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Abstract:We consider the elliptic differential operator defined as the sum of theminimum and themaximum

eigenvalue of the Hessian matrix, which can be viewed as a degenerate elliptic Isaacs operator, in dimen-

sion larger than two. Despite of nonlinearity, degeneracy, non-concavity and non-convexity, such an operator

generally enjoys the qualitative properties of the Laplace operator, as for instancemaximum and comparison

principles, ABP and Harnack inequalities, Liouville theorems for subsolutions or supersolutions. Existence

and uniqueness for the Dirichlet problem are also proved as well as local and global Hölder estimates for

viscosity solutions. All results are discussed for a more general class of weighted partial trace operators.
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1 Introduction and main results
In this paper we investigate the properties of weighted partial trace operators

Ma :=
n
∑
i=1

aiλi(X), (1.1)

where λi(X) are the eigenvalues of X ∈ Sn, the set of n × n real symmetric matrices, in increasing order, that

is

λ
1
(X) ≤ ⋅ ⋅ ⋅ ≤ λn(X),

and a = (a
1
, . . . , an) ∈ ℝn is an n-ple of non-negative coefficients ai such that aj > 0 for at least one

j ∈ {1, . . . , n}.
The classA of such operators includes the partial trace operators

P−k (X) =
k
∑
i=1

λi(X), P+k (X) =
n
∑

i=n−k+1
λi(X), (1.2)

considered by Harvey and Lawson [49, 50] and Caffarelli, Li and Nirenberg [22, 23].

Here we introduce the subclass A, characterized by non-negative coefficients ai such that a
1
> 0 and

an > 0, which in some sense complements the set of operators P±k (X) with k < n. In fact, the prototype of A
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is the min-max operator

M(X) := λ
1
(X) + λn(X).

As wewill see later,M can be in fact viewed as a degenerate elliptic Isaacs operator (for n ≥ 2) whereasP±k (X)
results in a degenerate elliptic Bellman operator (for k < n).

Of course, the case n = 2 is by far well known, because M reduces to the classical Laplace operator.

However, in higher dimension, namely for n > 2, the operator ceases to be uniformly elliptic, it becomes

a fully nonlinear non-convex degenerate elliptic operator. Nonetheless, we will see, rather surprisingly, that

it retains many properties of the Laplace operator.

It also worth noticing that the operators Ma of the smaller subclass A, characterized by weights ai > 0
for all i = 1, . . . , n, are uniformly elliptic, as we will see in Section 2.

After introducing our main results we shall further come back to the original motivation for studying the

operators ofA, and in particular the subclassA.

A good number of results will depend on the dimension n and on the following two quantities, namely

the minimum between the coefficients of the smallest and the greatest eigenvalue, and the arithmetic mean

of the coefficients, namely

a∗ := min(a
1
, an), ã :=

a
1
+ ⋅ ⋅ ⋅ + an
n

,

in the sense that the involved constants are uniformly bounded when a positive upper bound of the first one

and a finite upper bound of the latter one are avalaible.

The constants which depend only on n, a
1
, an and ã will be also called universal constants.

The following result is a revisitation of the bilateral Alexandroff–Bakelman–Pucci (ABP) estimate for the

classA, only depending on n and a∗.

Theorem 1.1. Let Ω ⊂ ℝn be a bounded open domain of diameter d. Let f ∈ C(Ω) be bounded in Ω. If u ∈ C(Ω̄)
is a viscosity solution to the equationMa(D2u) = f in Ω, withMa ∈ A, then

sup

Ω

|u| ≤ sup
∂Ω

u+ + Cn
a∗

d‖f‖Ln(Ω), (1.3)

where Cn > 0 is a positive constant depending only on n.

We emphasize the following difference between estimate (1.3) and the standard ABP estimates, see for

instance [47, Theorem 9.1]: the denominator of the right-hand side is a∗ = min(a
1
, an) instead of the

geometric mean D∗ = (a
1
⋅ ⋅ ⋅ an)

1

n , the geometric mean of the coefficients, which would be useless in the

non-uniformly elliptic case, as soon as one of the coefficients aj is zero, while a∗ is positive for the classA.
The above result is obtained as a consequence of two unilateral ABP estimates for subsolutions (4.6) and

supersolutions (4.7).

The ABP estimate stated before also underlies a corresponding Harnack inequality for the equation

Ma[u] = f , depending on n, a∗ and ã, instead of the elliptic constants λ and Λ ≥ λ, which would be ineffec-
tive in the degenerate elliptic case in which λ = 0. This Harnack inequality cannot be extended to arbitrary
degenerate elliptic operators of the class A, and in particular it fails to hold for partial trace equations

P±k [u] = f when k < n.

Theorem 1.2 (Harnack inequality). Let Ma ∈ A. Let u be a viscosity solution of the equation Ma(D2u) = f in
the unit cube Q

1
such that u ≥ 0 in Q

1
, where f is continuous and bounded. Then

sup

Q
1/2 u ≤ C( infQ

3/4 u + ‖f‖Ln(Q1
)),

where C is a positive constant depending only on n, a∗ and ã.

We prove Theorem 1.2 via two inequalities for subsolutions and non-negative supersolutions, known in

literature respectively as the local maximum principle (Theorem 5.1) and the weak Harnack inequality (The-

orem 5.2), suitably adapted to this framework, by comparison with Pucci extremal operators.

From theHarnack inequality, the interior Cα estimates of Theorem5.3 in Section 5 followwith a universal

exponent α ∈ (0, 1), in the same way of the uniformly elliptic case [25].
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Here, in Lemma 5.4, we get boundary Hölder estimates assuming for Ω a uniform exterior sphere prop-

erty, with radius R > 0:
(S) for all y ∈ ∂Ω there is a ball BR of radius R such that y ∈ ∂BR and Ω ⊂ BR.

We obtain the following estimates for the Hölder seminorm [u]γ,Ω. See the notation (5.3) in Section 5.

Theorem 1.3 (Global Hölder estimates). Let u ∈ C(Ω) be a viscosity solution of the equation Ma(D2u) = f in
a bounded domain Ω. We assume that withMa ∈ A and f is continuous and bounded in Ω. Let also α ∈ (0, 1)
be the exponent of the interior Cα estimates.
(i) Suppose that Ω satisfies a uniform exterior sphere condition (S) with radius R > 0. If u = g on ∂Ω with

g ∈ Cβ(∂Ω) and β ∈ (0, 1], then u ∈ Cγ(Ω) with γ = min(α, β
2

), and

[u]γ,Ω ≤ C(‖g‖Cβ(∂Ω) + ‖f‖L∞(Ω)), (1.4)

where C is a positive constants depending only on n, a∗, ãn, R, L and β.
(ii) Suppose in addition thatΩ has a uniform Lipschitz boundary with Lipschitz constant L. If g ∈ C1,β(∂Ω)with

β ∈ [0, 1), then u ∈ C(1+β)/2(Ω), where γ = min(α, 1
2

(β + 1)), and

[u] 1
2

(1+β),Ω ≤ C(‖g‖C1,β(∂Ω) + ‖f‖L∞(Ω)). (1.5)

A global estimate for the Hölder norm ‖u‖C0,γ(Ω) = ‖u‖L∞(Ω) + [u]γ,Ω can be obtained combining the above

estimates with the uniform estimate of Corollary 3.3.

In some cases, we can obtain an explicit interior Hölder exponent. For instance, in the case of asymmetric

distributions of weights, concentrated on the smallest or the largest eigenvalue, as for the upper and lower

partial trace operatorsP±k , k < n, see Lemma 5.5. The result depends in fact on the smallness of the quotients

â
1

a
1

and

ân
an (see Section 3.3), as it can be seen in the statement below.

Theorem 1.4. Let u ∈ C(Ω) be a viscosity solution of the equationMa(D2u) = f in a bounded domainΩ, where f
is continuous and bounded. SupposeMa ∈ Awith a

1
≥ â

1
, resp. with an ≥ ân. Then the global Hölder estimates

of Theorem 1.3 hold, namely (1.4) in case (i) and (1.5) in case (ii), with

α = max(1 −
â
1

a
1

, 1 −
ân
an
).

In particular, we deduce the following Cα estimates.
(i) Suppose that Ω satisfies a uniform exterior sphere condition (S) with radius R > 0. If u = g on ∂Ω with

g ∈ C2α(∂Ω) and α ∈ (0, 1
2

], then u ∈ Cα(Ω), and

[u]α,Ω ≤ C(‖g‖C2α(∂Ω) + ‖f‖L∞(Ω)), (1.6)

where C is a positive constant depending only on n, a
1
, â

1
, an, ân, ã, R and α.

(ii) Suppose in addition that Ω has a uniform Lipschitz boundary with Lipschitz constant L. If g ∈ C1,2α−1(∂Ω)
with α ∈ [1

2

, 1], then
[u]α,Ω ≤ C(‖g‖C1,2α−1(∂Ω) + ‖f‖L∞(Ω)), (1.7)

where C is a positive constant also depending on L.

The optimal regularity of solutions in the case of degenerate, non-uniform ellipticity, is an open problem.

Partial answers are contained for instance in [65] for the special case a
1
= 1, ai = 0 for i = 2, . . . , n, as

mentioned in the sequel, [10, 52] for other kind of singular or degenerate elliptic operators and [37, 40] for

non-commutative structures.

Concerning higher regularity, one could borrow the techniques of [11, 19, 24, 27, 28, 53, 54, 56, 57,

73, 75], which however do not seem at the moment directly applicable in the more general non-uniformly

elliptic setting.

It is remarkable the particular case of the interior C1,α regularity proved in [65] for the equation

λ
1
[u] = f(x) with C1,α boundary data.
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Further aspects of the qualitative theory, like the strong maximum principle and Liouville theorems,

will be discussed in the last sections of the paper. New results for operators Ma ∈ A will be shown there,

depending on the relative magnitude of a
1
and an, and their complements â

1
and ân with respect to

|a| = a
1
+ ⋅ ⋅ ⋅ + an, see Section 3.3.

Turning to themotivations about the importance of this research,we recall that the partial trace operators

P+k (X) are degenerate elliptic operators, which can be represented as Bellman operators

P+k (X) = sup

W∈Gk

Tr(XW ), P−k (X) = inf

W∈Gk
Tr(XW ), (1.8)

where Gk is the Grassmanian of the k-dimensional subspace W of ℝn and XW is tha matrix of the quadratic

form associated to X restricted toW, see [49].

Upper and lower partial trace operators arise in geometric problems ofmean partial curvature considered

byWu [80] and Sha [71, 72]. Following the interest generated by the previous works, a number of papers has

been devoted to the properties of these operators, we recall for instance [3, 26, 46, 79].

On the other hand, it is also worth noticing that Bellman equations arise in stochastic control prob-

lems, see Krylov [58], Fleming and Rishel [42], Fleming and Soner [43], Fleming and Souganidis [44] and

the references therein.

As well as the partial trace operators P±k with k < n constitute a model for degenerate elliptic Bellman

operators, the min-max operatorM provides for n ≥ 3 a prototype of degenerate elliptic Isaacs operators by
the representation

M(X) = sup
|ξ|=1

inf

|η|=1
Tr(Xξ,η), (1.9)

where Tr(Xξ,η) is the trace the matrix Xξ,η of the quadratic form associated to X restricted to L(ξ, η), the
subspace ofℝn spanned by ξ and η.

