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Abstract: In this paper, we aim at identifying the level sets of the gauge norm in the Heisenberg groupℍn via
the prescription of their (non-constant) horizontal mean curvature. We establish a uniqueness result in ℍ1
under an assumption on the location of the singular set, and inℍn for n ≥ 2 in the proper class of horizontally
umbilical hypersurfaces.
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1 Introduction

If we identify the Heisenberg groupℍn withℝ2n+1 = ℝn ×ℝn ×ℝwith generic point ξ = (x, y, t) andwe choose
the group law

ξ ∘ ξ = (x, y, t) ∘ (x , y , t) = (x + x , y + y , t + t + 2
n
∑
k=1
(xkyk − ykx


k)), (1.1)

the so-called homogeneous gauge is the function defined by

ρ(ξ) = ((|x|2 + |y|2)2 + t2)
1
4 .

Such a ρ( ⋅ ) is in fact homogeneous of degree 1 with respect to the family of dilations

δR(ξ) = (Rx, Ry, R2t), R > 0, (1.2)

and it provides the defining function of the following gauge balls (sometimes called Korányi balls)

BR(ξ0) = {ξ ∈ ℍn : ρ(ξ−10 ∘ ξ) < R} for ξ0 ∈ ℍn , R > 0. (1.3)

The gauge function appeared in [22] in the study of singular integrals on homogeneous spaces. Over the years,
it has played a crucial role in the analysis of PDEs of sub-elliptic type since the discovery in [15, Theorem 2] that
ρ−2n( ⋅ ) is, up to a constant, the fundamental solution of the Heisenberg sub-Laplacian Δℍn . It is in fact known
since [17, Théorème 3] (see also the treatment in [4, Section 5]) the validity of an analogue of the classical Gauss–
Koebe theorem saying that the pointwise value of every solution u to Δℍnu = 0 can be represented as aweighted
average of the values of u on gauge balls BR . The weight is given by the squared norm of the horizontal gradi-
ent of ρ (which is homogeneous of degree 0 but not constant). Gauge balls are actually characterized by such
a weighted mean value property for Δℍn -harmonic functions as proved by Lanconelli in [23].
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Themetric balls BR defined in (1.3) are not the unique choice of “balls” adapting to the sub-Riemannian fea-
tures of theHeisenberg group. For instance, the Carnot–Carathédory balls play somehow the role of the geodesic
balls inℍn . Furthermore, verymuch related to our purposes is the case of the domains bounded by the so-called
Pansu spheres: they are the cmc-spheres with respect to the relevant notion of horizontal mean curvature (see
Definition 2.2 below) and they are the conjectured unique minimizers for the isoperimetric inequality [33]. The
solution of the isoperimetric problem in the Heisenberg group, also known as Pansu’s conjecture, has generated
a great amount of attention and several proofs appeared in the literature under extra-assumptions on the class
of competitors; see [24], [5], [13], [29], [30], and [35]. Concerning the related Alexandrov-type problem, it was
shown in [36] that Pansu spheres are the only rotationally invariant hypersurfaces with constant horizontal
mean curvature. To the best of our knowledge, a result which is reminiscent of the classical Alexandrov theo-
rem [1] is available only inℍ1: as a matter of fact, in [37, Theorem 6.10] Ritoré and Rosales proved that Pansu
spheres inℍ1 are the only C2-smooth critical points of the horizontal perimeter under volume constraint. For
n ≥ 2, various characterizations of Pansu spheres among horizontally umbilical hypersurfaceswere established
in [8].

In this paper, we take a new perspective as we address the question of characterizing the gauge balls by pre-
scribing the horizontal mean curvature. In a similar spirit, in a companion paper [28] two of us have dealt with
various characterizations of gauge balls through suitable overdetermined problems. To give a better descrip-
tion of the main results, we provide the reader with some initial background on the main notions involved,
and we refer to Section 2 for the precise definitions. Inℍn , the horizontal distribution is spanned at any point
ξ = (x, y, t) by the vector fields

Xj =
∂
∂xj
− 2yj

∂
∂t , Yj =

∂
∂yj
+ 2xj

∂
∂t , j = 1, . . . , n,

which are left-invariant with respect to the group law (1.1) and homogeneous of degree one with respect to (1.2).
In our notations, we let

Hξ = span{X1 , . . . , Xn , Y1 , . . . , Yn}.

We also set T = ∂
∂t , and we consider inℍ

n the Riemannian metric ⟨ ⋅ , ⋅ ⟩ which makes the basis

B = {X1 , . . . , Xn , Y1 , . . . , Yn , T}

orthonormal. If we consider a smooth hypersurface M ⊂ ℍn , a point ξ ∈ M is said to be characteristic if the
tangent space ofM at ξ coincides withHξ . At any point ξ ∈ M which is not characteristic, it is thus well-defined
the so-called horizontal normal νH as the normalized ⟨ ⋅ , ⋅ ⟩-orthogonal projection on Hξ of the metric (outer,
whenever possible) unit normal ν. The horizontalmean curvature is the divergence of such νH (see Section 2 for
the precise definitions), which is therefore well-defined at any non-characteristic point. A simple computation
shows that the horizontal mean curvature of ∂BR(0) ⊂ ℍn is proportional to the distance to the t-axis, i.e. it is
a constant multiple of

√|x|2 + |y|2

at any point (x, y, t) ∈ ∂BR(0) (outside of the two poles sitting on the t-axis, which correspond to the only
characteristic points for the gauge sphere). Inℍ1, our main result reads as follows.

Theorem 1.1. Let M be a smooth surface inℍ1 which is connected, orientable, compact, and without boundary.
Assume that there are no characteristic points of M outside of the line {(0, 0, t) ∈ ℍ1 : t ∈ ℝ}. If at every non-
characteristic point (x, y, t) ∈ M the horizontal mean curvature of M is proportional to

√x2 + y2

up to a constant factor c ̸= 0, then c > 0 and there exists t0 ∈ ℝ such that M = ∂BR(ξ0) with

R = √ 3c and ξ0 = (0, 0, t0).
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The restriction to the (n = 1)-dimensional case in the previous theorem relies on the fact that the 2-dimensional
surface M ⊂ ℍ1 has only one horizontal tangent vector field at every non-characteristic point, and M is then
‘ruled’ by its integral curves (as it is clear from the analysis developed in [9, 37]). In higher dimensions, we have
the following counterpart, which is a characterization of gauge spheres under the proper prescribed curvature
assumption among the class of umbilical hypersurfaces introduced in [8] (see Definition 2.4 below).

Theorem 1.2. Fix n ≥ 2. LetM be a smooth hypersurface ofℍn which is connected, orientable, compact, andwith-
out boundary. Suppose thatM is umbilical and that, at every non-characteristic point (x, y, t) ∈ M, the horizontal
mean curvature of M is proportional to

√|x|2 + |y|2

up to a constant factor c ̸= 0. Then c > 0 and there exists t0 ∈ ℝ such that M = ∂BR(ξ0) with

R = √ 1
c
2n + 1
2n − 1 and ξ0 = (0, 0, t0).

Remark 1.3. We know that the horizontal mean curvature of a generic gauge sphere ∂BR(x0 , y0 , t0) in ℍn is
a constant multiple of

√|x − x0|2 + |y − y0|2 .

Since all assumptions involved are invariant by left-translation, we explicitly notice that for any (x0 , y0) ∈ ℝ2n
we can reformulate Theorem 1.1 and Theorem 1.2 as characterizations for gauge balls centered at points on the
t-axis {(x0 , y0 , t) : t ∈ ℝ}.

The paper is organized as follows. In Section 2, we recall the main definitions involved and we show some basic
properties. In Section 3, we give the proofs of Theorem 1.1 and Theorem 1.2 which follow a similar pattern: the
main aim is to infer, under the respective assumptions, that the key functions φh , φv introduced below in (3.2)
and (3.11) are constant throughout M. Finally, we will show in Corollary 3.6 that Theorems 1.1 and 1.2 imply in
particular a rigidity result in the class of cylindrically symmetric hypersurfaces M ⊂ ℍn for any n ≥ 1.

2 Definitions and preliminaries

In this section, we collect some preliminary material that will be used in the rest of the paper. We shall recall
some known notions for the study of smooth hypersurfaces in ℍn , and we refer the reader to [11], [34], [32],
[9], [12], [36], [20], [35], [10], [2], [8], and [3] for several insights and different perspectives and approaches to the
geometry of submanifolds in various sub-Riemannian settings.

