationary displacement matching
problem with a boundary optimal control approach. We consider a Neumann boundary
control, where the control variable is the fluid boundary pressure. In the evaluation of the
control, great care must be taken in choosing the appropriate functional spaces. In this
case, the inlet pressure is considered in the space of square integrable functions. Although
the mathematical background of gradient-based adjoint methods is of great interest to
investigate the existence of optimal solutions, see [20–22], only a few works that deal with
adjoint FSI optimization can be found in literature [23–26]. In [23], the authors study an
inverse parameter estimation problem to recover the arterial stiffness from the measured
displacement. Pressure boundary control problems are solved in [24] with the Newton
method and in [25] through an auxiliary displacement field that permits extending the
velocity field to the solid domain obtaining a symmetric adjoint formulation. This extension
method is applied in [26] to a larger class of problems, such as distributed control and
inverse Young modulus estimation with control inequalities.

The rest of this paper is organized, as follows. In Section 2, we first introduce the
equations used to model the interaction between an incompressible, viscous, Newtonian
fluid, and a deformable wall described by the elastic Koiter shell equations. Subsequently,
we recover the weak formulation of our Koiter fluid–structure model. In Section 3, we
introduce the optimal control problem and the optimality system that arises from the
minimization of the augmented Lagrangian. In Section 4, we present some numerical
results, proving the effectiveness of the method to find optimal control solutions.

2. Physical Model

In this section, we introduce the mathematical model for FSI problem. While the fluid
has been modeled with the classic Navier–Stokes equations, a shell model was used for the
solid modeling. In particular, the structural model is based on the Koiter shell approach
that considers the model of an elastic thin membrane. In the following, we denote with
L2(Ω) the space of square integrable functions on the domain Ω, and with Hs(Ω) the
standard Sobolev space with norm ‖ · ‖s. We also denote, with Hs

0(Ω), the space of all
functions in Hs(Ω) that vanish on the boundary of Ω, and with H−s(Ω) the dual space of
Hs

0(Ω). The trace space for the functions in H1(Ω) is denoted by H1/2(Γ).

2.1. The Linear Koiter Shell Model

The Koiter shell approach relies on the assumption that the structure displacements
are small and normal to the surface of the shell. Let θ(x) be a linear mapping between a
reference fixed point and a generic point on the middle surface. We denote, with ω, the
points of the reference configuration and with Γs the deformed membrane configuration,
as shown in Figure 1.
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Figure 1. Regular mapping between the reference shell surface ω and the deformed one Γs.

We now consider the tangential base ãα =
∂θ

∂xα
, for α = 1, 2. Thus, ã1 and ã2 define

the plane tangential to the shell, while ãn = (ã1 × ã2)/|ã1 × ã2| defines the unit vector
normal. Now, we define the covariant metric tensor of the middle surface as Aαβ = ãα · ãβ.
Another fundamental tensor considered in this work is

Bαβ = ãn ·
∂

∂xα

(
∂θ

∂xβ

)
= ãn ·

∂aα

∂xβ
.

The deformation can now be specified by the difference between Ãαβ and B̃αβ in the
deformed and reference configuration. Subsequently, we introduce the strain measures

γαβ =
1
2
(Ãαβ − Aαβ) , ραβ = B̃αβ − Bαβ ,

where γαβ is the change of metric tensor, while ραβ denote the covariant components of the
linearized change of curvature tensor that is associated with a displacement η = ηiai. In
the rest of the paper, given a tensor Tαβ, we define T λ

β = (Aαλ)
−1Tαβ. The strain measures

can be written in terms of the displacement components η, as

γαβ =
1
2
(ηα|β + ηβ|α)− Bαβηn , (1)

ραβ = η|αβ − Bk
αBkβηn + Bk

αηk|β + Bk
βηk|α + Bk

α|βηk , (2)

where the additional subscript preceded by a vertical stroke that is applied to the generic
quantity χ, e.g., χβ|α, means the covariant surface differentiation with respect to the coordi-
nate xα.

In this work, we only consider normal displacements, thus there is not any change in
length between the reference middle surface and the deformed one. Note that the normals
are completely specified by arbitrary variations of Aαβ and Bαβ under the compatibility
conditions (1) and (2). We can now introduce the linear Koiter shell equations. Let Γs be the
considered shell domain, and let υs be a measurable subset of ∂Γs. In the following, ∂t will
denote the outer normal derivative operator along Γs. Because γαβ(η), ραβ(η) ∈ L2(Γs),
we can introduce the functional space V(Γs), such that

V(Γs) = {η = ηiai : ηα ∈ H1(Γs) , ηn ∈ H2(Γs) , ηi = ∂tηn = 0 on υs} .

For more information regarding the introduced functional spaces and the derivation
of the equations used in this section, see [27]. We can define the energy functional of the
Koiter shell equation as
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K(η) = 1
2

∫
Γs

(
εAαβστγστ(η)γαβ(η) +

ε3

3
Aαβστρστ(η)ραβ(η)

)√
a dy

−
∫

Γs
f i,εηi
√

a dy ∀η ∈ V(Γs) ,
(3)

where a(η) = det(Aαβ(η)) and ε is the thickness of the solid wall. The contravariant
components of the shell elasticity tensor Aαβστ are defined as

Aαβστ =
2Eν

1− ν2 Aαβ Aστ +
E

1 + ν
(Aασ Aβτ + Aατ Aβσ) ,

where ν is the Poisson coefficient and E the Young modulus of the solid material. The given
functions f i,ε ∈ L2(Γs) take the forces applied to the shell into account. We impose the
boundary condition ηi = ∂tηn = 0 on υs, therefore the shell is clamped on the boundaries
of its middle surface. For all of the admissible displacements ξε = ξε

