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Abstract21

In April 2022, the Vistamilk SFI Research Centre organized the second edition of the22

“International Workshop on Spectroscopy and Chemometrics – Applications in Food and23

Agriculture”. Within this event, a data challenge was organized among participants of the24

workshop. Such data competition aimed at developing a prediction model to discriminate25

dairy cows’ diet based on milk spectral information collected in the mid-infrared region. In26

fact, the development of an accurate and reliable discriminant model for dairy cows’ diet can27

provide important authentication tools for dairy processors to guarantee product origin for28

dairy food manufacturers from grass-fed animals. Different statistical and machine learning29

modelling approaches have been employed during the workshop, with different pre-processing30

steps involved and different degree of complexity. The present paper aims to describe the31

statistical methods adopted by participants to develop such classification model.32

Keywords: Chemometrics, Fourier transform mid-infrared spectroscopy, machine learning,33

milk quality, food authenticity34

1 Introduction35

The use of mid-infrared spectroscopy (MIRS) has become a relevant topic in agri-food sciences,36

due to its capacity to routinely quantify a wide range of important characteristics rapidly and37

cost-effective. In particular, MIRS is nowadays commonly employed to monitor and quantify38

∗Corresponding author: address. Email: giulio.visentin@unibo.it
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milk quality parameters, such as concentrations of fat, protein, casein, and lactose. These39

parameters are used for milk quality-based payment schemes, genetic and genomic selection,40

and as farmers’ support tool. Spectral information generated from MIRS analysis have also41

proven to be effective in predicting fine milk quality parameters, including protein fractions,42

free amino acids [Bonfatti et al., 2011; McDermott et al., 2016], individual and groups of fatty43

acids [Soyeurt et al., 2006; Fleming et al., 2017], milk processing traits [Ferragina et al., 2013;44

Visentin et al., 2015], animal-related characteristics [McParland et al., 2014; Shetty et al., 2017;45

Ho et al., 2019], and can be used as a tool for the verification of the authenticity of agricultural46

foods [Cozzolino, 2012]. A more extended list of applications of MIRS in the dairy science47

framework can be retrieved from the reviews by De Marchi et al. [2014] and Tiplady et al.48

[2020].49

The two-day event “International Workshop on Spectroscopy and Chemometrics” was orga-50

nized by Vistamilk SFI Research Centre in April 2022, following its first edition held in 202151

[Frizzarin et al., 2021a]. The workshop focused on describing the main challenges and appli-52

cations of near and mid-infrared spectroscopy in food, animal, and agricultural sciences with53

internationally recognised researchers. Moreover, participants, on a voluntary basis, were pro-54

vided with a large dataset containing individual cow milk spectra with the sole information on55

animal’s diet for a chemometric data competition. Such data presented many challenges from56

a methodological and statistical point of view, due to the high dimensionality of the spectral57

matrices, and strong collinearity between adjacent spectral wavelengths. The chemometric chal-58

lenge, therefore, encouraged the engagement of participants with different background and skills59

and required the application of different statistical and machine learning strategies.60

The purpose of the data challenge was to develop a model to predict the diet fed to dairy61

cows by exploiting mid-infrared spectral information. Participants, or groups of participants,62

were required to apply their developed model to a test set containing only individual milk spectra63

and to submit their prediction of animals’ diet. Since participation was found to be high, six64

contributions out of twelve were selected, according to criteria based on the accuracy of the65

predictions and methodological innovativeness, to present their results both at the workshop66

and in the present manuscript.67

2 Data description and challenge68

A dataset consisting of 4,364 individual milk spectra from individual cows was collected between69

May and August in 2015, 2016 and 2017 [O’Callaghan et al., 2016]. The samples were from Hol-70

stein Friesian cows with different parity from Irish Dairy Research Herd in Teagasc Moorepark,71

Fermoy, Co. Cork. Three dietary groups were evaluated with 54 cows being assigned to a di-72

etary group each year. The three diet treatments were grass (GRS) which consisted of perennial73

ryegrass only, clover (CLV) which consisted of perennial ryegrass with 20% annual clover sward,74

and total mixed ration (TMR) where cows were fed grass silage, maize silage and concentrates75

while being maintained indoors for the full season. Milk samples were collected in the morning76

(AM) and evening (PM) milking session; subsequently AM+PM samples were pooled and anal-77

ysed weekly using Pro-FOSS FT6000 (FOSS). The output spectrum contained a total of 106078

transmittance data points in the range from 925 cm−1 to 5,000 cm−1.79

The dataset was divided into training (3275 spectra) and test (1089 spectra) data; for the80

latter only spectral (i.e., independent variables) information was provided, while diet informa-81

tion, to be used as a classification (i.e., dependent) variable, was available for the training set.82

The training data included 1094 spectra for GRS, 1120 spectra from CLV and 1061 spectra for83

TMR. There were no missing values in the training or test set. The specific information about84

the wavenumbers had not been shared with the participants.85

The three dietary groups were carefully selected based on their characteristics. As described86

by Frizzarin et al. [2021b], pasture-based diets are easily discriminated from TMR diets, while87
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discriminating between GRS and CLV diets is much more difficult due to the similarities in the88

sward composition resulting in similar milk composition. However, with the increased pressure89

to reduce fertilizer use, and the introduction of multi-species swards, the development of a robust90

discriminant model for classifying milk spectra based on diet is of paramount importance.91

After the analysis, the participants submitted their predicted values for the test dataset and92

a short explanation of the methodology used. The best methods were selected based on the93

accuracy of the predictions for the test dataset. The accuracy was calculated as the proportion94

of the correctly classified samples divided by the total number of samples in the test dataset.95

3 Modelling approaches and results96

3.1 Participant 197

The data were analyzed following different modelling strategies, focusing both on methods that98

considered spectral proximity of the wavelengths and on methods that do not. All the analyses99

have been mainly conducted using Python libraries pandas, sklearn, sktime and matplotbib100

[see Pedregosa et al., 2011, and references therein]. The open source code is available at https:101

//github.com/mlgig/vistamilk_diet_challenge and readers can refer to it for the specific102

details about the implementation of all the methods outlined in this Section.103

As a first step, some descriptive statistics were computed, and the outliers have been removed,104

following both the recommendations given prior to the competition and a visual inspection of the105

data. In the subsequent step, the labeled dataset was split according to a 3-fold cross-validation106

(3CV) strategy. Therefore, the best model was selected based on cross-validation accuracy, and107

then trained on the full training set and used to perform prediction on the provided unlabeled108

test set.109

In order to predict the diet, the following classification strategies were considered:110

• Tabular models: each sample is considered as a vector of unordered features. In111

particular, Ridge Classifier, where a penalty shrinking parameters towards zero is im-112

posed on the coefficients of a logistic regression model [see e.g., Hoerl and Kennard,113

