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A pressure-velocity jump approach for the CFD
modelling of permeable surfaces

Mao Xua, Luca Patrunoa,∗, Stefano de Mirandaa

aDICAM, University of Bologna, Bologna, Italy

Abstract

Permeable surfaces are extremely common in applications, ranging from wind shields installed
on bridge decks to the outer layer of permeable double skin facades. However, due to the large
scale separation between the overall dimensions of the structure and the size of the pores, their
modelling in Computational Fluid Dynamics, CFD, simulations are still extremely problematic.
In particular, explicitly modelling the pores geometry leads to prohibitive computational costs,
while homogenized models based on the use of so-called pressure-jumps are often very crude
simplifications of their aerodynamic behaviour. In this paper, a novel approach based on the use
of pressure-velocity jumps, PVJ, is proposed. Firstly, the approach is deduced in a general form,
based on mass and momentum conservation across the permeable surface. Then, some limit cases
for which an analytical evaluation of the coefficients characterizing the model can be obtained
are discussed. Finally, a ground mounted barrier is modelled, considering permeable surfaces of
widely different aerodynamic behaviour. Results obtained modelling the barrier geometrical details
and using the proposed PVJ approach are compared, confirming the soundness of the proposed
approach. An OpenFOAM boundary condition implementing the proposed method is available at
https://site.unibo.it/cwe-lamc/en.

Keywords: Computational Wind Engineering, Porous surfaces, Permeable surfaces, Pressure
jump, Darcy-Forchheimer, Wind shields

1. Introduction

The use of permeable elements is extremely common in the construction industry, especially
in modern architecture. When such elements are exposed to the wind action, it is necessary to
quantify the aerodynamic forces to be considered for their safe design and, additionally, to consider
the effect of their presence on the global aerodynamic behaviour of the structure. For instance, a
typical example is represented by the presence of wind shields on bridge decks used to protect
traffic against gusts: on the one side the wind action must be considered in the design of such
secondary elements and, on the other side, the overall aerodynamic behaviour of the deck can be
drastically changed by their presence. Recent experimental studies dedicated to the effect of wind
screens on the aerodynamic performance and stability of bridge decks can be found in Kozmar et al.
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(2014); Buljac et al. (2017). Similarly, we can mention the presence of porous screens and/or brise
soleil posed in front of building facades, which might affect the local as well as the overall building
aerodynamic behaviour. The wind tunnel characterization of an iconic structure located in Milan
(Italy) composed of a reticular frame and porous cladding is described in Belloli et al. (2014),
while studies regarding permeable facades can be found in Kemper and Feldmann (2019); Lo et al.
(2020); Hu et al. (2017, 2019). Another application of interest is represented by the installation
of wind barriers, often in the form of porous elements, upstream critical infrastructures in order
to abate wind-blown sand transport or upstream raw material deposits to reduce dust emission.
Recent experimental and numerical studies on such regard can be found, for instance, in Park and
Lee (2003); Bruno et al. (2018); Raffaele et al. (2021). Further analyses on the aerodynamics of
porous fences can be found, among many others, in Patton et al. (1998); Allori et al. (2013); Basnet
(2015).

From the previously mentioned studies, it clearly emerges that accurately representing the flow
through permeable elements is not straightforward. When considering traditional wind tunnel tests,
the characteristic length scale separation between the overall structure (say 10 m) and the pores (say
0.01-0.1 m) prevents the possibility to use reduced-scale models to a large extent, unless very large
testing sections are available, or rough approximations are made.

When considering CFD simulations, the same problem arises. Explicitly simulating the flow
through the pores leads to prohibitive computational costs, which sum up to the already sizeable
computational power usually required by Computational Wind Engineering, CWE, studies. We
denote such an approach as Explicit Modelling, EM, in the following. In order to solve the problem,
homogenized models can be used, in which the permeable surface is modelled only in terms of its
effects on the flow, assuming that the pores are of vanishing size with respect to the overall structure
dimensions (Xu et al., 2020). Such an approach is much more convenient with respect to EM both
in terms of required computational resources and model setting up but, unfortunately, currently
available models consider the aerodynamic behaviour of permeable surfaces in a crude and often
oversimplified way.

In particular, the most widely used approach to represent thin permeable surfaces in CFD sim-
ulations is the so-called pressure-jump approach, which can be seen as an homogenized approach
in which only forces acting along the normal to the permeable surface are accounted for. The ap-
proach is commonly used for internal flows (Azizi, 2019), while external aerodynamics problems
have been considered for instance in Xu et al. (2022c). A typical example of pressure-jump ap-
plication in the field of CWE is the modelling of permeable ground mounted barriers (Maruyama,
2008; Tominaga and Shirzadi, 2022), in which the relation between the pressure-jump and the local
velocity can be obtained by means of numerical simulations on the actual barrier geometry or using
empirical relations (Eckert and Pfluger, 1942; Taylor, 1944; Annand, 1953; Wieghardt, 1953). Nu-
merical issues related to the use of pressure-jumps in the case of very low porosities have been risen
in Feichtner et al. (2021), indicating that for low porosities (lower than approximately 15− 20%),
simulations tend to become unstable.

