
Vol.:(0123456789)1 3

Electronic Markets (2023) 33:37 
https://doi.org/10.1007/s12525-023-00654-3

RESEARCH PAPER

Detecting anomalous cryptocurrency transactions: An AML/CFT 
application of machine learning‑based forensics

Nadia Pocher1 · Mirko Zichichi2 · Fabio Merizzi2 · Muhammad Zohaib Shafiq2 · Stefano Ferretti3 

Received: 29 September 2022 / Accepted: 30 May 2023 / Published online: 26 July 2023 
© The Author(s) 2023

Abstract
In shaping the Internet of Money, the application of blockchain and distributed ledger technologies (DLTs) to the financial 
sector triggered regulatory concerns. Notably, while the user anonymity enabled in this field may safeguard privacy and data 
protection, the lack of identifiability hinders accountability and challenges the fight against money laundering and the financing 
of terrorism and proliferation (AML/CFT). As law enforcement agencies and the private sector apply forensics to track crypto 
transfers across ecosystems that are socio-technical in nature, this paper focuses on the growing relevance of these techniques 
in a domain where their deployment impacts the traits and evolution of the sphere. In particular, this work offers contextualized 
insights into the application of methods of machine learning and transaction graph analysis. Namely, it analyzes a real-world 
dataset of Bitcoin transactions represented as a directed graph network through various techniques. The modeling of blockchain 
transactions as a complex network suggests that the use of graph-based data analysis methods can help classify transactions 
and identify illicit ones. Indeed, this work shows that the neural network types known as Graph Convolutional Networks 
(GCN) and Graph Attention Networks (GAT) are a promising AML/CFT solution. Notably, in this scenario GCN outperform 
other classic approaches and GAT are applied for the first time to detect anomalies in Bitcoin. Ultimately, the paper upholds 
the value of public–private synergies to devise forensic strategies conscious of the spirit of explainability and data openness.
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Introduction

Over the last 15 years, the application of blockchain and dis-
tributed ledger technologies (DLTs) to the financial domain 
has generated an enthusiastic hype (Ali et al., 2020). Building 
on years of research in distributed systems and cryptography, 
the launch of Bitcoin (Nakamoto, 2008) showed it is possible 
to reliably record information (e.g., transactions) without trust-
ing a centralized party. This opened the way to peer-to-peer 
transfers and direct participation in a digital global economy. 
However, the features of disintermediation and perceived ano-
nymity of this Internet of Money (Antonopoulos, 2017) cause 
regulatory unease.1 Indeed, they defy accountability and fuel 
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1  The Internet of Money is neither a legal nor a technical definition; 
in this work, the term refers to the entire set of cryptocurrency eco-
systems, thus including the part of the Internet of Value (Tapscott and 
Euchner (2019)) that relates to payment tokens.
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fears of exploitation for illicit purposes (Chang et al., 2020). 
As confirmed by industry estimates, in 2022, the volume of 
crypto-related illicit activity hit USD 20.6 billion and increas-
ingly involves decentralized finance (DeFi) (Chainalysis Team, 
2023). This challenges the fight against money laundering and 
the financing of terrorism and proliferation (AML/CFT).

The AML/CFT framework consists of a set of laws, regu-
lations and procedures that aim to protect the integrity of the 
financial system mainly by making the concealment of the 
origin of illicit profits significantly troublesome (Pocher & 
Zichichi, 2022). Since the identification of customers and 
counterparties is a key part of AML/CFT compliance for 
entities such as financial institutions and cryptoasset service 
providers, some features of the Internet of Money that hin-
der identifiability emerge as problematic. However, crypto-
related laundering appears heavily concentrated: most value 
originating from illicit addresses is seemingly sent to few 
services, often built for criminal purposes (Chainalysis 
Team, 2023). This suggests the key role of effective, and 
possibly efficient, classification of transactions performed 
by/received from specific entities to detect and investigate 
illicit activities in the sphere at hand.

In this context, the picture of untraceable cryptocurrency 
transfers and individual freedom from governmental control 
warrants a two-fold interpretation: while user anonymity can 
safeguard privacy and data protection, lack of identifiability 
hampers investigation, enforcement, and accountability. Two 
sets of mutually influencing socio-technical events emerged: 
law enforcement agencies and private sector providers of 
RegTech solutions started exploring techniques to “follow 
the money” across blockchain ecosystems (Bartoletti et al., 
2020; Biryukov & Tikhomirov, 2019; Chen et al., 2019; 
Lischke & Fabian, 2016; Meiklejohn et al., 2016; Moreno-
Sanchez et al., 2016), while the unveiled insufficiency in 
Bitcoin’s anonymity spurred altcoin projects (e.g., Monero, 
ZCash) to implement advanced cryptographic methods that 
require new analytical tools.2

Against this backdrop, in this paper, we focus on the value 
of intelligence techniques to provide insights into the Inter-
net of Money’s ecosystems, with specific regard to machine 
learning techniques, network, and transaction graph analysis 
(Fleder et al., 2015; Ober et al., 2013; Weber et al., 2019; 
Wu et al., 2021). We first provide a background on a notion 
of anonymity that is specific to the Internet of Money and on 
the interplay of AML/CFT and blockchain forensics. Conse-
quently, we focus on the anomaly detection approaches that 
led to our experiments. In particular, we employed a dataset 
obtained from a set of Bitcoin transactions, represented as 

a directed graph network (Weber et al., 2019). The mod-
eling of Bitcoin transactions as a complex network fosters 
the use of specific graph-related analysis techniques, which 
usually help identify peculiar nodes of a network (Pocher 
& Zichichi, 2022). As per our central hypothesis, since 
money laundering involves transaction flow relationships 
between entities creating a graph structure, AML/CFT ana-
lytics could benefit from novel graph analysis techniques in 
machine learning, namely Graph Convolutional Networks 
(GCN) and Graph Attention Networks (GAT).

The results of our experiments show that GCN and GAT 
neural network typologies are promising solutions for AML/
CFT. This is in opposition to a state-of-the-art work in which 
a baseline supervised learning algorithm, i.e., non-graph-
based, such as the Random Forest, provided the best perfor-
mances (Weber et al., 2019). Thus, we underline the value 
of experimenting with techniques based on machine learn-
ing and transaction graph analysis and their combinations. 
We contextualize our argument vis-`a-vis the amount and 
complexity of crypto transaction data and the specifics of 
AML/CFT anomaly indicators. We do so by considering the 
need to mitigate the shortcomings of rule-based regimes, 
explainability aspects, and the urgency to engage in research 
informed by an interdisciplinary methodology.

To summarize, the main contribution of this work is 
twofold:

•	 We show how modeling blockchain transactions as com-
plex networks is conducive to the subsequent application 
of specific graph-based learning approaches for anomaly 
detection purposes. In particular, our experiments show 
how the GCN model generates better results than other 
machine learning methods. Notably, it seems to out-
perform state-of-the-art implementations in classifying 
illicit transactions;

•	 Our work heeds a compound of technical, operational, 
and regulatory viewpoints when considering the benefits 
of machine learning for AML/CFT anomaly detection. 
This allows us to account for the need for interpretabil-
ity and explainability, as well as the effectiveness and 
efficiency of the deployed approaches.3 This methodol-
ogy displays the value of cross-disciplinary models to 
improve accuracy, significantly aiding compliance and 
investigation, reducing false positives and over-reporting.