1970], and Linear Discriminant Analysis (LDA) were tested. In the following, these114

methods were coupled both with feature selection strategies and with random polyno-115

mial feature transformations. The latter approach first used sklearn routines to create116

new features (see, https://scikit-learn.org/stable/modules/generated/sklearn.117

preprocessing.PolynomialFeatures.html). For example, for features a, b, c, a poly-118

nomial transformation of degree 2 will generate the features 1, a, b, c, ab, ac, bc, a2, b2, c2.119

By generating these features, this approach aimed to check if non-linear interactions im-120

proved the classification. Finally, a new approach (random polynomial transformation) is121

presented, which aims to diversify the polynomial features (by random sampling) while122

keeping low computational requirements.123

• Deep Neural Network Models: a family of approaches based on deep neural networks,124

both fully connected and convolutional, were tested. This strategy implicitly generates125

complex features interactions, as captured by the network architecture.126

Note that previously obtained results [Frizzarin et al., 2021a] suggest that tabular methods127

work quite well with spectroscopy data. Moreover, following the suggestions in Frizzarin et al.128

[2021b], feature selection strategies were coupled with the information about the presence of129

water regions in the spectra. In addition, state-of-the-art time series classification algorithms,130

such as ROCKET [Dempster et al., 2020], MiniROCKET [Dempster et al., 2021], MrSQM131

[Nguyen and Ifrim, 2021, 2022] and FreshPrince [Middlehurst and Bagnall, 2022], were tested.132

Lastly, ensemble methods were applied, aiming to mix together time series and tabular models, to133

combine their predictions and strengths. Nonetheless, these approaches have been outperformed134
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Table 1: Accuracy results, evaluated on the 3-fold cross-validation, for the tabular methods considered,
coupled with feature selection strategies.

Method Accuracy
Ridge Classifier 0.760
LDA 0.747
Feature Selection + Ridge Classifier 0.777
Feature Selection + LDA 0.778
No water + Ridge Classifier 0.777
No water + LDA 0.783
Feature Selection + Polynomial Features + LDA 0.844
No water + Feature Selection + Polynomial Features + LDA 0.844

Table 2: Examples of RPolyTransformer features used. Here xj denote the j-th wavelength.

(x32 ∗ x19) + x103 − x2
(x102 ∗ (x78) + x26)
(x1 − x150) + x64 ∗ x4 ∗ x5

by the ones mentioned above, therefore the corresponding results are not shown in the next135

sections.136

3.1.1 Tabular models, feature selection and transformation137

In Table 1, results for the best tabular methods are presented. Both the ridge classifier, appro-138

priately tuned, and LDA performed quite well, while being extremely fast to train. Nonetheless,139

the selection of some specific wavelengths seemed to improve the accuracy further. In fact, both140

the removal of the noisy water regions and the data-driven feature selection (performed using141

the SelectFromModel routine in Python), provides better results.142

Nevertheless, all these approaches hover around 80% accuracy, therefore, in order to improve143

it, the data were augmented considering polynomial features of degree two (using sklearn144

method PolynomialFeatures(degree = 2)). This led to an increase of the accuracy to 84.4%.145

The LDA component visualisation for the model with Feature Selection and Polynomial Features,146

applied on the unlabeled test dataset, is shown in Figure 1 and a good discrimination between147

the three classes is clearly visible.148

The improvements obtained when considering polynomial features, come at a price in terms149

of the computational requirements. In fact, starting from the 1060 original wavelengths, the150

addition of second-degree polynomial features resulted in a total number of variables which151

made the model estimation task unfeasible. To address this issue, in this work a new Random152

Polynomial Features (RPolyTransformer in the following) approach was introduced. The key153

idea was to implement random sampling in the non-linear feature space. This lead to relevant154

advantages as the total number of features can be controlled and it can consider both higher-155

degree (> 2) polynomial features and complex mathematical functions (e.g., cosine, exp).156

This strategy firstly generated K random arithmetic expressions (see Table 2 for some ex-157

amples), which are then used to compute K non-linear features. From the new and the original158

features, K∗ variables are selected using SelectKBest from sklearn. The hyperparameters K159

and K∗ were optimized via cross-validation in the final model (see the final row of Table 3).160

In Table 3 the results obtained with this method, again combined with different classifiers and161

feature selection approaches and tested with the full data and the data after water region removal,162

are presented. At first, when combining RpolyTransformer with a classifier, a significant drop163

in the accuracy was observed, if compared with simple tabular models. Ridge was more accurate164

than LDA but it was still far behind the previous results. However, by carefully filtering the165
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Figure 1: LDA visualisation for the model Feature Selection + Polynomial Features + LDA, applied to
the unlabeled test data to predict class labels.

features either automatically with SelectFromModel or manually by removing the water regions,166

the results improved noticeably. In these experiments, LDA outperforms Ridge consistently.167

Compared to the PolynomialFeatures method, the one proposed here is faster (a few seconds168

versus a few minutes) and just as accurate. However, the initial results without noise reduction169

(i.e., feature selection) suggest that this strategy is more sensitive to noise in the data.170

3.1.2 Deep Learning Models171

When considering deep learning models, the task of exploding the feature space and learning172

feature interactions is completely deferred to the network, without requiring any feature engi-173

neering steps. In turn, deep neural networks require a careful design process, to avoid overfitting174

and to identify the best model architecture and input modality.175

The designed model architectures considered here can be grouped into two main categories,176

namely, Fully Connected Networks (FCNs) and Convolutional Neural Networks (CNNs). FCNs177

do not require any manipulation or adaptation of the input data, as each single wavelength178

is treated as an independent feature and fed to an input unit. In contrast, CNNs require the179

data to be bi-dimensional, image-like matrices, as they are commonly used to address image180

classification problems. For this family of networks, the input waves need then to be vertically181

stacked as 2D arrays and therefore, in order to fit the closest squared dimension, padded with182

trailing zeros. An example of how the spectroscopy samples can be presented to the CNNs is183

provided in Figure 2. Additionally, a third group of models is tested for this challenge, namely,184

CNNs based on dilated kernels (further denoted as CNN_DILATED). Whilst regular CNNs185

extract features through compact squared filters, or local receptive fields, the CNN_DILATED186

network utilizes filters that are spatially dilated by a fixed factor [Yu and Koltun, 2015]. Dilated187

kernels are commonly used in semantic image segmentation.188

All the models in this group were trained on both the full training dataset and on the water189

reduced one. When the CNN models were trained, the full data were shaped into images of190

shape 33×33 with a padding of 29 values, while the reduced data were shaped into images of191

shape 23×23 with a padding of 11 values. As already mentioned, all padding values were zeros,192

and they were appended to the original sequences.193

The full list of the implemented architectures is presented in Table S1 in Appendix A.1. The194
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Table 3: Results for different combinations with RPolyTransformer. SelectFromModel and SelectKBest
are feature selection modules to remove noise from data (the former) and select the most discriminative
non-linear features (the latter).