With ⟨ ⋅ , ⋅ ⟩ being the metric defined in Section 1 (with induced norm | ⋅ |), we denote by ∇ the Levi-Civita
connection associated to this metric. A direct computation shows that for any i, j = 1, . . . , n the following holds:

{{{
{{{
{

∇XiXj = 0, ∇XiYj = 2δijT, ∇XiT = −2Yi ,
∇YiXj = −2δijT, ∇YiYj = 0, ∇YiT = 2Xi ,
∇TXi = −2Yi , ∇TYi = 2Xi , ∇TT = 0.

(2.1)

For any smooth vector field V in the horizontal distributionH, we define

J(V) := −12∇VT.

In this way, we have J(Xi) = Yi and J(Yi) = −Xi for all i ∈ {1, . . . , n}. Moreover, for any V,W ∈ H, one can easily
see that the following relations hold:

{{{{{{
{{{{{{
{

⟨J(V),W⟩ = −⟨V, J(W)⟩,
⟨J(V), J(W)⟩ = ⟨V,W⟩,

J(∇VW) = ∇V (JW),
⟨[V,W], T⟩ = 4⟨J(V),W⟩.

(2.2)
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For any smooth vector field V inℍn , we will use the notationPH(V) to denote its horizontal projection, withPH
being the orthogonal projection ontoH. A special rolewill be played by the horizontal part of the position vector,
i.e.

ξH := PH(ξ) =
n
∑
j=1

xjXj + yjYj .

We can show that
∇ZξH = Z + 2⟨J(Z), ξH⟩T for any Z ∈ H. (2.3)

To see (2.3), we just write Z = ∑nj=1(αjXj + βjYj) and it is straightforward to recognize from (2.1) that

∇ZξH =
n
∑
j=1
(Z(xj)Xj + Z(yj)Yj) +

n
∑
j,k=1
(αkxj∇XkXj + βkxj∇YkXj + αkyj∇XkYj + βkyj∇YkYj)

= Z + 2
n
∑
j=1
(αjyj − βjxj)T

= Z + 2⟨J(Z), ξH⟩T.

Similarly, we have
Z(t) = −2⟨J(Z), ξH⟩ for any Z ∈ H, (2.4)

since in the same notations we can check that

Z(t) =
n
∑
j=1
(−2αjyj + 2βjxj) = −2⟨J(Z), ξH⟩.

We now start considering a C2-smooth codimension 1 submanifold M in ℍn . We always assume M to be
connected and orientable. We denote by ν a fixed choice for themetric normal with unit length, and by TξM the
tangent space at ξ ∈ M. Whenever M is also compact and without boundary, we agree to fix ν as the outward
unit normal. The characteristic set is defined by

SM := {ξ ∈ M : PH(ν) = 0} = {ξ ∈ M : TξM = Hξ}.

Outside of the set SM , we suppose the hypersurface to be C∞-smooth. For any point inM ∖ SM it is well-defined

νH = 1
|PH(ν)|

PH(ν),

and we can write
ν = |PH(ν)|νH + ⟨ν, T⟩T

and define the tangent vector field
τ := ⟨ν, T⟩νH − |PH(ν)|T.

We further set
η = −JνH , (2.5)

which clearly belongs toH ∩ TM. In case n > 1, locally around any point ξ ∈ M ∖ SM we can also pick smooth
horizontal vector fields Vi ,Wi for i = 1, . . . , n − 1 such that J(Vi) = Wi and

{η, νH , V1 ,W1 , . . . , Vn−1 ,Wn−1}

is an orthonormal basis forHξ . With these choices, we have fixed the orthonormal frames for TM andH ∩ TM
(outside of characteristic points) as, respectively,

{τ, η, V1 ,W1 , . . . , Vn−1 ,Wn−1} and {η, V1 ,W1 , . . . , Vn−1 ,Wn−1}.

In our notations, we have the following lemma.
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Lemma 2.1. In M ∖ SM , it holds

⟨∇ZνH , T⟩ = 2⟨η, Z⟩ for every Z ∈ H, (2.6)
⟨∇τνH , τ⟩ = 0 = ⟨∇ννH , ν⟩, (2.7)

⟨[Z1 , Z2], νH⟩ =
−4⟨ν, T⟩
|PH(ν)|

⟨J(Z1), Z2⟩ for every Z1 , Z2 ∈ H ∩ TM. (2.8)

Proof. Relation (2.6) follows by (2.2) and (2.5) since, for all Z ∈ H, we have

⟨∇ZνH , T⟩ = −⟨νH , ∇ZT⟩ = 2⟨νH , J(Z)⟩ = 2⟨−JνH , Z⟩ = 2⟨η, Z⟩.

On the other hand, using that |νH | = 1 together with (2.1)–(2.2), we obtain

⟨∇ννH , ν⟩ = ⟨∇ννH , |PH(ν)|νH + ⟨ν, T⟩T⟩
= ⟨ν, T⟩⟨∇ννH , T⟩
= −⟨ν, T⟩⟨νH , ∇νT⟩
= −⟨ν, T⟩⟨νH , ∇|PH (ν)|νH T⟩
= 2|PH(ν)|⟨ν, T⟩⟨νH , JνH⟩
= 0,

and analogously
⟨∇τνH , τ⟩ = ⟨∇τνH , ⟨ν, T⟩νH − |PH(ν)|T⟩

= −|PH(ν)|⟨∇τνH , T⟩
= |PH(ν)|⟨νH , ∇τT⟩
= |PH(ν)|⟨νH , ∇⟨ν,T⟩νH T⟩
= −2|PH(ν)|⟨ν, T⟩⟨νH , JνH⟩
= 0.

The previous two identities show (2.7). Finally, in order to prove (2.8), we can pick any Z1 , Z2 ∈ H ∩ TM and
deduce from the property [Z1 , Z2] ∈ TM and (2.2) that

⟨[Z1 , Z2], νH⟩ =
1
|PH(ν)|
⟨[Z1 , Z2], |PH(ν)|νH⟩

=
1
|PH(ν)|
⟨[Z1 , Z2], ν⟩ −

⟨ν, T⟩
|PH(ν)|
⟨[Z1 , Z2], T⟩

= −
⟨ν, T⟩
|PH(ν)|
⟨[Z1 , Z2], T⟩

=
−4⟨ν, T⟩
|PH(ν)|

⟨J(Z1), Z2⟩.

This finishes the proof.

We are then ready to recall the definition of horizontal mean curvature. Such notion arises in the criticality
condition for the horizontal perimeter (see [6, 12]).

Definition 2.2 (Horizontal mean curvature). LetM ⊂ ℍn be as above. For any ξ ∈ M ∖ SM , we define the horizon-
tal mean curvature of M at ξ by

HM(ξ) =
div(νH)
2n − 1 =

1
2n − 1(⟨∇ην

H , η⟩ +
n−1
∑
i=1
⟨∇ViνH , Vi⟩ + ⟨∇WiνH ,Wi⟩), (2.9)

where div stands for the divergence with respect to the metric ⟨ ⋅ , ⋅ ⟩. In particular, if M ⊂ ℍ1, we simply have

HM(ξ) = ⟨∇ηνH , η⟩ in case n = 1. (2.10)
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We warn the reader that the second equality in (2.9) is justified by (2.7). The definition of HM can be (and, in
the literature, has been) in fact given in multiple ways. For example, since ∇TT = 0, it is immediate to recognize
that

div(νH) =
n
∑
i=1
⟨∇XiνH , Xi⟩ + ⟨∇YiνH , Yi⟩.

By noticing that by (2.6) we have

PH(∇ZνH) = ∇ZνH − 2⟨η, Z⟩T for any Z ∈ H,

we can also recall the notion of horizontal shape operator (see [35]), which will be needed in what follows.

Definition 2.3 (horizontal shape operator). Let M ⊂ ℍn as above. For any ξ ∈ M ∖ SM , we can define the sym-
metric endomorphism AM( ⋅ )(ξ) onHξ ∩ TξM by

AM(Z) = PH(∇ZνH) −
2⟨ν, T⟩
|PH(ν)|
(J(Z) − ⟨η, Z⟩νH)

for Z ∈ H ∩ TM.