1ai ∈ V(Γs), we can
derive the variational equation for the vector field η, as

∫
Γs

(
εAαβστγστ(ξ

ε)γαβ(η) +
ε3

3
Aαβστρστ(ξ

ε)ραβ(η)
)√

a dy =
∫

Γs
f i,εηi
√

a dy . (4)

In addition to the hypothesis of normal displacement, we also introduce the following
assumptions: small deformations of the solid shell, negligible bending terms, and isotropic
and homogeneous material. Therefore, we can neglect the term with ε3 in Equation (4).
Moreover, we can assume ξε as a test function for the variational formulation, obtaining∫

Γs
εAαβστγαβ(η)γστ(ψ) dΓ =

∫
Γs

f s ·ψ dΓ , ∀ψ ∈ V(Γs) . (5)

If we restrict the membrane displacements to only normal direction, we can further
simplify the variational formulation (5), and reduce it to a simple scalar equation for ηn. In
strong form, it reads

βηn = fs on Γs ,

with ηn|t=0 = η0 ,
∂ηn

∂t

∣∣∣
t=0

= ηv on Γs ,
(6)

where

β(x1, x2) =
εE

1− ν2

(
(1− ν)Bk

βBβ
k + νBβ

β Bk
k
)

. (7)

2.2. The Prestressed Term

The presented Koiter model does not account for prestressed loading, along with
the shell structure. Let us consider the deformed non-shell configuration Ωs. Note that
Ωs has thickness ε, and the shell surface is defined as the middle surface of it. In a weak
formulation, the prestress term is [28]∫

Ωs
∇(ηP) : ∇ξε dx , (8)

where P is the Cauchy stress tensor in the deformed configuration for only tangential
stresses in Ωs. In the rest of this section, we will follow the procedure that is presented
in [18]. By taking the limit for ε → 0, we lead Equation (8) back to the membrane case.
Thus, we can write the deformation field as

η = ηi(x1, x2)ai + xn

(∂ηn

∂xα
+ Bk

αηk

)
aα .
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Because the integration is performed on Ωs = Γs × [−ε/2,+ε/2], the terms where
xn appears are of higher order in ε (in the order of ε2 or more), so we can neglect them.
The interested reader can see the full expansion in [18]. Now, we introduce the surface
covariant derivative of a vector field (see [29]). The covariant derivative of η is defined as

ηs
α|k =

∂ηα

∂xk
− Γβ

αkηβ , with Γβ
αk = aβ · ∂ak

∂xα
.

With this notation, we can write the three-dimensional covariant derivatives of η as

ηα|β = ηs
α|β − Bαβηn , ηα|n = −

(∂ηn

∂xα
+ Bk

αηk

)
,

ηn|α =
∂ηn

∂xα
+ Bk

αηk , ηn|n = 0 .

Now by integrating (8) and considering Ωs = Γs × [−ε/2,+ε/2], we have

∫
Ωs

ηk|αPαβξε
k|β dx =

∫
Γs

∫ ε/2

−ε/2
BkαηnPαβBkβbbξε

n dx dΓ =
∫

Γs
εBkαPαβBkβηnξε

n dΓ , (9)∫
Ωs

ηn|αPαβξε
n|β dx =

∫
Γs

∫ ε/2

−ε/2

∂ηn

∂xα
Pαβ ∂ξε

n
∂xβ

dx dΓ =
∫

Γs
εPαβ ∂ηn

∂xα

∂ξε
n

∂xβ
dΓ . (10)

Equation (9) can be incorporated into the coefficient β in the Equation (7). The Equa-
tion (10) gives a second derivative in space to be added inside the model (6), obtaining

β∗ηn −∇ · (P∇ηn) = fs on Γs ,

with ηn|t=0 = η0 ,
∂ηn

∂t

∣∣∣
t=0

= ηv on Γs ,
(11)

and

β∗(x1, x2) = ε

(
E

1− ν2

(
(1− ν)Bk

βBβ
k + νBβ

β Bk
k
)
+ BkαPαβBkβ

)
.

Model (11) must be completed with the proper boundary conditions, i.e., ηn|∂Γs = 0.
Note that the presented prestressed model can be used when the deformed configuration
is close enough to the reference one, so we can consider an isotropic elastic tensor.

2.3. The Cylindrical Geometry

Let now consider a cylindrical geometry, in order to show how to explicitly calculate
all of the introduced tensors in a simple three-dimensional geometry. If we consider a
system of cylindrical coordinates and a cylinder of radius R, we have r(θ, z) = {(x, y, z) ∈
R3 | x = R cos(θ), y = R sin(θ), z = z}. The covariant basis is given by

a1 =

−R sin θ
R cos θ

0

 , a2 =

0
0
1

 , an =

cos θ
sin θ

0

 ,

this implies that

Aαβ =

[
R2 0
0 1

]
, Bαβ =

[−R 0
0 0

]
,

therefore

Bα
β = AαkBkβ =

[
1/R2 0

0 1

][−R 0
0 0

]
=

[
1/R 0

0 0

]
.
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Subsequently, it is easy to show that

β =
εE

1− ν2

(
(1− ν)Bk

βBβ
k + νBβ

β Bk
k
)
=

εE
1− ν2

(1− ν

R2 +
ν

R2

)
=

εE
1− ν2

1
R2 . (12)

Moreover, because the prestress term acts only in the longitudinal dimension, in the
cylindrical case we have

P =

[
0 0
0 Pzz

]
.