The alternative representation

M(X) = max

|ξ|=1
⟨Xξ, ξ⟩ +min

|ξ|=1
⟨Xξ, ξ⟩

suggests the relationship betweenM(X) and stochastic zero-sum, two-players differential games and Isaacs

equations, for which we refer for instance to [41, 43, 64] and the references therein and to [16, 17] for more

recent contributions.

Following the main stream of the mean value properties of solution to linear equations, as well as in

the case of the∞-Laplacian, it is also worth to be remarked that whenever u is C2, the following expansion
yields:

uε
1

(x) ≡ min

|ξ|=1

u(x + εξ) + u(x − εξ)
2

= u(x) + ε
2

2

λ
1
(x) + o(ε2),

uε
2

(x) ≡ max

|η|=1

u(x + εη) + u(x − εη)
2

= u(x) + ε
2

2

λn(x) + o(ε2).

As a consequence, if we consider a continuous function u, the operator given by the limit

lim

ϵ→0

2

ϵ2
(uε,1(x) + uε,2(x) − 2u(x)),

whenever it exists, may be considered as the weak version of our operator M. For an almost compete list

of references from this point of view, see [59, 63] for the p-Laplace equation, as well as [38, 39] for further
applications to non-commutative fields where a lack of ellipticity occurs.

The paper is organized as follows. In Section 2 we introduce themain definitions about elliptic operators

and viscosity solutions. In Section 3 we discuss in detail the properties of the weighted partial trace opera-

tors, in particular M. We show a comparison principle, an existence and uniqueness theore, and compute

the radial solutions. In Section 4 we prove Theorem 4.2. In Section 5 we show the Harnack inequality, inte-

rior and boundary Hölder estimates. We also discuss, in Section 6, the strong maximum principle via both

the Hopf boundary point lemma and the Harnack inequality, showing suitable counterexamples. Finally, in

Section 7, we also prove Liouville theorems and an unilateral Liouville property with the Hadamard’s three

circles theorem.
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2 General Preliminaries
This section is organized in some subsections, mainly for introducing common notation about viscosity

theory of elliptic nonlinear PDEs, see Sections 2.1 and 2.5. In Sections 2.2 and 2.3 we introduce our class

of operators A and in particular discuss the min-max operator M showing by counterexamples that it is

nonlinear, non-convex and non-uniformly elliptic. In Section 2.4 we discuss a comparison result with the

partial trace operators operator P±k .

2.1 Ellipticity and Viscosity Solutions

We start recalling some ellipticity notions. Let Sn be the set of n × n symmetric matrices with real entries,

partially ordered with the relationship X ≤ Y if and only if Y − X is semidefinite positive.

A fully nonlinear operator, that is a mapping F : Sn → ℝ, is said degenerate elliptic if

X ≤ Y 󳨐⇒ F(X) ≤ F(Y), (2.1)

and uniformly elliptic if

X ≤ Y 󳨐⇒ λ Tr(Y − X) ≤ F(Y) − F(X) ≤ Λ Tr(Y − X), (2.2)

for positive constants λ and Λ, called ellipticity constants. Note indeed that, by the left-hand side inequality
in (2.2), a uniformly elliptic operator F satisfies (2.1), and so it is degenerate elliptic. The uniform ellipticity

also implies the continuity of themappingF : Sn → ℝ. In what followswe also assume thatF is a continuous

mapping even in the degenerate elliptic case.

Suppose now X ≤ Y. It is plain that Tr(Y − X) ≥ 0. Suppose in addition F(Y) = F(X). If F is uniformly

elliptic, in view of the left-hand side of (2.2), we also have Tr(Y − X) ≤ 0, so that Tr(Y − X) = 0. Then Y = X.
In other words, F is strictly increasing on ordered chains of Sn.

The class of uniformly elliptic operators with given ellipticity constants λ and Λ is bounded by two

estremal operators, the maximal and minimal Pucci operator, which are in turn uniformly elliptic with the

same ellipticity constants, respectively:

M+λ,Λ(X) = Λ Tr(X+) − λ Tr(X−),

M−λ,Λ(X) = λ Tr(X
+) − Λ Tr(X−),

where X = X+ − X− is the unique decomposition of X ∈ Sn as difference of semidefinite positive matrices X+

and X− such that X+X− = 0.
In view of this definition, the uniformly ellipticity (2.2) of F can equivalently be stated as

M−λ,Λ(Y − X) ≤ F(Y) − F(X) ≤M
+
λ,Λ(Y − X) for all X, Y ∈ Sn .

From this it also follows that, if F is uniformly elliptic and F(0) = 0, then

M−λ,Λ(X) ≤ F(X) ≤M
+
λ,Λ(X) for all X ∈ Sn , (2.3)

which shows the extremality of Pucci operators.

Throughout this paper we will assume in fact

F(0) = 0.

Of course, the results can be applied, in the case F(0) ̸= 0, to the operator G(X) = F(X) − F(0).
Let Ω be an open set of ℝn. A fully nonlinear operator F acts on u ∈ C2(Ω) through the Hessian matrix

D2u setting
F[u](x) = F(D2u(x)).
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Let f be a function defined in Ω. A solution u ∈ C2(Ω) of the equation F[u] = f is called a classical solu-

tion, as well as classical subsolution or supersolution of F[u] = f if F(D2u(x)) ≥ f(x) or F(D2u(x)) ≤ f(x) for
every x ∈ Ω, respectively. For instance, if F(X) = Tr(X) and f(x) is a continuous function, then F[u] = ∆u is

the Laplacian and the equation F[u] = f is the Poisson equation ∆u = f .
Let F be a degenerate elliptic operator. We can solve the equation F[u] = f(x) in a weaker sense,

namely in the viscosity sense. We are essentially concerned in this paper with pure second-order opera-

tors F[u] = F(D2u). We refer to [25] and [33] for general operators, also depending on x ∈ Ω, u and the

gradient Du, and to [49] for a geometric interpretation of viscosity solutions.

We briefly recall what it means to solve the equation F[u] = f introducing sub/superjets basic notions.
See [32, 33].

Let O be a locally compact subset of ℝn, and u : O→ ℝ. The second-order superjet J2,+O u(x
0
) and subjet

J2,−O u(x
0
) of u at x

0
∈ O are respectively the sets

J2,+O u(x
0
) = {(ξ, X) ∈ ℝn × Sn : u(x) ≤ u(x

0
) + ⟨ξ, x − x

0
⟩ + 1

2

⟨X(x − x
0
), (x − x

0
)⟩ + o(|x − x

0
|2) as x → x

0
}

and

J2,−O u(x
0
) = {(ξ, X) ∈ ℝn × Sn : u(x) ≥ u(x

0
) + ⟨ξ, x − x

0
⟩ + 1

2

⟨X(x − x
0
), (x − x

0
)⟩ + o(|x − x

0
|2) as x → x

0
}.

We denote by usc(O) and lsc(O) the set of upper and lower semicontinuous functions in O, respectively.

If u ∈ usc(O), then u is a viscosity subsolution of a fully nonlinear elliptic equation F[u] = f if

F(X) ≥ f(x) for all x ∈ O and all (ξ, X) ∈ J2,+O u(x).

If u ∈ lsc(O), then u is a viscosity supersolution of the same equation if

F(X) ≤ f(x) for all x ∈ O and all (ξ, X) ∈ J2,−O u(x).

A viscosity solution of the equationM[u] = f is both a subsolution and a supersolution u ∈ C(O).
It is worth noticing that classical solutions are viscosity solutions. Viceversa, viscosity solutions of class

C2 are in turn classical solutions. The same holds for subsolutions and supersolutions.

2.2 The Operator ClassA

Let {e
1
, . . . , en} be the standard basis inℝn such that (ei)j = δij for i, j = 1, . . . , n, and let λi(X), i = 1, . . . , n,

be the eigenvalues of X ∈ Sn in non-decreasing order.
Let a = (a

1
, . . . , an) = a1e1 + ⋅ ⋅ ⋅ + anen.We consider the class of degenerate elliptic weighted trace oper-

ators

A = {Ma : a ≡ min

i
ai ≥ 0, a ≡ max

i
ai > 0},

where

Ma(X) = a1λ1(X) + ⋅ ⋅ ⋅ + anλn(X) (see (1.1)).

We observe thatA contains both uniformly and non-uniformly elliptic operators. In particular, all previously

considered operators belong to this class with a suitable representation:

Tr(X) =Me
1
+⋅⋅⋅+en (X), M(X) =Me

1
+en (X),

P+(X) =Men−k+1+⋅⋅⋅+en (X), P−(X) =Me
1
+⋅⋅⋅+ek (X).

Very recently, recalling the pioneeristic paper [66], Blanc and Rossi [15] have shown that it is possible to

define a game satisfying a dynamic programming principle (DPP) which leads to the Dirichlet problem

{
Ma[u] = 0 in Ω,

u = g(x) on ∂Ω.

Moreover, an associated evolution problem is considered in [14].
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We point out thatM =Me
1
+en is neither linear nor uniformly elliptic, neither concave nor convex, except

when n = 2, as it follows from the representation (1.9) and it will be proved in the next section with suitable

counterexamples.

Actually,M is a model of a larger class of degenerate, possibly non-uniformly elliptic operators

A = {Ma : a ≥ 0, a∗ ≡ min(a
1
, an) > 0},

which can be seen asA = A
1
∩An, where

Aj = {Ma : a ≥ 0, aj > 0}.

Setting in addition

A = {Ma : a > 0},

we notice that

A ⊂ A = A
1
∩An ⊂ A.

We remark for instance that, while the min-max operatorM belongs toA, the partial trace operatorsP−k ∈ A1

and P+k ∈ An do not belong toA for k < n.
On the other hand, everyMa ∈ A is uniformly elliptic. In fact, if X ≤ Y, then

Ma(Y) −Ma(X) =
n
∑
i=1

ai(λi(Y) − λi(X)) ≥ a Tr(Y − X), (2.4)

so that everyMa ∈ A is degenerate elliptic. Since X ≤ Y also implies

Ma(Y) −Ma(X) =
n
∑
i=1

ai(λi(Y) − λi(X)) ≤ a Tr(Y − X), (2.5)

we conclude thatMa ∈ A is uniformly elliptic with ellipticity constants λ = a ≡ mini ai and Λ = a ≡ maxi ai.
We also observe that the operators Ma ∈ A are invariant by rotation, since Ma(RTXR) =M(X) for all

orthogonal matrices R, and are positively homogeneous of degree one:

Ma(ρX) =
n
∑
i=1

aiλi(ρX) = ρ
n
∑
i=1

aiλi(X) = ρMa(X), ρ ≥ 0. (2.6)

Next, we investigate more closely the peculiar properties of the min-max operatorM(X) = λ
1
(X) + λn(X).

2.3 The Min-Max OperatorM

In the previous subsection, we claimed that M is neither linear nor uniformly elliptic, neither concave nor

convex, except for n = 2. This is intuitive by the representation (1.9):

M(X) = sup
|ξ|=1

inf

|η|=1
Tr(Xξ,η).

Nonetheless, we present a few counterexamples that support the above claim.

Remark 2.1. Let us consider the matrices

X
1
= e

1
⊗ e

1
− e

3
⊗ e

3
, X

2
= −e

1
⊗ e

1
+ e

2
⊗ e

2
, X

3
= e

1
⊗ e

1
− e

2
⊗ e

2
− e

3
⊗ e

3
.