The fact that AM(Z) ∈ H ∩ TM for Z ∈ H ∩ TM follows by the two identities

⟨AM(Z), T⟩ = 0 = ⟨AM(Z), νH⟩,

which can be easily checked. On the other hand, the symmetry of AM( ⋅ ) can be deduced from (2.8) since

⟨AM(Z1), Z2⟩ − ⟨AM(Z2), Z1⟩ = ⟨∇Z1νH , Z2⟩ − ⟨∇Z2νH , Z1⟩ −
2⟨ν, T⟩
|PH(ν)|
(⟨J(Z1), Z2⟩ − ⟨J(Z2), Z1⟩)

= −⟨νH , ∇Z1Z2 − ∇Z2Z1⟩ −
4⟨ν, T⟩
|PH(ν)|
⟨J(Z1), Z2⟩

= 0

for any Z1 , Z2 ∈ H ∩ TM. When n = 1, thenH ∩ TM is 1-dimensional (and generated by η in our notations) and
AM( ⋅ ) is nothing but the multiplication by the factor HM . In higher dimensions, the horizontal mean curvature
appears as the normalized trace of AM since

⟨AM(η), η⟩ +
n−1
∑
i=1
⟨AM(Vi), Vi⟩ + ⟨AM(Wi),Wi⟩ = ⟨∇ηνH , η⟩ +

n−1
∑
i=1
⟨∇ViνH , Vi⟩ + ⟨∇WiνH ,Wi⟩

= (2n − 1)HM .
(2.11)

The following notion of horizontally umbilical hypersurface was introduced and studied in [7, 8].

Definition 2.4. Let n ≥ 2. We say that M is umbilical if, in M ∖ SM , it holds

AM(Z) = (l − k)⟨η, Z⟩η + kZ for all Z ∈ H ∩ TM,

for some suitable functions k, l. In particular, at any non-characteristic point ξ, by (2.11) we have

HM(ξ) =
1

2n − 1 (l(ξ) + (2n − 2)k(ξ)).

The class of umbilical hypersurfaces is wide enough to contain any M which is rotationally symmetric with
respect to the vertical t-axes (see in this respect [8, Proposition 3.1], see also the proof of Corollary 3.6 below).

Remark 2.5. It is evident from Definition 2.4 that

if M is umbilical with l = 3k, then k(ξ) = 2n − 12n + 1HM(ξ) for all ξ ∈ M ∖ SM . (2.12)

The case l = 3k is related to the gauge spheres (see Example 2.6 below). On the other hand, let us mention that
the Pansu spheres satisfy the umbilicality property with l = 2k: this is the case studied in [8].
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Let us compute explicitly the objects previously discussed in the particular case of the gauge spheres.

Example 2.6. Let n ≥ 1, ξ0 = (0, 0, t0) ∈ ℍn and

M = ∂BR(ξ0) = {ξ = (x, y, t) : (|x|2 + |y|2)2 + (t − t0)2 = R4} ⊂ ℍn .

We use the notation
r = r(x, y) = √|x|2 + |y|2 = |ξH |

to denote the distance from the t-axis. For any ξ ∈ M, we have

|PH(ν)| =
2rR2

√4r2R4 + (t − t0)2
and ⟨ν, T⟩ = t − t0

√4r2R4 + (t − t0)2
, (2.13)

which is saying in particular that the characteristic set coincides with the intersection of ∂BR(ξ0)with the t-axis,
i.e. SM = {(0, 0, t0 ± R2)}. Outside of these two points, we have

νH =
n
∑
j=1

r2xj − yj(t − t0)
rR2

Xj +
r2yj + xj(t − t0)

rR2
Yj =

r2ξH + (t − t0)JξH

rR2
, (2.14)

η = −JνH = (t − t0)ξ
H − r2JξH

rR2
.

A straightforward computation then shows for any j, k ∈ {1, . . . , n},

⟨∇Xk νH , Xj⟩ = Xk(⟨νH , Xj⟩) =
1

r2R2
((2xjxk + δjkr2 + 2yjyk)r − ⟨νH , Xj⟩R2xk),

⟨∇Yk νH , Xj⟩ = Yk(⟨νH , Xj⟩) =
1

r2R2
((2xjyk − δjk(t − t0) − 2yjxk)r − ⟨νH , Xj⟩R2yk),

⟨∇Xk νH , Yj⟩ = Xk(⟨νH , Yj⟩) =
1

r2R2
((2yjxk + δjk(t − t0) − 2xjyk)r − ⟨νH , Yj⟩R2xk),

⟨∇Yk νH , Yj⟩ = Yk(⟨νH , Yj⟩) =
1

r2R2
((2yjyk + δjkr2 + 2xjxk)r − ⟨νH , Yj⟩R2yk),

which we can rewrite using (2.14) in the following way:

PH(∇ZνH) =
1
R2
(
2
r (⟨ξ

H , Z⟩ξH + ⟨JξH , Z⟩JξH) + rZ + t − t0r JZ − R
2

r2
⟨ξH , Z⟩νH)

=
1
R2
(2r⟨η, Z⟩η + rZ + t − t0r JZ − t − t0r ⟨η, Z⟩ν

H)
(2.15)

for any horizontal vector Z. It is then easy to check that

HM(ξ) =
2n + 1
2n − 1

r
R2

. (2.16)

Also, recalling Definition 2.3 and using (2.13) and (2.15), we can recognize

AM(Z) =
2r
R2
⟨η, Z⟩η + r

R2
Z for all Z ∈ H ∩ TM.

According to Definition 2.4, when n ≥ 2, this is saying that M is umbilical with l(ξ) = 3k(ξ) and k(ξ) = |ξ
H |
R2 .

It is well known in the literature that, whenever n ≥ 2, the horizontal and tangent vector fields inH ∩ TM satisfy
aHörmander-type property as they can reproduce any tangent direction via commutation. IfM is also umbilical,
such information can be made very precise and it is encoded in the following lemma.

Lemma 2.7. Let n ≥ 2. For ξ ∈ M ∖ SM , set

H0
ξ = span{V1 ,W1 , . . . , Vn−1 ,Wn−1}.

If M is umbilical, then

span{Z, [Z1 , Z2] : Z, Z1 , Z2 ∈ H0
ξ} = span{V1 ,W1 , . . . , Vn−1 ,Wn−1 , τ −

k(ξ)|PH(ν)|
2 η}.
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Proof. Fix any Z1 , Z2 ∈ H0
ξ . By (2.2) and (2.8), we have

⟨[Z1 , Z2], τ⟩ = ⟨ν, T⟩⟨[Z1 , Z2], νH⟩ − |PHν|⟨[Z1 , Z2], νH⟩

= −4( ⟨ν, T⟩
2

|PHν|
+ |PHν|)⟨J(Z1), Z2⟩

=
−4
|PHν|
⟨J(Z1), Z2⟩,

which says that span{Z, [Z1 , Z2] : Z, Z1 , Z2 ∈ H0
ξ} is at least (2n − 1)-dimensional. On the other hand, using

also (2.5) and the commutation property of J and ∇ together with the umbilicality of M, we obtain

⟨[Z1 , Z2], η⟩ = ⟨∇Z1 JZ2 − ∇Z2 JZ1 , νH⟩
= ⟨J(Z1), ∇Z2νH⟩ − ⟨J(Z2), ∇Z1νH⟩

= ⟨J(Z1), AM(Z2) +
2⟨ν, T⟩
|PHν|

J(Z2)⟩ − ⟨J(Z2), AM(Z1) +
2⟨ν, T⟩
|PHν|

J(Z1)⟩

= 2k⟨J(Z1), Z2⟩.

Hence we get

⟨[Z1 , Z2], η +
k(ξ)|PH(ν)|

2 τ⟩ = 0 for every Z1 , Z2 ∈ H0
ξ .

This implies that span{Z, [Z1 , Z2] : Z, Z1 , Z2 ∈ H0
ξ} is exactly (2n − 1)-dimensional and the vector

τ − k(ξ)|PH(ν)|
2 η

belongs to such vector space as desired.

3 Darboux-type results

3.1 The case ofℍ1

In this section, we first treat the (n = 1)-dimensional case by providing the proof of Theorem 1.1. As we men-
tioned in Section 1 and recalled in (2.10), for surfaces M in ℍ1 the main role is played by the integral curves
of the only horizontal and tangent vector field η. A (naive) way to describe our approach to Theorem 1.1 is to
draw a parallelism with the classical problem of identifying the pieces of circles as the only smooth connected
curves Γ in ℝ2 with non-zero constant curvature K = KΓ . Among the many ways to show this property, a very
direct one is to consider (denoting with p = (p1 , p2) the generic point in ℝ2 and with N a choice for the unit
normal to Γ) the two functions

{
f1(p) = Kp1 − ⟨N, ∂p1⟩, f1 : Γ → ℝ,
f2(p) = Kp2 − ⟨N, ∂p2⟩, f2 : Γ → ℝ.