Method Accuracy
Region: FULL

RPolyTransformer + Ridge Classifier 0.717
RPolyTransformer + LDA 0.619
SelectFromModel + RPolyTransformer + SelectKBest + LDA 0.848
Region: [925:1585, 1720:2989]

RPolyTransformer + Ridge Classifier 0.805
RPolyTransformer + LDA 0.847
SelectFromModel + RPolyTransformer + SelectKBest + LDA 0.843
Region: [925:1585, 1720:2989, 3738:3807]

RPolyTransformer + Ridge Classifier 0.811
RPolyTransformer + LDA 0.833
SelectFromModel + RPolyTransformer + SelectKBest + LDA 0.835
Optimized model
Region: [925:1585, 1720:2989]
RPolyTransformer(K = 17000) + SelectKBest(K∗ = 7000) + LDA 0.864

Table 4: Training results on the 3CV splits.

Model Data Split 1 Split 2 Split 3 Average

FCN FULL 0.670 0.677 0.675 0.674
NO WATER 0.854 0.851 0.837 0.847

CNN FULL 0.686 0.684 0.670 0.680
NO WATER 0.806 0.836 0.832 0.824

CNN_DILATED FULL 0.678 0.684 0.652 0.671
NO WATER 0.824 0.812 0.807 0.814

experiments were conducted on the previously described 3-fold cross-validation splits; note that,195

for each split, 20% of the training data was held back for validation purposes, to identify network196

hyperparameters such as number of training epochs, initial learning rate, or regularisation rates.197

Models were trained for a total of 50,000 epochs, with an early stopping policy used to monitor198

the validation loss to detect overfitting and save time during the training phase. The final199

model used to classify the provided unknown data was selected as the overall best performing200

architecture, and trained over the full training data for a number of epochs set as the average201

of the epochs reached during the 3CV training.202

All models were implemented using TensorFlow [Abadi et al., 2016], and trained on a work-203

station featuring a single GPU, model Nvidia Titan XP. Results are presented in Table 4, which204

contains the training performances obtained over the 3-folds CV experimental campaign. For205

all the tested architectures, excluding the water regions from the input waves resulted in a206

performance increase of roughly 12-13%. The FCN model working on data after water-region207

removal, achieved the highest accuracy across the 3 splits, with an average of 84.7%. Simi-208

lar unreported results were obtained also considering a single split validation strategy, which209

furthermore demonstrated that convolutional models tend to overfit the input data quite fast.210
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Figure 2: Spectroscopy sequences arranged as image structures. In both examples, the padding values are
visible at the bottom of the resulting images. Values are normalised in the 0-1 range for convenience.

Table 5: Confusion matrix obtained by combining LDA and SVM.

Predicted class
CLV GRS TMR

CLV 83.5% 17.4% 0.7%
True class GRS 15.8% 81.6% 0.8%

TMR 0.7% 1.1% 98.5%

3.2 Participant 2211

All the processing steps and the algorithm implementation was completed using MATLAB [MAT-212

LAB, 2018]. After having imported the dataset in tabular form, the outliers were identified as213

those observations with at least one wavelength with more than three scaled median absolute214

deviation from the wavelength specific median (see https://uk.mathworks.com/help/matlab/215

ref/isoutlier.html for further details). Classification was performed using a set of algorithms216

such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Linear Discriminant217

Analysis (LDA). To optimize the number of predicting variables, coefficient’s threshold and the218

regularization parameter was tuned using a 5-fold cross-validation and classification accuracy219

was evaluated.220

The best results were obtained using LDA, which was able to distinguish outdoor grass-feed221

cow’s milk from TMR with an accuracy of 95% while differentiating grass and clover with an222

accuracy of 68%. Figure 3 allows to visualize class boundaries by plotting the spectra projections223

in the latent space spanned by the two discriminant functions. From the figure, a clear boundary224

can be observed between the indoor and outdoor feed classes, while there is a significant overlap225

between the GRS and CLV classes. Therefore, the extracted components were then considered226

as an input to a linear SVM model to improve classification between outdoor feed classes. The227

combination of two classifier (LDA + SVM), resulting in a two-step approach, significantly228

improved the overall classification accuracy (87.1%) as well as classification accuracy between229

classes, as shown in Table 5.230
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Figure 3: LDA components extracted from the developed model.

3.3 Participant 3231

The present work was developed independently by three group members, following a common232

preliminary analysis of spectral data. Results of the prediction on the test set provided for the233

chemometric challenge were then compared to assess the agreement between the three different234

statistical approaches employed.235

3.3.1 Preliminary edits on spectral data236

These edits were conducted on raw spectral data in both the training and test sets using Python.237

Spectra expressed in transmittance were converted into absorbance by taking the log10 of the238

reciprocal of the transmittance. Subsequently, spectral wavelengths associated to water ab-239

sorption, as well as non-informative regions, were deleted. This led to a reduced version of240

the dataset, that has been used for the subsequent analyses, with 511 remaining wavelengths241

in the regions between 2,994 and 1,682 cm−1 and between 1,578 and 926 cm−1. A graphical242

representation of this procedure is reported in the supplementary material (Figure S1).243

3.3.2 First approach244

To explore the multivariate structure of the dataset, Principal Component Analysis (PCA) was245

exploited on the training dataset, using prcomp function in stats package and the factoextra246

package [Kassambara and Mundt, 2020] in the R environment R Core Team [2020]. The analysis247

revealed that most of the data variability was explained by the first two Principal Components248

(PCs), accounting together for the 88% of the total variance (see the scree plot on the left top249

panel in Figure 4).250

Afterwards, possible outliers were detected using the algorithm proposed by Filzmoser et al.251

[2008] and implemented in the mvoutlier package [Filzmoser and Gschwandtner, 2021]; only the252

observations being both location and scatter outliers were removed from the training dataset.253

As a results, a total of 63 observations were removed from the training dataset.254

After outliers removal, linear discriminant analysis was considered using lda function in the255

MASS package [Venables and Ripley, 2002]. To test its accuracy, as a first step the discrimi-256

nant functions were applied to the training dataset, with the aim of comparing the estimated257

classification with the actual one. Therefore, LDA was first applied to maximize the differences258
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Table 6: Summary of the results of the three different approaches.