The remainder is structured as follows. The “Back-
ground” section provides a conceptual background on 

2  The term “RegTech”, short for “regulatory technology”, refers to 
the use of new technologies to aid regulatory and compliance pro-
cesses, mainly through FinTech software applications.

3  Research into the regulatory impacts of the explainability and inter-
pretability of AI applications is vast and detailed; in light of the scope 
of this work, we perform inevitable simplifications.
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Bitcoin’s pseudonymity and insights into the relationship 
between AML/CFT and forensics. The “Related work” 
section explores related work. The “Anomaly detection 
approaches” section takes a context-specific approach to 
outline anomaly detection techniques. In the “Experimenting 
with machine learning” sections and the “Discussion” sec-
tions, we present and discuss our study on machine learning-
based AML/CFT classification methods. The “Conclusions” 
section concludes the paper.

Background

In this section, we discuss key aspects related to pseudonym-
ity and deanoymization, followed by a discussion on AML/
CFT and blockchain forensics.

Preliminarily, we point out that in this work, the terms 
DLT and blockchain are used as synonyms. As is known, 
while the term DLT refers to a generic idea of distributed 
ledger, regardless of its implementation, a blockchain is a 
specific form of DLT in which transactions are stored as a 
sequence of blocks. Even if the term blockchain is more spe-
cific, it is more popular and often used in a wider sense. In 
this work, the way the DLT stores transactions in the ledger 
does not influence our model. Indeed, our approach consid-
ers the graph generated by transactions, i.e., a direct link 
from a transaction, say t1, to another t2, exists if the money 
earned in t1 is spent in t2. Thus, our study focuses on a layer 
that is higher than the ledger where transactions are stored.

Pseudonymity and de‑anonymization

Untraceability of payments was among the goals of the Inter-
net of Money (Filippi & Wright, 2018). However, in concrete 
terms, the latter is populated by many socio-technical notions 
of anonymity and transparency (Pocher & Zichichi, 2022). 
Following a holistic interpretation, cryptocurrencies are gen-
erated and exchanged within socio-technical systems that, 
as such, comprise of interdependent technology and human 
systems (Baxter & Sommerville, 2011; Desmond et al., 
2019). Hence, their characteristics are influenced by social 
and technical aspects. Since a literature review (Amarasinghe 
et al., 2019) falls outside the scope of our work, we heed 
the specific understanding that anonymity in the Internet of 
Money “means being able to conduct a financial transaction 
without anyone besides the sender and the receiver being able 
to identify the parties involved” (Edmunds, 2020). Indeed, 
it is a common blockchain goal to combine user anonymity 
and transparency of operations (i.e., ledger transparency), 
and a public blockchain is structurally designed to enable 
anonymous peer-to-peer transfers (Quiniou, 2019).

There is wide agreement that Bitcoin is pseudonymous, 
and not anonymous (Berg, 2019; Biryukov & Tikhomirov, 

2019; Li et al., 2019). Pseudonymity refers to the use of pseu-
donyms as identifiers, and a pseudonym is a subject’s identi-
fier other than the subject’s real name (Pfitzmann & Hansen, 
2010). In most blockchain systems, public–private key pairs 
uniquely identify wallet holders (Wang & De Filippi, 2020). 
Hence, in a crypto transaction, addresses (i.e., public keys) 
perform the function of usernames. It follows that senders 
and recipients are pseudonymous, not anonymous, when their 
address identifies them. However, this is not sufficient from 
a regulatory perspective because pseudonyms alone do not 
ensure accountability. Indeed, when AML/CFT rules require 
identification, they refer to real-world identities.

In principle, a currency scheme aims to prevent that the 
transaction history of its units can be retraced. If it is pos-
sible to associate a coin with its past exchanges, the cur-
rency’s fungibility is threatened, and its nominal value is 
affected. Because Bitcoin’s features seemed insufficient, new 
techniques have been embedded into anonymity-enhanced 
currencies (AECs), also known as “privacy coins”, to bypass 
regulatory constraints and surveillance. They deploy pri-
vacy-enhancing technologies such as zero-knowledge proofs 
(ZKPs). Concurrently, even if the most common way to buy 
and exchange cryptocurrencies still relies on centralized 
exchanges, the Internet of Money is witnessing the emer-
gence of DeFi applications,4 such as stablecoin projects (e.g., 
DAI), lending platforms (e.g., Aave, Compound), decentral-
ized exchanges (e.g., Uniswap, Pancakeswap) (Amler et al., 
2023; Aramonte et al., 2021; Katona, 2021). The total value 
of DeFi projects reportedly amounted to USD 1 billion in 
January 2020, USD 27 billion in January 2021, USD 60 bil-
lion in April 2021, and USD 40 billion in November 2022 
(Chainalysis Team, 2022).

Meanwhile, the private sector and law enforcement 
professionals have devised strategies to trace transfers in 
the Internet of Money. The end goal of these intelligence 
methods is to match users, definitively or statistically, to 
transactions performed by crypto-addresses—i.e., to con-
nect pseudonyms to real-world identities—leveraging unique 
identifiers. These techniques were originally labeled “block-
chain forensics”, as they were informed by the specificities 
of blockchains and defined as the use of science and technol-
ogy for the sake of investigation and fact-establishment in a 
court of law, primarily dealing with recovering and analyz-
ing the evidence on blockchain ledgers (Phan, 2021). Later, 
analytic solutions started to be requested by regulated enti-
ties. Although they have been mostly tested on the Bitcoin 

4  DeFi was defined as an “ecosystem of financial services realized 
through smart contracts deployed on public distributed ledgers” 
(Amler et al., 2023), where the role of intermediaries is replaced by 
self-executing computer code (Katona, 2021). Nonetheless, the levels 
of decentralization of the relevant projects vary and are debated (Bar-
bereau et al., 2023).
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network, data-exploitation strategies have been deployed on 
Ethereum (Bartoletti et al., 2020; Chen et al., 2019; Li et al., 
2021; Moreno-Sanchez et al., 2016), and on non-blockchain 
DLTs (Ince et al., 2018; Tennant, 2017). Evidently, both 
obfuscation and traceability are not only endeavors pursued 
by actors belonging to the crypto sphere, but also activities 
that influence the overall anonymous or transparent socio-
technical character of the domain.

Since identifiers (i.e., addresses/public keys) can be lever-
aged to connect transactions to their history, Bitcoin’s pseu-
donymity generates an inherent tension between anonymity 
and accountability (Yin et al., 2019). However, unless they are 
associated with additional data, identifiers do not reveal per-
sonally identifying information (Wang & De Filippi, 2020). 
Hence, pseudonymity does not imply identifiability, which 
is subjective: a pseudonymous subject is identifiable only if 
a specific actor can discover its real-world identity. This is 
crucial because, in the Internet of Money, there are both (a) 
actors, such as authorities and cryptoasset service providers, 
that seek to achieve identification, and (b) strategies employed 
at various levels to avert it, e.g., advanced cryptography and 
virtual private networks. This is an example of how technol-
ogy can both foster new pathways to accountability and dis-
rupt data retrievability. In this context, the transparent nature 
of (public) blockchains makes them vulnerable to insufficient 
data privacy, de-anonymization attacks, and surveillance. 
While de-anonymization is often perceived negatively, it can 
be applied for investigative purposes and to comply with rules 
that aim to mitigate specific risks, such as AML/CFT.