(3.1)

By differentiating along a unit tangent vector U and using K = ⟨∇UN, U⟩, one recognizes that Uf1 = Uf2 = 0 on Γ.
Thus, there have to exist two constants c1 , c2 such that fi ≡ ci , i = 1, 2, and we have

1 = ⟨N, ∂p1⟩2 + ⟨N, ∂p2⟩2 = (Kp1 − c1)2 + (Kp2 − c2)2 for p ∈ Γ,

i.e. Γ is contained in the circle of radius 1
|K| and center ( c1K ,

c2
K ). If we bring back the attention to the case of

the 2-dimensional surface M inℍ1, we emphasize that in Theorem 1.1 we prescribe the curvature HM(ξ) to be
proportional to |ξH | (see also (2.16) in Example 2.6). The term |ξH | corresponds to the distance (either Euclidean
distance or gauge-related distance, as they coincide in this case) to the vertical line Lv defined by

Lv = {(0, 0, t) ∈ ℍ1 : t ∈ ℝ}.
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Having this in mind, as well as the notations introduced in Section 2, we define the two functions

{{{
{{{
{

φh(ξ) =
1
3HM(ξ)|ξH |2 − ⟨νH , ξH⟩, φh : M ∖ SM → ℝ,

φv(ξ) =
1
3HM(ξ)

t
|ξH |
− ⟨η, ξ

H

|ξH |
⟩, φv : M ∖ (SM ∪ Lv)→ ℝ.

(3.2)

The functions φh and φv have different roles. In the following lemma, we show that φh is in fact constant along
the integral curves of η, whereas the behavior of φv is subordinate to the one of φh .

Lemma 3.1. Let M be a smooth surface inℍ1 which is connected and orientable. Let also ω be a relatively open
set contained in M ∖ SM . Suppose there exists c ∈ ℝ such that HM(ξ) = c|ξH | for ξ ∈ ω. Then we have

{{
{{
{

η(φh) = 0 in ω,

η(φv) =
⟨νH , ξH⟩
|ξH |3

φh in ω ∖ Lv .

Proof. By (2.3) and (2.10), we have

η(|ξH |) = ⟨η, ξ
H⟩
|ξH |

and η(⟨νH , ξH⟩) = HM⟨η, ξH⟩, (3.3)

where in the second equality we also exploited the fact thatHξ is generated by the two orthogonal unit vectors η
and νH . Hence, for ξ ∈ ω, we obtain

η(φh) = η(
c
3 |ξ

H |3 − ⟨νH , ξH⟩) = c|ξH |2 ⟨η, ξ
H⟩
|ξH |
− HM(ξ)⟨η, ξH⟩ = 0.

On the other hand, by (2.4)–(2.5) we have
η(t) = −2⟨νH , ξH⟩ (3.4)

and, using also (2.3)–(2.2), we have

η(⟨η, ξH⟩) = 1 + ⟨∇ηη, ξH⟩ = 1 + ⟨∇ηνH , JξH⟩ = 1 − HM⟨νH , ξH⟩. (3.5)

Recalling that
|ξH |2 = ⟨η, ξH⟩2 + ⟨νH , ξH⟩2 ,

we then infer
η(φv) = η(

c
3 t −
⟨η, ξH⟩
|ξH |
)

=
−2c
3 ⟨ν

H , ξH⟩ − 1
|ξH |
+ HM(ξ)⟨νH ,

ξH

|ξH |
⟩ +

1
|ξH |3
⟨η, ξH⟩2

= ⟨νH , ξ
H

|ξH |
⟩(
−2c
3 |ξ

H | + HM(ξ)) −
1
|ξH |3
(|ξH |2 − ⟨η, ξH⟩2)

=
⟨νH , ξH⟩
|ξH |3
(
1
3HM(ξ)|ξH |2 − ⟨νH , ξH⟩)

=
⟨νH , ξH⟩
|ξH |3

φh(ξ)

whenever ξH ̸= 0. This completes the proof of the lemma.

Keeping inmind the comparison between the derivatives of (3.2) along η in Lemma 3.1 and the derivatives along
the curve Γ of (3.1), it is no surprise that we want φh to vanish identically throughout M. This is exactly what
we show in the next lemma. We will deduce this fact from the global properties of the integral curves of η and
from the assumption SM ⊂ Lv.

Lemma 3.2. Let M be a smooth surface in ℍ1 which is connected, orientable, compact, and without boundary.
Assume that SM ⊆ M ∩ Lv, and that there exists c ̸= 0 such that HM(ξ) = c|ξH | for every point ξ ∈ M ∖ SM . Then
c > 0, φh ≡ 0, and every integral curve of η reaches SM .
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Proof. Let us divide the proof into three steps.

Step I. In the first step, we shall show that c > 0. By the compactness of M, the function 1
2 |ξ

H |2 attains its
maximum at a point ξ1 ∈ M ∖ Lv. Since we have SM ⊆ M ∩ Lv, at ξ = ξ1 we have

0 = η(12 |ξ
H |2) = ⟨η, ξH1 ⟩ and 0 = τ(12 |ξ

H |2) = ⟨ν, T⟩⟨νH , ξH1 ⟩.

Since
⟨νH , ξH1 ⟩

2 = ⟨η, ξH1 ⟩
2 + ⟨νH , ξH1 ⟩

2 = |ξH1 |
2 > 0,

we have that ⟨ν, T⟩ = 0, and therefore

⟨νH , ξH1 ⟩ =
1
|PHν|
⟨ν, ξ1⟩ > 0,

where the positive sign is a consequence of the maximality condition and the fact that ν is the outward normal.
Moreover, we also know that η2( 12 |ξ

H |2) ≤ 0 at the maximum point ξ = ξ1. This fact, together with the identity

1 − c|ξH |⟨νH , ξH⟩ = 1 − HM(ξ)⟨νH , ξH⟩ = η(⟨η, ξH⟩) = η2(
1
2 |ξ

H |2)

provided by (3.5), yields that
c ≥ 1
|ξH1 |⟨νH , ξ

H
1 ⟩
> 0.

Step II. We now prove that
φh ≡ 0.

By contradiction, we shall assume the existence of ξ0 ∈ M ∖ SM such that φh(ξ0) ̸= 0. Since by definitionwe have

φh(ξ) =
c
3 |ξ

H |3 − ⟨νH , ξH⟩, (3.6)

it is clear that φh vanishes on the vertical line Lv. Therefore, we know that ξ0 ∈ M ∖ Lv. Let us consider the
integral curve γ of η starting from ξ0. Lemma 3.1 implies that φh is constant along γ, i.e.

φh(γ(s)) = φh(ξ0) =: φ0 .

Since SM ⊂ Lv and φ0 ̸= 0, γ remains inM ∖ Lv and there is no problem in extending the curve indefinitely. We
claim that this fact will contradict the boundedness of M ⊃ γ. Denote by t(s), r(s), and θ(s) the three smooth
functions defined for ξ ∈ γ respectively by

t(s) = γ3(s),

r(s) = (γ21(s) + γ
2
2(s))

1
2 = |ξH |,

{{{{
{{{{
{

cos (θ(s)) = ⟨νH , ξ
H

|ξH |
⟩,

sin (θ(s)) = ⟨η, ξ
H

|ξH |
⟩.

From (3.6) we readily recognize
c
3 r

3(s) − r(s) cos (θ(s)) = φ0 ,

which implies that along the curve γ the positive function r(s) is in fact a function of cos (θ(s)) (in the sense
that it is uniquely determined by the value cos (θ(s))). As we will make use of this fact, we set the notation
R(cos(θ(s))) = r(s). From (3.4) we have that

t(s) = −2r(s) cos (θ(s)) = 2φ0 −
2c
3 r3(s). (3.7)

Thus, if φ0 < 0, then t(s) ≤ 2φ0 < 0 and t(s)would be forced to be unbounded providing an immediate contra-
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diction. We can then assume φ0 > 0. Since from (3.3) and (3.5) we have

η(arctan( ⟨η, ξ
H⟩

⟨νH , ξH⟩
)) =
(1 − HM⟨νH , ξH⟩)⟨νH , ξH⟩ − HM⟨η, ξH⟩2

⟨η, ξH⟩2 + ⟨νH , ξH⟩2

=
⟨νH , ξH⟩ − HM |ξH |2

|ξH |2

=
−(2c/3)|ξH |3 − φh(ξ)

|ξH |2
,

we obtain
θ(s) = −(2c/3)r

3(s) − φ0
r2(s)

. (3.8)