Then λ
1
(Xi) = −1 and λ3(Xi) = 1, so thatM(Xi) = 0 for all i = 1, 2, 3.

(i) The operatorM is not linear in dimension n ≥ 3. In fact,

X
1
− X

2
= e

1
⊗ e

1
− e

3
⊗ e

3
+ e

1
⊗ e

1
− e

2
⊗ e

2

= 2e
1
⊗ e

1
− e

2
⊗ e

2
− e

3
⊗ e

3
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and therefore

λ
1
(X

1
− X

2
) = −1, λ

3
(X

1
− X

2
) = 2,

so that

M(X
1
) −M(X

2
) = 0 ̸= 1 =M(X

1
− X

2
).

(ii) The operatorM is not uniformly elliptic in dimension n ≥ 3. In fact, we note that X
3
≤ X

1
, and

M(X
3
) =M(X

1
) = 0, but X

3
̸= X

1
,

against the strictly increasing property on ordered chains observed in Section 2.1 for the uniformly ellip-

tic case.

(iii) The operatorM(X) is neither convex nor concave. In fact, for every t ∈ [0, 1], it turns out that

tX
1
+ (1 − t)X

2
= t(e

1
⊗ e

1
− e

3
⊗ e

3
) + (1 − t)(−e

1
⊗ e

1
+ e

2
⊗ e

2
)

= (2t − 1)e
1
⊗ e

1
+ (1 − t)e

2
⊗ e

2
− te

3
⊗ e

3

and therefore

M(tX
1
+ (1 − t)X

2
) = λ

1
(tX

1
+ (1 − t)X

2
) + λ

3
(tX

1
+ (1 − t)X

2
)

= min{2t − 1;−t} +max{2t − 1; 1 − t},

so thatM(tX
1
+ (1 − t)X

2
) = 1 − 2t for t ∈ (1

3

,

2

3

). From this

M(tX
1
+ (1 − t)X

2
)
{
{
{

> 0 for t ∈ (1
3

,

1

2

),

< 0 for t ∈ (1
2

,

2

3

),

while it is plain that for every t ∈ [0, 1],

tM(X
1
) + (1 − t)M(X

2
) = 0.

ThusM is neither convex nor concave.

SinceM ∈Awe already know that it is homogeneous of degree one (2.6): for every ρ ≥ 0 and for every X ∈ Sn,

M(ρX) = ρM(X). (2.7)

On the other hand,

M(−X) = λ
1
(−X) + λn(−X) = −λn(X) − λ1(X) = −M(X),

and therefore (2.7) continues to hold for ρ < 0.
The next remark contains a few comments on the representation (1.9).

Remark 2.2. The operatorM(X) can be put in the form

M(X) = sup
|ξ|=1

inf

|η|=1
η⊥ξ

Tr(Xξ,η). (2.8)

In order to prove this, we start observing that plainly

M(X) = sup
|ξ|=1

inf

|η|=1
(⟨Xξ, ξ⟩ + ⟨Xη, η⟩) ≤ sup

|ξ|=1
inf

|η|=1
η⊥ξ

Tr(Xξ,η).

To have also the reverse inequality, and so (2.8), we observe that the representative matrix Xξ,η of the

quadratic form associated to X restricted to L(ξ, η), the subspace of ℝn spanned by directions ξ and η, has
trace

Tr(Xξ,η) = ⟨Xξ, ξ⟩ + ⟨Xη, η⟩,

and thus

sup

|ξ|=1
inf

|η|=1
η⊥ξ

Tr(Xξ,η) = sup
|ξ|=1
(⟨Xξ, ξ⟩ + inf

|η|=1
η⊥ξ

⟨Xη, η⟩).
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To compute the inf in the latter equation, we may assume that X is diagonal, by rotational invariance,

with the eigenvalues λ
1
≤ ⋅ ⋅ ⋅ ≤ λn on the diagonal from the top to the bottom. Note also that in this case

⟨Xξ, ξ⟩ = λ
1
ξ2
1

+ ⋅ ⋅ ⋅ + λnξ2n and ⟨Xη, η⟩ = λ
1
η2
1

+ ⋅ ⋅ ⋅ + λnη2n, so that by symmetry we may assume ξi ≥ 0 and

ηi ≥ 0 for all i = 1, . . . , n, that is

sup

|ξ|=1
inf

|η|=1
η⊥ξ

Tr(Xξ,η) = sup
|ξ|=1
ξ≥0

(⟨Xξ, ξ⟩ + inf
|η|=1
η≥0
η⊥ξ

⟨Xη, η⟩).

Using the Lagrangemultipliers λ and μ, the inf is obtained in correspondence of a critical point of the function

h(η, λ, μ) := ⟨Xη, η⟩ − λ(⟨η, η⟩ − 1) − μ⟨ξ, η⟩,

which solve the system

{{{{
{{{{
{

Xη = λη + μ
2

ξ,

⟨η, η⟩ = 1,
⟨ξ, η⟩ = 0

or equivalently

{{{{{{{{{
{{{{{{{{{
{

λ
1
η
1
= λη

1
+
μ
2

ξ
1
,

.

.

.

λnηn = ληn +
μ
2

ξn ,

η2
1

+ ⋅ ⋅ ⋅ + η2n = 1,
ξ
1
η
1
+ ⋅ ⋅ ⋅ + ξnηn = 0.

We can show that μ = 0. Otherwise, suppose by contradiction μ ̸= 0. Let I = {i ∈ {1, . . . , n} : ξi ̸= 0}, which
is non-empty because |ξ| = 1. Then from above (λi − λ)ηi = μ

2

ξi ̸= 0, and so λ ̸= λi for all i ∈ I. Inserting
ηi = μ

2

ξi
λ−λi in the last row of the system, we get

μ
2

∑
i∈I

ξ2i
λ − λi
= 0.

Since ξi > 0 and ηi > 0 for i ∈ I, all the terms of the sum have the same sign (the sign of μ), and this would

imply μ = 0, against the assumption. Therefore critical points are not affected by the constraint η⊥ξ , and this
proves the representation (2.8).

If instead of “sup inf” as in (2.8) we consider “inf sup”, we re-obtainM:

M(X) = sup
|ξ|=1

inf

|η|=1
η⊥ξ

Tr(Xξ,η) = inf
|ξ|=1

sup

|η|=1
η⊥ξ

Tr(Xξ,η) (2.9)

with or without the constraint η⊥ξ .

2.4 Comparison with the Partial Trace Operators Operator P±k
Let us give a comparative look to the partial trace operators (1.2):

P−k (X) = λ1(X) + ⋅ ⋅ ⋅ + λk(X), P+k (X) = λn−k+1(X) + ⋅ ⋅ ⋅ + λn(X).

Remark 2.3. If in (2.9) we consider “sup sup” or “inf inf” instead of “sup inf” or “inf sup”, it is not difficult

to recognize, from (1.8), that we obtain the above partial trace operators with k = 2:

P−
2

(X) = inf
|ξ|=1

inf

|η|=1
η⊥ξ

Tr(Xξ,η),

P+
2

(X) = sup
|ξ|=1

sup

|η|=1
η⊥ξ

Tr(Xξ,η).
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Next, we list some properties of operators P±k . By definition, it is plain that P−k ≤ P
+
k ; in addition P+k and P−k

are respectively subadditive and superadditive:

P−k (X) + P
−
k (Y) ≤ P

−
k (X + Y) ≤ P

+
k (X + Y) ≤ P

+
k (X) + P

+
k (Y).

Moreover, P−k (X) = −P
+
k (−X), so that from the left-hand inequality

P−k (X + Y) ≤ P
−
k (X) − P

−
k (−Y) = P

−
k (X) + P

+
k (Y)

and from the right-hand

P+k (X + Y) ≥ P
+
k (X) − P

+
k (−Y) = P

+
k (X) + P

−
k (Y).

In particular, since λ
1
(X) = P−

1

(X) and λn(X) = P+
1

(X),

λ
1
(X) + λ

1
(Y) ≤ λ

1
(X + Y) ≤ λ

1
(X) + λn(Y)

and

λ
1
(X) + λn(Y) ≤ λn(X + Y) ≤ λn(X) + λn(Y).

We recall that the inequality stated above for the partial trace operators P±k continues to hold for the Pucci

extremal operatorsM±λ,Λ, that can be in turn regarded as Bellman operators. In fact, setting

Snλ,Λ = {A ∈ S
n
: λI ≤ A ≤ ΛI},

where I is the n × n identity matrix, we have

M+λ,Λ(X) = sup

A∈Sn
λ,Λ

Tr(AX),

M−λ,Λ(X) = inf

A∈Sn
λ,Λ

Tr(AX).

2.5 Duality

Let F be a fully nonlinear degenerate elliptic operator. If F is linear and u is a subsolution of the equation

F(D2u) = f , then v = −u is a supersolution of the equation F(D2v) = −f .
If we deal with an arbitrary fully nonlinear operator and u is a subsolution to F(D2u) = f , then v = −u is

a supersolution of an equation F̃(D2v) = −f for the dual operator F̃,

F̃(X) = −F(−X),

which is in general different from F. Moreover, F is degnerate (uniformly) elliptic if F is degenerate (uni-

formly) elliptic.

Computing the dual of the operators introduced above, we note that by homogeneity for the min-max

operatorM we have M̃ =M as in the case of linear operators, while the upper and lower partial trace oper-

ators are each one the dual of the other one, P̃±k = P
±
k , as well as the maximal and the minimal the Pucci

operators, M̃±λ,Λ =M
∓
λ,Λ. In the general caseMa ∈ A, we have M̃a =Ma󸀠 , where a󸀠 = (an , an−1, . . . , a1),.

3 Auxiliary Results
In this section we apply the Perron method, well known in the literature, see for instance [33] and [48],

in order to show: weak maximum and comparison principles, existence and uniqueness of solutions, see

respectively Sections 3.1 and 3.2. The proofs are based on the properties of our operators, suitably exploited,

and an appropriate adaptation of arguments used for the uniformly elliptic case. In Section 3.3 we obtain the

radial representation of the operatorsMa.
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3.1 Weak Maximum and Comparison Principles

The following comparison principle holds between viscosity subsolutions and supersolutions of the equation

Ma[u] = f in a bounded domain Ω, as proved for uniformly elliptic operators in the basic paper by Crandall,

Ishii and Lions [33].

Theorem 3.1 (Comparison Principle). Let u ∈ usc(Ω) and v ∈ lsc(Ω) such thatMa(D2u) ≥ f andMa(D2v) ≤ f
in Ω are satisfied in the viscosity sense, respectively, where Ω is a bounded open set of ℝn, Ma ∈ A and f is
a bounded continuous function in Ω. If u ≤ v on ∂Ω, then u ≤ v in Ω.

Letting v ≡ 0 and f ≡ 0, we obtain the following weak maximum principle.

Corollary 3.2 (Weak Maximum Principle). Let u ∈ usc(Ω), where Ω is a bounded domain of ℝn. If one has
Ma(D2u(x)) ≥ 0 in Ω in the viscosity sense for someMa ∈ A, then

max

Ω

u = max

∂Ω
u.

On the other hand, if u ∈ lsc(Ω) is a viscosity solution of the differential inequalityMa(D2u(x)) ≤ 0 inΩ for some
Ma ∈ A, then

min

Ω

u = min

∂Ω
u.