Approach 1 Approach 2 Approach 3
Brief description Two steps DA in R Canonical DA with

stepwise method in SAS
DA with stepwise meth-
ods in SPSS

Number of samples
(training set)

3180 3116 3153

Number of wavelengths
retained

511 88 16

Accuracy (training set) 83.30% 81.32% 71%

Predicted diet for the samples in the test dataset (n cases)
TMR 344 326 365
CLV 367 342 326
GRS 366 353 386

Agreement between the approaches applied to the test dataset
Member 1
Member 2 84.21%
Member 3 72.90% 70.84%

between TMR and the CLV+GRS (in the following named PAST group). The LDA returned259

one Linear Discriminant (LD) function, which was then applied to the training dataset to at-260

tribute the TMR diet to observations. Afterwards, LDA was applied again by maintaining in261

the training set only the observations belonging to the PAST group. The obtained LD function262

was then applied to the whole training dataset to discriminate between CLV and GRS diets263

previously categorized as PAST. The vector with the predicted classes was then compared with264

the vector of actual group classification in the training dataset, thus computing the training265

accuracy. This appproach resulted in an overall model training accuracy equal to 83.3% (see266

Table 6); the scatter plot of the first versus second linear dimension scores is depicted in the267

right top panel in Figure 4. Lastly, the LD functions obtained on the training dataset allowed268

for the classification of the unknown observations in the test dataset, with the results reported269

in Table 6.270

3.3.3 Second approach271

Principal component analysis (PROC PRINCOMP, SAS Institute Inc., ver. 9.4) was undertaken272

on the training set, as in Section 3.3.2. Coherently, outlier removal was then performed by273

calculating the Mahalanobis distance (MD) as the uncorrected sum of squares of the first four274

centred and scaled PC scores, explaining up to the 98.21% of the total spectral variance. Outliers275

were defined as samples whose MD was greater than the 97.5th percentile of a χ2 distribution276

with 4 degrees of freedom [Brereton, 2015]. Following this approach, a total of 127 samples were277

discarded from the training set.278

The discriminant model was developed following a multiple-step approach. Firstly, a step-279

wise discriminant analysis was carried out in order to identify the most significant wavelengths280

associated with the three different diets using the PROC STEPDISC. A total of 88 wavelengths281

were retained and used for the subsequent canonical discriminant analysis, which was developed282

through the PROC DISCRIM. The proportion of samples correctly classified was 73.38% (CLV),283

73.70% (GRS), and 97.62% (TMR), with an overall model accuracy of 81.32%. The scatter plot284

of the first versus second canonical variables scores is in the bottom left panel of Figure 4. The285

wavenumbers with the greatest (in absolute value) canonical discriminant function coefficients286

were between 1,154 and 1,162 cm−1, 2,843 cm−1, 2,874 cm−1, and 2,882 cm−1, thus providing287

some potentially relevant information to be explored to assess which milk chemical features are288
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Figure 4: Explained variance by the first 10 principal components (top left), scatter plot of discriminant
models developed by member 1 (right top), member 2 (bottom left) and member 3 (bottom right).

more influenced by the dietary regimen. The discriminant model was then applied to the test289

set to obtain the prediction of cows’ diet on unknown milk spectra.290

3.3.4 Third approach291

Standard assumptions required for multivariate analyses were verified before proceeding to the292

main analysis. Two diagnostic measures were used to identify the outliers for the predictors293

and the dependent variables; in the former case Mahalanobis Distance (MD) was used to spot294

multivariate outliers while, in the latter one, studentized residuals were considered. Samples295

whose MD was greather than the 97.5th percentile of the MD distribution and studentized296

residuals greater than 2.5 were removed. During this process, a total of 90 outliers have been297

identified and excluded. Potential multicollinearity was then verified by Tolerance and Variance298

Inflation Factors. Moreover, the ratio between the number of cases and predictors was checked299

as an indicator of the adequacy of the sample size; a ratio of 20 observations for each predictor300

variable, with the smallest group size exceeding the number of independent variables, is suggested301

[Meloun and Militkỳ, 2011; Pituch and Stevens, 2015].302

LDA was then chosen as the main discriminative approach. The stepwise method, us-303

ing Wilks’ lambda Λ as criterion, was adopted to reduce multicollinearity and increase the304

case/predictors ratio, improving the adequacy of the sample size. Box’s test and log determi-305

nants were considered to verify the equality of covariance matrices. The canonical correlation306

and the proportion of between-group variance that is due to each variate were used as mea-307

sures of effect size [Pituch and Stevens, 2015], while the performance of the LDA was evaluated308

by classification-related statistics and leave-one-out CV [Hahs-Vaughn, 2016]. The Scoring309

Wizard command was finally used to apply the discriminant functions (DF) to the test dataset,310
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and the predicted probability was calculated to assess its performance. Analyses were performed311

with SPSS software [IBM Corp., 2017].312

Standardized canonical DF coefficients of the variables selected by DA and measures of effect313

size are shown in Table S2 in the Supplementary Material. More than 90% of the total difference314

between the groups was attributable to the first DF, with the Wilks’ Λ (0.330) indicating that it315

has a significant discriminating capacity (p-value < 0.001). Wavenumber 2,851 cm−1 and 2,890316

cm−1 mostly contributed to the discrimination of cows’ diet. The second DF only explained317

6% of the total variance, being nonetheless still significant (Wilks’ Λ= 0.902; p-value < 0.001).318

Centroids (Table S3) and the plot of DF scores (bottom right panel in Figure 4) indicated319

that the first DF appropriately discriminate the TMR group from the others (i.e., CLV and320

GRS). On the other hand, group separation on the second DF was poor; in particular, CLV and321

GRS clusters were not clearly distinguished. The cross-validation procedure indicated an overall322

model accuracy of 71% (see Table 6), with different sensitivity between groups: over 90% for323

TMR samples, and below 65% for CLV and GRS samples. The application of DFs to predict324

the diet of cows in the test data set showed a similar trend, with an expected sensitivity of 64%,325

63%, and 87% for CLV, GRS, and TMR diets, respectively (Table S4).326

Lastly note that, all the three approaches were applied and the results were compared at the327

end of the competition. Despite the better prediction performance shown by the first approach328

on the training set, the second approach proved to be the best for the prediction of the test set.329

3.4 Participant 4330

A conventional machine learning pipeline was used, composed of feature (i.e., wavelength) selec-331

tion and classification, with no outliers being removed from the original dataset. Dimensionality332

reduction techniques such as Principal Component Analysis (PCA) and Independent Compo-333

nent Analysis (ICA), as well as Extended Multiplicative Scatter Correction (EMSC) and a data334

augmentation approach were tested to improve the classification results [Bjerrum et al., 2017].335

EMSC represents a preprocessing technique which removes multiplicative effects potentially336

caused by physical phenomena such as light scattering, which is commonly seen in reflectance337

spectroscopy, thus allowing for easier modelization of chemical effects. On the other hand, the338

data augmentation scheme increases the data set ten fold by adding random variations in offset,339

multiplication, and slope, nine times to each sample. The variations were ± 0.1 times the stan-340

dard deviation of the training set for the offset, multiplication was 1 ± 0.1 times the standard341

deviations, and the slope adjustement was between 0.95 and 1.05 [Bjerrum et al., 2017].342