AML/CFT and blockchain forensics

The first concern of cryptocurrency misuse originated from 
transactions on the dark web. While a range of technologies 
aids darknet operations, cryptocurrencies, mainly Bitcoin and 
Monero, play a crucial role by facilitating payments (Akhgar 
et al., 2021). While Bitcoin is still the major player, used by 
93% of darknet markets, the adoption of Monero is increas-
ing: 67% of platforms supported it in 2021 vis-`a-vis 45% in 
2020, and some support it on an exclusive basis (Chainalysis 
Team, 2022). Nonetheless, the public perception of crypto-
related laundering is likely inflated. Indeed, even if the value 
of illicit crypto transactions reached an all-time high in 2022, 
hitting USD 20.6 billion, it accounts only for 0.24% of crypto 
activity (Chainalysis Team, 2023), and remains small when 
compared with criminal activities involving fiat currencies 
(CipherTrace, 2021; Goforth, 2020).5

Since the risk-based approach informs AML/CFT obli-
gations, regulated entities must tune compliance efforts: 
stricter measures if risk factors are higher. The end goal is to 
draw authorities’ attention when suspicions of illicit activi-
ties arise by filing a report when the entity knows, suspects, 
or has reasonable ground to suspect the given funds are the 
proceeds of a criminal activity or are related to terrorist 
financing (Directive (EU) 2018/843, 2018; FATF, 2022). 
Generally, AML/CFT duties apply to crypto-transactions, 
and cryptoasset service providers are increasingly regulated. 
In the EU, the 5th AML Directive (EU) 2018/843 (2018) first 
targeted these activities, and the regime is evolving with the 
AML Package (European Commission, 2021).

Even if the ledger transparency featured by public block-
chains mitigates the risk of fraudulent behavior, the tech-
nology is vulnerable to unpredictable exploitation meth-
ods (Shayegan et al., 2022; Xu, 2016). This prompted the 
development of specific techniques of anomaly detection. 
In this field, the Internet of Money’s opaque reputation 
appears paradoxical since it provides a huge amount of open-
source intelligence—e.g., it is possible to extract data from 
a given transaction and retrieve the history of an address, 
while methods using networks created by transactions (i.e., 
“transaction flow analysis”) can define patterns to pinpoint 
suspected addresses (Wu et al., 2021). Different analytic 
techniques have been refined over time (Yin et al., 2019), 
and mostly rely on statistical approaches—e.g., the re-use 
of an account for more transactions or the co-use of more 
accounts for a single transaction can lead to matching more 
accounts to the same user (Li et al., 2021).

Starting from 2020, a surge of ransomware attacks high-
lighted regulatory shortcomings concerning the complex 
development of the Internet of Money. Indeed, as the latter 
becomes populated by AECs and other services that increase 
obfuscation, the risks of fraud increase. More recently, in 
2022, hackers stole USD 3.1 billion from DeFi protocols, 
exploiting their transparency—i.e., typically, DeFi transac-
tions happen on-chain and the smart contract code is pub-
licly viewable. This amount accounts for 82% of all crypto 
funds stolen by hackers. In the same year, crypto mixers 
processed USD 7.8 billion, 24% of which originated from 
illicit addresses (Chainalysis Team, 2023).

To guide regulated entities in the management of their 
exposures, several authorities publish red flag/risk indicators 
to guide compliance and supervision. Notably, in the indica-
tors published by the global AML/CFT standard-setter Finan-
cial Action Task Force (FATF) there is a section on anonym-
ity risks (FATF, 2020),6 updated in 2021 (FATF, 2021).

5  It is worth noting that in 2022 the share of crypto activity associ-
ated with illicit activity rose for the first time since 2019. However, 
43% of the illicit transaction volume is linked to sanctioned entities. 
Notably, for the most part, to the crypto exchange Garantex (Chain-
alysis Team, 2023).

6  The report targets six types of indicators, relating to (i) transac-
tions, (ii) transaction patterns, (iii) anonymity, (iv) senders/recipients, 
(v) funding/wealth at source, (vi) geographic risks.
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Although a transaction’s anonymity level is insufficient 
to suggest the transfer is suspicious, the FATF underlined 
inherent issues of privacy-enhancing technologies imple-
mented by privacy coins, such as ZKPs (FATF, 2020). 
At the same time, a range of institutions highlighted the 
risks caused by unhosted wallets (Chainalysis Team, 2023; 
Europol, 2020).

Against this backdrop, forensic methods provide a wide 
range of information that emerges as pivotal for investiga-
tion, compliance, and supervision. Their value is displayed 
by the debate on the crypto travel rule, pursuant to which 
regulated entities must identify originators and recipients of 
cryptotransfers to guarantee traceability. In principle, this 
is just an expansion of data sharing measures previously 
applicable only to wire transfers, as required by the FATF 
Standards and by EU measures part of the AML Package. 
However, the reactions to the crypto travel rule exemplify 
the tension between the Internet of Money and an interme-
diary-based regulatory framework that still has to capture 
the specifics of peer-to-peer transfers and decentralized plat-
forms. Accordingly, the industry denounces the absence of 
global standards and technical solutions to underpin effec-
tive and affordable compliance.

Related work

While we do not aim to offer a review of the techniques of 
cryptocurrency forensics, in this section, we describe a few 
works that provided an application to the concepts intro-
duced above. In blockchain analytics, various methods aim 
to link pools of addresses and transactions. They can deploy 
clustering techniques to group addresses owned by the same 
user (Ince et al., 2018; Neudecker & Hartenstein, 2017; Wu 
et al., 2021) and also leverage transaction graphs to explore 
the features of the network (Al Jawaheri et al., 2020; Fleder 
et al., 2015; Ober et al., 2013; Weber et al., 2019). Some of 
these approaches aim to identify idioms of use in the net-
work that can erode anonymity (Meiklejohn et al., 2016), 
while others screen transactions to/from crypto-wallets to 
classify transactions as licit or illicit (Weber et al., 2019). 
In principle, these tools do not directly try to link addresses 
and transactions to real-world identities. However, if one of 
them is de-anonymized (in other ways), they allow to de-
anonymize the whole cluster, as the cluster database allows 
fast correlation. Likewise, the goal usually is not to identify 
transaction patterns, but to allow that when an addresses is 
suspected other addresses of the same cluster can be sus-
pected as well (Wu et al., 2021).

Clustering methodologies are based on heuristic models 
(Lischke & Fabian, 2016; Reid & Harrigan, 2013), such as: 
if two/more addresses are inputs to the same transaction, 
they are controlled by the same user (Meiklejohn et al., 

2016). In wallet-closure analysis the heuristics are applied 
to establish a unique mapping between addresses and an 
identity (Al Jawaheri et al., 2020). In behavior-based cluster-
ing (Yin et al., 2019), addresses are grouped based on pat-
terns such as transaction values (Amarasinghe et al., 2019). 
Androulaki et al. (2013) showed this could unveil the pro-
files of 40% of Bitcoin users despite privacy measures.

On the application level, analytic techniques can exploit 
the possibility to correlate transactions with users’ informa-
tion on social media. Frequently, users post their addresses 
(e.g., to receive donations) but also reveal personal infor-
mation (e.g., contact information, age, location) (Al Jawa-
heri et al., 2020). In this respect, transaction fingerprinting 
methods can make use of off-network data (Reid & Harrigan, 
2013), which is also leveraged by web-scraping and Open 
Source Intelligence tools. Fleder et al. (2015) annotated the 
transaction graph by linking user pseudonyms to online iden-
tities collected from social media and developed a graph-
analysis framework to summarize and cluster users’ activity 
to link identities and transactions.