Proof of Theorem 3.1. The case of f(x) ≡ 0 is covered in [48, Theorem 6.5]. In fact, considering the Dirichlet

set F = {X ∈ Sn : Ma(X) ≥ 0} and its dual set F̃ = {X ∈ Sn : Ma󸀠 (X) ≥ 0} in the geometric setting of Harvey and

Lawson [48], then by our assumptions u, −v ∈ usc(Ω) are of type F and F̃ in Ω, and our comparison principle

is deduced the subaffinity of u − v established there.
For sake of completeness, we give an analytic proof based on the device contained in the proof of

[33, Theorem 3.3] by Crandall, Ishii and Lions. See also [8].

We have to show that, under the given assumptions, the maximum of u − v must be realized on ∂Ω.
(i) Firstly, setting uε(x) = u(x) + 1

2

ε|x|2, we prove that uε − v cannot have a positive maximum in Ω, for

all fixed ε > 0. Actually,

Ma(D2uε) :=
n
∑
i=1

aiλi(D2uε) =
n
∑
i=1

aiλi(D2u + εI) ≥ f(x) + |a|ε,

Ma(D2v) :=
n
∑
i=1

aiλi(D2v) ≤ f(x),

where |a| = a
1
+ ⋅ ⋅ ⋅ + an > 0. Supposing, by contradiction, that uε − v has a positive maximum in Ω and fol-

lowing the proof of [33, Theorem 3.3 ], for all α > 0 there exist points xα , yα ∈ Ω and matrices Xα , Yα ∈ Sn

such that

− 3α( I 0

0 I
) ≤ (

Xα 0

0 −Yα
) ≤ 3α( I −I

−I I
) (3.1)

and

n
∑
i=1

aiλi(Xα) ≥ f(xα) + |a|ε,
n
∑
i=1

aiλi(Yα) ≤ f(yα). (3.2)

Moreover,

lim

α→∞
α|xα − yα|2 = 0. (3.3)

Noting that (3.1) implies Xα ≤ Yα, from (3.2) we get

f(xα) + |a|ε ≤
n
∑
i=1

aiλi(Xα) ≤
n
∑
i=1

aiλi(Yα) ≤ f(yα).

Taking the limit as α →∞ and using (3.3), by the continuity of f(x)we have a contradiction: ε ≤ 0. Therefore
uε − v cannot have a positive maximum in Ω.
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(ii) From (i) it follows, for all ε > 0, that max
Ω

(uε − v) ≤ max∂Ω(uε − v). Taking into account that u ≤ v
on ∂Ω, then we have

u(x) + 1
2

ε|x|2 − v(x) ≤ 1
2

εR2 for x ∈ Ω,

where R > 0 is the radius of a ball BR centered at the origin such that Ω ⊂ BR. Letting ε → 0

+
, we conclude

that u ≤ v in Ω, as claimed.

From Corollary 3.2 we deduce the following uniform estimates for viscosity solutions of the equation

Ma[u] = f in a bounded domain Ω

Proposition 3.3 (Uniform Estimate). Let u ∈ usc(Ω), where Ω is a bounded domain ofℝn. IfMa(D2u(x)) ≥ f(x)
in Ω in the viscosity sense for someMa ∈ A and f is bounded below in Ω, then

u(x) ≤ max

∂Ω
u+Cd2‖f−‖L∞(Ω) for all x ∈ Ω,

where C is a positive constant, which can be chosen equal to 1/|a|.
On the other hand, if u ∈ lsc(Ω) is a viscosity solution of the differential inequalityMa(D2u(x)) ≤ f(x) in Ω

for someMa ∈ A and f bounded above in Ω, then

u(x) ≥ min

∂Ω
u − Cd2‖f+‖L∞(Ω) for all x ∈ Ω.

Proof. Let us prove the first one. Setting K− = ‖f−‖L∞(Ω), the function v = u + K−
2|a| |x|

2

is a subsolution of the

equationMa[v] = 0. By Corollary 3.2 we get v(x) ≤ max
Ω

v, so that

u(x) ≤ v(x) ≤ max

∂Ω
u + K−

2|a|
d2,

which yields the first inequality of the estatement.

3.2 Existence and Uniqueness

As a consequence of the above comparison principle, we can also prove an existence and uniqueness result

for the Dirichlet problem in bounded domains Ω via the Perron method, assuming that Ω has a uniform

exterior cone condition, see [60] and [21]: there exist θ
0
∈ (0, π) and r

0
> 0 so that for every y ∈ ∂Ω there is

a rotation R = R(y) such that
Ω ∩ Br

0

(y) ⊂ y + RΣθ
0

,

where

Σθ
0

= {x ∈ ℝn : xn ≥ |x| cos θ0}.

Theorem 3.4. Let Ω be a bounded domain of ℝn endowed with a uniform exterior cone condition. Let g be
a continuous function on the boundary ∂Ω, and let f be a continuous and bounded function in Ω. Then for
Ma ∈ A the Dirichlet problem

{
Ma(D2u) = f in Ω,

u = g on ∂Ω,
(3.4)

has a unique viscosity solution u ∈ C(Ω).

Proof. According to the Perronmethod [33, Theorem4.1], we need a comparison principle, and the existence

of a subsolution and a supersolution of the equation Ma(D2u) = f . Since the comparison principle holds

by Theorem 3.1, we only need to look for a viscosity subsolution u ∈ usc(Ω) and a viscosity supersolution

u ∈ lsc(Ω) of the equationMa(D2u) = f(x) such that u = g = u on ∂Ω.
To do this, we will use the following inequalities, see (2.4) and (2.5):

Ma(X) = a1λ1(X) + ⋅ ⋅ ⋅ + anλn(X) = n
a
1

n
λ
1
(X) + ⋅ ⋅ ⋅ + anλn(X)

≤
a
1

n
λ
1
(X) +

n
∑
i=2
(
a
1

n
+ ai)λi(X) =: Ma(X)
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and

Ma(X) = a1λ1(X) + ⋅ ⋅ ⋅ + anλn(X) = a1λ1(X) + ⋅ ⋅ ⋅ + n
an
n
λn(X)

≥
n−1
∑
i=1
(ai +

an
n )

λi(X) +
an
n
λn(X) =: Ma(X).

IfMa ∈ A1
, thenMa is uniformly elliptic with ellipticity constants

λ = a1
n
, Λ =

a
1

n
+ max

2≤i≤n
ai ,

so that

Ma(X) ≤Ma(X) ≤M+a1
n ,|a| (3.5)

and, ifMa ∈ An, thenMa is uniformly elliptic with ellipticity constants

λ = an
n
, Λ =

an
n
+ max

1≤i≤n−1
ai ,

so that

Ma(X) ≥Ma(X) ≥M−an
n ,|a|(X). (3.6)

Therefore, ifMa ∈ A, and λ∗ and Λ∗ are positive numbers such that

λ∗ ≤ min(λ, λ) = a
∗

n
≡
min(a

1
, an)

n
, Λ

∗ ≥ max(Λ, Λ) ≥ |a| ≡ a
1
+ ⋅ ⋅ ⋅ + an ,

by the extremality properties (2.3) of Pucci operators, from (3.5) and (3.6) we have

M−a∗
n ,|a|
(X) ≤Ma(X) ≤M+a∗

n ,|a|
(X). (3.7)

Next, setting K = sup
Ω
|f|, we solve by [21, Proposition 3.2] the Dirichlet problems

{
{
{

M−a∗
n ,|a|
(D2u) = K in Ω,

u = g on ∂Ω,

and

{
{
{

M+a∗
n ,|a|
(D2u) = −K in Ω,

u = g on ∂Ω.

Since obviously −K ≤ f(x) ≤ K for all x ∈ Ω, from (3.7) it follows that u and u provide a subsolution and

a supersolution that we were searching for, concluding the proof.

An existence anduniqueness result is provided for all the classAby [48, Theorem6.2] for smoothboundaries.

A weaker condition can be obtained from [15], where the authors consider in detail the case a = ej, namely

the equation λj[u] = 0, and prove an existence and uniqueness theorem for the Dirichlet problem (3.4) with

a sharp geometric condition on the boundary of Ω, depending on j. From there, we take a sufficient condition

to solve the Dirichlet problem for any equation λj(D2u) = 0, j = 1, . . . , n: given y ∈ ∂Ω, for every r > 0 there
exists δ > 0 such that, for every x ∈ Bδ(y) and direction v ∈ ℝn (|v| = 1),

(x + ℝv) ∩ Br(y) ∩ ∂Ω ̸= 0. (G
1
)

This condition does not require smooth boundary, but it is nevertheless stronger than the exterior cone

property.

Theorem 3.5. Let Ω be a bounded domain of ℝn satisfying condition (G
1
). Let g be a continuous function on

the boundary ∂Ω, and f be a continuous and bounded function in Ω. Then forMa ∈ A the Dirichlet problem

{
Ma(D2u) = f in Ω,

u = g on ∂Ω,

has a unique viscosity solution u ∈ C(Ω).
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Proof. Following the same lines of the proof of Theorem 3.4, we only need to look for a viscosity subsolution

u ∈ usc(Ω) and a viscosity supersolution u ∈ lsc(Ω) of the equation Ma(D2u) = f(x) such that u = g = u on

∂Ω. To do this, we observe this time

Ma(X) = a1λ1(X) + ⋅ ⋅ ⋅ + anλn(X) ≤ |a|λn(X)

and

Ma(X) = a1λ1(X) + ⋅ ⋅ ⋅ + anλn(X) ≥ |a|λ1(X).

Next, setting K = sup
Ω
|f|, we solve by [15, Theorem 1] the Dirichlet problems

{
|a|λ

1
(D2u) = K in Ω,

u = g on ∂Ω,

and

{
|a|λn(D2u) = −K in Ω,

u = g on ∂Ω.

As in the proof of Theorem 3.4, u and u provide a subsolution and a supersolution, concluding the proof.

3.3 Radial Solutions

We computeM on radial functions u(x) = v(|x|). Suppose v is C2, we recall that for x ̸= 0,

Du(x) = v󸀠(|x|) x
|x|

,

D2u(x) = v󸀠󸀠(|x|) x
|x|
⊗

x
|x|
+
v󸀠(|x|)
|x| (

I − x
|x|
⊗

x
|x| )

,

where

x
|x| ⊗

x
|x| ≥ 0, I −

x
|x| ⊗

x
|x| ≥ 0 and

⟨
x
|x|
⊗

x
|x|

h, h⟩ = ⟨ x
|x|

, h⟩
2

,

⟨(I − x
|x|
⊗

x
|x| )

h, h⟩ = |h|2 − ⟨ x
|x|

, h⟩
2

.

As a consequence,

x
|x| is eigenvector of

x
|x| ⊗

x
|x| with eigenvalue 1, and of I −

x
|x| ⊗

x
|x| with eigenvalue 0. Con-

versely, all non-zero vectors orthogonal to

x
|x| are eigenvectors of

x
|x| ⊗

x
|x| with eigenvalue 0 and of I −

x
|x| ⊗

x
|x|

with eigenvalue 1. It follows that

λ
1
(D2u(x)) + λn(D2u(x)) = v󸀠󸀠(|x|) + v

󸀠(|x|)
|x|

.

From this we deduce useful properties which are collected in the following remark.