Subsequently a range of different classifiers, which have successfully been adopted before343

on infrared spectroscopy data, were used. In particular, the considered models were K-nearest344

Neighbour [K-NN; Balabin and Safieva, 2011], Random Forest [RF; Chen et al., 2021], Sup-345

port Vector Classification [SVC; Ji-yong et al., 2013], Multilayer-perceptron [MLP; Balabin and346

Safieva, 2008], Linear Discriminant Analysis [LDA; Khuwijitjaru et al., 2020], Decision Tree347

Classification [Geronimo et al., 2019], Nu-Support Vector Classification [NuSVC; Terouzi et al.,348

2013], AdaBoost Classification [Wu et al., 2017], Gradient Boosting Classification [Munera et al.,349

2021], Gaussian Naive Bayes [Bhati and Bhattacharya, 2020] and Quadratic Discriminant Anal-350

ysis [QDA; Oravec et al., 2019]. Other investigated predictive methods belonged to the group of351

deep Learning (DL) techniques, and in particular one-dimensional (1D) Convolutional Neural352

Network (CNN). This 1D CNN makes use of six one dimensional convolutional layers, and a353

number of max pooling, batch normalization and dropout layers. Each 1D CNN layer is followed354

by a max-pooling and batch normalization layer. The one-dimensional CNN only used the raw355

spectra, as the use of PCA and FastICA would be detrimental due to the transformation of the356

sequence of the data.357

Prior to the analyses, the dataset was split into a training set (80% of the data), to train358

different models, and a validation set (remaining 20% of the data), used to optimise the hyper-359

parameters and to identify the best methods to be used for the final testing. This split was360
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Figure 5: Results of classifiers on a 80/20 test-train split.

made by utilizing the train_test_split function provided through scikit-learn [Pedregosa361

et al., 2011].362

An initial experiment was performed on all classifiers without the use of data augmentation363

or feature selection. This was carried out to explore which classification method was performing364

better with the raw spectral data. Figure 5 shows the results obtained from the initial step365

with the 80/20 train/validation for different classifiers. All results gathered were averages taken366

from three training and validation predictions for each model. LDA gave the best results with367

an accuracy of 76%, whereas the MLP and SVC produce some of the worst performances with368

accuracies around 33%.369

In the second stage, the classifiers were tested in conjunction with PCA, ICA or data aug-370

mentation: for PCA and FastICA scikit-learn methods were used, with the parameters being371

setted as FastICA(tol = 0.02, max_iter = 4000) and PCA(n_components = 800). The use372

of PCA and ICA altered the data by reducing the dimensionality, while on the other hand373

data augmentation increased the number of samples. For data augmentation, the data augment374

function from Bjerrum et al. [2017] was used. This increased the number of training samples375

from 3,244 to 19,464. At this stage, only a subset of the previously tested model were con-376

sidered, based on their performances in the previous step. Figure 6 shows the results of each377

classifier with each pre-processing method (base, ICA, PCA, data augmentation (Aug)). From378

these results, it was noted that LDA following data augmentation achieved the highest accuracy379

with 82.7%. The greatest improvement in the predictions was observed using MLP after ICA380

(improvement of 41%). An additional experiment was then carried out with just the use of the381

LDA model. This was to show the importance of regions within the spectra, and a number of382

different wavelength region were tested. Therefore, figure 7 shows the results of the LDA when383

removing different spectral regions.384

There was a general increase in accuracy over the base approach when data augmentation385

was used, with the only exception of CNN. With regard to wavelengths selection, there was no386
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Figure 6: Results of classifiers on with different pre-processing methods.

Figure 7: Results of Linear Discriminant Analysis for different feature selection.

noticeable increase in accuracy when focusing on a specific region in the spectra. Nonetheless,387

the majority of the relevant information lied within the region from 925 cm−1 and 1597 cm−1,388

and there was a slight increase in the accuracy of prediction of around 1% when using the range389

of 925 to 1585 cm−1 and 1717 to 2103 cm−1 compared to the full set of wavelengths.390

3.5 Participant 5391

In order to prepare the data set for predictive analysis, some pre-processing was considered.392

As directed by the challenge organisers, outlying spectra were removed such that the data set393

consisted of 3243 transmittance spectra covering 1060 wavelengths. Spectra were transformed394

to absorbance values by taking log10 of the reciprocal of the transmittance values. In addition,395

following Frizzarin et al. [2021b], a subset of 534 wavelengths that lay outside the water-related396
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high-noise-level regions were identified as relevant for predicting a cow’s diet, although the397

water-regions were not excluded at this point in the analysis.398

To ensure a robust assessment, the dataset was split into training and validation sets. In this399

case, the validation set was constructed to control for batch effect confounding, which may bias400

estimates for out-of-sample prediction [Soneson et al., 2014]. Inspection of the data set revealed401

that rows were ordered to have several consecutive observations of each diet. Therefore, it402

was assumed that each set of consecutive diet observations belonged to a single batch. In this403

manner, 90 batches, 30 for each diet, were identified. In addition, the data was collected over404

three years [Frizzarin et al., 2021b], and so it was assumed that the first 30 batches were collected405

in the first year of the study, the next 30 in the second year, and the final 30 in the third. Based406

on these assumptions, the validation set consisted of 996 spectra from 30 batches collected in407

the study’s third year, which included ten batches for each diet, while models have been trained408

on the 2247 remaining spectra. Training data was randomly split into V = 10 folds, with each409

fold including two batches from each diet. Possible batch effect of repeated measurements for a410

single cow were ignored.411

In order to describe the predictive model used in this analysis, let D = {yi,xi}Ni=1 denote the412

observed data, where the response variable yi ∈ {1, . . . ,M} represents the diet of the i-th cow413

and covariates xi ∈ RD represent the corresponding milk absorbance spectrum. Note that this414

analysis considers M = 3 diets, D = 1060 wavelengths, and N = 3243 training observations.415

The objective of the proposed predictive models is to learn P (y | x), that is, the probability that416

a given milk sample comes from a grass, clover or TMR-fed cow, given the spectrum for that417

sample.418

The first step in constructing a predictive model is to define a deterministic mapping function419

g : xi → zi, for zi ∈ RD′ , with D′ < D, which describes a feature extraction procedure. Two420

approaches to feature extraction were considered here. The first simply selected the D′ = 534421

relevant wavelengths identified by Frizzarin et al. [2021b] such that zi is the i-th absorbance422

spectrum after removing the high-noise-level water regions and standardises each wavelength.423

The second was based on the wavelet transform, a popular technique for signal processing which424

can be applied for data compression, smoothing, and multi-resolution analysis [Nason, 2008], and425

proceeds in three steps. After setting high-noise-level regions of each spectrum to 0, a thresholded426

wavelet transform provides a set of wavelet coefficients. The feature vector zi is then the vector427

of wavelet coefficients that are non-zero for at least one of the N spectra, in this case D′ = 594.428