Specific methods target mixing services (Wu et al., 2020), 
i.e., the ones that shuffle coins by sending them to differ-
ent addresses to obfuscate the flow. Although third-party 
services act as centralization points, thus aiding traceabil-
ity, new disintermediated methods such as CoinJoin (Al 
Jawaheri et al., 2020) deploy more sophisticated shuffling 
approaches. In this context, an important role is played by 
peer-to-peer cross-chain transfers, and a relatively new sub-
set of analytic efforts aims to trace cross-currency transfers 
through exchanges such as ShapeShift (Al Jawaheri et al., 
2020). Harrigan and Fretter (2016) clustered the addresses of 
the whole Bitcoin blockchain to show that the methodology 
remains effective despite mixed transactions.

Another line of forensic research, further discussed in 
the “Anomaly detection approaches” section, is based on 
machine learning. Yin et al. (2019) presented a supervised 
learning-based approach to de-anonymize the Bitcoin block-
chain to predict the type of entities yet not identified. They 
built classifiers concerning 12 categories and concluded that 
it is possible to predict the type of an entity. To do so, they 
collaborated with the analytic company Chainalysis that pro-
vided the data and had previously clustered, identified, and 
categorized a considerable number of addresses manually 
or through clustering techniques. They show two examples, 
one where they predict a set of 22 clusters suspected to be 
related to criminal activities, and another where they classify 
153,293 clusters to provide an estimation of Bitcoin activ-
ity. Furthermore, they concluded it is possible to predict if 
a cluster belongs to predefined categories such as exchange, 
gambling, merchant services, mining pool, mixing, ransom-
ware, and scam.

Machine learning solutions benefit from constructing 
multiple graph types from blockchain data, e.g., a blockchain 
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account (or a group of) is a node, and a single transaction 
between two accounts is an edge. An edge’s weight is then 
defined as the aggregate transaction volume over a period of 
time. The latter is the predominant crypto-related forensic 
method seen in the “AML/CFT and blockchain forensics” 
section (Weber et al., 2018). Relatedly, Weber et al. (2019) 
benchmarked GCN against various supervised methods. In 
contrast, Eddin et al. (2021) extended their work to reduce 
false alerts through supervised learning methods in a context 
not related to the Internet of Money. They call the machine 
learning component the “triage model,” tasked to process the 
rule-generated alerts: the generated score enables alert sup-
pression or prioritization. The GuiltyWalker (Oliveira et al., 
2021) leverages random walks on a crypto-transaction graph 
to characterize distances to previous suspicious activity.

Table 1 shows a summary of the most influential research 
cited in this section. In this work, we aim to enhance the per-
formance of classifier methods based on machine learning 
and graph analysis. To this end, we (i) adopt a novel scheme 
for transaction classification based on GAT; and (ii) resort to 
an updated implementation of GCN with respect to related 
works. As pointed out in the results section, this configura-
tion improves state-of-the-art performance. Our methodol-
ogy is backed up by an analysis of crypto-specific AML/CFT 
issues and anomaly detection approaches addressed in the 
next section. In particular, we consider the set of transactions 

and their inherent characteristics, i.e. the fact that to spend 
cryptocurrencies, a user needs to have received them from 
previous transactions. These dependencies allow the creation 
of a graph whose structure can help identify illicit transac-
tions. However, the need arises to identify the criteria that 
can inform a proper transactions classification—e.g., defin-
ing how it is possible to state that if a transaction is illicit, its 
neighbor transactions are also illicit, or if any graph-specific 
patterns represent suspicious activities. To confront these 
issues, it is essential to have a clear understanding of anom-
aly detection approaches in the RegTech field.

Anomaly detection approaches

The process of anomaly/outlier detection involves process-
ing data to detect behavior patterns that may indicate a 
change in system operations. The goal is to single out rare 
or suspicious events/items—i.e., those significantly differ-
ent from the dataset (Kamišalić et al., 2021). While collec-
tive anomaly detection methods target groups of data points 
that differ from most of the data, point anomaly detection 
also considers single data points (Li et al., 2022; Shayegan 
et al., 2022). AML/CFT-regulated entities, especially in the 
financial industry, deploy RegTech solutions to screen their 
operations and detect anomalous activities in an automated 

Table 1   Summary of the features and comparison of related works with our work

Work Methodology Algorithms Results

Reid and Harrigan (2013) Network analysis Flow analysis + off-network infor-
mation

Associate addresses with each other 
and with external identifying 
information

Fleder et al. (2015) Network analysis Flow analysis + web scraping Link illicit activities to online identi-
ties

Wu et al. (2021) Network analysis Safe Petri Net-based cluster analysis Find suspected addresses
Al Jawaheri et al. (2020) Network analysis Wallet-closure analysis Infer links between Bitcoin users and 

hidden services
Harrigan and Fretter (2016) Network analysis Address-clustering analysis Identify super-clusters
Sun et al. (2021) Graph analysis Flow-based graphs analysis with 

coupled tensors
Anomalous transactions detection 

FAUC metric 0.94
Li et al. (2020) Graph analysis Theoretical flow-based multipartite 

graphs analysis
Anomalous transactions detection 

FAUC metric 0.96
Yin et al. (2019) Machine learning Supervised learning-based (base-

line)
Predict type of yet-unidentified entity 

F1score 0.796 (GradientBoosting)
Weber et al. (2019) Machine learning + Graph analysis Supervised learning-based (base-

line + GCN)
Predict illicit transactions F1score 

0.796 (Random Forest)
Eddin et al. (2021) Machine learning + Graph analysis Supervised learning-based (base-

line + triage model)
Reduce the number of false positives 

by 80%
Oliveira et al. (2021) Machine learning + Graph analysis Supervised learning-based  (base-

line + GuiltyWalker)
 Predict illicit transactions F1score 

0.85 (Random Forest)
Ours Machine learning + Graph analysis Supervised learning-based (base-

line + GCN + GAT)
Predict illicit transactions F1score 

0.844 (GCN)
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way. Their effort is based on the risk indicators provided by 
regulators usually in a rulebased format—i.e., templates of 
sequences of actions that suggest a suspicion in a way that is 
self-explainable and interpretable. Indeed, compliance deci-
sions must be explainable and traceable for auditing. For this 
reason, the preliminary review of a flagged account relies 
on suspiciousness heuristics (e.g., political exposure, geo-
graphic location, transaction type, users’ behavior) (Weber 
et al., 2018). This is the case of the mentioned FATF’s indi-
cators, developed from analyzing 100 + case studies from 
2017 to 2020 (FATF, 2020). Rule-based red flags can pertain 
to transaction patterns, such as “incoming transactions from 
many unrelated wallets in relatively small amounts (accumu-
lation of funds) with subsequent transfer to another wallet 
or full exchange for fiat currency,” or to anonymity, such as 
“moving a VA that operates on a public, transparent block-
chain, such as Bitcoin, to a centralized exchange and then 
immediately trading it for an AEC or privacy coin” (FATF, 
2020). In particular, indicators related to anonymity include 
cases of enhanced obfuscation (e.g., AECs) and disinterme-
diation (e.g., unhosted wallets).

In this context, a lot of time and resources are needed to 
investigate alerts generated by rule-matching processes and 
decide when to report a transaction as suspicious. An alert 
can be a true or a false positive, and arguably the simplicity 
of rule-based systems, despite guaranteeing interpretabil-
ity, produces an estimate of around 95–98% false positives 
(Eddin et al., 2021).