In this case, the system (11) can be simplified as a one dimensional equation

βηn − µs
∂2ηn

∂z2 = fs , (13)

where µs = Pzz. See [30,31] for more information on the applications of this model to
hemodynamic.

2.4. The Coupled Fluid-Structure Model

The fluid is modeled as Newtonian, homogeneous, and incompressible. The fluid
satisfies the following equations in ALE form [2,32]

ρ f
∂u
∂t

∣∣∣∣
A
+ρ f [(u−w) · ∇]u−∇ · σ f = 0 on Ω f , (14)

∇ · u = 0 on Ω f , (15)

where ρ f and u are the density and the velocity vector of the fluid, respectively. The Cauchy
stress tensor of the fluid is written as σ f = −pI + µ(∇u +∇uT), where p and µ are the
pressure and dynamic viscosity of the fluid, respectively. The system of Equation (14) is
completed with appropriate boundary conditions. Moreover, Ω f is the fluid domain and
w is the ALE velocity that determines, step-by-step, the position of the nodes of the fluid
domain as x f (t) = x0 +

∫ t
0 wdτ.

In the following, (·, ·) will denote the L2(Ω(t)) inner product, (·, ·)Γs will denote the
L2(Γs) inner product, and the bilinear form a(·, ·) is defined as

a(w, v) = µ(∇w + (∇w)T ,∇v) .

The optimal control that is introduced in this work is based on the stationary solution
of the fluid–structure system. Therefore, in the following, we neglect all of the time
derivatives. We can write the weak formulation for the fluid problem as

a(u, φ) + ρ f (((u−w) · ∇)u, φ)− (p,∇ ·φ)

=
∫

Γ
(σf ãn) · ãn(φ · ãn) dΓ +

∫
ΓN

h ·φ dΓ ,

(q,∇u) = 0 ,

(16)

for all φ ∈ H1(Ω) : φ|ΓD = 0 and (φ · ãα)|Γ = 0 and for all q ∈ L2(Ω).
With a similar approach, we can write the weak formulation for the prestressed shell

Equation (11), as

(β∗ηn, ψ)Γs + (P∇ηn,∇ψ)Γs = ( fs, ψ)Γs , ∀ψ ∈ H1(Γs) . (17)

By using this shell model, the structure equations can be reduced to a boundary
condition on Γs for the fluid problem. Therefore, the two sub-systems (16) and (17) are
coupled by imposing σ f · n− fs = 0 on Γs. Now, we define the functional space V0 = {φ ∈
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H1(Ω f ) : φ|ΓD, f = 0}, where ΓD, f are the boundaries of Ω f where Dirichlet conditions are
imposed. In order to satisfy the continuity of the test functions φ · n = ψ over the interface
surface Γs in the coupled system, a new functional space is introduced as

W0 = {(φ, ψ) ∈ V0 × H1(Γs) : φ · n = ψ over Γs} . (18)

Now, we can derive the weak form of the coupled final system by simplifying the two
terms

∫
Γ(σf ãn) · ãn(φ · ãn) dΓ and ( fs, ψ)Γs . Note that ψ = (φ · ãn) ◦ θ(x). Subsequently,

the coupled system reads

ρ f

(
[(u−w) · ∇]u, φ

)
+ a(u, φ)− (p,∇φ) + (β∗ηn, ψ)Γs

+ (P∇ηn,∇ψ)Γs =
∫

ΓN,t

h ·φ dΓ ,

(∇ · u, q) = 0 .

(19)

for all (φ, ψ) ∈ W0, q ∈ L2(Ω f ). A finite element technique is used to obtain the discrete
weak formulation of (19). With this approach, the structural equation can be incorporated
in the fluid equations as Robin boundary conditions.

3. Optimality System

In this work, we are interested in solving a displacement matching optimal control
problem. We aim to obtain a desired shell deformation profile by controlling the fluid
pressure over a portion of its boundary. Therefore, the objective functional that we intend
to minimize reads

J (η, p) =
1
2

∫
Γd

‖η− ηd‖2 dΓ +
λ

2

∫
Γc

p2 dΓ . (20)

The first term expresses the distance in norm between the actual displacement and its
desired value over the controlled boundary Γd, which can either be the whole moving wall
or one sub-portion. The second term has been added to limit the L2-norm of the control,
the fluid boundary pressure p. The regularization parameter λ weighs the importance of
the two terms over the cost functional and the choice of its value can be challenging. As a
general rule, too much regularization leads to smoother, but less effective, controls, while a
lack of regularization may lead to numerical and convergence issues.

In this work, we use a standard Lagrange multiplier approach to derive the first-order
necessary conditions. We first introduce the augmented functional L, which is obtained
by adding to the objective functional J the FSI state Equation (19) multiplied by the
appropriate Lagrange multipliers, also known as adjoint variables.