The thresholded wavelet transform is available with the wavethresh R package [Nason, 2016],429

using Daubechies least symmetric wavelet as the mother wavelet and Bayesian approach to430

thresholding wavelet coefficients [Abramovich et al., 1998]. Note that setting wavelengths in431

the high-noise-level regions to 0 means the wavelet transform preserves the spectral distance432

between wavelengths while ensuring that the corresponding wavelet coefficients are 0.433

Given the feature vector zi = g (xi), a multinomial regression model for diet was assumed,434

such that435

P (yi = m | zi) =
exp

(
β>mzi

)
∑M

l=1 exp
(
β>l zi

) , (1)

for m = 1, . . .M where βm ∈ RD′ , implicitly assuming that zi includes an intercept term.436

The glmnet package [Friedman et al., 2010] fits this model to data efficiently. For simplicity, a437

LASSO model was fitted, where 10-fold cross-validation on the training data informs the penalty438

hyperparameter.439

Finally, the predictive performance of the proposed models was compared by analysing their440

log-loss on the validation data set. That is, for a validation data set and a model Mj for441

zi = g (xi), the log-loss is defined as442

`j = − 1
N ′

N ′∑
i=1

M∑
m=1

I (yi = m) lnP (yi = m | zi,Mj) , (2)
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Table 7: Predictive model assessment.

Model In-sample log-loss Validation log-loss
Raw Spectra 0.57 0.82

Wavelet Coefficents 0.74 0.88

where N ′ is the number of observations in the validation set, I (A) is the usual indicator function443

that is equal to 1 when A is true and 0 otherwise and P (yi = m | zi,Mj) is the probability under444

Mj that yi = m given zi. The log-loss is a proper scoring rule for evaluating predictive models445

[Gneiting and Raftery, 2007], where smaller scores are better, and so encourages the analysts446

to express their true belief about the data. It is also straightforward to set benchmarks for447

assessing the quality of predictions a priori. For example, for any M a mean log loss of 0448

represents perfect predictive performance, while when M = 3 as in the considered case, a mean449

log loss of − ln(1/3) ≈ 1.1 represents “guessing”, where we predict each category uniformly at450

random. For completeness, the classification accuracy ofMj was also assessed.451

The results of this analysis are presented in Table 7. The first model considered was a LASSO-452

penalized multinomial regression of the raw milk spectra on the diet, where high-noise-level453

regions of the spectrum was excluded and the wavelengths standardised. The tuning parameter454

λ, controlling the strength of the penalization, was selected to minimise the multinomial deviance455

(a statistic proportional to the mean log-loss) via 10-fold cross-validation. The log-loss of this456

model on the training set was 0.57, which corresponds to a diet classification accuracy of 77%.457

A closer examination of the predictions revealed that when CLV and GRS were treated as a single458

category (pasture-fed), it was possible to predict TMR with an accuracy of 94%. When trying459

to predict whether the cow was fed CLV, given that it was pasture-fed, an accuracy of 72% was460

achieved. Predictive performance was much poorer on the validation set, with an overall log-loss461

of 0.82, corresponding to an accuracy of 58%. The model predicted TMR with an accuracy of462

88%. However, for cows known to be pasture-fed, it predicted CLV with an accuracy of 49%.463

The second model considered a multinomial regression of the non-zero thresholded wavelet464

transform coefficients of the milk spectra on diet. As above, the model was fitted by maximising465

a penalised log-likelihood and by using 10-fold cross-validation to tune λ. For this model, the466

log-loss on the training set was equal to 0.74, corresponding to an accuracy of 69%, although it467

predicted TMR with an accuracy of 88%. For pasture-fed cows, it predicted CLV with an accuracy468

of 68%. As with the first model, performance dropped for the validation set. The log-loss was469

0.88 and TMR accuracy was 79%. Given that a cow was pasture-fed, the CLV accuracy was 47%.470

These results are summarised in Table 7.471

The obtained results clearly showed that milk spectra carry a signal distinguishing pasture-472

fed cows from TMR, but that it was difficult to distinguish between CLV and GRS. However, the473

predictive performance was much poorer on the validation dataset than for the training one,474

indicating that the adopted models did not offer a robust out-of-sample predictions. Without475

careful consideration of potential batch effect confounders within the sampled spectra, we are476

likely to overestimate the out-of-sample performance of our models. Collecting data from more477

cows over a more extended period should alleviate this issue and allow more robust models to478

be developed.479

Lastly, no evidence was found to suggest that wavelet transformed spectra provided helpful480

insight into the cows’ diet. However, that is not to say that some alternative basis expansion481

could improve the current predictive models. In fact, given more data on the relationship be-482

tween milk spectra and diet, the development of models which allow for non-linear relationships483

between wavelengths may prove a fruitful avenue for future research.484

485
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3.6 Participant 6486

As a first step, the training set was centered and scaled and the same transformation was487

applied to the test set. In the following analyses, no outliers were removed while all the spectra488

were transformed from transmittance to absorbance. Wavelengths from high-noise level spectral489

regions between 1720 and 1592 cm−1, between 3698 and 2996 cm−1, and greater than 3,818490

cm−1 were removed from the analysis following Frizzarin et al. [2021b].491

The Fisher score, being the ratio of between to within diet group variance, was calculated
for all the wavelengths in the training set. For wavelength j, the Fisher score is given by:

Fisher scorej =
∑M

m=1
∑n

i=1 I(yi = m)(x̄(m)
·j − x̄·j)2∑M

m=1
∑n

i=1 I(yi = m)(xik − x̄
(m)
·j )2

where j denotes the wavelength index, i = 1, . . . , n denotes the spectra with n being the number492

of spectra in the training set, m denotes the diet group with M = 3, I(yi = m) is an indicator of493

diet group spectra i, x̄·j is the average of wavelength j for all spectra (i = 1, . . . , n), x̄(m)
·j is the494

average of wavelength j in diet group m. A wavelength with the highest Fisher score in each495

of the discarded regions was kept in the analysis. Wavelengths with Fisher score lower than496

0.002 were removed from further analysis, thus leaving 380 wavelengths. In order to compare497

algorithms and carry out further feature selection, the training set was itself randomly split498

75/25 into training and testing sets stratified by diet. A genetic algorithm [Holland, 1992],499

implemented in library genalg [Willighagen and Ballings, 2022] was used as a stochastic search500

method to find an optimal subset of input wavelengths for classification. Individuals in the GA501

population were represented by binary strings denoting wavelengths to be included or excluded502

for prediction. Objective function was set to be the average accuracy from ten cross-validated503

fits of linear discriminant analysis (LDA) of the training subset. GA was run for 200 iterations504

with population size set at 200. Figure 8 shows the spectra absorbance and the corresponding505