Indeed, classifying entities and discovering patterns in 
massive time-series transaction datasets that are dynamic, 
high dimensional, combinatorially complex, non-linear, 
often fragmented, inaccurate, or inconsistent is a challeng-
ing task. Moreover, the difficulty of automating the synthesis 
of information from multi-modal data streams thrusts the 
task onto human analysts. This adds to a vicious circle of a 
compliance approach that stimulates over-reporting due to 
the cost asymmetry between false positives and false nega-
tives and overburdens law enforcement agencies (Weber 
et al., 2018). Hence, the automation of an increasing array 
of processes has been suggested (Oad et al., 2021).

Against this backdrop, in this section, we explore the 
anomaly detection methods that relate to our experiments. 
Hence, we focus on machine learning and graph analysis. 
We take an on-chain data analytic perspective, although we 
acknowledge the value of tools that target off-chain data, 
such as Natural Language Processing and sentiment analy-
sis, that also leverage graph methods (Weber et al., 2018). 
Indeed, while cryptocurrency transactional data is often 
analyzed through a combination of on-chain and off-chain 
techniques, thus including information not recorded on the 
blockchain or recorded on a different blockchain, in this 
work, we focus on on-chain data.

Machine learning

Machine learning is a part of artificial intelligence that 
exploits data and algorithms to imitate human learning pro-
cesses with gradual accuracy improvements. This helps us 
find solutions to problems in many fields, e.g., vision, speech 
recognition, robotics (Alpaydin, 2020). In the most diverse 
contexts, it provides tools that can learn and improve auto-
matically leveraging the vast amount of data available in our 
age (Kamiˇsali´c et al., 2021). In the compliance domain, 
advances in these algorithms show great promise, and their 
deployment in AML/CFT RegTech solutions can improve 
the efficiency of these applications (Weber et al., 2019). For 
instance, they can mitigate the shortcomings of rules-based 
systems and infer patterns from historical data, increasing 
detection rates and limiting false positives (Lorenz, 2021). 
In other cases, a more proactive approach is deployed to map 
and predict illicit transactions (Koshy et al., 2014; Weber 
et al., 2019).

One of the main distinctions in machine learning is 
between unsupervised methods, where the model works 
on its own to discover patterns and information previously 
undetected, and supervised techniques, where labeled 
datasets are used to train algorithms. While applying both 
methods for anomaly detection is possible, most systems 
deploy unsupervised techniques due to a lack of relevant 
real-world labeled datasets. In the AML/CFT sphere, this 
scarcity mainly derives from difficulties in labeling real 
cases timely and comprehensively. Indeed, manual labels are 
costly in terms of time and effort, and the nature of the enti-
ties involved is complex and ever-evolving (Lorenz, 2021). 
Hence, analytic companies play a key role in labeling crypto 
transactions. In order to address the overall lack of data, 
various strategies have been proposed (Eddin et al., 2021): 
generate a fully synthetic dataset, simulate only unusual 
accounts within a real-world dataset, and localize rare events 
within a peer group. However, better validations of the sys-
tems were obtained using analyst feedback or real-labeled 
data. Parallelly, the dataset shortage has driven the deploy-
ment of active learning (i.e., few labels) (Lorenz, 2021).

Supervised baseline techniques

Supervised learning techniques are leveraged for their 
labeled training data. For instance, they are used to clas-
sify anomalies based on association rules to detect suspi-
cious events (Luo, 2014). In the AML/CFT context, the 
label of each transaction could indicate whether it was 
identified as money laundering or not (Lorenz, 2021). 
Recent RegTech solutions deploy widespread supervised 
learning methods to perform anomaly detection (Yin et al., 
2019):
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•	 Decision tree—It is one of the base algorithms used 
in machine learning, with a name derived from a hier-
archical model formed visually as a tree where nodes 
are decisions with specific criteria. The training data is 
subdivided into subsets following the tree branches. The 
node decision criteria are determined variables that can 
be defined as explanatory. The algorithm tries to apply 
the most significant feature to perform the best division 
among the training data. The best division can be meas-
ured by the information gain, mathematically derived 
from a decrease in entropy (Alpaydin, 2020).

•	 Random forests—It is an extension of Decision Trees in 
which an algorithm approaches the classification task by 
constructing a multitude of trees. Introduced by Breiman 
(2001), it is an ensemble method applied to sample ran-
dom subsets of the training data for each Decision Tree. It 
aims to improve the predictive accuracy of a classifier by 
combining multiple individual weak learners, i.e., trees.

•	 Boosting algorithms—They are another ensemble 
method that fits weak learners’ sequences. A boosting 
algorithm tries to boost a Decision Tree by recursively 
selecting a subset of the training data. AdaBoost (Adap-
tive Boosting) assigns weights to the data samples based 
on the weak learners’ ability to predict the individual 
training sample. Thus, the sample weights are individu-
ally computed for each iteration, and the successive 
learner is applied to the new data subset (Yin et al., 
2019).

•	 Logistic regression—It is a multiple regression suitable 
for binary classification, which assesses the relationship 
between the binary dependent variable (target) and a set 
of independent categorical or continuous variables (pre-
dictors) (Hilbe, 2009). It can be seen as measuring the 
probability of an event happening, where the probability 
consists of the ratio between the probability that an event 
will occur and the probability that it will not.

•	 Support vector classification (SVC)—Given a set of 
data for training, each labeled with the class to which 
it belongs among the two possible classes, a training 
algorithm for Support Vector Machines builds a model 
that assigns the new data to one of the two classes. This 
generates a nonprobabilistic binary linear classifier. This 
model represents data as points in space, mapped in a 
way that a space separates data belonging to the two cat-
egories as ample as possible. New data is then mapped 
in the same space, and the prediction of the category to 
which they belong is made based on the side in which 
they fall (Alpaydin, 2020).

•	 K-nearest neighbors (k-NN)—It is a supervised learn-
ing algorithm used in pattern recognition for object 
classification based on the characteristics of the objects 
close to the considered one. The model represents data as 

points in space, i.e., the feature space. Given a notion of 
distance between data objects, the input is the k nearest 
training data in the feature space. The underlying idea is 
that the more similar the instances, the more likely they 
belong to the same class (Alpaydin, 2020).

Graph analysis

In recent years, a portion of machine learning research 
focused on real-world datasets that come in graphs or net-
works—e.g., social networks, knowledge graphs—to gen-
eralize learning models to such structured datasets. Graph 
analytics is becoming increasingly important for AML/
CFT, because money laundering involves flow relation-
ships between entities that create graph structures. Some 
approaches for supervised learning work with graph-struc-
tured data based on a variant of neural networks which 
operate directly on graphs, i.e., graph neural network (You 
et al., 2020; Kipf & Welling, 2016). Convolutional neu-
ral networks, for instance, offer an efficient architecture 
to extract significant statistical patterns in large-scale and 
high-dimensional datasets and can be generalized to graphs 
(Defferrard et al., 2016; Kipf & Welling, 2016). In this 
work, we use two specific graph-based neural networks, i.e., 
Graph Convolutional Networks (GCN) and Graph Atten-
tion Networks (GAT). These techniques are described in 
the next section.

Experimenting with machine learning

As contextualized above, AML/CFT analytics benefit from 
deploying machine learning-based techniques for transaction 
classification. However, in new techniques, there is the need 
to balance interpretability and explainability with the reduc-
tion of false positives and over-reporting. Accordingly, this 
section outlines the experimental setup of our study and the 
relevant results. After describing the dataset, we consider the 
evaluation method and the implementation of the anomaly 
detection approaches. Subsequently, we compare the results 
of our experiments, where state-of-the-art machine learning 
techniques and graph-based neural networks are employed 
in an AML/CFT context.