As already stated, in the case of pressure-jumps, the pressure field is discontinuous at the
permeable surface location, being the pressure-jump equal to the drag force over the permeable
surface, see for instance (Xu et al., 2022b,a). An alternative solution is to distribute the pressure
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loss, i.e. the drag, over a small finite thickness. This can be achieved by considering a perme-
able medium, whose resistance is approximated by the Darcy-Forchheimer model (Darcy, 1856;
Forchheimer, 1901). The approach thus amounts to the introduction of a distribution of properly
specified negative momentum sources. For high Reynolds number flows (calculated with respect
to the pore size) the inertial contribution to resistance dominates, and the viscus terms appearing in
the Darcy-Forchheimer formulation can be neglected (Miguel et al., 1997; Chen and Christensen,
2016). Usually, the matrix collecting the Forchheimer coefficients is assumed to be diagonal (Yang
and Lee, 1999; Cao et al., 2019) or, assuming a reference system with the first axis aligned to the
permeable surface normal, only the first element on the diagonal is assumed to be non-zero. This
leads to a model equivalent to the previously mentioned pressure-jump approach for porous zones
of vanishing thickness (Teitel et al., 2009; Teitel, 2010).

The model can be nevertheless used with full-matrices in order to account for sharing effects.
In particular such approach has been used in Ooi et al. (2019) in order to model louvers, while
Pomaranzi et al. (2021) used it for the modelling of permeable stretched metal sheet. In such last
case, the model has been shown to well approximate results from EM for angles ranging between
−45◦ and 45◦. Other examples of use of porous media can be found, for instance, in Safer et al.
(2005).

In this paper, inspired by Pomaranzi et al. (2021), based on the previously cited works, we
propose an extension of the pressure-jump approach, able to approximate with very good accuracy
the aerodynamic behaviour of a wide range of permeable surfaces. The method is built in order
to allow to accurately represent the forces exchanged between the fluid and the permeable surface
at highly skew angles, considering both their component directed along the surface normal (which
leads to the classical pressure-jump) and tangential direction (which leads to a velocity deflection,
i.e. a jump in the tangential velocity component). As the model allows to consider both pressure
and velocity jumps, it is indicated in the following as PVJ model. The model is devised aiming
at ensuring enough flexibility to allow the representation of complex aerodynamic behaviours,
without leading to an over-proliferation of tunable coefficients. Additionally, the model allows an
exact representation of simple limit cases, which can be treated analytically. The soundness of the
proposed approach is demonstrated by analysing ground mounted barriers characterized by widely
different aerodynamic behaviours.

This paper is organized as follows. Section 2 introduces the present PVJ model and the limit
cases which have been considered in its derivation. In Section 3, after presenting the numerical
setup adopted for the numerical simulations, several permeable surfaces are analysed in periodic
flow conditions, aiming at calibrating the PVJ model. Comparisons showing the flow fields ob-
tained for a ground mounted barrier using explicit models and the present PVJ model are then
reported in Section 4. Finally, conclusions are drawn in Section 5.

2. The PVJ model

Before proceeding, it is useful to summarize the desirable features that, in the authors’ opin-
ion, a model useful for the representation of permeable surfaces should have. In particular, the
requirements we target are
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R1 - approaches based on the imposition of discontinuities are preferable over distributed
momentum sources, as in the latter approach the porous zone must be meshed. Inserting
a thin layer of cells is problematic by itself and twice more problematic if we consider
that strong gradients are expected in that zone (in the limit of vanishing permeable barrier
thickness the solution is expected to be discontinuous). Such strong gradients inevitably lead
to numerical errors;

R2 - the model shall be able to reproduce the aerodynamic behaviour of the barrier at all
attack angles;

R3 - the model shall be flexible enough to approximate all cases of applicative interest,
without leading to an uncontrolled proliferation of parameters;

R4 - the model should be able to reproduce exactly relevant limit cases which admit analyt-
ical solution.

In the following, for the sake of simplicity, we work on a two-dimensional model but the
approach can be easily extended to three-dimensional cases, as reported in Sec. 2.3. In particular,
Fig. 1 reports the scheme of an elementary portion of a permeable surface immersed in a flow
characterized by velocity u and impinging with incidence angle αwith respect to the barrier normal
direction, n.

𝑛

𝑡

𝑢
𝛼

𝑓

Solidelement

Controlvolume

𝑖 𝑜

Middlesurface

Figure 1: Sketch of a permeable surface immersed in a fluid flow.

We start assuming to know the force per unit area exerted by the fluid on the permeable surface,
for all values of α, and we denote it as f(α). We now consider the mass balance of the control
volume bounded by the windward and the leeward surfaces of the barrier, indicated by i (i.e. in-
coming) and o (i.e. outgoing) in Fig. 1, respectively. Such two surfaces are depicted, for the sake
of simplicity, as those bounding the permeable surface, but their actual location shall be consid-
ered to be slightly upstream and downstream, where far-upstream and downstream conditions are
established (i.e. outside the zone of the flow directly affected by the pore presence). Assuming
incompressibility, mass conservation requires

uni − uno = 0, (1)
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where uni represents the velocity component along n measured at i, while momentum conservation
in the n−direction requires

ρ(uniuni − unouno) + pi − po − fn = 0. (2)

Substituting Eq. (1) in Eq. (2), we obtain

po − pi = −fn, (3)

showing that the pressure-jump measured at the two sides of the barrier is equal, and opposite, to
the force acting on the barrier in the normal direction.