Remark 3.6. (i) The operatorM is linear on the radial functions u(x) = v(|x|).
(ii) Any function of the form

φ(x) = a + b log |x|,

with a and b constant, is a solution ofM[u] = 0 inℝn \ {0}.
(iii) Recall that the k-th Hessian operator, k = 1, . . . , n, for radial functions is

Sk(D2u) = (n − 1k − 1)(
v󸀠

|x| )
k−1
(v󸀠󸀠 + n − kk

v󸀠

|x| )
.

In case n = 2k the radial solutions of the equation

S n
2

(D2u) = 0

are just the radial solutions ofM(D2u) = 0.
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Recalling that |a| = a
1
+ ⋅ ⋅ ⋅ + an, let âj = |a| − aj, j = 1, . . . , n. More generally, forMa ∈ A the non-constant

radial solutions inℝn \ {0}, up to a multiplicative constant, are

φ(x) =

{{{{{{
{{{{{{
{

|x|−γn if ân > an ,
log |x|−1 if ân = an ,
|x|γ1 if a

1
> â

1
,

log |x| if a
1
= â

1
,

(3.8)

where γn = ân
an − 1.

4 The ABP Estimate
The celebrated ABP estimate provides a uniform estimate for the solution of an elliptic equation F[u] = f with
the Ln-norm of f . The original inequality, for linear uniformly elliptic operators in bounded domains, goes

back to Alexandroff [1, 2], but it already appears in Bakel’man [5]. A different version has been later obtained

by Pucci [68].

In [18] it was also proved for the first time an ABP estimate for solutions in W2,p
loc

(Ω) of the equation
F[u] = f with f ∈ Lp and p ∈ ( n

2

, n). A result of this kind is known in the framework of Lp-viscosity solu-

tions [21] as the generalized maximum principle, which can be found in [45] and [34] in the fully nonlinear

uniformly elliptic case. See also [55] for the case of Lp viscosity solutions.
It is worth noticing that an ABP estimate for degenerate elliptic equations of p-Laplacian type has been

proved by Imbert [52].

An extension of this inequality to unbounded domains Ω of cylindrical type for bounded solutions in

W2,n
loc

(Ω) is due to Cabré [18]. By domains of cylindrical type we intend here a measure-geometric condition,

which is satisfied by cylinders and goes back to a famous paper of Berestycki, Nirenberg andVardhan [9], con-

taining a characterization of theweakmaximumprinciple. In subsequent papers the results of [18] have been

generalized to domains of conical type [20, 77, 78] and to viscosity solutions of fully nonlinear uniformly

elliptic equations [26], and then to different classes of degenerate elliptic equations [10, 29, 30].

The proof of the ABP estimates of Theorem 1.1 is based on the geometrical argument used in [47, proof

of Theorem 9.1] for classical solutions.

We denote by Γ

+
u the upper convex envelope of u, the smallest concave function greater than u in Ω, and

by Γ

−
u the lower convex envelope of u, the largest convex function smaller than u in Ω.

Lemma 4.1. Let Ω be a bounded domain with diameter d, andMa ∈ A1
. For every u ∈ C2(Ω) ∩ C0(Ω̄) such that

u ≤ 0 on ∂Ω we have
sup

Ω

u+ ≤ 1

a
1

d
ω1/n
n
‖Ma(D2u(x))−‖Ln({Γ+u=u}), (4.1)

where ωn denotes the Lebesgue measure of the n-dimensional unit ball.
On the other hand, let us assumeMa ∈ An. For every u ∈ C2(Ω) ∩ C0(Ω̄) such that u ≥ 0 on ∂Ω we have

sup

Ω

u− ≤ 1

an
d

ω1/n
n
‖Ma(D2u(x))+‖Ln({Γ−u=u}). (4.2)

Proof. Let us prove the first estimate (4.1). We argue following [47, proof of Lemma 9.2] and [25, proof of

Lemma 3.], denoting by χu : Ω → ℝn the normal mapping

χu(z) = {p ∈ ℝn : u(x) ≤ u(y) + ⟨p, x − z⟩ for all x ∈ Ω}, z ∈ Ω.

We remark that on the upper contact set {Γ+u = u} the eigenvalues of D2u are non-positive, and the Lebesgue
measure of χu can be estimated as

|χu(Ω)| ≤ ∫
Γ

+
u=u

|detD2u(x)| dx. (4.3)
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If u ≤ 0 in Ω, then inequality (4.1) is obvious. Suppose then u realizes a positive maximum at a point y ∈ Ω,
and recall that Ω ⊂ Bd(y).

Let κ be the functionwhose graph is the cone Kwith vertex (y, u(y)) and base ∂Bd(y); then χκ(Ω) ⊂ χu(Ω).
Then χu(Ω) and contains all the slopes of Bu(y)/d, so that ωn( u(y)d )

n ≤ |χu(Ω)| and by (4.3),

u+(y) ≤ d
ω1/n
n
( ∫
Γ

+
u=u

|detD2u(x)| dx)
1

n

. (4.4)

Since on the contact set we have |λn| ≤ |λn−1| ≤ ⋅ ⋅ ⋅ ≤ |λ1|, it follows that

|detD2u| = |λ
1
(D2u)| ⋅ ⋅ ⋅ |λn(D2u)| ≤ |λ

1
(D2u)|n

=
1

an
1

|a
1
λ
1
(D2u)|n ≤ 1

an
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

n
∑
i=1

aiλi(D2u)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

n

=
1

an
1

((Ma(D2u))−)n . (4.5)

From (4.4) and (4.5) we obtain the estimate from above (4.1).

For the estimate from below, we can apply (4.1) with v = −u instead of u, observing that by assumption

v ≤ 0 on ∂Ω and by duality

Ma󸀠 (D2v)) = −Ma(D2u)).

Then

sup

Ω

u− = sup
Ω

v+

≤
1

a󸀠
1

d
ω1/n
n
‖Ma󸀠 (D2v(x))+‖Ln({Γ+v =v})

=
1

an
d

ω1/n
n
‖Ma(D2u(x))−‖Ln({Γ−u=u}).

Theorem 1.1 is obtained combining the two unilateral ABP estimates, which hold separately for subsolutions

and supersolutions, contained in the following result.

Theorem 4.2. Let Ω be a bounded domain of diameter d. Let f be continuous and bounded in Ω. There exist an
universal constant Cn > 0, depending only on n,
(i) for viscosity subsolutions u ∈ usc(Ω) of the equationMa[u] = f in Ω withMa ∈ A1

and

sup

Ω

u+ ≤ sup
∂Ω

u+ + Cn
a
1

d‖f‖Ln(Ω), (4.6)

(ii) for viscosity supersolutions u ∈ lsc(Ω) of the equationMa[u] = f in Ω withMa ∈ An and

sup

Ω

u− ≤ sup
∂Ω

u− + Cn
an

d‖f‖Ln(Ω). (4.7)

For classical solutions the proof follows directly from Lemma 4.1.

Proof of Theorem 4.2: Classical Solutions. For subsolutions, supposingMa(D2u) ≥ f ≥ −f−, we have

Ma(D2u)− ≤ f−.

From Lemma 4.1, passing to u − sup∂Ω u in (4.1), we get inequality (4.6). For supersolutions, supposing

Ma(D2u) ≤ f ≤ −f+, we have
Ma(D2u)+ ≤ f+.

From Lemma 4.1, passing to u − inf∂Ω u in (4.2), we get inequality (4.7).

To consider viscosity subsolutions, we extend u+ = max(u, 0) and f− to zero outside Ω, keeping the respective
notations, and observing that in the viscosity settingMa(D2u+) ≥ −f− inℝn. For viscosity supersolutions we
extend u− = max(u, 0) and f+ to zero outside Ω so thatMa(D2u−) ≤ f+ inℝn.
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In what follows we will refer to Γ

+
u and Γ

−
u as to the upper and the lower convex envelope of u+ and −u−,

respectively, relative to the ball B
2d concentric with a ball Bd of radius d containing Ω.

The key tool is the following lemma, which allows to apply the classical ABP estimates obtained before

to viscosity subsolutions and supersolutions and is the counterpart of [25, Lemma 3.3].

Lemma 4.3. LetMa ∈ A. Let u ∈ lsc(Bδ), where Bδ = {|x − x0| < δ} such that

Ma(D2u) ≤ f in Bδ

in the viscosity sense, and w be a convex function such that

w(x
0
) = u(x

0
), w(x) ≤ u(x) in Bδ .

For sufficiently small ε ∈ (0, ε
0
) and any function f , bounded above, we have

ℓ(x) ≤ w(x) ≤ ℓ(x) + 1
2

Cε( sup
Bδ

f+)|x − x
0
|2 in Bεδ , (4.8)

where ℓ(x) is the supporting hyperplane for w at x
0
. In particular, there exists a convex paraboloid of opening Cε

an
touching the graph of w from above.

Here ε
0
> 0 depends on (a positive lower bound of) an and (an upper bound of) ân defined in Section 3.3;

moreover Cε → 1

an as ε → 0. Therefore, when u is second-order differentiable and f is continuous at x = x
0
, we

get
λ+n(D2w(x

0
)) ≤

1

an
f+(x

0
).

Proof. The first one inequality in (4.8) depends on the fact that ℓ(x) is the supporting hyperplane of w at x
0
.

Concerning the second one, we may proceed assuming x
0
= 0 and δ = 1.

(i) Subtracting ℓ(x), we consider the functions v(x) = u(x) − ℓ(x) and φ(x) = w(x) − ℓ(x), which satisfy in
turn the assumptions on u(x) andw(x), respectively. This simplifies the computations, since φ(0) = 0 and the
supporting hyperplane for v(x) at x = 0 is now horizontal, so that φ(x) ≥ 0 in B

1
. In this way, we are reduced

to show

φ(x) ≤ 1
2

CεK|x|2 in Bε ,

with K = supB
1

f+, under the assumptions

φ(0) = v(0) = 0, φ(x) ≤ v(x) in B
1
, (4.9)

and

a
1
λ
1
(D2v) + ⋅ ⋅ ⋅ + anλn(D2v) ≤ f+(x) in B

1
, (4.10)

which implies

ânλ1(D2v) + anλn(D2v) ≤ f+(x) in B
1
.

(ii) Let 0 < ρ < ε and let Mρ be the maximum of φ on Bρ. We may suppose that a maximum point is

xρ = (0, . . . , 0, ρ) ∈ ∂Bρ. Since the supporting hyperplane for φ(x) at xρ is constant on the tangent line to Bρ
through xρ, we have

φ(x) ≥ Mρ for x = (x󸀠, ρ),

where x󸀠 = (x
1
, . . . , xn−1). Let us consider now the cylindrical box

R = {x = (x󸀠, xn) : |x󸀠| < √1 − ρ2, −ερ < xn < ρ} ⊂ B1,

and the paraboloid

P(x) = 1
2

(xn + ερ)2 −
1

2

(1 + ε)2

1 − ρ2
ρ2|x󸀠|2.