It is worth noting that, in developing this work, we heed 
several assumptions. Although we have already discussed 
these throughout the text, we provide the following sum-
mary. In our paper, (i) the term Internet of Money refers to 
the entire set of cryptocurrency ecosystems; (ii) we do not 
offer a comprehensive review of crypto forensic techniques; 
(iii) we focus on on-chain data; and (iv) we perform inevi-
table simplifications when addressing explainability and 
interpretability of AI applications and relevant legal impacts.
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Methodology

Our experimentation is grounded on a seminal work by 
Weber et al. (2019). Most of the techniques deployed in the 
study correspond to the standard supervised models men-
tioned above—i.e., Decision Trees, Logistic Regression, 
k-NN, SVC, AdaBoost, Random Forests—used as bench-
mark methods for classification. However, the two graph-
based models GCN and GAT deserve close attention in this 
context. This is for three main reasons: (i) these types of 
neural networks take into account the graph nature of our 
dataset; (ii) as the evaluation shows, our application of GCN 
outperforms benchmark approaches and improves the state 
of the art; and (iii) to the best of our knowledge, this is the 
first attempt to deploy the GAT model in the AML/CFT 
context.

Transaction graph analysis

Graphs represent a typical mathematical tool to model 
interactions among different entities: humans, elements 
of a biological system, computing nodes in a distributed 
system, and others (Pocher & Zichichi, 2022). In a block-
chain, transactions are linked by nature since money spent 
in a transaction originates from previous transfers (Pocher 
& Zichichi, 2022). This allows the creation of a graph of 
transactions that can help the classification process. In fact, 
given a transaction t, it is possible to collect all the con-
nected transactions and recursively search for other ones up 
to a certain depth level. Given such a connected graph cen-
tered at t, an inspection of the neighboring transactions and 
their classified value can aid the classification of t. Each 
node of the graph (transaction) has thus a set of neighbors 
that will influence its classification. Moreover, each node 
has a set of features associated with the corresponding 
transaction (see below for the details of the dataset).

An example of this procedure is displayed in Fig. 1, 
where a connected component—i.e., a subgraph in which 
each pair of nodes is connected via a path—is obtained from 
an initial transaction (Fig. 1, top). In the figure, the red nodes 
represent transactions labeled as illicit in the starting dataset, 
the green ones licit transactions and the grey ones are still 
unknown/unlabeled. To show the output of a machine learn-
ing classification problem, the bottom part of Fig. 1 shows 
the output of the process employing a specific classification 
algorithm, which in this case is Random Forest. In essence, 
the idea is that knowing the labels of certain transactions 
aids the classification of the remaining (unknown/unlabeled) 
ones. Hence, learning methods could pinpoint illicit trans-
actions based on the graph topology and the features of the 
transactions.

Dataset

In our work, we experimented with the publicly available 
Elliptic transactions dataset provided in the context of Weber 
et al. (2019). For details on the dataset, the reader can refer 
to the latter and to the description provided on Kaggle 

Fig. 1   Connected graph of a considered transaction before and after 
classification
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together with the dataset.7 This dataset contains real Bitcoin 
transactions represented as a directed graph network, where 
transactions are nodes, and the directed edges between these 
transactions represent fund flows from the source address to 
the destination address. The dataset contains 203,769 trans-
action nodes connected by 234,355 edges. For each transac-
tion, 167 features are available, of which the first 94 relate 
to the transaction itself and thus directly extracted from the 
blockchain—e.g., the number of inputs of a transaction or 
the number of outputs—while the other 73 features relate to 
the graph network itself and are extracted from the neigh-
boring transactions of a node. The features do not have any 
associated descriptions—indeed, Weber et al. (2019) claim 
that they cannot describe these features due to intellectual 
property issues. Tests were carried out with transaction fea-
tures (tx) and transaction features plus aggregated features 
(tx + agg). Such aggregated features are obtained by aggre-
gating transaction information one-hop backward/forward 
from the center transaction node. This means obtaining the 
features of the nodes that share an edge with that transac-
tion node.

Each transaction in the dataset is labeled as illicit, licit, 
or unknown: 4545 are labeled as illicit, 42,019 are labeled 
as licit, and the remaining 157205 are unknown. The trans-
actions also contain temporal data. In particular, this is 
grouped into 49 distinct time steps, evenly spaced the inter-
val of 2 weeks. Each time step contains a connected graph 
that includes all the transactions verified on the blockchain 
in the span of 3 h (Weber et al., 2019).

The dataset was pre-processed as follows: (i) the features 
were merged with the classes; (ii) class values were renamed 
to integer values; (iii) transaction identifiers were swapped 
for a sorted index; (iv) only the part of the dataset labeled 
licit or illicit was selected; and (v) all the edges between 
unknown transactions were removed. After the pre-process-
ing, our cleaned dataset encompassed 46,564 transactions 
and 36,624 edges.

Graph convolutional network model architecture

The objective of a GCN model is to learn a function of sig-
nals/features on a data set structured as a graph. The model 
takes as input (i) a graph with nodes and edges between 
nodes and (ii) a feature description for each node. The key 
idea is that each node receives and aggregates features from 
its neighbors to represent and compute its local state. The 
GCN then usually produces an output feature matrix at 
the node level (Kipf & Welling, 2016). The GCN model 
is used for transaction classification because it is a deep 

neural network that allows capturing the relation among the 
nodes and their neighborhoods. In other words, it creates a 
node embedding in a latent vector space that captures the 
characteristics of the node neighborhood in the graph. This 
information comes in the form of a look-up table mapping 
nodes to a vector of numbers. GCNs have been developed 
using the Keras framework, following the recommendations 
introduced in You et al. (2020).

The general structure of our graph convolution layer is 
made of three steps. First, the input node representations 
are processed using a Feed Forward Network to produce 
a message. Second, the messages of the neighbors of each 
node are aggregated using a permutation invariant pooling 
unsorted segment sum operation. Third, the node representa-
tions and aggregated messages are combined and processed 
to produce the new state of the node representations (node 
embeddings) via concatenation and Feed Forward Network 
processing.

Our network architecture consists of a sequential work-
flow of the model that we display in Table 2 and summarized 
as follows:

1.	 Apply pre-processing using Feed Forward Network to 
the node features to generate initial node representa-
tions;

2.	 Apply two graph convolutional layers, with skip connec-
tions, to the node representation to produce node embed-
dings;

3.	 Apply post-processing using Feed Forward Network to 
the node embeddings to generate the final node embed-
dings;

4.	 Feed the node embeddings in a Softmax layer to predict 
the node class.

Graph attention network model architecture

While the GCN model averages the node states from source 
nodes to the target node, the GAT model gives different 
importance to each node’s edge by using an attention mech-
anism to aggregate information from neighboring nodes 

Table 2   GCN model architecture. Total parameters = 18,774, train-
able parameters = 17,756, non-trainable = 1018

Layer (type) Output shape Num. parameters

Preprocess (Sequential) (46,564, 32) 4564
Convolution 1 (GraphConvLayer) multiple 5888
Convolution 2 (GraphConvLayer) multiple 5888
Postprocess (Sequental) (46,564, 32) 2368
Logits (Dense) multiple 66

7  Elliptic dataset: https://​www.​kaggle.​com/​datas​ets/​ellip​ticco/​ellip​tic-​
data-​set.

https://www.kaggle.com/datasets/ellipticco/elliptic-data-set
https://www.kaggle.com/datasets/ellipticco/elliptic-data-set
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(Veličković et al., 2017). In other words, instead of simply 
averaging/summing node states from source nodes to the 
target node, as we do in the GCN model, GAT, on the other 
hand, first applies normalized attention scores to each source 
node state and then sums (Veličković et al., 2017).