Analogously, momentum conservation in the t−direction requires

ρ(utiuni − utouno)− ft = 0. (4)

Substituting Eq. (1) in Eq. (4), we obtain

ρuni(uti − uto)− ft = 0, (5)

so that
uto − uti = −

ft
ρuni

, (6)

which allows to calculate the jump of the tangential velocity component based on the exchanged
forces and the mass flux across the permeable barrier.

It thus clearly appears that, in order to device a model able to represent the permeable surface,
the main problem is to represent the function f(α) with sufficient accuracy. Once aerodynamic
forces are known, the pressure-jump is calculated according to Eq. (3), while the tangential veloc-
ity jump is obtained through Eq. (6), so allowing to satisfy requirement R1.

2.1. Aerodynamic forces on permeable surfaces
In this section we propose a formulation able to express f(α), which comply with requirements

R2-R4. We define the velocity versor as û = u/|u|. Then, the aerodynamic forces are assumed
to be expressed by the form

f(α) =
1

2
ρ|u|2|ûn|γc(α), (7)

where γ is a coefficient, | · | denotes the L2 norm (or absolute value in the case of scalars) and c(α)
can be conveniently expressed in terms of a Fourier series as

c(α) =

[
cn
ct

]
=

[
bn0 + bn1 cos(α) + bn2 sin(α) + bn3 cos(2α) + bn4 sin(2α)...
bt0 + bt1 cos(α) + bt2 sin(α) + bt3 cos(2α) + bt4 sin(2α)...

]
, (8)

in which bn0, bt0, bn1, bt1, etc.. are model parameters which can be obtained from data fitting or,
for some limit cases, analytically. We notice that: (1) requirement R2 is satisfied because a Fourier
series expansion is able to approximate with desired accuracy any f(α) if the number of considered
harmonics is increased; (2) the Fourier expansion is notoriously efficient and requires only a few
harmonics to obtain good approximations, so complying with requirement R3.

We further notice that
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• the presence of the |ûn|γ term is redundant, as the Fourier expansion for c(α) already allows
to comply to R2 and R3. Nevertheless, such term is kept as it allows to have simpler ex-
pressions in relevant cases discussed in the following, so better complying with requirement
R4;

• when only the first terms of Eq. (8) are kept, considering that ûn = cos(α) and ût = sin(α)
and setting bn0 = bt0 = 0, it is possible to rewrite the expression as

c =

[
bn1 bn2
bt1 bt2

] [
ûn
ût

]
, (9)

so leading to the linear approximation proposed for instance in Pomaranzi et al. (2021) for
the momentum source term calculation.

The expressions reported in Eq. (7) and Eq. (8) simply represents one of the possible ap-
proaches which can be used to fit f(α). In the following, we consider relevant limit cases which
admit analytical treatment and inspired the development of the present model, so justifying the
particular form selected for Eq. (7) and Eq. (8) and allowing the model to better comply with R4

2.2. Limit cases
In order to develop the present model, the following three limit cases have been considered, as

reported in Fig. 2. In particular, we consider

LA - a flat porous sheet;

LB - largely spaced elements;

LC - a fully deflective barrier.

In all cases, we consider high Reynolds number conditions, so disregarding frictional forces.

LA

𝜃

LB LC

𝑛

𝑡

𝑛

𝑡

𝑛

𝑡

Figure 2: Limit cases considered in the definition of the proposed model: LA, flat porous sheet; LB, largely spaced
elements; LC, fully deflective barrier.
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2.2.1. Limit case A: flat porous sheet
The case of a flat porous sheet, indicated as LA in Fig. 2 is here considered. Due to the

porous elements geometry, aerodynamic forces are exchanged only in the normal direction, so
implying that ct is null (so that, according to Eq. (6) no jump in the tangential velocity component
is produced). Furthermore, the force exerted in the normal direction is usually expressed as

f =

[
1
2
ρk(β) |un| un

0

]
, (10)

in which k is the so-called loss coefficient, which may be calculated as a function of the porosity β
thanks to semi-analytical and empirical models (Eckert and Pfluger, 1942; Taylor, 1944; Annand,
1953; Wieghardt, 1953). Such models have been recently reviewed in Xu et al. (2020), in which
a new semi-analytical model able to predict the loss coefficient based on porosity, k(β), has been
proposed.