L(η, u, ua, p, pa, Γ) = J (η, p)− (ρ f (u · ∇)u, ua) + (p, ∇ · ua)

− (pa, ∇ · u)− µ(∇u, ∇ua) +
∫

Γ
µ(∇u · n) · uadΓ

−
∫

Γ
(pn) · uadΓ−

∫
Γs

ua · (βη+ P∇2η− f s − τn)dΓ ,

(21)

Since our control variable is the fluid pressure on the boundary, we integrate by parts
the contributions of the fluid stress tensor σ f . The surface integrals can be rewritten by
substituting the definition of τn. The stationary points of the Lagrangian functional can
be found by setting to zero the Fréchet derivatives taken with respect to all the problem
variables. When considering the variations of the adjoint variables, we recover the weak
form of the state system (19) and its boundary conditions. By taking the derivative in the
direction δp, we get

DL
Dp

δp = (∇ · ua, δp)−
∫

Γ−Γs
(ua · n)δp dΓ +

∫
Γc

λp δp dΓ = 0 ∀δp ∈ L2(Ω) . (22)
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Because this derivative must vanish for every choice of δp, then the volume term gives
the following continuity equation for the adjoint velocity

∇ · ua = 0 on Ω , (23)

while, by setting to zero the surface terms, we recover the following control equation over
the controlled boundary Γc

∫
Γ−Γs

(ua · n)δp dΓ−
∫

Γc
λp δp dΓ = 0 ∀δp ∈ L2(Ω) ⇒ p =

ua · n
λ

on Γc , (24)

and the boundary conditions on ΓD∫
Γ−Γs−Γc

(ua · n)δp dΓ = 0 ∀δp ∈ L2(Ω) ⇒ ua · n = 0 on ΓD . (25)

We remark that, where we impose Neumann boundary conditions with fixed pressure
(i.e., ΓN). we have δp = 0.

Collecting the variations in the direction δη, we have

DL
Dη

δη = −
∫

Γs
ua · (β δη+ P∇2δη)dΓ +

∫
Γd

(η− ηd) · δηdΓ = 0 ∀δη ∈W0 . (26)

We integrate by parts (26), obtaining the equation for the boundary conditions of the
adjoint velocity

−
∫

Γs
ua · β δη dΓ +

∫
Γs
∇ua · P∇δη dΓ +

∫
Γd

(η− ηd) · δηdΓ = 0 ∀δη ∈W0 . (27)

We now collect δu terms and integrate by parts, obtaining

ρ f ([(δu · ∇)u + (u · ∇)δu], ua
)
− (∇pa, δu)− µ(∇2ua, δu) +

∫
Γ
(pan) · δu dΓ

−
∫

Γ−Γs
µ(∇δu · n) · ua dΓ +

∫
Γ

µ(∇ua · n) · δu dΓ = 0 ∀δu ∈W0 ,
(28)

which gives the equation for the adjoint velocity

ρ f (∇u)T · ua + ρ f (u · ∇)ua −∇pa − µ∇2ua = 0 on Ω , (29)

with the boundary conditions

ua = 0 on ΓD, τna = 0 on ΓN ∪ Γs . (30)

Moreover, we have to consider the change of L due to the motion of the boundary Γs
along the direction δη

DL
DΓ

δη =
∫

Γs
β(∇ua · n + χua) · δη dΓ = 0 ∀δη ∈W0 , (31)

where χ represents the shell curvature. Under the hypothesis of small deformations, we
can safely neglect the terms where χ appears. The term with ua is defined on the surface Γs
and a constant extension of this value towards the normal direction to the surface leads to
a null normal gradient, so we have that the moving shape terms DL

DΓ δη vanish.
To summarize, the optimality system is composed by the state system (19), by the

control Equation (24) and by the adjoint system (23)–(28) with boundary conditions (25),
(27) and (30). Since the optimality system doubles the number of the state variables, we
use a segregated approach for the solution of the state, adjoint, and gradient equations.
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In this case, we can reuse the same solver for both the solution of the state (19) and adjoint
systems (23)–(28) with few modifications. In Algorithm 1, we describe the steepest descent
method used.

Algorithm 1 Description of the Steepest Descent algorithm.
1. Set a state (u0, p0, η0) satisfying (19) . Setup of the state - Reference case
2. Compute the functional J 0 in (20)
3. Set r0 = 1
for i = 1→ imax do

4. Solve the system (23)–(28) to obtain the adjoint state (ui
a, pi

a)
5. Set the control update δpi = −(pi−1

c + ui
a · n/λ)

6. Set ri = r0

while J i(pi−1
c + riδpi) > J i−1(pi−1

c ) do . Line search
7. Set ri = ρ ri

8. Solve (19) for the state (ui, pi, ηi) with pi
c = pi−1

c + riδpi

if ri < toll then
Line search not successful . End of the algorithm

end if
end while

end for

4. Numerical Results

In this section, we report some of the numerical results that were obtained by using
the mathematical model shown in the previous sections. We implemented the presented
Koiter FSI model in the multigrid finite element code FEMuS [33], which relies on PETSc
libraries for the solution of the multigrid discretized linear solver with MPI parallelization.
We compare the results that were obtained with the presented Koiter FSI model with a
simplified analytic problem. Subseequently, we further validate the implemented model
through the comparison with a validated FSI model.

We also implemented the presented steepest descent algorithm in the code FEMuS,
and we present different tests, showing the dependence of the optimal solution on the
regularization parameter λ, the convergence with the grid refinement of the implemented
algorithm, and the effectiveness of the used method when non-constant desired target
fields are requested.

4.1. Validation of the Koiter FSI Model

Because the presented fluid–structure model based on Koiter shell equations is still
not widespread, in the literature there are only a few works on a benchmarking of it. In
this section, we will refer to the benchmarks that are present in [34]. In particular, we
first consider a simple numerical case, where an analytical solution is available. Another
benchmark that is based on a comparison between the Koiter model and a fully validated
monolithic fluid–structure model is then presented.