Our model is built using the Keras framework that, 
through a graph attention layer that computes pairwise atten-
tion scores, aggregates and applies the scores to the node’s 
neighbors. A multi-head attention layer concatenates mul-
tiple graph attention layer outputs. Our design choice is to 
use a single attention layer with multiple heads, enabling 
the network to jointly attend multiple positions (Liyuan Liu 
and Liu, 2021). The multi-head layer is then inserted into a 
general model that implements dense pre-processing/post-
processing layers with dropout regularization, as shown 
in Table 3. The training proved to be subjected to overfit-
ting, and heavy regularization was necessary, which was 
achieved by dropout layers and using RMSprop optimizer 
with momentum (Philipp et al., 2017).

Results

For the discussion of the results, we firstly consider the illicit 
class as, due to the nature of the dataset (less labeled illicit 
transactions) and of the problem, its classification is more 
complex. To compare the results, we use the F1-score, a 
metric obtained from Precision and Recall. These metrics 
are usually defined for a binary classifier (as in this case) 
where some special instances need to be identified, e.g., 
positive cases to a particular test. Precision is the number of 
true positive (TP) predictions, i.e., how many of the positive 
predictions made are correct over the sum of TP and false 
positives (FP). In other words, precision says how many of 
the identified illicit transactions were illicit.

Recall measures how many positive cases the classifier 
correctly predicted over all the positive cases in the data, i.e., 

Precision =
TP

TP + FP.

TP and false negatives (FN). In our context, for instance, it 
allows us to understand how many illicit transactions the 
classifier identified over the real considered set of illicit 
transactions.

The F1-score represents the harmonic mean of Recall and 
Precision and is thus calculated as:

We also use the Micro Average F1-score for evaluating 
the methods. It measures the F1-score of the aggregated con-
tributions of all classes.

The final performance results are reported in Fig. 2 and 
Table 4. It is possible to observe how GCN outperforms 
other approaches. In particular, the GCN approach provides 
the best results in terms of recall, i.e., 0.790, and F1-score, 
i.e., 0.844. In terms of precision, it slightly deviates from the 
Decision Tree (0.986) and Random Forest (0.981) approaches 

Recall =
TP

TP + FN
.

F1 = 2 ×
Precision × Recall

Precision + Recall

Table 3   GAT model architecture. Total parameters = 59,952, train-
able parameters = 59,952, non-trainable = 0

Layer (type) Output shape Num. parameters

Dense 9 (Dense) Multiple 10,340
Dropout 6 (Dropout) Multiple 0
Graph attention (MultiHead-

GraphAttention)
Multiple 12,320

Dense 10 (Dense) Multiple 36,630
Dropout 7 (Dropout) Multiple 0
Dense 11 (Dense) Multiple 662 Fig. 2   Barplot aggregating F1-score, micro average F1-score, preci-

sion, and recall for all the approaches experimented
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but still provides better performances than all the rests, i.e., 
0.906. For what concerns the Micro Average F1-score, all 
approaches fit in the range of 0.960 to 0.977. These results 
are in contrast with the results in Weber et al. (2019), where 
Random Forests provided the best performance. The cause of 
such improvement might be due to the different architectures 
we exploited to build the neural network.

Furthermore, the comparison with the other graph-based 
approach, i.e., GAT, also sees the GCN outperforming. 
GAT performs better than a simple dense network but can-
not reach the results of GCN and Random Forest classifiers. 
The motivation is probably due to the na¨ıve structure of 
the neural network, and its optimization is currently under 
investigation.

So far, we have focused on the classification of illicit trans-
actions. Since the dataset is unbalanced—i.e., it contains more 
licit than illicit transactions in a ratio of more or less 1 to 
10—the problem becomes relatively trivial. For the sake of 
transparency, however, the final performance results related 
to licit transactions are reported in Table 5. All the models 
perform very well and are very similar to each other. In this 
case, graph-based approaches do not perform better than Ran-
dom Forest classifiers, but the difference is not outstanding.

Discussion

When interpreted through the lens of the AML/CFT remarks 
outlined in the previous sections, our findings inspire multi-
layered considerations. Accordingly, in this section, our 
reasoning is threefold. First, we discuss the results of our 
experiments vis-`a-vis the approaches used as benchmarks. 

Secondly, we broaden the perspective of the analysis to con-
sider not only the impacts of crypto-related RegTech meth-
odologies on the evolution of the Internet of Money, but also 
the interplay between the latter and the prospective role of 
forensics. Finally, we pinpoint a few associated challenges.

From the first perspective, to the best of our knowledge, 
the experiment described in this paper is the first attempt 
to implement GAT models to detect anomalies in Bitcoin 
transactions for AML/CFT purposes. The final results are 
on par with the state of the art of GCN networks, with GAT 
marginally worse than GCN. This could be explained by the 
“simpler” implementation of GAT and the possibility that 
the dataset responds better to non-spectral methods. None-
theless, we argue that the novelty of this application could 
be helpful for general research on GAT anomaly detection 
techniques. In addition, the results show that the GCN neural 
network typology is a promising solution for AML/CFT, as 
it performs better than other approaches.

In this context, it is essential to consider that GCN and 
GAT classifiers only have access to transaction features, which 
means that all information about aggregated nodes comes from 
the graph structure itself. Since the performance of GCN is in 
line with Random Forest (with aggregated features), we can 
claim that our graph networks can obtain the same amount of 
information as the creator of the dataset (Weber et al., 2019). 
However, choosing one method over another carries additional 
implications that must be carefully weighed. For example, the 
performance of Random Forests falls slightly behind GCN’s, 
but there is no sacrifice in explainability because the detectors 
are derived from Random Forests’ rules (Eddin et al., 2021). 
Given the size and dynamism of real-world information, 
explainability of the results is challenging to provide, both in 

Table 4   Table showing the 
results for illicit transaction 
classification with the F1-score, 
Micro Average F1-score, 
precision, and recall metrics for 
all models

Best results are highlighted in bold

Model Precision Recall F1 score M.A. F1

Random Forest classifier (tx) 0.909 0.648 0.757 0.974
Random Forest classifier (tx + agg) 0.981 0.651 0.782 0.977
Logistic regression (tx) 0.515 0.646 0.573 0.939
Logistic regression (tx + agg) 0.456 0.630 0.529 0.929
MLP (tx) 0.897 0.593 0.714 0.970
MLP (tx + agg) 0.817 0.623 0.707 0.968
k-NN classifier (tx) 0.762 0.629 0.689 0.964
k-NN classifier (tx + agg) 0.730 0.576 0.644 0.960
SVC (tx) 0.842 0.604 0.703 0.968
SVC (tx + agg) 0.862 0.588 0.699 0.968
Decision Tree classifier (tx) 0.986 0.573 0.725 0.973
Decision Tree classifier (tx + agg) 0.986 0.573 0.725 0.973
AdaBoost classifier (tx) 0.793 0.615 0.693 0.966
AdaBoost classifier (tx + agg) 0.945 0.567 0.708 0.971
GCN (tx) 0.906 0.790 0.844 0.973
GAT (tx) 0.897 0.605 0.723 0.971
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this context and in the broader AI field. Even in our specific 
narrow instance—i.e., transaction graphs that model illicit 
activity over time—it is challenging to apply efficient meth-
ods whose results can be understood by humans. Although this 
appears to be a crucial aspect, the literature still lacks some 
research on the application of explainable AI techniques for 
AML/CFT anomaly detection (Kute et al., 2021).