The form reported in Eq. (10) can be obtained as a particular case of the proposed model. In
fact, starting from Eq. (9) and assuming γ = 1, we have

f =
1

2
ρ|u|2|ûn|

[
k(β) 0
0 0

] [
ûn
ût

]
, (11)

which coincides with Eq. (10) and allows to identify bn1 = k(β).
It is worth to notice that the presence of the term |ûn|γ unifies two main approaches found in

the literature for this limit case. In fact, the expression reported in Eq. (10) indicates a dependency
of the pressure-jump on u2n (implying γ = 1 in the present model). On the contrary, momentum
source terms, ms, used when adopting the Darcy-Forchheimer model, are often expressed as

ms = −
1

2
ρ|u|Iu, (12)

being I the matrix containing the porous material aerodynamic resistance. As previously antici-
pated, such matrix is often chosen so that Inn = k/s where k is again the loss coefficient and s
is the thickness of the porous zone created to represent the porous sheet, while all other terms are
null. With such approximation, we obtain a dependency of the pressure-jump on |u||un| (implying
γ = 0 in the present model). The results obtained by the authors in Xu et al. (2020) suggest a
better performance of Eq. (10) with respect to Eq. (12), at least for the case there investigated.

2.2.2. Limit case B: largely spaced elements
Another important limit case which the model is required to reproduce exactly is that of largely

spaced solid elements (see Fig. 2, LB). In this case, it is possible to assume that the local flow
established around one solid element does not interact with neighboring ones, so that aerodynamic
forces can be calculated for the element in isolated conditions. However, as a rough approxima-
tion in order to take into account blockage effects, it is possible to assume that the elements are
immersed in a flow field in which the velocity is increased by a factor 1/β as proposed by Eckert
and Pfluger (1942).

In order to reproduce such result, we impose γ = 0, so obtaining
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f =
1

2
ρ|u/β|2c(α) = 1

2
ρ|u|2N · le

β2
ce(α), (13)

being N the number of elements per unit barrier height, ce(α) the aerodynamic coefficients of the
single element calculated in isolated conditions and le the reference length of the single element. In
the case of cylindrical elements (e.g. like wires), we can assume le equal to the cylinder diameter.
Then, the solid area per unit area of permeable surface is N · le = 1− β and we obtain

f =
1

2
ρ|u|21− β

β2

[
Cd 0
0 Cd

] [
ûn
ût

]
, (14)

in which Cd is the drag coefficient of the cylinder. Equation (14) allows to identify bn1 = bt2 =
Cd

1−β
β2 , while all other coefficient are null.

2.2.3. Limit case C: fully deflective barrier
The last limit case we analyze is that of a fully deflective barrier, indicated as LC in Fig. 2.

The case consists in a porous barrier composed of lamellae which deflects the flow in the lamel-
lae tangential direction, regardless of the impinging flow direction. In other words, lamellae are
assumed to be closely spaced with respect to their length and are assumed to provide a kinematic
constraint to the velocity field, so that it is forced to be tangential to the lamellae just downstream
the permeable surface. We assume the lamellae to be of vanishing thickness, so that blockage
effects can be neglected.
Starting from Eq. (5), substituting uti = |uni| tan(α) and uto = |uno| tan(θ) and accounting for
mass conservation, we obtain

ft = ρuni|uni|(tan(α)− tan(θ)), (15)

Dropping, for the sake of simplicity, the i pedex, such expression can be rewritten as

ft = ρ|u|2ûn|ûn|
(
ût
ûn
− tan(θ)

)
= ρ|u|2|ûn| (ût − tan(θ)ûn) , (16)

As the total force acting on the lamellae is constraint to be orthogonal to the lamellae (as it
derives from pressure integration), we can obtain the force acting in the n direction as

fn = −ft tan(θ) = −ρ|u|2|ûn| (ût − tan(θ)ûn) tan(θ), (17)

which can be further rewritten as

f =
1

2
ρ|u|2|ûn|

[
2 tan2(θ) −2 tan(θ)
−2 tan(θ) 2

] [
ûn
ût

]
(18)

so allowing to identify γ = 1, bn1 = 2 tan2(θ), bn2 = bt3 = −2 tan(θ) and bt3 = 2.
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2.3. Three-dimensional cases
The proposed model, as presented up to this point, is substantially two-dimensional. In order

to extend it to three-dimensional cases, various options are available, involving different levels of
approximation and expected accuracy. In the following, we assume direction r to be orthogonal to
both n and t. We do not investigate full three-dimensional cases in this paper but we envisage the
following possibilities, presented in order of increasing complexity

1. the permeable surface can be well-approximated by a two-dimensional model, e.g. like in
the case of bars or lamellae. In this case the model already described can be readily used,
although it implies that the effect of the r−velocity component is disregarded. The model is
used preliminary projecting the velocity field along the n and t directions;

2. the permeable surface is assumed to be isotropic in the t− r plane. In this case, an effective
t-direction, here denoted at t∗ can be identified by the versor which points in the direction of
the velocity field projection over the t− r plane. Then, t∗ can be effectively used instead of
t without further changes. This would be the preferred option for porous elements such as
perforated plates and wire nets, which do not show strong anisotropy in the t− r plane;

3. for general cases a complete two-dimensional Fourier expansion can be adopted instead of
the mono-dimensional one presented in Eq. (8), leading to

f(α1, α2) = [fn(α1, α2), ft(α1, α2), fr(α1, α2)]
T . (19)

The last solution is obviously able to represent any f(α1, α2) but remarkably complicates the
model coefficients determination, which require force evaluations from numerous angles of attack.
In the authors’ opinion, the first two solutions shall be able to manage with good accuracy the great
majority of the cases.