Evaluating P(x) on ∂R, when xn = −ερ or |x󸀠| = √1 − ρ2, we have P(x) ≤ 0. On the remaining part of ∂R,
xn = ρ, we have P(x) ≤ 1

2

(1 + ε)2ρ2, from which

Mρ
1

2

(1 + ε)2ρ2
P(x) ≤ φ(x) on ∂R. (4.11)
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(iii) Since ρ < ε, it follows that P(x) is solution of the differential inequality

ânλ1(D2P) + anλn(D2P) ≥ an −
(1 + ε)2

1 − ρ2
ânρ2

≥ an −
1 + ε
1 − ε

ânε2

≡ an − âncε ,

where cε → 0 as ε → 0

+
, so that an − âncε > 0 for ε < ε0 small enough, and the function Q(x) ≡ K

an−âncε P(x)
satisfies the differential inequality

ânλ1(D2Q) + anλn(D2Q) ≥ K ≥ f+ in B
1
. (4.12)

(iv) We claim that

Mρ = max

Bρ

φ(x) ≤ 1
2

(1 + ε)2

an − âncε
Kρ2. (4.13)

In fact, arguing by contradiction, suppose that Mρ > 1

2

(1+ε)2
an−âncε Kρ

2

. Then using (4.11) and (4.9),

Q(x) = K
an − âncε

P(x) <
Mρ

1

2

(1 + ε)2ρ2
P(x) ≤ φ(x) ≤ v(x) on ∂R.

By (4.10) and (4.12), the comparison principle would imply Q(x) ≤ v(x) in R, and this is a contradiction with
v(0) = 0 < Q(0), which proves the claim.

Setting ρ = |x| in (4.13), as in the proof of [25, Theorem 3.2], we conclude that the statement of the

theorem holds with Cε = (1+ε)
2

an−âncε , where cε → 0 as ε → 0

+
.

Proof of Theorem 4.2: Viscosity Solutions. We follow the lines of the proof of [25, Theorem 3.6], consider-

ing subsolutions u ∈ usc(Ω). The case of supersolutions u ∈ lsc(Ω) with estimate (4.7) from below can be

obtained by duality, passing to −u.
LetMa ∈ A. From Lemma 4.3 and duality we deduce a similar conclusion for subsolutions u ∈ lsc(Bδ),

where Bδ = {|x − x0| < δ} such that
Ma(D2u) ≥ f(x) in Bδ

in the viscosity sense. Let w be a concave function such that

w(x
0
) = u(x

0
), w(x) ≤ u(x) in Bδ .

For sufficiently small ε ∈ (0, ε
0
) and any function f , bounded above, we have

ℓ(x) − 1
2

Cε( sup
Bδ

f+)|x − x
0
|2 ≤ w(x) ≤ ℓ(x) in Bεδ ,

where ℓ(x) is the supporting hyperplane for w at x
0
. In particular, there exists a concave paraboloid of open-

ing Cε touching the graph of w from below.

Here ε
0
> 0 depends on a lower bound for a

1
and an upper bound for â

1
defined in Section 3.3, and

Cε → 1

a
1

as ε → 0. Therefore, when u is second-order differentiable and f is continuous at x = x
0
, we get

λ−
1

(D2w(x
0
)) ≤

1

a
1

f−(x
0
). (4.14)

Using [25, Lemma 3.5], we deduce from the above that Γu ∈ C1,1(Bd). Hence Γu is second-order differentiable
a.e. in Bd and (4.4) holds for Γ

+
u in Bd.

If u ≤ 0 on ∂Ω, then we have

sup

Bd

u+ ≤ Cnd( ∫
Γ

+
u=u

|detD2

Γ

+
u(x)| dx)

1

n

. (4.15)
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Reasoning as in the proof of [25, Theorem 3.6], that is observing that the upper contact points are in Ω and

Γ

+
u is second-order differentiable a.e. on {Γ+u = u}, where f is continuous and therefore, by (4.14)

|detD2(Γ+u(x))| ≤ (λ−1(D
2

Γ

+
u(x)))n ≤

1

an
1

(f−(x))n . (4.16)

Estimating (4.15) with (4.16), we get the ABP estimate (4.6) for u ≤ 0 on ∂Ω. Passing to u − sup∂Ω u, which
is ≤ 0 on ∂Ω, we conclude that (4.6) holds.

5 Harnack Inequality and Cα Estimates
The Harnack inequality, classically related to the mean properties of the Laplace operator, is a powerful non-

linear technique for regularity in the framework of fully nonlinear equations. We refer to [47] for solutions of

linear uniformly elliptic equations in Sobolev spaces, to [74] for quasi-linear uniformly elliptic equations and

to [24, 25] for viscosity solutions of fully nonlinear equations. See also [4, 52, 61] for further contributions.

In order to prove the Harnack inequality for non-negative solutions and the related local estimates

for subsolutions and non-negative supersolutions, respectively known in literature (see for instance [47])

as the local maximum principle and the weak Harnack inequality, we could employ the same strategy

of [25, Chapter 4].

A quicker way, sufficient for the applications, is based on inequalities (3.7) obtained in Section 3. The

results are given in cubes, and here Qℓ is a cube ofℝn of edge ℓ centered at the origin, i.e.

Qℓ = {|xi| <
ℓ
2

: i = 1, . . . , n},

but they could be equivalently stated in balls.

Theorem 5.1 (Local Maximum Principle). LetMa ∈ A1
. Let u be a viscosity subsolution of the equation

Ma(D2u) = f

in Q
1
, where f is continuous and bounded. Then

sup

Q
1/2 u ≤ Cp(‖u+‖Lp(Q2/3) + ‖f−‖Ln(Q1

)), (5.1)

where Cp is a constant depending only on n, p, a1 and ã.

Proof. In view of inequalities (3.7), we haveM+a
1
/n,ãn(D

2u) ≥Ma(D2u) ≥ f(x) ≥ −f−(x), and therefore we can
apply [25, Theorem 4.8 (2)] to obtain (5.1).

Theorem 5.2 (Weak Harnack Inequality). LetMa ∈ An. Let u ≥ 0 be a viscosity supersolution of the equation

Ma(D2u) = f

in Q
1
, where f is continuous and bounded. Then

‖u‖Lp0 (Q
2/3) ≤ C0( infQ

3/4 u + ‖f+‖Ln(Q1
)), (5.2)

where p
0
> 0 and C

0
are universal constants, depending only on n, p, an and ã.

Proof. In view of inequalities (3.7), we haveM−an/n,ãn(D
2u) ≤Ma(D2u) ≤ f(x) ≤ f+(x), and therefore we can

apply [25, Theorem 4.8 (1)] to obtain (5.2).

The proof of Theorem 1.2 (Harnack inequality) follows at once.

Proof of Theorem 1.2. Let p
0
> 0 be the exponent of Theorem 5.2. From (5.2) and (5.1) it follows that

sup

Q
1/2 u ≤ Cp0 (‖u‖Lp0 (Q2/3) + ‖f−‖Ln(Q1

)) ≤ Cp
0

(C
0
( inf
Q
3/4 u + ‖f+‖Ln(Q1

)) + ‖f−‖Ln(Q
1
)),

which yields the result.



232 | F. Ferrari and A. Vitolo, Regularity Properties

From the Harnack inequality, in a standard way, using the technique for the proof of [25, Proposition 4.10]

and [47, Lemma 8.23], the following Hölder regularity results and Cα interior estimates can be obtained. We

give the result with concentric balls B
1
and B

1/2 of radius 1 and
1

2

, respectively.

Theorem 5.3 (Interior Hölder Continuity). LetMa ∈ A. Let u be a viscosity solution of the equation

Ma(D2u) = f

in B
1
, where f is continuous and bounded. Then u ∈ Cα(B

1/2) and

‖u‖Cα(B
1/2) ≤ C(‖u‖L∞(B1

) + ‖f‖Ln(B
1
)),

where C is a positive constant depending only on n, a∗ = min(a
1
, an) and ã = 1

n (a1 + ⋅ ⋅ ⋅ + an).

Global Hölder estimates can be proved for domains with the uniform exterior sphere condition (S), see Sec-

tion 1, via the boundary Hölder estimates of the lemma below. We adopt the following notations, for the

Hölder seminorm (0 < γ < 1)) of a function h : D → ℝ in a subset D ofℝn:

[h]β,D = sup
x,y∈D
x ̸=y

|h(x) − h(y)|
|x − y|β

. (5.3)

Lemma 5.4. Let Ma ∈ A and let u be a viscosity solution of the equation Ma(D2u) = f in a bounded domain
Ω, where f is continuous and bounded. We assume that Ω satisfies a uniform exterior sphere condition (S) with
radius R > 0, and u = g on ∂Ω.
(i) If g ∈ Cβ(∂Ω) with β ∈ (0, 1], then

sup

x∈Ω
y∈∂Ω

u(x) − u(y)

|x − y|
β
2

≤ C([g]β,∂Ω + ‖f−‖L∞(Ω))
with C > 0 depending only on n, ã, R and β.

(ii) Assume in addition that Ω has a uniform Lipschitz boundary with Lipschitz constant L. If g ∈ C1,β(∂Ω)with
β ∈ [0, 1), then

sup

x∈Ω
y∈∂Ω

u(x) − u(y)
|x − y| 12 (1+β)

≤ C([g]
1,∂Ω + [Dg]β,∂Ω + ‖f−‖L∞(Ω)) (5.4)

with C > 0 depending only on n, ã, R, L and β.
If u is a viscosity supersolution, then (i) and (ii) hold with u(y) − u(x) and ‖f+‖L∞(Ω) instead of u(x) − u(y) and
‖f−‖L∞(Ω), respectively.
Proof. We treat in detail the case of subsolutions. The result for subsolutions will follow by duality. There-

fore, suppose that u ∈ usc(Ω) is a subsolution of the equationMa(D2u) = f in Ω such that u = g on ∂Ω. Let
y ∈ ∂Ω and BR a ball of radius R, centered at x

0
∈ ℝn, such that y ∈ ∂BR and Ω ⊂ BR, according to (S).

Supposing, as we may, y = (0, . . . , 0, 0) and x
0
= (0, . . . , 0, R); then BR is described by the inequality

x2
1

+ ⋅ ⋅ ⋅ + x2n−1 + (xn − R)2 ≤ R2. It follows that

|x|2 ≤ 2Rxn , x ∈ Ω. (5.5)

Case (i). By assumption on g and (5.5), we have

|g(x)| ≤ [g]β,Ω|x|β , x ∈ Ω.

To simplify, we may suppose g(0) = 0, so that in particular

g(x) ≤ [g]β,Ω|x|β ≤ (2R)
β
2 [g]β,Ωx

β
2

n , x ∈ Ω. (5.6)

Next, we define

φ(x) = C
1
([g]β,Ω + ε)x

β
2

n −
1

2|a|
‖f−‖L∞(Ω)|x|2,
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where ε is any positive number and

C
1
≥ (2R)

β
2 +
(2R)2−

β
2

2|a|
‖f−‖
[g]β,Ω + ε

.

Thus from (5.6)

u(x) = g(x) ≤ φ(x) on ∂Ω.

Moreover, φ is a supersolution in Ω:

Ma(D2φ) = a
1
C
1
([g]β,Ω + ε)

β
2

(
β
2

− 1)x
β
2

−2
n − ‖f−‖L∞(Ω) ≤ −f−(x) in Ω.

By the comparison principle u(x) ≤ φ(x) for all x ∈ Ω, from which

u(x)

|x|
β
2

≤ C
2
([g]β,Ω + ‖f−‖L∞(Ω)).

Then for an arbitrary y ∈ ∂Ω we have

u(x) − u(y)

|x − y|
β
2

≤ C([g]β,Ω + ‖f−‖L∞(Ω)),
from which (5.4) follows.