Fisher scores, with points denoting the wavelengths selected by the GA.506

The best configuration from the final GA population had 70 wavelengths included. These507

wavelengths were used as inputs to the following classification algorithms:508

• Linear discriminant analysis (LDA), library MASS [Venables and Ripley, 2002];509

• Partial least squares discriminant analysis (PLS-DA) [Mevik et al., 2020];510

• Least absolute shrinkage and selection operator [LASSO; Tibshirani, 1996], library glmnet511

[Friedman et al., 2010];512

• Elastic net [EN; Zou and Hastie, 2005], library glmnet;513

• Random Forest [RF; Breiman, 2001], library ranger [Wright and Ziegler, 2017];514

• Support vector machines [Vapnik, 1998], library kernlab [Karatzoglou et al., 2004];515

• Bayesian kernel projection classifier [BKPC Domijan and Wilson, 2011], library BKPC516

[Domijan, 2018].517

All analyses were done using R [R Core Team, 2020], the code is available in the github518

repository https://github.com/domijan/KD_Vistamilk2022.519

The training set was randomly split into ten further training/testing sets of equal size,520

stratified on diet. The average accuracy and standard deviation over the ten random splits521

for all the classification algorithms are given in Table 8. LDA performed best with average522

accuracy of 77.4%. PLS-DA and EN overall accuracy was of 76.9%, 76.5% respectively. The523

algorithms were tuned using further cross-validation of the training sets. For BKPC and SVM,524

the best results were obtained with a linear kernel. The predictions of the LDA were submitted525

to the competition. Moreover, genetic algorithm was able to select a much smaller subset of526

wavelengths without loss of classification performance.527
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Figure 8: Spectra absorbance and the corresponding Fisher score with points on the x-axis denoting the
wavelengths selected by the GA.

Table 8: Average accuracy for over ten random splits of the training set for classifiers. LDA: linear
discriminant analysis; PLS: partial least squares regression; EN: elastic net; BKPC: Bayesian kernel
projection classifier; SVM: support vector machine; LASSO: Least absolute shrinkage and selection oper-
ator; RF: random forest.

Accuracy LDA PLS EN BKPC SVM LASSO RF
Mean 0.774 0.769 0.765 0.759 0.738 0.736 0.509
SD 0.008 0.009 0.007 0.008 0.007 0.006 0.014

4 Discussion528

While the dataset provided for the data competition included three different classes to dis-529

criminate (i.e. TRM, GRS, and CLV), the main difficulty of the present data competition was530

concerned with the discrimination between GRS and CLV diets. In fact, the ability of dis-531

tinguishing pasture and TMR dietary regimens has been already documented [Frizzarin et al.,532

2021b], with the discrimination being driven mainly by the different content of fatty acids (FA)533

in milk [Agradi et al., 2020]. In particular, milk from pasture based diet is generally richer in534

saturated FA such as linoleic acid, poorer in saturate FA, and have a lower omega6/omega3535

ratio [see e.g. Chilliard et al., 2007; Dewhurst et al., 2006; Ferlay et al., 2013, 2017]. As MIR is536

known to be able to predict, with a certain degree of accuracy, the different FA in milk [Soyeurt537

et al., 2011], spectral data are therefore capable to discriminate also TMR and pasture diets.538

On the other hand, since GRS and CLV dietary regimens differed only for the inclusion539

of 20% annual clover in perennial ryegrass sward for the CLV diet, induced differences in the540

FA might be less clear. As a consequence, to discriminate GRS and CLV exploiting spectral541

information only, a careful and accurate tuning of the modelling choices was required. In this542

regard, interestingly, some participants proposed two-steps classification approaches, with the543

first step focusing on TMR and pasture based diets, while the second one aimed at distinguishing544

CLV from GRS samples. As an example, participant 2 highlighted a potentially significant gain545
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Table 9: Accuracy computed on the test dataset for all the participants.

Participant Sect 3.1.1 Sect 3.1.2 Sect 3.2 Sect 3.3.2 Sect 3.3.3
Test accuracy 0.871 0.837 0.798 0.711 0.783
Participant Sect 3.3.4 Sect 3.4 Sect 3.5 Sect 3.6

Test accuracy 0.796 0.786 0.724 0.766

in terms of accuracy when considering an ensemble approach, where components extracted from546

LDA was used to train a linear SVM, better discriminating between GRS and CLV. Again, in547

Section 3.3.2 two consecutive LDA models have been fitted, with the first one being used to548

discriminate TMR from pasture while the second, exploiting the discriminant function on the549

pasture samples only, was trained to classify GRS and CLV.550

Generally speaking, linear approaches introduce a gain in interpretability of the results,551

while paying a price in terms of accuracy. Nonetheless, the review of the different approaches552

presented in this paper showed that strong performances were achieved resorting to linear clas-553

sifiers. In fact, remarkable results were obtained when adopting LDA-based approaches (see,554

e.g., participants 1, 2, 4 and 6), which were certainly proven effective in discriminating TMR555

and pasture diets and, as highlighted above, were also used as a building block for promising556

two-steps procedures. Nevertheless, the approaches presented in Sections 3.1.1 and 3.1.2, which557

attained the best test set prediction accuracies as it is displayed in Table 9, pointed towards the558

need of considering non-linearities, especially when the aim is to discriminate between GRS and559

CLV. This is confirmed by the confusion matrix displayed in Table 10, where it is shown that560

these two different dietary regimens are discriminated remarkably well, especially if considering561

their similarities from a compositional standpoint. Note that, while with FCN interpretation562

of the results and exploration of the most informative wavelengths are compromised, the ap-563

proach in Section 3.1.1, which is considering again LDA as the final classifier, tends to be more564

transparent. However, the clever random polynomial variables generation proposed tends to565

produce new features which are difficult to interpret from a chemical standpoint. Therefore, as566

it often happens in modern data analysis routine, the adopted approaches have to be tailored567

on the specific aim to pursue, often dealing with the standard trade-off between accuracy and568

interpretability.569

570

Data transformations, such as first and second derivative, are extensively used in near in-571

frared spectroscopy. In the current study with MIRS data, as widely undertaken, the only572

transformation applied to the spectral data was their conversion from transmittance to ab-573

sorbance, since the other tested transformations did not show a strong impact on the quality of574

the predictions. On the other hand the removal of noisy and non-informative spectral regions575

seemed to be of fundamental importance, as reported by the participants which tested their pre-576

diction methods before and after their removal. For example, results from Section 3.1 showed an577

improvement of 11.6% and of 25.7% when ridge regression and LDA were respectively used in578

combination of new polynomial variables generation after water regions removal. Again, in Sec-579

tion 3.1.2 an improvement of the prediction performance, from 17.5% (CNN) to 20.5% (FCN),580

after removing the water regions also when using deep learning methods is shown. Participant581

1 also demonstrated the possibility to select the important variables directly from the spectra,582

in fact they achieved the best prediction results using a variables selection approach starting583

from all the spectral information (see Table 1). Variable selection was also tested in Section 3.6,584

where a genetic algorithm was used to select a smaller subset of wavelengths without substantial585

loss in classification performance.586

In Section 3.3, the participants investigated the pairwise agreement among the three differ-587

ent approaches, to calculate by comparing the observations and quantifying the percentage of588
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Table 10: Final confusion matrix obtained with the approach outlined in Section Sect 3.1.1.