The assumption φ0 > 0 (together with the boundedness of M) implies that θ(s) stays below a strictly negative
constant. Thus θ(s) is strictly decreasing and the angle formed by (the horizontal projections of) νH and ξH

attains every value in [0, 2π] infinitely many times along γ. We can then consider a strictly increasing sequence
of values {sk}k∈ℕ such that θ(sk) − θ(sk+1) = 2π for all k ∈ ℕ. By exploiting (3.7) and (3.8), we notice that

t(sk+1) − t(sk) =
sk+1
∫
sk

t(s)ds

= −2
sk+1
∫
sk

r(s) cos(θ(s))ds = 2
sk+1
∫
sk

r3(s) cos(θ(s))
(2c/3)r3(s) + φ0

θ(s)ds

=
2
c

sk+1
∫
sk

(cr3(s) − r(s) cos(θ(s)) + r(s) cos(θ(s))) cos(θ(s))
(2c/3)r3(s) + φ0

θ(s)ds

=
2
c

sk+1
∫
sk

cos(θ(s))θ(s)ds + 2
c

sk+1
∫
sk

r(s) cos2(θ(s))
(2c/3)r3(s) + φ0

θ(s)ds

=
2
c

sk+1
∫
sk

r(s) cos2(θ(s))
(2c/3)r3(s) + φ0

θ(s)ds

= −
2
c

θ(sk)

∫
θ(sk+1)

R(cos(σ)) cos2(σ)
(2c/3)R3(cos(σ)) + φ0

dσ

= −
2
c

θ(s1)

∫
θ(s1)−2π

R(cos(σ)) cos2(σ)
(2c/3)R3(cos(σ)) + φ0

dσ

for every k ∈ ℕ. This implies, also in the case φ0 > 0, the unboundedness of t(s) since

t(sk+1) = t(s1) − k
2
c

θ(s1)

∫
θ(s1)−2π

R(cos(σ)) cos2(σ)
(2c/3)R3(cos(σ)) + φ0

dσ → −∞ as k →∞.

Therefore, under both the assumptions φ0 < 0 and φ0 > 0, we have reached a contradiction. This completes the
proof of the identity φh ≡ 0.

Step III. We finally show that

SM ̸= 0 and every integral curve γ of η starting from any ξ0 ∈ M ∖ SM reaches SM .

Let us exploit the same notations as in step II. Arguing again by contradiction, we can assume that the curve γ
can be extended indefinitely. We stress that r(s) can vanish (at points in Lv ∖ SM ), but only at isolated points on
the curve since η ̄ξ belongs to span{∂x , ∂y} at points ̄ξ ∈ Lv ∖ SM . Also, the functions r(s) and θ(s) are smooth
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outside Lv. Since SM ⊆ M ∩ Lv, two situations might occur: either there exists s0 such that infs∈(s0 ,∞) r(s) > 0, or
there exists a strictly increasing sequence of values {sk}k∈ℕ such that, for every k ∈ ℕ, we have r(sk) = 0 and
r(s) > 0 for s ∈ (sk , sk+1). Since by step II and (3.7) we have

t(s) = −2c3 r3(s), (3.9)

we deduce that the occurrence of the first case leads to an immediate contradiction because

t(s) ≤ −2c3 (infs r(s))3 < 0 for s > s0 ,

and t(s)would be unbounded. Hence, we can assume the existence of the sequence {sk}k∈ℕ satisfying the above
assumptions. Fix any k ∈ ℕ and consider s ∈ (sk , sk+1). Using step II, (3.8), and step I, we have

cos (θ(s)) = c3 r
2(s) > 0 and θ(s) = −2c3 r(s) < 0. (3.10)

This yields

{
(cos (θ(s)), sin (θ(s)))→ (0, +1) as s → s+k
(cos (θ(s)), sin (θ(s)))→ (0, −1) as s → s−k+1 .

Hence we infer

t(sk+1) − t(sk) =
sk+1
∫
sk

t(s)ds = −2
sk+1
∫
sk

r(s) cos(θ(s))ds = 3
c

sk+1
∫
sk

θ(s) cos(θ(s))ds = −6
c .

In other words, each time the curve γ re-joins the vertical line Lv, the t-component of the curve drops by a fixed
amount. Since we are assuming that γ is reaching Lv an infinite number of times, this fact is in contradiction
with the compactness of M. The proof is then complete.

We are now ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We start by noticing that, under our assumptions, the set SM (which is non-empty by
Lemma 3.2) consists of isolated points. As a matter of fact, since SM ⊂ Lv, if we had a sequence of points in SM
converging to ̄ξ ∈ SM , then such sequence would be in Lv and at the point ̄ξ the vector field T would be tan-
gent. On the other hand, the tangent space at the characteristic points coincides with the horizontal distribution
which is span{∂x , ∂y} on Lv. This argument ensures the fact that the characteristic points are isolated. Therefore,
there exist t1 < t2 < ⋅ ⋅ ⋅ < tp for some finite p ∈ ℕ such that

SM = {(0, 0, t1), . . . , (0, 0, tp)}.

Consider now any point ξ0 ∈ M ∩ {t < t2} such that ξ0 ̸= (0, 0, t1), and consider the integral curve γ of η start-
ing from ξ0. Using the same notations as in Lemma 3.2, we know that t(s) is decreasing (see (3.9)), so that
γ ⊂ M ∩ {t < t2}. Exploiting Lemma 3.1 together with the identity φh ≡ 0 showed in Lemma 3.2, we have that
the function

φv(ξ) =
c
3 t − ⟨η,

ξH

|ξH |
⟩

is constant along γ, i.e.
c
3 t(s) − sin(θ(s)) = φv(ξ0).

Westress that the previous identity holds true in γ ∖ Lv, and it can thenbe extendedby continuity on thewhole γ.
By Lemma 3.2, we have that γ reaches SM , and in particular as γ(s)→ (0, 0, t1), we have (see also (3.10) in this
respect)

t(s)→ t1 and sin(θ(s))→ −1.

Hence,
φv(ξ0) =

c
3 t1 + 1.
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By the arbitrariness of ξ0 ∈ (M ∩ {t < t2}) ∖ {(0, 0, t1)}, we have

φv(ξ) =
c
3 t1 + 1 for all ξ ∈ (M ∩ {t < t2}) ∖ {(0, 0, t1)}.

The two identities φh ≡ 0 and φv ≡ c
3 t1 + 1 can be rewritten as

⟨νH , ξ
H

|ξH |
⟩ =

c
3 |ξ

H |2 and ⟨η, ξ
H

|ξH |
⟩ =

c
3(t − t1 −

3
c ),

which implies

1 = ⟨νH , ξ
H

|ξH |
⟩
2
+ ⟨η, ξ

H

|ξH |
⟩
2
= (

c
3 |ξ

H |2)
2
+ (

c
3(t − t1 −

3
c ))

2

for any ξ ∈ (M ∩ {t < t2}) ∖ {(0, 0, t1)}. By the very definition of gauge sphere, this shows that

(M ∩ {t < t2}) ∖ {(0, 0, t1)} ⊂ ∂BR(0, 0, t0),

where
R2 = 3

c
and t0 = t1 +

3
c
.

SinceM is a smooth connected surfacewith no boundary and since the gauge sphere has only two characteristic
points at (0, 0, t0 − R2) = (0, 0, t1) and (0, 0, t0 + R2) = (0, 0, t1 + 6

c ), we can conclude that M = ∂BR(0, 0, t0), as
desired.

3.2 The case ofℍn, n ≥ 2
Let us now turn the attention to the case n ≥ 2 and to the proof of Theorem 1.2. By pushing further the paral-
lelism with the classical Euclidean framework, we can say that the higher-dimensional analogue of the planar
argument sketched in (3.1) is effective if one requires the hypersurface to be (locally) umbilical: it provides in fact
a proof of the classical characterization of umbilical surfaces also known as Darboux theorem [14] (see [31] for
an expository text, see also [18, 26] for different but related settings). In our Theorem 1.2, the main assumption
is the umbilicality ofM with respect to Definition 2.4. Wewarn the reader that in Definition 2.4 there is no infor-
mation about the relationship between the two functions l and k, and therefore a characterization is possible
only under a prescription of the curvature (see in this respect [8] for the case of constant σk-curvatures). Having
this is mind, together with the fact that we are prescribing HM(ξ) = c|ξH |, our aim is to provide a Darboux-type
approach to Theorem 1.2. We define

{{{
{{{
{

φh(ξ) =
2n − 1
2n + 1HM(ξ)|ξH |2 − ⟨νH , ξH⟩, φh : M ∖ SM → ℝ,

φv(ξ) =
2n − 1
2n + 1HM(ξ)

t
|ξH |
− ⟨η, ξ

H

|ξH |
⟩, φv : M ∖ (SM ∪ Lv)→ ℝ,

(3.11)

where we have kept the notation
Lv = {(0, 0, t) ∈ ℍn : t ∈ ℝ}

to denote the t-axis. With the following lemma, we realize that the constancy of the key function φh along η is
tied to the vanishing of l − 3k (in Example 2.6 we saw that for the gauge spheres l = 3k by a direct computation).