3. Permeable surfaces characterization

In order to apply the proposed PV J model, firstly it is necessary to characterize the porous
surface aerodynamic behaviour, i.e. the model parameters appearing in Eq. (8) must be evaluated.
Such characterization is performed in Sec. 3.1 by means of CFD simulations for a representative
selection of permeable surfaces, characterized by very different aerodynamic behaviours.

In the following sections, numerical simulations are performed adopting the well-known and
widely adopted URANS k − ω SST turbulence model (Menter et al., 2003). A centered second-
order differentiation scheme is adopted for the diffusive terms, while for non-linear advective
terms, the Linear-Upwind Stabilised Transport (LUST) scheme is used (Weller, 2012). Time in-
tegration is performed using the Crank-Nicolson scheme and the time step is selected to make
the maximum Courant number approximately equal to 1.0. The coupling of pressure and velocity
is obtained using the well-known Pressure-Implicit with Splitting of Operators (PISO) algorithm.
The open-source Finite Volume software OpenFOAM® v2112 is used.

3.1. Permeable surfaces
A selection of representative permeable surfaces types, characterized by very different expected

aerodynamic behaviours is shown in Figure 3 (a). In particular, we consider

9



T1 - a surface characterized by β = 0.5 whose solid elements are equilateral triangles;

T2 - a porous surface of vanishing thickness characterized by β = 0.5, which approximates
the conditions of Limit case A, LA;

T3 - a permeable surface composed of lamellae of vanishing thickness, which approximates
the conditions of Limit case C, LC;

The shape of each solid element. i.e. lamella, of the T3 case is identical to the one considered
for T2. In order to evaluate the PV J model coefficients appearing in Eq. (8), we perform simu-
lations on an elementary permeable surface element in periodic conditions, considering different
angles of attack as reported in Fig. 3 (b).

𝑑

𝜃𝑑

𝑑

𝑑
0.05𝑑

𝑑/2

T1 T2 T3

(a)

Inlet

Outlet

Periodic

Periodic

α

Permeablesurface

(b)

Figure 3: Porous surfaces characterization: (a) considered geometries and (b) sketch of the computational domain.

In particular, at the inlet a fixed velocity magnitude U is prescribed, with velocity components
selected in order to vary the inflow angle α, together with a null pressure gradient. Periodic bound-
aries are adopted at the top and bottom of the domain, and a wall boundary is adopted for the
solid elements composing the porous surface. A pressure outlet is adopted at the outflow. Sim-
ulations are allowed to proceed until initialization effects disappear. Then they are run for 500
non-dimensional time units tU/d, being d the characteristic dimension of the solid elements com-
posing the permeable surface. Aerodynamic forces are extracted as the time-averaged value over
the last 500 non-dimensional time units.

3.1.1. Sensitivity to mesh resolution and Reynolds number
Before proceeding, some sensitivity analysis are firstly performed. In particular, in order to

check for mesh sensitivity, we start by a coarse mesh obtained discrediting each side of the solid
elements using 16 cells, i.e. Ncell = 16. Then, we consider refined meshes for which Ncell = 32
and Ncell = 64, keeping all other settings the same, aiming at systematically refine the mesh in the
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permeable surface proximity. Typical cell counts are in the order of 10 k cells for Ncell = 16 and
100 k cells for Ncell = 64. For T1, the obtained meshes are shown in Fig. 4.

(a) Ncell = 16 (b) Ncell = 32 (c) Ncell = 64

Figure 4: Mesh refinements used for the analysis of T1.

As shown in Fig. 5 (a) and (b), some differences arise in the obtained aerodynamic forces
between Ncell = 16 and the others, but a very good agreement is found for Ncell = 32 and Ncell =
64, so that Ncell = 32 is kept in the following.

Next, considering again the T1 case, we proceed to check the dependency of the obtained results
on the Reynolds number based on the pore characteristic dimension, denoted as pore Reynolds
number in the following, Red = ρdU

µ
. This is important as we do not consider here the possibility

for the model coefficients appearing in Eq. (8) to depend on the Reynolds number. Such an
extension, although possible, would add considerable burden to the model calibration and, thus,
for the propose of the present validation, we need to ensure that the obtained results are Reynolds
independent, at least with good approximation.

Keeping the Ncell = 32 mesh, we vary Red in the range from 1.0× 104 to 1.0× 106, which
well-complies with the one expected in applications and with that used in the following section.
It shall be considered that in general, the local velocity is unknown and the Red might vary con-
siderably between one point and the other, so that such effect might actually need consideration.
Results shown in Fig. 5 show that for the T1 case the aerodynamic forces are substantially inde-
pendent from Red. Similar results are obtained also for the other cases, not reported for the sake
of conciseness.
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Figure 5: The aerodynamic coefficients: (a) fn/q for the three different meshes, ft/q for the three different meshes,
(c) dependence on the pore Reynolds number.