4.1.1. Exact Koiter Solution

We consider a fluid flowing through a cylindrical channel, obtained through the
rotation of the rectangle Ω = {(x, y) : x ∈ [0, 0.005], y ∈ [0, 0.06]} around the z-axis,
obtaining a cylinder of radius R = 0.005 m and height L = 0.06 m. We consider an inlet
at the bottom and an outlet at the top. On the outer wall, the Robin boundary condition
for Koiter shell is imposed. We consider a solid shell with density ρs = 1100 kg

m3 , a Poisson
coefficient νs = 0.1, an elastic modulus E = 124 kPa, and a wall thickness ε = 2× 10−4 m.
Moreover, we consider a fluid with density ρ f = 1000 kg

m3 and viscosity ν f = 0.001 m2

s .
Since we are considering a cylindrical geometry, we consider the simplified model

(13). By neglecting the prestress term, the problem turns out to be linear, and can be exactly
solved under certain conditions. By imposing a constant inlet pressure pin, in fact, it is
possible to obtain the analytical solution of the pressure and the displacement fields for
stationary solutions.
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Under the presented parameter setting we obtain β = εE
(1−νs)R2 = 1010 kPa/m. Then,

by setting a time step of 0.0005 s, an inlet pressure of pin = 25 Pa and an outlet pressure of
pout = 0 Pa, after a time t = 0.25 s the steady state is reached.

As mentioned in [34], the fluid pressure is linear within the channel, as

pe(r, z) = pe(z) =
poutz + pin(L− z)

L
z ∈ [0, L], ∀r ∈ [0, R] . (32)

Subsequently, the exact radial displacement of the structure is simply given by

ηe(z) =
pe(z)

β
. (33)

The comparison between the displacement field that is simulated with the imple-
mented algorithm and the exact displacement (33) is reported in Figure 2 on the left, show-
ing good agreement between the expected and simulated values of the considered field.
However, some discrepancies between the exact and the simulated solutions can be found
at the extremes of the cylinders (at the inlet and outlet). This is due to boundary conditions
on the displacement field that should be improved in future works. At the same time,
in Figure 2 on the right the comparison of the exact (32) and the simulated pressure fields
along the cylinder axis are reported. It can be seen that there is total agreement between
the simulated pressure and the exact one.

0 0.02 0.04 0.06

0× 100

1× 10−5

2× 10−5

x(m)

η
(m

)

simulated
exact

0 0.02 0.04 0.06

0

10

20

x(m)

p
(P

a
)

simulated
exact

Figure 2. Comparison of the displacement field dx (left) and the pressure p (right) between the
simulated case and the reference one. The displacement field is reported along the line between the
points (0.005, 0, 0) and (0.005, 0, 0.6), and the pressure is reported along the cylinder axis.

4.1.2. Comparison with a Validated FSI Model

The Koiter FSI model is now compared with the result of a monolithic fluid–structure
model that is implemented in the FEMuS code and validated through the Turek FSI
benchmarks [1]. The validation and the introduction of the mathematical and numerical
model can be found in [35].

Differently from the benchmark that was proposed in [34], we do not consider a
multi-layer case, and the comparison is developed on a single solid layer. Because the
monolithic model satisfies the Turek benchmark, we use it as a reference for the testing of
the new algorithm. The test has been carried out using the same parameters of the previous
test, with the only exception of the elastic modulus (E = 15625 Pa) and the wall thickness
(ε = 1.2× 10−3 m). From (12), we obtain β ' 757 kPa/m.

Because the benchmarks available in the literature usually involve transient prob-
lems, we consider the time-dependent Koiter model (see [18] for more information) by
reformulating (13) as
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ρsε
∂2ηn

∂t2 + βηn − µs
∂2ηn

∂z2 = fs .

Now, we consider a variable inlet pressure value as

pin =

{
pmax

2
(
1− cos

( 2πt
tmax

))
if t < tmax ,

0 if t ≥ tmax ,

where pmax = 1.333 kPa and tmax = 0.15 s. With all of the presented hypotheses, the two
different tests have been carried out on the meshes that are presented in Figure 3, with a
time step ∆t = 5× 10−4 s. As boundary conditions, we impose an inlet of the fluid from
the bottom and an outlet from the top. On the outer wall (external surface of the cylinders),
structure conditions are imposed.

Figure 3. The two meshes used for the numerical comparison between the monolithic (left, in red
the solid domain) and the Koiter (right) FSI models. The two meshes have the same number of
fluids elements.

In Figures 4 and 5, the comparison of the displacement field between the Koiter and
monolithic model is reported. The displacement of the structure is calculated along the line
between the two points (0.005, 0, 0) and (0.005, 0, 0.6). It can be noted that the two models
have similar behavior in time for all of the reported time steps. In particular, the two
models differ from each other for t = 0.02 s and for t = 0.04 s. After the initial transition,
the two solutions seem to converge to a similar solution, as can be seen for t = 0.06 s and
t = 0.08 s.

Despite the slight differences between the Koiter and monolithic model noted above,
from the presented preliminary results we can assert that the implement Koiter model is
consistent with the solution that is obtained with the monolithic model, which has been
fully tested in previous works.
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Figure 4. Comparison between Koiter (continuous line) and the monolithic model (dashed line)
displacement for t = 0.02 s (left) and t = 0.04 s (right).
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Figure 5. Comparison between Koiter (continuous line) and the monolithic model (dashed line)
displacement for t = 0.06 s (left) and t = 0.08 s (right).

Note that the reduction of the computational cost that i sobtained through the Koiter
model depends on the solid mesh: the finer is the solid grid, the higher the reduction of the
computational cost.