Case (ii). By assumption on g and on ∂Ω, we have

|g(x) − g(y) − ⟨Dg(y), x − y⟩| ≤ C
1
[Dg]β,Ω|x − y|1+β , x ∈ Ω,

where C
1
is a positive constant depending on the Lipschitz constant L for ∂Ω.We adopt the above simplifica-

tions: y = (0, . . . , 0, 0), x
0
= (0, . . . , 0, R), g(y) = 0, so that in particular

g(x) ≤ ⟨Dg(0), x⟩ + C
1
[Dg]β,Ω|x|1+β , x ∈ Ω.

Therefore

g(x) ≤ ⟨Dg(0), x⟩ + C
2
[Dg]β,Ωx

1

2

(1+β)
n , x ∈ Ω, (5.7)

where C
2
is a positive constant depending on L, R and β. Next, we define

φ(x) = ⟨Dg(0), x⟩ + C
3
([Dg]β,Ω + ε)x

1

2

(1+β)
n −

1

2|a|
‖f−‖L∞(Ω), (5.8)

where ε is any positive number and

C
3
≥ C

2
+
(2R)1−

β
2

2|a|
‖f−‖
[Dg]β,Ω + ε

.

Therefore by (5.7):

u(x) = g(x) ≤ φ(x) on ∂Ω.

Moreover, φ is a supersolution in Ω:

Ma(D2φ) = a
1
C
3
([Dg]β,Ω + ε)

β + 1
2

β−1
2

x
β+1
2

−2
n − ‖f−‖L∞(Ω) ≤ −f−(x) in Ω.

By the comparison principle, we get u ≤ φ in Ω, and therefore by (5.8):

u(x)
|x| 12 (1+β)

≤ |Dg(0)||x|
1

2

(1−β) + C
4
([Dg]β,Ω + ‖f−‖L∞(Ω))

≤ (4R)
1

2

(1−β)[Dg]
0,∂Ω + C4([Dg]β,Ω + ‖f−‖L∞(Ω)).

Then for arbitrary y ∈ ∂Ω we have

u(x) − u(y)
|x − y| 12 (1+β)

≤ (4R)
1

2

(1−β)[Dg]
0,∂Ω + C4([Dg]β,Ω + ‖f−‖L∞(Ω))

for all x ∈ Ω, from which (5.4) follows.
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We are ready to show the global Hölder estimates of Theorem 1.3.

Proof of Theorem 1.3. Let α ∈ (0, 1) be the Hölder exponent of Theorem 5.3. From the boundary Hölder esti-

mates of Lemma 5.4 we deduce an estimate of type

|u(x) − u(y)| ≤ C(g, f)|x − y|γb , x ∈ Ω, y ∈ ∂Ω, (5.9)

where γb = β
2

in case (i) and γb = 1

2

(1 + β) in case (ii).Wewant to showaglobalHölder estimatewith exponent

γ = min(α, γb). For proving the result we follow the same lines of [25, Proposition 4.13]. Thus, for x, y ∈ Ω
we set dx = dist(x, ∂Ω) = |x − x0|, dy = dist(y, ∂Ω) = |y − y0| for x0, y0 ∈ ∂Ω, and suppose dy ≤ dx. Here the
constants Ci will depend at most on n, a∗, ã, R, L and β.

(i) Suppose |x − y| ≤ dx
2

. Since y ∈ Bdx/2(x) ⊂ Bdx (x) ⊂ Ω, we can apply Theorem 5.3 properly scaled to

the function u(x) − u(x
0
), and then the Hölder boundary estimate (5.9) obtaining

|u(x) − u(y)|
|x − y|α

dαx ≤ C1‖u − u(x0)‖L∞(Bdx (x)) ≤ C2Kd
γb
x .

Recall that γ ≤ α. Since dx
|x−y| ≥ 2, from this we get

|u(x) − u(y)|
|x − y|γ

dγx ≤
u(x) − u(y)
|x − y|α

dαx ≤ C2Kd
γb
x .

Since also γ ≤ γb,
|u(x) − u(y)|
|x − y|γ

≤ C
2
Kdγb−γx ≤ C2Kdγb−γ ≡ C3K. (5.10)

(ii) Suppose now |x − y| ≥ dx
2

. Since dy ≤ dx ≤ 2|x − y| and |x0 − y0| ≤ dx + |x − y| + dy, it follows from
(5.9) that

|u(x) − u(y)| ≤ |u(x) − u(x
0
)| + |u(x

0
) − u(y

0
)| + |u(y

0
) − u(y)|

≤ C
4
K(dγbx + |x0 − y0|γb + d

γb
y ) ≤ C5K|x − y|γ . (5.11)

From (5.10) and (5.11), letting C = max(C
3
, C

5
), we deduce the desired estimate [u]γ,Ω ≤ CK.

In some cases, when the weights ai are concentrated near the one of the extremal eigenvalues, we obtain an

explicit interior Hölder exponent.

Lemma 5.5. LetMa ∈ A be such that a
1
≥ â

1
(resp. an ≥ ân). Suppose that u ∈ usc(B1) (resp. u ∈ lsc(B1)) is

a viscosity subsolution (resp. supersolution) of the equation Ma(D2u) = f in B
1
, a ball of radius 1, and f is

continuous and bounded above (resp. below) in B
1
. Then u ∈ Cα(B

1
) and the following interior Cα estimate

holds:
[u]α,B

1/2 ≤ C(‖u‖L∞(B1
) + ‖f−‖L∞(B

1
)) (5.12)

resp.
[u]α,B

1/2 ≤ C(‖u‖L∞(B1
) + ‖f+‖L∞(B

1
)),

where B
1/2 is a ball of radius 1

2

concentric with B
1
, α = 1 − â

1

a
1

(resp. α = 1 − ân
an ), and C a positive constant

depending on n, a
1
and â

1
(resp. an and ân).

Proof. We only treat the case of subsolution, when a
1
≥ â

1
. The case of supersolutions, when an ≥ ân, will

follow by duality. We assume that the balls B
1
and B

1/2 are centered at 0. Then we take x󸀠, x󸀠󸀠 ∈ B
1/2, and

consider the ball B
1/2(x󸀠). We note that on ∂B

1/2(x󸀠):

u(x) − u(x󸀠) ≤ 2‖u‖L∞(B
1
) ≤ 21+α‖u‖L∞(B

1
)|x − x󸀠|α .

Next, we define

φ(x) = C
1
‖u‖L∞(B

1
)|x|α −

1

2|a|
‖f−‖L∞(B

1
)|x|2,

where C
1
= 21+α + 1

2|a|
‖f−‖
‖u‖ (in the nontrivial case u ̸≡ 0). Thus on ∂B

1/2(x󸀠):

u(x) − u(x󸀠) ≤ 21−α‖u‖L∞(B
1
)|x − x󸀠|α ≤ φ(x − x󸀠). (5.13)
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On the other hand,

Ma(D2φ(x − x󸀠)) = C
1
(a

1
(α − 1) + â

1
)|x − x󸀠|α−2 − ‖f−‖L∞(Ω) ≤ −f−(x). (5.14)

By (5.14) and (5.13), using the comparison principle, we get u(x) − u(x󸀠) ≤ φ(x − x󸀠) in B
1/2(x󸀠), from which

in particular

u(x󸀠󸀠) − u(x󸀠) ≤ C(‖u‖L∞(B
1
) + ‖f−‖L∞(B

1
))|x󸀠󸀠 − x󸀠|α .

Interchanging the role of x󸀠 and x󸀠󸀠, we get (5.12).

Combining Lemma 5.4 with Lemma 5.5, we obtain the global estimates of Theorem 1.4.

Proof of Theorem 1.4. To obtain (1.4) and (1.5), it is sufficient to follow the proof of Theorem 1.3. The above

estimates (1.6) and (1.7) are in particular obtained from this proof taking γ = α. We use oncemore the bound-

ary Hölder estimates of Lemma 5.4, with β = 2α for (1.6) and β = 2α − 1 for (1.7), as there. But we use here
the interior Cα estimates of Lemma 5.5, instead of Theorem 5.3.

Remark 5.6. Note that Theorem 1.4 provides Lipschitz estimates only in the case â
1
= 0 and ân = 0, corre-

sponding to the operatorsMe
1

[u] = λ
1
[u] andMen [u] = λn[u]. See for instance [12].

Remark 5.7. Asking for higher regularity of viscosity solutions, we cannot expect viscosity solutions more

regular than C2. Indeed, we may consider the function u := x2
1

+ ω(x
2
) − x2

3

, in ℝ3, where ω is a C2 function
but nomore regular. The same regularity holds for u. Assuming in addition |ω󸀠󸀠(x

2
)| < 2, by a straightforward

computation we get

D2u(x) = Diag[(2, ω󸀠󸀠(x
2
), −2)],

so thatM(D2u(x) = 0. Sowehave founda solution u ∈ C2, whichdoesnot belong to any C2,β space, β ∈ (0, 1).

6 The Strong Maximum Principle
The strong maximum principle for an elliptic operator F, such that F(0) = 0, means that a subsolution of the

equation F[u] = 0 in anopen set Ω cannot have amaximumat a point of Ω unless to be constant. Analogously,

the strong minimum principle means that a supersolution u cannot have a minimum at a point of Ω unless u
is constant.

One of the most elegant proof of the strong maximum principle, also known for this reason as the cele-

brated Hopf maximum principle [51], is based on boundary point lemma, which we establishes here below

for the class of weigthed partial trace operatorsMa. To obtain a strong maximum principle, it is sufficient to

state this lemma just for a ball.

Lemma 6.1 (Hopf Boundary Point Lemma). Let u ∈ usc(B)bea viscosity subsolution of the equationMa[u] = 0
in a ball B, with Ma ∈ A1

. Let x
0
∈ ∂B. If u(x

0
) > u(x) for all x ∈ B, then the outer normal derivative of u at x

0
,

if it exists, satisfies the strict inequality
∂u
∂ν
(x

0
) > 0. (6.1)

On the other hand, let u ∈ lsc(B)bea viscosity supersolution of the equationMa[u] = 0 in aball B,withMa ∈ An.
If u(x

0
) < u(x) for all x ∈ B, then the outer normal derivative of u at x

0
, if it exists, satisfies the strict inequality

∂u
∂ν
(x

0
) < 0. (6.2)

Proof. We just prove the theorem for subsolutions. We may suppose that B is centered at the origin, i.e.

B = {|x| < R} for R > 0. Arguing as in [47, Section 3.2], and considering 0 < ρ < R, we introduce the radial
test function v(x) = e−αr2 − e−αR2

, with r = |x|. By direct computation, see Remark 3.6 in Section 3, we get

Ma󸀠 (D2v) ≥ 2α(a
1
(2αρ2 − 1) −

n
∑
i=2

ai)e−αr
2
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for r ≥ ρ andM[v] ≥ 0 for α > 0 large enough. Since u(x
0
) − u(x) > 0 on |x| = ρ, there is a constant ε > 0 such

that u(x
0
) − u(x) − εv(x) ≥ 0 on |x| = ρ, as well as on |x| = R. Therefore εv(x) ≤ u(x

0
) − u(x) on the boundary

of the annulus Aρ,R = {ρ < |x| < R}. By the comparison principle, the same inequality holds in Aρ,R. In fact,

Ma󸀠 [εv] = εMa󸀠 [v] ≥ 0, by positive homogeneity, and by dualityMa󸀠 [u(x0) − u] ≤ 0, so that εv and u(x0) − u
are respectively a subsolution and a supersolution in A, and we can apply Theorem 3.1 to deduce that

u(x
0
) − u(x) ≥ εv(x) for all x ∈ A.