3.1.2. PV J-model calibration
Based on the previously obtained results, simulations have been performed with Ncell = 32

for all inflow attack angles, also switching the inlet and the outflow to consider angles outside the
range α = [−90◦, 90◦]. As an example, the velocity magnitude distribution, made non-dimensional
with respect to the inflow velocity magnitude, is reported in Fig. 6 for α = 0◦ and α = 45◦.

As expected, the flow structures produced by the solid elements composing the porous surface
propagate downstream for several characteristic dimensions and are then dissipated, leading to a
uniform flow. In essence, the flow field across a permeable surface can be ideally subdivided into
three regions: one upstream the surface in which the flow is homogeneous, a transition zone in
which the flow is directly affected by the pores presence, and a zone, far downstream, in which
the flow is again homogeneous. The transition zone, is usually characterized by a pressure recov-
ery (Xu et al., 2020). When adopting homogenized models as the present PV J one, the pores
dimension is assumed to vanish, so that the far-downstream condition is established just after the
permeable surface, yielding a transition zone of null thickness and, consequently, a jump from the
upstream values to those expected far downstream.

12



(a) T1, α = 0◦ (b) T2, α = 0◦ (c) T3 θ = 45, α = 0◦

(d) T1, α = 45◦ (e) T2, α = 45◦ (f) T3 θ = 45, α = 45◦

Figure 6: The time-averaged non-dimensional velocity magnitude, |u|/U , in the permeable surface proximity with an
inflow angle of α = 0◦ and α = 45◦.

Figure 7 reports the measured aerodynamic forces per unit area, f , exerted form the fluid on
the permeable surface, made non-dimensional with respect to q = 1/2ρU2.
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Figure 7: The non-dimensional aerodynamic forces per unit area at different angles of attack.
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In particular, for the T1 case reported in Fig. 7 (a) and (d), results are also compared with
the semi-analytical formula proposed in Xu et al. (2020), representative of a flat porous surface of
vanishing thickness (indicated as PVJ-LA in the following, as it provides a semi-analytical solution
to the limit case LA). The formula allows to estimate the pressure-jump based on the surface
porosity and thus, in this case β = 0.5 is used.

When the forces acting in the n−direction are compared, see Fig. 7 (a), the formula provides
good agreement with the numerical results, despite being obtained for a quite different and simpler
case. When the forces acting in the t−direction are considered, see Fig. 7 (b), PVJ-LA leads to
null values while, as expected, non-zero values are obtained from the numerical model. Finally,
a fitting of Eq. (8) considering 9 harmonics is reported as PVJ-FF. In this last case, γ can be
arbitrarily set to a null value (as it is redundant) and expectedly, a very good fitting is obtained.

For the T2 case, reported in Fig. 7 (b) and (e), results from the numerical simulations are
again compared to PVJ-LA, still considering β = 0.5. In this case, the hypotheses leading to the
development of the semi-analytical formula reported in Xu et al. (2020) are well-met (flat porous
surface of vanishing thickness) but, despite the good qualitative agreement in terms of trends,
PVJ-LA predicts a lower force in the n−direction with respect to the measured one. This must be
attributed to the fact that the flow detaches at the solid elements edges, leading to a vein contraction
which reduces the effective aerodynamic porosity with respect to the geometrical one. Reducing
the porosity of approximately 10% (i.e. assuming β = 0.45) we obtain the results indicated as
PVJ-LAc, which show a very good agreement with the numerical simulations. Alternatively, a
fitting of the obtained data using Eq. (8) can be obtained, indicated as PVJ-FF.

Finally, we consider the case denoted as T3 θ = 45, reported in Fig. 7 (c) and (f). In this case,
together with the simulation results, we show the prediction of Eq. (18), indicated as PVJ-LC, as
it provides a solution to the limit case LC. In this case, for both the n− and t−directed forces,
PVJ-LC is lower than the prediction of the numerical simulations, despite the fact that trends are
correctly captured. It can be seen that such discrepancy is originated by the generation of separation
bubbles on one side of the lamellae, which lead to a modification of the lamellae effective geometry
and, thus, a higher-than-expected deflection angle, i.e. the velocity downstream the lamellae is not
aligned to the lamellae. Actually, a very good matching of the numerical results can be obtained
multiplying PVJ-LC by a factor 1.5 (not shown for the sake of brevity) or, proceeding by mere
fitting of the numerical results by means of Eq. (8), indicated again as PVJ-FF.

In summary, the coefficients appearing in Eq. (8) can be always tuned in order to match nu-
merical or experimental results. Quantitative mismatches with respect to the limit cases presented
in Sec. 2.2 shall be expected due to aerodynamic effects (i.e. vein contraction, generation of
separation bubbles in proximity of the lamellae) which makes it difficult to uniquely characterize
the aerodynamic behaviour based on the permeable surface geometry only. However, limit cases
provide good guidance for results interpretation and a priori evaluations.

4. Results

In this section, we proceed to the comparison of the results obtained using EM and PVJ for the
simulation of a ground mounted permeable barrier. Firstly, the case is introduced in Sec. 4.1, and
the dependency of the results on the number of solid elements composing the barrier is assessed.
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Then, EM and PVJ approaches are compared for the permeable surfaces types characterized in
Sec. 3.1.