4.2. Regularization Term Tests

We now consider the numerical results of the implemented steepest descent algorithm.
We show a simple numerical test to show the dependence of the implemented control
algorithm for different values of the regularization term λ. We consider the simplified case,
where the domain Ωd is reduced to a single point xd. We consider a rectangular domain
Ω = {(x, y) : x ∈ [0, 0.1], y ∈ [0, 0.3]}, as shown in Figure 6 on the left. The fluid has
density ρ f = 1000 kg/m3 and dynamic viscosity µ = 100 Pa · s. For the solid, we consider
β = 60 kPa/m and thickness hs = 0.0075 m. The domain is uniformly divided in a regular
rectangular mesh.

We only present one simple case, where the fluid flows vertically from the bottom to
the top. The region of the boundary Γ2 represents a solid wall with no-slip boundary con-
dition (u = 0) and Γ3 is the membrane where we impose the generalized Robin boundary
condition (6). As an initial condition, we impose a linear pressure field, decreasing from
the bottom, where p = 6000 Pa is imposed, to the top, where we fixed p = 0 Pa. In Figure 6,
we also report the steady solutions of the displacement field (center) and the pressure field
(right) when the control algorithm is not considered.
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Figure 6. Regularization term test. Geometry and controlled region xd (left), deformation dx (center)
and pressure p (right) in Ω in steady state without control.

The simulations aim to control the displacement of the point xd of the membrane,
in ı̂ direction, optimizing the pressure of the fluid on Γ1. If we do not apply the control
algorithm, the point xd shows a displacement η = 0.015824 m. The goal of this test is to
reduce it to ηd = 0.005 m, thus changing the pressure of the fluid on Γ1. Thus, the objective
functional of the problem reads

J (η, p) =
1
2
(η|xd − ηd)

2 +
λ

2

∫
Γ1

p2 dΓ . (34)

Table 1 presents the results of multiple simulations, with variations of the regulariza-
tion parameter λ, which has been introduced to regularize the control parameter p and
force it to the functional space L2(Ω). Note that the solution is closer to the objective for
small values of λ. This result was expected, since, with larger λ, the contribution of the
regularization term in the minimization of the functional is more relevant. Thus, with larger
λ, we find smooth pressure profiles, but less precise displacement field η. In Table, we also
report the number of iterations needed to the Algorithm 1 to find the optimal solution.

Table 1. Regularization term test. Objective functional and displacement values obtained for different
λ values. The total number of iteration of the algorithm is also reported.

λ J (η, pc) ηopt (m) Iterations

∞ 5.85839× 10−05 0.015824 -
10−08 2.19246× 10−06 0.002906 4
10−09 5.54438× 10−09 0.004895 8
10−10 2.18941× 10−10 0.004979 10
10−11 6.10506× 10−12 0.004997 12
10−12 3.86734× 10−15 0.005000 26

The controlled pressure pc is updated via the formula

pi
c = pi−1

c − ri,j
(

pi−1
c − ui

a · n
λ

)
. (35)

It clearly depends on the regularization parameter. In Figure 7, the controlled pressure
field along the boundary Γ1 is reported for various values of λ. Note that the choice of the
regularization parameter strongly affects the controlled pressure field, as expected. With
less regularization, the objective term dominates in the functional and the pressure can have
larger values, thus effectively controlling the membrane displacement. The comparison
between the imposed reference initial condition and controlled pressure fields in all of the
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studied cases show that the control algorithm changes the solution on Γc = Γ1 in order to
obtain the desired displacement ηd. Moreover, in Figure 7 on the right, the velocity field for
λ = 10−15 is reported. Note that the pressure field that is imposed by the control algorithm
forces an inverse flow at the inlet.
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Figure 7. Regularization term test. Control pressure p on Γ1 with different regularization parameters
(left). The dotted line represents the pressure in the reference case with no control (i.e., λ = ∞). On
the right: velocity u in Ω for λ = 10−15.

4.3. Grid Convergence Tests

Now, we show some results on the grid convergence of the proposed method. In par-
ticular, we require the reduction of the integral of the difference between η and ηd on
Ωd when the grid is refined. Thus, we report different tests, depending on the requested
displacement on Ωd.

In all of the considered cases, we consider the same physical values used in the last
section. Moreover, we will consider λ = 10−10, unless stated otherwise. We consider a
2× 2 mesh of the domain that is introduced in Figure 8 on the left, and we refine it with a
multi-grid approach. See [36] and reference therein for more information regarding the
multi-grid method.

Ωd

0
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Γ4

Ω
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Figure 8. Displacement reduction test. Comparison between the pressure field over Γc = Γ1 for
different mesh refinements (right). Controlled domain Ωd = [0.025 m× 0.15 m] (left).
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4.3.1. Displacement Reduction Test

We first compute a displacement reduction concerning the reference case, in which
we request a desired displacement ηd = 0.005 m on Ωd. We consider the geometry in
Figure 8 (left) with Ωd = {(x, y) : x ∈ [0.075, 0.1], y ∈ [0.075, 0.225]}. Moreover, we
consider the same boundary conditions that were introduced in the last numerical test. We
control the pressure p field over Γc = Γ1. The average displacement on Ωd in the steady
state without control case is η̄d = 0.00751 m. The functional that is associated with the
presented control problem in all of the tests reported in the following reads

J (η, p) =
1
2

∫
Γd

(η − ηd)
2 dΓ +

λ

2

∫
Γ1

p2 dΓ . (36)

In Figure 8 on the right, the comparison between the controlled pressure field for
different grid refinements is reported along the controlled boundary Γ1. In particular, all of
the presented solutions seem to converge with the grid to a certain pressure field. All of
the fields differ from the reference pressure field and, in particular, it can be noted that the
pressure is reduced by the control algorithm at the inlet. This result is expected, since we
are requesting a reduction of the displacement on Ωd.