Lemma 3.3. Fix n ≥ 2. Let M be a smooth hypersurface inℍn which is connected and orientable. Also, let ω be
a relatively open set contained in M ∖ SM . Suppose there exists c ∈ ℝ such that HM(ξ) = c|ξH | for ξ ∈ ω. If M is
umbilical, then we have

η(φh) =
2n − 2
2n + 1 ⟨η, ξ

H⟩(3k − l) in ω.

Proof. The umbilicality condition in Definition 2.4 implies that

⟨∇ηνH , ξH⟩ = l(ξ)⟨η, ξH⟩. (3.12)
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For ξ ∈ ω, we can then exploit the assumption HM(ξ) = c|ξH |, together with (3.12) and (2.3), to deduce that

η(φh) = η(c
2n − 1
2n + 1 |ξ

H |3 − ⟨νH , ξH⟩)

= 3c 2n − 12n + 1 |ξ
H |2
⟨η, ξH⟩
|ξH |
− l(ξ)⟨η, ξH⟩

= ⟨η, ξH⟩(3(2n − 1)2n + 1 HM(ξ) − l(ξ)).

Keeping in mind Definition 2.4, we obtain

η(φh) = ⟨η, ξH⟩(
3(2n − 2)
2n + 1 k(ξ) + 2 − 2n2n + 1 l(ξ)) =

2n − 2
2n + 1 ⟨η, ξ

H⟩(3k(ξ) − l(ξ)),

as desired.

We now show that in fact φh ≡ 0 and l ≡ 3k. There are two main tools in the proof: the use of the Codazzi
equations found in [8], and the analysis of the global behavior of the auxiliary function |ξH |2n−2φh(ξ) (aweighted
version of φh).

Lemma 3.4. Fix n ≥ 2. LetM be a smooth hypersurface inℍn which is connected, orientable, compact, and with-
out boundary. Assume that M is umbilical, and suppose that there exists c ̸= 0 such that HM(ξ) = c|ξH | for every
point ξ ∈ M ∖ SM . Then, for all ξ ∈ M ∖ SM , we have

{{{{{
{{{{{
{

⟨νH , ξH⟩ = |ξH |2k(ξ),

⟨η, ξH⟩ = 2|ξH |2
⟨νξ , T⟩
|PH(νξ)|

,

⟨Vj , ξH⟩ = ⟨Wj , ξH⟩ = 0 for j ∈ {1, . . . , n − 1}.

(3.13)

We also have that c > 0, SM = M ∩ Lv ̸= 0, and

φh ≡ 0 ≡ l − 3k. (3.14)

Proof. Let us divide the proof into multiple steps.

Step I. We first show the validity of (3.13). Let

α = 2⟨ν, T⟩
|PHν|

.

By [8, Proposition 4.2], we know that

Vj(k) = Wj(k) = 0 = Vj(l) = Wj(l) for j ∈ {1, . . . , n − 1}, (3.15)

and
η(k) = (l − 2k)α, η(α) = k2 − α2 − kl. (3.16)

For ξ ∈ M ∖ (SM ∪ Lv), from (3.15) and the identity (2n − 1)HM = (2n − 2)k + l, we obtain

⟨Vj , ξH⟩
|ξH |
= Vj(|ξH |) =

1
c Vj(HM(ξ)) =

2n − 2
c(2n − 1)Vj(k) +

1
c(2n − 1)Vj(l) = 0

for j ∈ {1, . . . , n − 1}. The same holds for ⟨Wj , ξH⟩. This shows that

⟨Vj , ξH⟩ = ⟨Wj , ξH⟩ = 0 for j ∈ {1, . . . , n − 1} and ξ ∈ M ∖ SM . (3.17)

We then deduce that the function |ξH | is constant even along the commutators of the vector fields in

span{V1 ,W1 , . . . , Vn−1 ,Wn−1}.
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Exploiting Lemma 2.7, this implies

⟨τ, ξH⟩ = k(ξ)|PH(ν)|
2 ⟨η, ξH⟩.

Recalling that τ = ⟨ν, T⟩νH − |PH(ν)|T and using ⟨T, ξH⟩ = 0, we infer

α(ξ)⟨νH , ξH⟩ = k(ξ)⟨η, ξH⟩ for ξ ∈ M ∖ SM . (3.18)

From (2.3), (2.2), and the umbilicality condition in Definition 2.4, we can compute

η(⟨η, ξH⟩) = 1 + ⟨∇ηη, ξH⟩
= 1 + ⟨∇η Jη, JξH⟩
= 1 + ⟨∇ηνH , JξH⟩
= 1 + l(ξ)⟨η, JξH⟩
= 1 − l(ξ)⟨νH , ξH⟩.

(3.19)

If we now differentiate the identity (3.18) along η, relations (3.12), (3.16), and (3.19) yield

0 = η(α)⟨νH , ξH⟩ + αη(⟨νH , ξH⟩) − η(k)⟨η, ξH⟩ − kη(⟨η, ξH⟩)
= (k2 − α2 − kl)⟨νH , ξH⟩ + αl⟨η, ξH⟩ + (2k − l)α⟨η, ξH⟩ + kl⟨νH , ξH⟩ − k
= (k2 − α2)⟨νH , ξH⟩ + 2kα⟨η, ξH⟩ − k
= (k2 + α2)⟨νH , ξH⟩ − k + 2α(k⟨η, ξH⟩ − α⟨νH , ξH⟩).

Keeping in mind (3.18), this says that

⟨νH , ξH⟩ = k(ξ)
k2(ξ) + α2(ξ)

and ⟨η, ξH⟩ = α(ξ)
k2(ξ) + α2(ξ)

(3.20)

at least for any ξ ∈ M ∖ SM where k(ξ) ̸= 0. Notice that in our assumptions we have k2 + α2 > 0 in M ∖ SM (see
[7, Theorem B (a)], and keep in mind that α ̸≡ 0 due to the boundedness of M). Also notice that, if k vanishes at
a point ̄ξ ∈ M ∖ (SM ∪ Lv), then

η(k)( ̄ξ) = l( ̄ξ)α( ̄ξ) = (2n − 1)c| ̄ξH |α( ̄ξ) ̸= 0.

Hence the relations (3.20) hold true by continuity throughout M ∖ SM . This implies that

1
k2(ξ) + α2(ξ)

= ⟨νH , ξH⟩2 + ⟨η, ξH⟩2

= ⟨νH , ξH⟩2 + ⟨η, ξH⟩2 +
n−1
∑
j=1
⟨Vj , ξH⟩2 + ⟨Wj , ξH⟩2

= |ξH |2 ,

where in the second equality we used (3.17). Inserting the last identity in (3.20), we get

⟨νH , ξH⟩ = |ξH |2k(ξ) and ⟨η, ξH⟩ = |ξH |2α(ξ) for ξ ∈ M ∖ SM . (3.21)

The combination of (3.17) and (3.21) completes the proof of (3.13). In particular, since the function α2 tends to∞
only at characteristic points, from (3.21) we can also deduce that

SM = M ∩ Lv . (3.22)

As a matter of fact, the inclusion M ∩ Lv ⊆ SM follows from the fact that, at non-characteristic points,

|ξH |−2 = k2(ξ) + α2(ξ)

is finite, whereas the inclusion SM ⊆ M ∩ Lv is a consequence of the boundedness of

α2(ξ) ≤ k2(ξ) + α2(ξ) = |ξH |−2

outside of Lv.
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Step II. We now show that

ξ → ϕ(ξ) := |ξH |2n−2φh(ξ) is constant throughout M ∖ SM .

To this end, using (3.21), we can rewrite the function φh in the following way:

φh(ξ) =
2n − 1
2n + 1HM(ξ)|ξH |2 − k(ξ)|ξH |2

= |ξH |2( (2n − 2)k(ξ) + l(ξ)2n + 1 − k(ξ))

=
l(ξ) − 3k(ξ)
2n + 1 |ξ

H |2 ,

(3.23)

so that
ϕ(ξ) = l(ξ) − 3k(ξ)2n + 1 |ξ

H |2n .

It is clear from (3.15) and (3.17) that

Vj(ϕ) = Wj(ϕ) = 0 for all j ∈ {1, . . . , n − 1},

which also implies by Lemma 2.7 that
τ(ϕ) − k|PH(ν)|

2 η(ϕ) = 0.

On the other hand, by using (3.23) and Lemma 3.3, we obtain

η(ϕ) = η(|ξH |2n−2φh)
= (2n − 2)|ξH |2n−4⟨η, ξH⟩φh + |ξH |2n−2η(φh)

=
2n − 2
2n + 1 |ξ

H |2n−2⟨η, ξH⟩(l − 3k) + 2n − 22n + 1 |ξ
H |2n−2⟨η, ξH⟩(3k − l)

= 0.

This says that the function ϕ is constant along every tangent vector field in M ∖ SM and concludes the proof of
the current step.