4.1. Case geometry and sensitivity to scale separation
A sketch of the considered ground mounted permeable barrier is reported in Fig. 8 (a). In

particular, we consider a permeable barrier of height H immersed in a uniform flow. The ground is
modelled as a wall-boundary condition, while symmetry is used for the upper boundary condition.
Other geometrical details of the adopted computational setup are reported in Fig. 8 (a), while
numerical settings are the same previously described in Sec. 3.

The proposed PVJ approach is expected to approach EM, only if the size of the elements
composing the porous surface vanishes with respect to the overall studied object size or, in other
terms, if a good scale separation between the pore size and the barrier size is reached. To check
for scale-separation effects, keeping H constant, the number, No, of solid elements (i.e. triangles
in this case, see Fig. 8 (b) and (c)) is varied from No = 10 to No = 25, so consequently decreasing
their size. The operation is performed keeping the number of cells used to discretize each side of
the triangles equal to Ncell = 32, in agreement with the previously found results. The operation is
repeated consideringNo = 10, 25, 50 and 75. Typical cell counts are in the order of 100k cells for
No = 10 and 400k cells for No = 50. Notice that, beside the previously introduced pore Reynolds
number Red, a Reynolds number based on the barrier height, ReH , can be introduced. For the
present case ReH is fixed as H is the same for all analyses, but Red varies between 3.0× 105 to
4.0× 104, when considering increasing No. However, within such range, results have been shown
to be substantially insensitive to Red in Sec. 3.1.1.

Ground mountedbarrier
Inlet Out

let

H xy

5H

5H 10H

Symmetry

Wall

(a) (b) (c)

Figure 8: The considered ground-mounted permeable barrier: (a) case geometry, (b) T1 with No = 10 and (c) T1 with
No = 25.

The results obtained varying No are reported in Fig. 9 for two radically different cases: T3
θ = 45 and T3 θ = −45. It can be clearly seen that, as expected, the orientation of the lamellae has
a very strong effect on the overall flow field organization and that results obtained with different
No are in good agreement with each other, being No = 50 and No = 75 hardly distinguishable.
Similar results have been obtained for the other permeable surfaces analysed in Sec. 3.1.2, which
are not reported for the sake of brevity (the measured global forces are nevertheless reported for
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all cases at the end Sec. 4.2). Considering that results obtained with No = 10 and 25 show visible,
although small, differences with respect to the others, we proceed in the following with No = 50.

(a) T3 θ = 45, No = 25 (b) T3 θ = 45, No = 50 (c) T3 θ = 45, No = 75

(d) T3 θ = −45, No = 25 (e) T3 θ = −45, No = 50 (f) T3 θ = −45, No = 75

Figure 9: The streamlines of the time-averaged flow of the EM models with different No.

4.2. Comparison between EM and PVJ
We now proceed at comparing the results obtained by using EM and PVJ approaches. In

particular, Fig. 10 (a) reports the streamlines obtained considering the EM model for the T1 case,
while Fig. 10 (b) and (c) show the streamlines obtained using PVJ considering the limit case PVJ-
LA (see Sec. 3.1.2) and data fitting, indicated as PVJ-FF. It can be seen that a good qualitative
agreement is obtained between all cases. Notice again that PVJ-LA is expected to be only a crude
approximation of the T1 case, but a very good agreement is actually obtained, so justifying the use
of simple pressure-jumps for such case.

(a) (b) (c)

Figure 10: The streamlines of the time-averaged velocity field for the T1 case: (a) EM, No = 50, (b) PVJ-LA, β = 0.5
and (c) PVJ-FF.

Analogously, Fig. 11 reports the comparison between EM and PVJ approaches for the T2 case.
Notice that the PVJ-LA case is identical to that already presented for T1 in Fig. 10 (b). Also in
this case, the agreement between the three cases is very good, highlighting that PVJ-LA provides a
very good approximation of the barrier aerodynamic behaviour, as expected.
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(a) (b) (c)

Figure 11: The streamlines of the time-averaged velocity field for the T2 case: (a) EM, No = 50, (b) PVJ-LA, β = 0.5
and (c) PVJ-FF.

In the previous examples, the main effect induced by the permeable barrier was the generation
of a pressure-jump. We now consider the T3 θ = 45 case, which induces also a strong velocity de-
flection. Figure 12 reports the streamlines obtained adopting the EM and the PVJ models, together
with PVJ-LC as limit case. The obtained results are substantially different from those obtained for
T1 and T2, with a vortex developing downstream the barrier. Reasonable qualitative agreement is
again obtained between all three models, with EM and PVJ-FF in very good agreement.

(a) EM, No = 50 (b) PVJ-LC (c) PVJ-FF

Figure 12: The streamlines of the time-averaged velocity field for the T3 θ = 45 case: (a) EM, (b) PVJ-LC and (c)
PVJ-FF.