In Table 2, the values of the distance between the desired solution and the solution
found with the optimal control algorithm are reported. In particular, we compute the
objective distance as

∫
Ωd

(η − ηd)
2 dx, where the integral over Ωd is calculated on the same

grid with the same quadrature rule for all of the considered grid refinements.

Table 2. Displacement reduction test. Distance from the objective ηd as a function of the number of
refinement levels.

Levels (ndof) λ
∫

Ωd
(η− ηd)2 dx Iterations R

2 (81) ∞ 3.45× 10−8 - -
2 (81) 10−10 4.01× 10−9 10 1.16× 10−1

3 (289) 10−10 3.41× 10−9 10 9.88× 10−2

4 (1089) 10−10 3.26× 10−9 12 9.45× 10−2

5 (4225) 10−10 3.22× 10−9 10 9.32× 10−2

Note that the distance from the objective decreases when the refinement of the grid
is increased. In Table 2 , we also report the number of iterations of the algorithm to find
the optimal solution. All of these values are compared with the reference simulation (no
control, λ = ∞). We also report the reduction rate, defined as

R =

∫
Ωd

(η − ηd)
2 dx∫

Ωd
(η̄d − ηd)2 dx

. (37)

Note that all of the reported values of R are always R < 1. Therefore, the solution
is always improved with respect to the reference one, which indicates that the control
algorithm always finds a solution better than the reference solution.

4.3.2. Displacement Increase Test

Now, we consider a displacement increase with respect to the reference configuration.
In particular, we request a desired displacement of ηd = 0.02 m on Ωd = {(x, y) : x ∈
[0.075, 0.1], y ∈ [0.075, 0.15]}, which is different when compared to the last considered
case. We consider the domain that is reported in Figure 9 on the left. All of the physical
quantities are considered equal to the previous case. The average displacement field in Ωd
in the uncontrolled case is η̄d = 0.00833 m.
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Figure 9. Displacement increase test. Domain used for the grid convergence test with Ωd of dimension
0.025 m × 0.075 m (left). Comparison between the pressure field over Γc = Γ1 for different mesh
refinements (right).

In Figure 9, on the right, we report the comparison between the control pressure
fields over Γ1 for different grid refinements. In particular, in contrast to the tests that were
previously reported, a meaningful increase of the controlled pressure can be noted in this
case. This is a direct consequence of the request for an increase of the desired displacement
on Ωd. Note that the pressure fields for 4 and 5 levels are coincident, as expected.

In Table 3, the comparison between all of the tested cases is reported. In particular,
all of the cases are compared with the reference one without control (i.e., λ = ∞). As in
the previous case, we report the distance value from the objective calculated through the
integral

∫
Ωd

(η − ηd)
2 dx. All of the controlled simulations show a minor distance from the

objective when compared to the reference case. The reduction rate, as introduced in (37),
is R < 1 for all of the tested grids. This means that the solution always improves when
compared to the reference one, and, for higher refinement levels, reduces the distance from
the objective.

Table 3. Displacement increase test. Distance from the objective ηd as a function of the number of
refinement levels.

Levels (ndof) λ
∫

Ωd
(η− ηd)2 dx Iterations R

2 (81) ∞ 2.91× 10−7 - -
2 (81) 10−10 2.39× 10−8 12 8.21× 10−2

3 (289) 10−10 1.76× 10−8 7 6.05× 10−2

4 (1089) 10−10 1.58× 10−8 12 5.43× 10−2

5 (4225) 10−10 1.53× 10−8 11 5.26× 10−2

4.4. Non-Constant Desired Field Tests

We now consider a desired displacement field that depends on the position x. This test
can be useful for practical applications where a non-constant objective is required. We present
two different problems, with a sinusoidal and a step desired field. The geometry of the
domain is reported in Figure 8 (left), with Ωd = {(x, y) : x ∈ [0.075, 0.1], y ∈ [0.075, 0.225]}.

We consider a fluid density ρ f = 1000 kg/m3, fluid dynamic viscosity µ = 1 Pa · s,
and, for the approximation of the solid to mono-dimensional membrane, we consider
β = 60 kPa/m and thickness hs = 0.0075 m. Moreover, we will consider λ = 10−6,
unless stated otherwise. We consider a 2× 2 mesh of the domain, refined 3 times with
a multigrid technique. We consider an airbag-like case, therefore we impose a no-slip
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condition on Γ1 ∪ Γ4, an inlet pressure on Γ2 and the Koiter boundary condition on Γ3.
We also have Γc = Γ2. We impose an inlet pressure of pin = 600Pa and consider λ = 10−6.

4.4.1. Sinusoidal Desired Displacement Test

We consider a simple sinusoidal case, where ηd is defined as

ηd = 0.01 + 0.0025 sin
(

2π(y− 0.075)
0.3

)
(m) .

The shape of this function has been chosen to be easily reproduced while using the
control strategy that is presented in this work.

In Table 4, we report the distance from the objective, depending on the considered
iteration of the implemented Steepest Descent algorithm. We also report the reduction rate,
as defined in (37). For simplicity, we only report the odd iterations. Note that the distance
from the objective decreases in all the iteration of the optimization algorithm, and reach
a final value of 7.46× 10−9. The final reduction rate of 1.80× 10−2 suggests that the final
solution is closer to the objective when compared to the initial solution.