Taking x = x
0
− t x0R in the latter inequality, dividing by t > 0 and letting t → 0

+
, we get

∂u
∂ν
(x

0
) ≥ −ε d

dr
(e−αr2 )
󵄨󵄨󵄨󵄨󵄨󵄨r=R = 2εαRe

−αR2

,

which proves (6.1).

Following [47],we remark that,whether or not thenormal derivative exists,wehave insteadof (6.1) and (6.2),

respectively, the inequalities

lim inf

x→x
0

x∈Σ

u(x
0
) − u(x)
|x − x

0
|
> 0

and

lim inf

x→x
0

x∈Σ

u(x
0
) − u(x)
|x − x

0
|
< 0,

where Σ is any circular cone of vertex x
0
and opening less than π with axis along the normal direction at the

boundary point x
0
.

The Hopf boundary point lemma can be used to prove the strong maximum principle for classical sub-

solutions or viscosity subsolutions which are differentiable. A strong maximum principle, valid also for

nonsmooth viscosity solutions, can be obtained through the weak Harnack inequality of Lemma 5.2.

For a detailed discussion on the strong maximum principle, we refer to the paper [70] and the papers

quoted therein. In the case of fully nonlinear elliptic operators, see for instance [6, 7]. For further references

see [36, 62, 69, 76].

Theorem 6.2 (Strong Maximum Principle). Let u be a non-negative continuous viscosity supersolution of the
equationMa(D2u) = 0, withMa ∈ An, in a domain Ω of ℝn. If u has a minimum m at some point x

0
∈ Ω, then

u ≡ m in Ω. Similarly, let u be a continuous viscosity subsolution of the equationMa(D2u) = 0, withMa ∈ A1
.

If u has a maximum M at x
0
∈ Ω, then u ≡ M in Ω.

Proof. For the proof in the case of differentiable solutions u, based on the Hopf lemma, we refer to the proof

of [47, Theorem 3.5].

Concerning viscosity supersolutions (strong minimum principle), let A = {x ∈Ω : u(x) =m} and B =Ω \A,
so that A ∪ B = Ω, A ∩ B = 0with A ̸= 0 and B is open. Moreover, we claim that A is also open. Recalling that

Ω is a open connected set, then B = 0, otherwise we would have a contradiction. Then Ω = A, and the first

part of the theorem is proved.

We are left with proving that A is open. Let x
0
∈ A, that is u(x

0
) = m, and suppose that the cube Qℓ of

side ℓ centered at x
0
is contained in Ω. By the weak Harnack inequality (5.2), properly scaled and applied

to u − m ≥ 0, we have
‖u − m‖Lp0 (Q

2ℓ/3) ≤ C0 inf

Q
3ℓ/4(u − m) = u(x0) − m = 0.

The function u(x) − m is constant in Q
2/3 and by continuity u(x) − m = u(x0) − m = 0 for all x ∈ Q2/3, so that

Q
2/3 ⊂ A. This shows that A is open, thereby proving the claim and concluding the proof of the first part.

In the case of viscosity subsolutions (strong maximum principle), we argue in a similar manner, con-

sidering the set A = {x ∈ Ω : u(x) = M}. By duality v = M − u is a non-negative supersolution of the equation
Ma󸀠 (D2v) = 0 such that v(x

0
) = 0. Then by the case of supersolutions v is constant and therefore u(x) = M for

all x ∈ Ω.

It follows that for elliptic operatorsMa ∈ A both the strong maximum and minimum principle are satisfied.
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It is plain that the strong maximum principle implies the weak maximum principle (see Section 2) in

bounded domains. This is no more true in unbounded domains, where the strong maximum principle may

hold while the weak maximum principle fails to hold. An elementary example of this fact is given by the

function u(x
1
, x

2
) = x

1
x
2
, which is harmonic in the whole plane, and therefore satisfies the strongmaximum

principle in all domains of ℝ2, but is positive in the quarter plane Ω = ℝ+ × ℝ+ and zero on ∂Ω, so that the
weak maximum principle does not hold in Ω.

Turning to bounded domains, as observed in Section 2, it is sufficient thatMa ∈ A to have both the weak

maximum and minimum principle. Theorem 6.2 requires insteadMa ∈ A to have the strong maximum and

minimum principle hold together.

Actually, the strong maximum and minimum principle may fail when Ma ∈ A, but Ma ̸∈ A. In fact,

let us consider the partial trace operator P+k defined above for 1 ≤ k ≤ n − 1: the non-constant function

u(x) = 1 + sin x
1
has a maximum M = 2 inside the cube ]0, π[n, even though P+k (D

2u) = 0 in ]0, π[n. Sim-

ilarly, u(x) is non-negative in the cube ]−π, 0[n and has a zero inside, even though P−k (D
2u) = 0 in the

cube ]−π, 0[n for 1 ≤ k ≤ n − 1.
From the proof of Theorem 6.2, the weak Harnack inequality, which would imply the strong minimum

principle, fails to hold in general for the partial trace operator P−k as soon as k < n. Analogously, the Harnack
inequality, which would imply both the strong maximum andminimum principle, fails to hold in general for

the partial trace operators P±k as soon as k < n.

7 Liouville Theorems
A direct application of the Harnack inequality yields in a standard fashion the following Liouville result for

entire solutions, defined in the wholeℝn. See for instance [4].

Theorem 7.1 (Liouville Theorem). Let Ma ∈ A. If u is an entire viscosity solution of the equation M(D2u) = 0
which is bounded above or below, then u is constant.

It is well known that the above Liouville theorem holds in a stronger unilateral version for the Laplace oper-

ator in dimension n = 2, where instead of solutions, bounded above or below, we may consider subsolutions

bounded above and supersolutions bounded below. This is due to the fact that the fundamental solutions are

of logarithmic type. See [67, Theorem 29].

On the other hand, this is no longer true in higher dimension. For instance, the function

u(x) =
{
{
{

−1
8

(15 − 10|x|2 + 3|x|4) for |x| ≤ 1,
−1| x| for |x| > 1,

(7.1)

is a non-constant subharmonic, bounded function inℝ3. We refer to [67, Chapter 2, Section 12].

As well, the unilateral Liouville theorem does not hold for general elliptic operators even in dimension

n = 2. Actually, as soon as λ < Λ we can find subsolutions u, bounded above, of the equationM+λ,Λ(D
2u) = 0

in ℝ2. For instance, the function (7.1), regarded as a function of x ∈ ℝ2, is a subsolution of the equation

M+λ,2λ(D
2u) = 0 inℝ2.

Therefore, the uniform ellipticity is not sufficient by itself to guarantee such an unilateral Liouville prop-

erty, even in dimension 2.

However, for particular uniformly elliptic operators as the minimal Pucci operators M−λ,Λ, which are

suitably smaller than the Laplace operator, precisely when n ≤ 1 + Λ

λ , the Liouville property still holds for

subsolutions, bounded above (see [35]).We thankDr. Goffi for drawing our attention to the latter issue during

a workshop where the results of this paper have been announced for the first time.¹

We notice here that the same is true for the min-max operatorM(X) = λ
1
(X) + λn(X), and more generally

for the operatorsMa ∈ A such that a
1
= â

1
. See also [13].

1 Three Days in Evolution PDEs, 2019 June 21st.
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Theorem 7.2 (Hadamard Three Circles Theorem). Let u ∈ usc(ℝn \ {0}) be a subsolution of the equation

Ma(D2u) = 0

withMa ∈ A such that a
1
= â

1
. Setting M(r) = maxBr u for r > 0, we have that M(r) is a convex function of log r,

namely for 0 < r
1
< r

2
,

M(r) ≤
M(r

1
) log( r2r ) +M(r2) log(

r
r
1

)

log( r2r
1

)
, r

1
≤ r ≤ r

2
. (7.2)

Proof. Actually, by Remark 3.6 the function

φ(x) =
M(r

1
) log( r2|x| ) +M(r2) log(

|x|
r
1

)

log( r2r
1

)

satisfies the equationMa(D2φ) = 0 as linear combination of a constant and log |x| with non-negative coeffi-

cients, by positive homogeneity.Moreover, u(x) ≤ φ(x)on the boundary of the annulusAr
1
,r
2

= {r
1
< |x| < r

2
}.

From the comparison principle (Theorem 3.1) in Ar
1
,r
2

then we obtain (7.2).

Note that M =Me
1
+en satisfies the condition a

1
= â

1
and therefore the Hadamard Three Circles Theorem

holds for min-max operatorM.

From Theorem 7.2 it follows that such operators satisfy the same Liouville unilateral property which

holds for the Laplace operator in dimension n = 2: if a
1
= â

1
, the constant functions are the only viscosity

subsolutions, bounded above, of the equationMa = 0 inℝn.

Theorem 7.3 (Unilateral Liouville Property). LetMa ∈ A be such that a
1
= â

1
. Let u be a viscosity subsolution

of the equationM(D2u) = 0 inℝn \ {0}, which is bounded above. Then u is constant. If u is a subsolution in the
wholeℝn bounded above, then the same conclusion holds if a

1
> â

1
.

On the other hand, suppose Ma ∈ A such that an = ân. Let v be a viscosity supersolution of the equation
M(D2v) = 0 in ℝn \ {0} which is bounded below. Then v is constant. If u is a supersolution in the whole ℝn,
bounded below, then the same conclusion holds if an > ân.

Proof. LetMa ∈ Awith a
1
= â

1
. Reasoning as in [67, Section 12], we take alternatively the limits as r

1
→ 0

+

and r
2
→∞ in (7.2). So we get

M(r) ≤ M(r
2
) for r ≤ r

2
, M(r) ≤ M(r

1
) for r ≥ r

1

concluding that M(r
1
) = M(r

2
) for arbitrary pairs of positive numbers r

1
, r

2
. Then M(r) is constant, and by

the strong maximum principle u is in turn a constant function.
Supposing a

1
> â

1
, for any arbitrary x

0
∈ℝn we set

v(x) = u(x
1
) + C|x − x

1
|γ2 ,

with γ
2
= 1 − â

1

a 1

and C ≥ 0 to be determined, recalling that by (3.8) we haveMa(D2v) = 0 inℝn \ {0}. Wewill

compare the entire subsolution bounded above, say u(x) ≤ M, in every punctured ball BR(x1) \ {x1}, noting
that u(x

1
) = v(x

1
) and on ∂BR(x1) we have

u(x) ≤ M ≤ u(x
1
) + C|x − x

1
|γ2

choosing C = (M − u(x
1
)R−γ2 . Using the comparison principle (Theorem 3.1), we infer that this inequality

holds in BR(x1). Letting R →∞, we will have u(x) ≤ u(x1) for all x ∈ ℝn. The same holds true for any other

x
2
∈ ℝn so that u(x

1
) = u(x

2
) for all x

1
, x

2
∈ ℝn.

Concerning supersolutions v, bounded below, of the same equation in ℝn, it is sufficient to note

that by duality the function u = −v is a subsolution, bounded above, of the equation Ma󸀠 [u] = 0, where
a󸀠 = (an , an−1, . . . , a1), inℝn, and then to use the result proved before for subsolutions.

Funding: Fausto Ferrari is partially funded by INDAM-GNAMPA project 2018: Costanti critiche e problemi
asintotici per equazioni completamente non lineari and INDAM-GNAMPA project 2019: Proprietà di regolarità
delle soluzioni viscose con applicazioni a problemi di frontiera libera.
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