Finally, in Fig. 13, we consider the case T3 θ = −45, which can be obtained still relying on
the same PV J parameters used for T3 θ = 45 just switching the t−direction, showing again good
agreement between EM and PVJ. In this case, the flow does not converge to a stationary solution
so, for the sake of completeness, streamlines of the instantaneous velocity field are reported in Fig.
14. In particular, for the sake of comparability, streamlines are reported for all considered models
considering an instant in which a crest in the streamlines is present at the location x/H = 4.5. The
similarity between the obtained flow fields is again confirmed.

(a) EM, No = 50 (b) PVJ-LC (c) PVJ-FF

Figure 13: The streamlines of the time-averaged velocity field for the T3 θ = −45 case: (a) EM, (b) PVJ-LC and (c)
PVJ-FF.
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(a) EM, No = 50 (b) PVJ-LC (c) PVJ-FF

Figure 14: The streamlines of the instantaneous velocity field for the T3 θ = −45 case: (a) EM, (b) PVJ-LC and (c)
PVJ-FF

In order to provide a more quantitative inspection of the obtained results, Figs. 15-18 report
the vertical profile of the time-averaged velocity component along the x-direction, ux, downstream
the porous barrier at x/H = 0.5, 1.0, 4.0. The good qualitative agreement previously observed is
here again confirmed.
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Figure 15: The vertical profiles of the time-averaged ve-
locity component along x, ux/U , for T1.
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Figure 16: The vertical profiles of the time-averaged ve-
locity component along x, ux/U , for T2.
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Figure 17: The vertical profiles of the time-averaged ve-
locity component along x, ux/U , for T3 θ = 45.
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Figure 18: The vertical profiles of the time-averaged ve-
locity component along x, ux/U , for T3 θ = −45 case.

For the sake of completeness, for T3 θ = 45 and T3 θ = −45, which are characterized by the
strongest velocity deflections, vertical profiles of the time-averaged velocity component along the
y-direction, uy, are also reported in Figs. 19-20.
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Figure 19: The vertical profiles of the time-averaged ve-
locity component along y, uy/U , for T3 θ = 45.
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Figure 20: The vertical profiles of the time-averaged ve-
locity component along y, uy/U , for T3 θ = −45.

Finally, global aerodynamic coefficients representative of the forces acting on the barrier along
the x−direction and y−direction are reported in Fig. 21. In particular, we define Ci = Fi/qH
with i = x, y and q = 1/2ρU2. In this case, together with the results obtained adopting PVJ, we
report results obtained with EM using different No. In particular, it clearly appears that increasing
No leads to a convergence of the obtained result toward those obtained using PVJ-FF, as expected.
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Figure 21: The global aerodynamic coefficients of the ground-mounted porous barrier.

5. Conclusions

In this paper, we proposed a homogenized approach for the modelling of permeable surfaces in
CFD simulations. The approach, denoted as PV J , is valid in the limit of vanishing pore size with
respect to the overall studied structure dimensions, and generalises the well-known pressure-jump
approach, commonly used for internal flows. In particular, aerodynamic forces exchanged both
along the permeable surface normal and tangential directions are considered, leading to a pressure
and a tangential velocity jump, respectively. Similarities between the proposed approach and those
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based on distributed momentum sources, following the Darcy-Forchheimer modelling for porous
media, are discussed.

Firstly, for the sake of generality, the model is introduced relying on a Fourier series expansion
of the aerodynamic coefficients with the angle of attack. Then, it is shown that, for particular limit
cases, the number of coefficients appearing in the model can be drastically reduced and their value
obtained from analytical or semi-analytical considerations.

Finally, the approach is applied in order to model the flow around a ground mounted permeable
barrier. In particular, results obtained simulating explicitly the barrier detailed geometry (i.e. mod-
elling all the pores) and adopting the proposed approach, are compared. The coefficients appearing
in the PVJ model are calculated both by fitting data obtained from an elementary permeable surface
element and using the established limit cases. The comparison is performed considering perme-
able surfaces typologies characterized by very different aerodynamic behaviour, so inducing large
differences in the flow field organization downstream the barrier.

The proposed PVJ approach is found to well-reproduce the results obtained by the detailed
geometrical models, leading to a great simplification of the analysis setup and very large savings
in terms of computational costs. The approach is expected to be extremely convenient when a
strong scale separation between the pores and the overall structure exists, so allowing to study
cases which cannot be simulated using explicit geometrical models. The proposed approach is
expected to be extremely particularly indicated for parametric studies and optimizations involving
the variation of the permeable surfaces geometry and location.
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Buljac, A., Kozmar, H., Pospı́šil, S., Macháček, M., 2017. Flutter and galloping of cable-supported
bridges with porous wind barriers. Journal of Wind Engineering and Industrial Aerodynamics
171, 304–318.

21



Cao, J., Gao, H., Dou, L., Zhang, M., Li, T., 2019. Modeling flow in anisotropic porous medium
with full permeability tensor, in: Journal of Physics: Conference Series, IOP Publishing. p.
012054.

Chen, H., Christensen, E.D., 2016. Investigations on the porous resistance coefficients for fishing
net structures. Journal of Fluids and Structures 65, 76–107.

Darcy, H., 1856. Les fontaines publiques de la ville de Dijon: Exposition et application des
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