In Figure 10, the displacement field along the line ` between the points (0.1, 0.075) and
(0.1, 0.225) (such that ` ∈ Ωd) is reported. Note that the optimal and reference solutions
have a similar behavior; therefore, we can conclude that the optimization algorithm found
a good solution, in agreement with the desired displacement.

Table 4. Sinusoidal desired displacement test. Distance from the objective and reduction rate R of
the objective functional as a function of control algorithm iterations.

It λ
∫

Ωd
(η− ηd)2 dx R

- ∞ 4.15× 10−7 -
1 10−6 1.90× 10−7 4.59× 10−1

3 10−6 9.90× 10−8 2.39× 10−1

5 10−6 1.37× 10−8 3.30× 10−2

7 10−6 9.45× 10−9 2.28× 10−2

9 10−6 7.46× 10−9 1.80× 10−2

0.075 0.1 0.125 0.15 0.175 0.2 0.225
0
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Figure 10. Sinusoidal desired field test. Displacement field along the line between the points
(0.1, 0.075) and (0.1, 0.225).

4.4.2. Step Function Desired Displacement Test

To test the presented algorithm on sharp desired functions, we now consider a step
function ηd, defined as
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ηd =

{
0.0075 m if y ∈ [0.075, 0.15] ,
0.015 m if y ∈ [0.15, 0.225] .

All of the physical parameters are the same used in the last cases. Again, we consider
an airbag case, where Γc = Γ2. The presented case is not a straightforward control problem,
since it is not easy to represent a step function displacement by controlling the pressure on
Γ2. We split the distance from the objective into two terms ε1 and ε2, such that

εi =
∫

Ωd,i

(η − ηd)
2 dx , i = 1, 2 ,

where Ωd,1 = {(x, y) : x ∈ [0.075, 0.1], y ∈ [0.075, 0.15[} and Ωd,2 = {(x, y) : x ∈
[0.075, 0.15], y ∈ [0.075, 0.225]} with

∫
Ωd

(η − ηd)
2 dx = ε1 + ε2.

In Table 5, we report the values of ε1 and ε2 for various iterations of the algorithm.
Note that the values of ε1 and ε2 are not uniformly decreasing with the algorithm iterations,
but their sum does. In fact, the algorithm is designed to reduce the value of ε: such value
and, consequently, the reduction rate R, decrease to the values 2.77× 10−8 and 6.29× 10−2,
respectively, after 9 iterations. The overall reduction rate indicates that the algorithm finds
a solution that is consistently better than the initial one.

Table 5. Step function desired displacement test. Distance from the objective for both the domains
Ωd,1 and Ωd,2, and overall distance from the objective ε as a function of the algorithm iteration.
The reduction rate R is also reported.

It λ ε1 ε2 ε R

- ∞ 3.64× 10−7 7.63× 10−8 4.40× 10−7 -
1 10−6 2.23× 10−8 2.17× 10−7 2.39× 10−7 5.43 × 10−1

3 10−6 1.05× 10−8 7.97× 10−8 9.02× 10−8 2.05× 10−1

5 10−6 7.74× 10−8 5.49× 10−9 8.28× 10−8 1.88× 10−1

7 10−6 2.31× 10−8 1.33× 10−8 3.46× 10−8 7.87× 10−2

9 10−6 1.28× 10−8 1.49× 10−8 2.77× 10−8 6.29× 10−2

In Figure 11, the displacement field along ` is reported. It is very difficult to match
perfectly the desired displacement ηd due to the nature of the desired function. The
optimization algorithm works to minimize the distance between the optimal and desired
solutions, and the solution that is found after 9 iterations of the optimization algorithm
is reported in Figure. We remark that, even if the proposed optimal solution does not
represent a perfect matching with the desired one, it is an upgrade of the initial solution by
1/R ≈ 16 times.
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Figure 11. Step function desired field test for Levels= 4. Displacement field along the line between
the points (0.1, 0.075) and (0.1, 0.225).

5. Conclusions

In this work, we have studied a fluid–structure interaction optimization problem
based on a multi-scale model, where the thickness of the solid wall can be neglected and,
therefore, greatly reduces rhe computational cost of the algorithm. We have stated the
problem in monolithic form, where the membrane equation has been taken into account
as a Robin boundary condition imposed on the moving boundary. We have obtained the
optimality system of a pressure boundary control problem, to find a desired displacement
of the membrane. The optimal control problem has been solved by using the Lagrange
multiplier method and the gradient of functional has been determined by solving the
adjoint problem.

The Koiter shell model has been validated through some numerical benchmarks,
which involve the comparison with an analytical result on a simple case, and the compari-
son with a fully-validated monolithic FSI model.

Subsequently, a Steepest Descent algorithm has been introduced to solve the pre-
sented control problem, and it has been implemented in a finite element code. Some
two-dimensional numerical tests have been introduced to validate the implemented al-
gorithm. In particular, the dependence of the algorithm on the regularization parameter
and its convergence with the grid refinement have been reported. The algorithm shows
good convergence properties, and the dependence on the regularization term is consis-
tent with the proposed mathematical model. Finally, the algorithm has been tested with
non-constant objectives and, in particular, we considered a sinusoidal and a step-function
desired displacement field. The algorithm found a sinusoidal solution in agreement with
the desired one, and an improved, although not perfect, step-function solution.

The implemented algorithm has been proven to find a solution closer to the desired
one in all of the tested cases in comparison to the uncontrolled solution. Moreover, better
solutions are found as the regularization term tends to zero and the solutions converge
with the grid refinement, as expected. Therefore, the presented algorithm aims to be an
efficient tool for optimal boundary control problems that are applied to fluid–structure
interaction simulations.
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