Actual
CLV GRS TMR

CLV 312 55 5
Predicted GRS 61 300 5

TMR 6 7 326

classifications in agreement on the total number of observations (Table 6). Methods applied by589

members 1 and 2 gave similar predictions (agreement of 84.21%), whereby agreement between590

predictions from member 3 was between 70.84% (with member 2) and 72.90% (with member591

1). Although strong, the discrepancies among the three predictions could be due to: i) the592

different number of samples retained for model development, and ii) the different number of593

predictors (i.e., wavelengths) used for training, considering that the first member used the en-594

tire edited spectra, whereby the second and third applied different algorithms for wavelengths595

selection. This investigation from the third participant permits to understand that differences596

in data editing and different methodologies selected for the predictions, even if similar, brought597

to consistently different class predictions.598

A final discussion point was related to the creation of the test dataset. The dataset was599

created by the organizers, who splitted the original dataset in 75% training and 25% test dataset,600

considering a correct division of the classes across years into the 2 datasets. The discussion601

revolved around whether or not divide the dataset into 75% training and 25% testing, or dividing602

the dataset according to time components, like keeping the samples recorded in 2015 and 2016603

into the training dataset, and the samples recorded in 2017 in the test dataset. Such temporal604

division would permit to understand if samples recorded in previous years can predict future605

information.606

5 Conclusion607

Thanks to the high number of participants, with different backgrounds, who provided their608

prediction results, the data competition was a thought-provoking occasion to discuss some of609

the challenges arising when analyzing spectral data and provided insightful indications.610

As mentioned in the paper and as it was previously shown in Frizzarin et al. [2021b], the611

stronger compositional dissimilarities between pasture-based diet and TMR-based ones induced612

an easier discrimination between the corresponding classes. This generally led to overall good613

performances, in terms of accuracy, for the adopted methods (see Table 9). On the other hand,614

the distinction between milk samples originated from GRS and CLV was more challenging.615

Nonetheless, as it is shown in Table 10, some hand-crafted strategies specifically proposed for616

this competition showed more than promising results also when employed to detect differences617

in the composition between distinct pasture-based feeding regimens. In particular, non-linear618

transformations of the original wavelengths and two-steps classification approaches, outlined in619

Section 3.1 and 3.3, seemed to be effective in solving this problem.620

Pre-treatments were generally not beneficial for the improvement of the prediction equations,621

while the deletion of the spectral regions related to water (with manual selection of these regions622

or by means of automatic variable selection procedures) improved the prediction results. The623

utilization of linear models, in particular LDA, provided some of the best results, and the624

overall best prediction was achieved using LDA applied after wavelengths selection and random625

polynomial generation, as it was shown in Table 9. When spectral analyses are undertaken it626

is important to know not only the best possible statistical methods to use for the analyses, but627

also what is the best data editing for such data.628
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A Supplementary material629

A.1 Deep neural network architecture630

Table S1: List of the deep model architectures considered in Section 3.1.2, including the number of
trainable parameters for each model and the type of input data they accept.

Model Architecture Parameters Input Data and Shape
FCN
- Dense layers of 1024, 512, 128, 64 and 32 units
- Output layer of 3 units
- Dropout for dense layers, drop rate of 0.2
- ELU activation for hidden layers
- softmax activation for output layer
- Adam optimiser, initial learning rate of 0.0001
- Categorical cross entropy as loss function

1,785,923 - Linear, full (1060)
- Linear, reduced (518)

CNN
- Convolutional layers with 32, 64 and 128 filters
- Filters of shape (3, 3), (2, 2) and (2, 2)
- Flattening layer
- Dense layers of 512, 256, 128, 64, and 32 units
- Output layer of 3 units
- ELU activation for hidden layers
- softmax activation for output layer
- Adam optimiser, initial learning rate of 0.0001
- Categorical cross entropy as loss function

55,332,419 - Squared, full (33×33)
- Squared, reduced (23×23)

CNN_DILATED
- Same architecture as CNN
- Kernels built with a dilation rate of (2, 2)

41,176,643 - Squared, full (33×33)
- Squared, reduced (23×23)
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A.2 Participant 3631

Table S2: Standardized canonical discriminant function coefficients of the variables selected by DA and
effective size measures.

Wavenumber, cm−1 Function
1 2

1069 2.899 0.298
1130 -3.790 0.416
1181 -2.003 5.371
1269 -7.321 -2.495
1292 10.544 -3.045
1377 -5.860 -0.482
1416 -5.885 1.267
1439 12.710 1.112
1474 -4.689 3.714
1539 -3.816 -2.385
1577 4.442 1.247
1752 11.958 6.035
2782 -1.459 0.875
2851 -15.686 -13.612
2890 16.085 3.459
2932 -4.166 0.916
Eigenvalue 1.732 0.109
& of variance 94.1% 5.9%
Canonical correlation 0.796 0.313

Table S3: Group means (centroids) for the Discriminant Functions

Diet Function
1 2

CLV 0.872 0.403
GRS 0.954 -0.400
TMR -1.895 -0.012
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Table S4: Classification related statistics and leave-one-out cross-validation. a 71% of original grouped
cases correctly classified. b Cross-validation is done only for those cases in the analysis. In cross-
validation, each case is classified by the functions derived from all cases other than that case. 70.5% of
cross-validatd grouped cases correctly classified.

Diet Predicted Group Membership TotalCLV GRS TMR

Originala
Count

CLV 629 363 83 1075
GRS 323 668 62 1053
TMR 39 44 942 1025

%
CLV 58.5 33.8 7.7 100.0
GRS 30.7 63.4 5.9 100.0
TMR 3.8 4.3 91.9 100.0

Cross-validatedb

Count
CLV 620 369 86 1075
GRS 326 663 64 1053
TMR 39 47 939 1025

%
CLV 57.7 34.3 8.0 100.0
GRS 31.0 63.0 6.1 100.0
TMR 3.8 4.6 91.6 100.0

Figure S1: Line plot of raw spectra expressed in transmittance (A), conversion of raw spectra from trans-
mittance fo absorbance (B; red boxes indicate low signal-to-noise regions), and raw spectra in absorbance
after noisy area removal (C).
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