Step III. In this step, we show that
c > 0.

We argue similarly to step I in the proof of Lemma 3.2. By the compactness of M, the function 1
2 |ξ

H |2 attains its
maximum at a point ξ1 ∈ M ∖ Lv, and we know from (3.22) that ξ1 ∉ SM . Then, at ξ = ξ1, we have

0 = η(12 |ξ
H |2) = ⟨η, ξH1 ⟩ and 0 = τ(12 |ξ

H |2) = ⟨ν, T⟩⟨νH , ξH1 ⟩.

Since by (3.17) we have

⟨νH , ξH1 ⟩
2 = ⟨η, ξH1 ⟩

2 + ⟨νH , ξH1 ⟩
2 +

n
∑
j=1
⟨Vj , ξH1 ⟩

2 + ⟨Wj , ξH1 ⟩
2 = |ξH1 |

2 > 0,

we deduce that ⟨ν, T⟩ = 0, and therefore

k(ξ1) =
1
|ξH1 |2
⟨νH , ξH1 ⟩ =

1
|ξH1 |2|PHν|

⟨ν, ξ1⟩ > 0,

where the positive sign is a consequence of the maximality condition and the fact that ν is the outward normal.
Moreover, at the maximum point ξ = ξ1, from (3.19) we obtain

1 − l(ξ1)⟨νH , ξH1 ⟩ = η
2(
1
2 |ξ

H |2) ≤ 0,

which says that
l(ξ1) ≥

1
⟨νH , ξH1 ⟩

> 0.

Therefore, keeping in mind Definition 2.4, we have

c = l(ξ1)
(2n − 1)|ξH1 |

+
(2n − 2)k(ξ1)
(2n − 1)|ξH1 |

> 0.
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Step IV. We now show that
ϕ(ξ) = |ξH |2n−2φh(ξ) ≡ 0 for ξ ∈ M ∖ SM .

Wealready know from step II that ϕ is identically equal to a constant value ϕ0. By contradiction,we shall assume
that ϕ0 ̸= 0. Since from the definition of φh in (3.11) it is clear that φh and ϕ tend to 0 as ξ approaches M ∩ Lv,
and we know from (3.22) thatM ∩ Lv = SM , we have that SM = M ∩ Lv = 0 (so that there exist 0 < rm ≤ rM <∞
satisfying rm ≤ |ξH | ≤ rM ). If we consider the integral curve γ of η starting from any point ξ0 ∈ M, we can then
extend γ indefinitely. Arguing similarly to step II in the proof of Lemma 3.2 (from which we also borrow the
analogous notations for the smooth functions t(s), r(s), and θ(s)), we want to infer that the assumption ϕ0 ̸= 0
leads to the unboundedness of γ(s) (which contradicts the compactness of M). We can rewrite

c(2n − 1)
(2n + 1) r

2n+1(s) − r2n−1(s) cos (θ(s)) = ϕ0 ,

which implies in particular that along the curve γ we have r(s) = R(cos(θ(s))) (i.e. the positive function r(s) is
uniquely determined by the value cos (θ(s))). From (2.4) we infer that

t(s) = −2r(s) cos (θ(s)) = 2ϕ0r2−2n(s) −
2c(2n − 1)
(2n + 1) r

3(s). (3.24)

Since c > 0 by step III and r(s) is bounded, if ϕ0 < 0, then t(s) ≤ 2ϕ0r2−2nM < 0 and t(s) would be forced to be
unbounded. We can then assume ϕ0 > 0. Exploiting (3.12), (3.17), and (3.19), we recognize that

η(arctan( ⟨η, ξ
H⟩

⟨νH , ξH⟩
)) =
(1 − l(ξ)⟨νH , ξH⟩)⟨νH , ξH⟩ − l(ξ)⟨η, ξH⟩2

⟨η, ξH⟩2 + ⟨νH , ξH⟩2

=
⟨νH , ξH⟩ − l(ξ)|ξH |2

|ξH |2

=
⟨νH , ξH⟩ − (2n + 1)φh(ξ) − 3k(ξ)|ξH |2

|ξH |2

=
−2⟨νH , ξH⟩ − (2n + 1)φh(ξ)

|ξH |2
,

where in the last two equalities we have made use of (3.23) and (3.21). The previous identity yields

θ(s) = 2n − 1
r2(s)
(r(s) cos (θ(s)) − cr3(s)) = 2n − 1

r2(s)
(−ϕ0r2−2n(s) −

2c
2n + 1 r

3(s)). (3.25)

Since we know that c > 0 andM is bounded, the assumption ϕ0 > 0 implies that θ(s) stays below a strictly neg-
ative constant. Thus θ(s) is strictly decreasing and θ(s)→ −∞ as s →∞. We can then pick a strictly increasing
sequence of values {sk}k∈ℕ such that θ(sk) − θ(sk+1) = 2π for all k ∈ ℕ. From (3.24) and (3.25), we get

t(sk+1) − t(sk) =
sk+1
∫
sk

t(s)ds

= −2
sk+1
∫
sk

r(s) cos(θ(s))ds

=
2

2n − 1

sk+1
∫
sk

r3(s) cos(θ(s))
ϕ0r2−2n(s) + 2c

2n+1 r3(s)
θ(s)ds

=
2

(2n − 1)c

sk+1
∫
sk

(cr3(s) − r(s) cos(θ(s)) + r(s) cos(θ(s))) cos(θ(s))
ϕ0r2−2n(s) + 2c

2n+1 r3(s)
θ(s)ds

=
2

(2n − 1)c

sk+1
∫
sk

cos(θ(s))θ(s)ds + 2
(2n − 1)c

sk+1
∫
sk

r(s) cos2(θ(s))
ϕ0r2−2n(s) + 2c

2n+1 r3(s)
θ(s)ds
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= −
2

(2n − 1)c

θ(sk)

∫
θ(sk+1)

R(cos(σ)) cos2(σ)
ϕ0R2−2n(cos(σ)) + 2c

2n+1R3(cos(σ))
dσ

= −
2

(2n − 1)c

θ(s1)

∫
θ(s1)−2π

R(cos(σ)) cos2(σ)
ϕ0R2−2n(cos(σ)) + 2c

2n+1R3(cos(σ))
dσ

for every k ∈ ℕ. Since the term t(sk+1) − t(sk) is strictly negative and independent of k, we conclude as in
Lemma 3.2 that t(sk)→ −∞ as k →∞. Hence we have reached a contradiction in both scenarios ϕ0 < 0 and
ϕ0 > 0. This ensures the validity of ϕ ≡ 0.

Step V. In this final step, we finish the proof of the desired statements. Keeping the same notations as before, if
we insert the information ϕ ≡ 0 proved in step IV in (3.24), we infer

t(s) = −2c(2n − 1)
(2n + 1) r

3(s) ≤ 0. (3.26)

If the sets SM and M ∩ Lv were empty, we could extend the integral curves γ of η indefinitely and we would
have the contradicting property t(s)→ −∞ as s →∞. Therefore, by (3.22), it has to be

SM = M ∩ Lv ̸= 0. (3.27)

Finally, exploiting again (3.22) and the identity ϕ ≡ 0 in M ∖ SM , we have

φh ≡ 0 in M ∖ SM ,

and, by (3.23), also
l − 3k ≡ 0 in M ∖ SM .

This concludes the proof of (3.14), and of the lemma.

We are finally ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. With Lemma 3.3 and Lemma 3.4 in hand, in order to complete the proof we can follow
closely the arguments of Theorem 1.1. In fact, we deduce from (3.27) that there exists p ∈ ℕ such that

SM = {(0, 0, t1), . . . , (0, 0, tp)}

for some t1 < t2 < ⋅ ⋅ ⋅ < tp (we stress that points in SM = M ∩ Lv cannot accumulate since T is aligned with the
normal direction at characteristic points). If we consider any point ξ0 ∈ M ∩ {t < t2} such that ξ0 ̸= (0, 0, t1),
we can look at the integral curve γ of η starting from ξ0. With the same notations as in Lemma 3.4, we know
from (3.26) that γ ⊂ M ∩ {t < t2} and

γ(s) reaches (0, 0, t1).

As r(s) > 0 and it is reaching 0, we obtain from the identity φh ≡ 0 proved in Lemma (3.2) that

cos(θ(s)) = (2n − 1)c2n + 1 r2(s) > 0 and cos(θ(s))→ 0.

Recalling (3.25), this implies that sin(θ(s)) is decreasing and

sin(θ(s))→ −1.

This yields
(2n − 1)c
2n + 1 t(s) − sin(θ(s))→ (2n − 1)c2n + 1 t1 + 1 as γ(s) approaches (0, 0, t1). (3.28)

On the other hand, if we differentiate along η the function

φv(ξ) =
2n − 1
2n + 1HM(ξ)

t
|ξH |
−
⟨η, ξH⟩
|ξH |
=
(2n − 1)c
2n + 1 t − ⟨η, ξ

H⟩
|ξH |
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for ξ ∈ M ∖ SM , by using (2.4) and (3.19), we obtain

η(φv)(ξ) = −
2(2n − 1)c
2n + 1 ⟨ν

H , ξH⟩ − 1 − l⟨ν
H , ξH⟩
|ξH |

+
⟨η, ξH⟩2

|ξH |3

=
1
|ξH |3
(−

2(2n − 1)HM
2n + 1 |ξ

H |2⟨νH , ξH⟩ − |ξH |2 + l|ξH |2⟨νH , ξH⟩ + ⟨η, ξH⟩2)

=
⟨νH , ξH⟩
|ξH |3
(−

2(2n − 1)HM
2n + 1 |ξ

H |2 − ⟨νH , ξH⟩ + l|ξH |2) −
∑n−1j=1 ⟨Vj , ξH⟩2 + ⟨Wj , ξH⟩2

|ξH |3
.

We can now use the properties (3.13)–(3.14) established in Lemma 3.4 together with (2.12), and we deduce

η(φv)(ξ) =
⟨νH , ξH⟩
|ξH |3
(−2k(ξ)|ξH |2 − ⟨νH , ξH⟩ + 3k(ξ)|ξH |2) = 0.

Hence φv is constant along γ. From (3.28) we know that such constant has to be equal to (2n−1)c2n+1 t1 + 1. The
arbitrariness of ξ0 ∈ (M ∩ {t < t2}) ∖ {(0, 0, t1)} (which is the starting point of γ) yields

φv ≡
(2n − 1)c
2n + 1 t1 + 1 in (M ∩ {t < t2}) ∖ {(0, 0, t1)}.

The previous identity and the identity φh ≡ 0 can be rewritten, keeping in mind the definitions in (3.11), as

⟨νH , ξ
H

|ξH |
⟩ =
(2n − 1)c
2n + 1 |ξ

H |2 and ⟨η, ξ
H

|ξH |
⟩ =
(2n − 1)c
2n + 1 (t − t1 −

2n + 1
(2n − 1)c ).

This implies

1 = ⟨νH , ξ
H

|ξH |
⟩
2
+ ⟨η, ξ

H

|ξH |
⟩
2
= (
(2n − 1)c
2n + 1 |ξ

H |2)
2
+ (
(2n − 1)c
2n + 1 (t − t1 −

2n + 1
(2n − 1)c ))

2

for any ξ ∈ (M ∩ {t < t2}) ∖ {(0, 0, t1)}, which shows that

(M ∩ {t < t2}) ∖ {(0, 0, t1)} ⊂ ∂BR(0, 0, t0)

with
R2 = 2n + 1
(2n − 1)c and t0 = t1 +

2n + 1
(2n − 1)c .

This allows, as in Theorem 1.1, to conclude the proof of the desired statement.

3.3 The axially symmetric case

As a concrete application of our main theorems, we want to single out a relevant class of hypersurfaces in
which we have a uniqueness result for the gauge spheres. We already mentioned in Section 1 (see also [21], [25],
[38], [16], [27], and [19] for related settings) that it is quite typical to require some a priori symmetry in terms
of rotational invariances. More precisely, we can recall the following well-known class of symmetric domains
(which is consistent with the type of prescription of the horizontal curvature HM we are dealing with).

Definition 3.5. For n ≥ 1, we say that a smooth hypersurface M ⊂ ℍn is cylindrically symmetric if, locally
around any point of M, there exists a defining function f for M which can be written as

f(x, y, t) = w(|x|2 + |y|2 , t) (3.29)

for some smooth function w.

We have the following corollary.

Corollary 3.6. Fix n ≥ 1. Let M be a smooth hypersurface of ℍn which is connected, orientable, compact, and
without boundary. Suppose that M is cylindrically symmetric with respect to Definition 3.5 and that, at every
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non-characteristic point (x, y, t) ∈ M, the horizontal mean curvature of M is proportional to

√|x|2 + |y|2

up to a constant factor c ̸= 0. Then c > 0 and there exists t0 ∈ ℝ such that M = ∂BR(ξ0) with

R = √ 1
c
2n + 1
2n − 1 and ξ0 = (0, 0, t0).

Proof. Fix an openneighborhoodU ⊂ ℍn whereU ∩ M is described, as in (3.29), by the zero-level set of a smooth
function f with non-null gradient. Pick the sign of f such that the outward normal ν at ξ ∈ U ∩ M is equal to

ν =
TfT +∑nj=1 Xj fXj + Yj fYj
((Tf)2 +∑nj=1(Xj f)2 + (Yj f)2)1/2

.

By exploiting (3.29), we have

Tf = w2 , Xj f = 2xjw1 − 2yjw2 , Yj f = 2yjw1 + 2xiw2 ,

which implies that

|PHν|2 =
4(|x|2 + |y|2)(w2

1 + w
2
2)

4(|x|2 + |y|2)(w2
1 + w

2
2) + w

2
2
.

This is saying that for cylindrically symmetric hypersurfaces we can have characteristic points only when
|x|2 + |y|2 = 0, i.e.

SM ⊆ M ∩ Lv .

Therefore, in case n = 1 we can apply Theorem 1.1 to infer the desired statement.
Fix then n ≥ 2. We want to check that the cylindrically symmetric assumption implies that M is in fact

umbilical. Since we have

νH =
n
∑
j=1

xjw1 − yjw2

√|x|2 + |y|2√w2
1 + w

2
2

Xj +
yjw1 + xjw2

√|x|2 + |y|2√w2
1 + w

2
2

Yj

and
η =

n
∑
j=1

yjw1 + xjw2

√|x|2 + |y|2√w2
1 + w

2
2

Xj +
yjw2 − xjw1

√|x|2 + |y|2√w2
1 + w

2
2

Yj ,

for any j, k ∈ {1, . . . , n} we can directly compute

⟨∇Xk νH , Xj⟩ = Xk(⟨νH , Xj⟩) =
δjkw1 + 2xj(xkw11 − ykv12) − 2yj(xkw12 − ykw22)

√|x|2 + |y|2√w2
1 + w

2
2

− ⟨νH , Xj⟩(
xk
|x|2 + |y|2

+
2w1(xkw11 − ykw12) + 2w2(xkw12 − ykw22)

w2
1 + w

2
2

),

⟨∇Xk νH , Yj⟩ = Xk(⟨νH , Yj⟩) =
δjkw2 + 2xj(xkw12 − ykv22) + 2yj(xkw11 − ykw12)

√|x|2 + |y|2√w2
1 + w

2
2

− ⟨νH , Yj⟩(
xk
|x|2 + |y|2

+
2w1(xkw11 − ykw12) + 2w2(xkw12 − ykw22)

w2
1 + w

2
2

),

⟨∇Yk νH , Xj⟩ = Yk(⟨νH , Xj⟩) =
−δjkw2 + 2xj(ykw11 + xkv12) − 2yj(ykw12 + xkw22)

√|x|2 + |y|2√w2
1 + w

2
2

− ⟨νH , Xj⟩(
yk
|x|2 + |y|2

+
2w1(ykw11 + xkw12) + 2w2(ykw12 + xkw22)

w2
1 + w

2
2

),
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⟨∇Yk νH , Yj⟩ = Yk(⟨νH , Yj⟩) =
δjkw1 + 2xj(ykw12 + xkv22) + 2yj(ykw11 + xkw12)

√|x|2 + |y|2√w2
1 + w

2
2

− ⟨νH , Yj⟩(
yk
|x|2 + |y|2

+
2w1(ykw11 + xkw12) + 2w2(ykw12 + xkw22)

w2
1 + w

2
2

).

From the previous relations, we can recognize by a straightforward computation that

PH(∇ZνH) −
2⟨ν, T⟩
|PH(ν)|

J(Z) = kZ for any Z ∈ H such that ⟨Z, νH⟩ = ⟨Z, η⟩ = 0,

and
PH(∇ηνH) = lη,

where
k = w1

√|x|2 + |y|2√w2
1 + w

2
2

and

l = w1

√|x|2 + |y|2√w2
1 + w

2
2

+
2√|x|2 + |y|2

(w2
1 + w

2
2)3/2
(w11w2

2 + w22w2
1 − 2w12w1w2).

A direct comparison with Definition 2.3 and Definition 2.4 tells us that M is umbilical. We can then apply Theo-
rem 1.2 and complete the proof of the corollary.
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