From the second perspective, the choice of the forensic 
approach(es) to deploy must be made taking into consid-
eration the evolution of the Internet of Money, with specific 
regard to peer-to-peer transfers and DeFi protocols. Indeed, 
while its developments warrant the application of increas-
ingly sophisticated yet explainable compliance and investiga-
tion techniques, we see how the implementation of the crypto 
travel rule has already prompted the industry to denounce the 
lack of global standards and technical solutions to underpin 
effective and affordable compliance. It follows that, while 
the great quantity and complexity of transaction data to be 
processed suggests that machine learning will continue to 
be a part of the solution—with marginal performance dif-
ferences possibly bearing significant weight when various 
approaches are combined—it is crucial to back the relevant 
research with a constructive dialog between the stakeholders 
involved. In this context, we point out to the increase in the 
laundering-related use DeFi protocols of 1.964% between 
2020 and 2021. In 2021, centralized exchanges received 47% 
of funds originating from illicit addresses and DeFi proto-
cols 17%, vis-`a-vis 2% in 2020. Likewise, in 2021 funds 
derived from cryptocurrency thefts were increasingly sent 
to DeFi platforms (51%) or risky services (25%), while only 
15% went to centralized exchanges, possibly due to AML/
CFT (Chainalysis Team, 2022). In 2022, almost half of illicit 

crypto funds passed through a set of intermediary services 
primarily populated by mixers, illicit services, and DeFi pro-
tocols. However, 67% of illicit funds received by exchanges 
went to only five centralized exchanges, in comparison to 
56.7% of 2021 (Chainalysis Team, 2023).

In the near future, regulated entities, law enforcement 
and supervisors will increasingly need to monitor and 
analyze crypto transactions to which multilayered obfus-
cation techniques have been applied. In addition, given the 
rise in the use of unhosted wallets and decentralized plat-
forms, they will frequently operate without the assistance 
of centralized counterparty entities. For these reasons, 
we wish to highlight the value of not only researching 
innovative machine learning-based forensic applications, 
but also to adopt an interdisciplinary approach to devise 
compliance tools that adequately consider the way regula-
tory regimes are conceived and enforced. For instance, we 
point to the importance of reconciling the duties placed 
on regulated entities, the available and prospective intelli-
gence tools, and an AML/CFT regime that is so far inher-
ently and explicitly intermediary-based, with compliance 
efforts guided by rule-based risk indicators. It is for this 
reason that our work contextualizes forensic methods into 
the specifics of risk indicators. Building on these argu-
ments, we emphasize that AML/CFT hurdles cannot be 
solved by simply resorting to a sophisticated transaction 
classification scheme. On the contrary, this process needs 
to be nested into a broader framework to be effective.

Indeed, our analysis of machine learning methods 
was anchored to the mitigation of the drawbacks of cur-
rent rule-based systems in terms of false positives and 
over-reporting. Relatedly, we find that the value of 

Table 5   Table showing the 
results for licit transaction 
classification with the F1-score, 
Micro Average F1-score, 
precision, and recall metrics for 
all models

Best results are highlighted in bold

Model Precision Recall F1 Score M.A. F1

Random Forest classifier (tx) 0.977 0.995 0.986 0.973
Random Forest classifier (tx + agg) 0.977 0.999 0.988 0.978
Logistic regression (tx) 0.976 0.959 0.967 0.939
Logistic regression (tx + agg) 0.975 0.949 0.962 0.929
MLP (tx) 0.973 0.995 0.984 0.970
MLP (tx + agg) 0.974 0.994 0.984 0.970
k-NN (tx) 0.978 0.967 0.972 0.949
k-NN (tx + agg) 0.975 0.965 0.970 0.944
SVC (tx) 0.974 0.992 0.983 0.968
SVC (tx + agg) 0.973 0.994 0.983 0.968
Decision Tree classifier (tx) 0.972 0.999 0.986 0.973
Decision Tree classifier (tx + agg) 0.972 0.999 0.986 0.973
AdaBoost classifier (tx) 0.975 0.989 0.982 0.966
AdaBoost classifier (tx + agg) 0.972 0.998 0.985 0.971
GCN (tx) 0.975 0.994 0.984 0.971
GAT (tx) 0.973 0.992 0.982 0.967
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experimenting with machine learning algorithms for 
RegTech purposes appears dependent mainly on the rela-
tionship between the given approach and the regulatory 
environment within which it is deployed. In other words, 
the efficiency of a specific algorithm can be assessed per 
se, but its effectiveness in an AML/CFT context heavily 
depends on the extent to which the structure of the model 
correctly mirrors the regulatory framework—e.g., it gen-
erates alerts that are deemed relevant by regulators and 
mitigates the current trends of over-reporting.

From the third perspective, the supervised classifica-
tion analysis we conducted could be in theory applied 
to other types of blockchain and cryptocurrencies, being 
the analysis constrained on the high-level perspective of 
the cryptocurrency transactions’ graph. However, there is 
the need for a labeled transaction dataset to build such a 
transaction graph. And the lack of open data further com-
plicates the task. Indeed, we point out a few challenges 
identified during our investigation, related to the open-
ness and availability of the datasets being discussed and 
the explainability of the results. We find it is overarch-
ing to confront these open issues and devise appropriate 
solutions or mitigating measures. On the one hand, our 
analysis suggests that it is difficult to address efficiency 
evaluations of machine learning-based AML/CFT tools 
for anomaly detection and transaction classification, since 
this feature appears to be increasing to the detriment of 
interpretability and explainability. On the other hand, it 
is evident from our studies that the labeled transaction 
datasets on which supervised learning algorithms are 
trained are largely proprietary. This does not only impact 
the development of new methods, but possibly also the 
transparency of the activity of supervisory bodies. That 
is, if the activity of the latter, just as the compliance effort 
of regulated entities, can be based only on the intelligence 
findings of solutions deploying proprietary algorithms. 
The interplay between the lack of explainability and the 
proprietary nature of the datasets suggests worrisome sce-
narios that call for further research. Hence, it is crucial 
to foster public–private synergies that can consider the 
AML/CFT context from a socio-technical, operational, 
and regulatory viewpoint.

Conclusions

Elaborating on the enthusiasm for the financial applica-
tion of blockchain and DLTs that surged in the wake of 
Bitcoin’s launch, today the Internet of Money comprises 
a diverse set of socio-technical systems under constant 
evolution—e.g., recently, DeFi schemes. Over the years, 
forensic techniques have been deployed to connect crypto 
addresses/transactions to real-world identities. This 

responds to the regulatory quest to ensure accountabil-
ity through identification, a concept that sits at the core 
of AML/CFT compliance. Meanwhile, institutions and 
authorities drafted anomaly indicators to help with the 
identification of suspicious transfers in compliance with 
the risk-based approach. In this context, law enforcement 
agencies and supervisors, often supported by the private 
sector, began to apply forensic methods to track relevant 
transfers, as well as regulated entities started benefiting 
from innovative RegTech solutions that partially automate 
the detection of anomalous activities.

In this paper, we focused on these techniques from an 
on-chain data analytic perspective, with a specific focus on 
approaches based on machine learning and graph analysis. 
The use of these algorithms in AML/CFT RegTech solu-
tions shows great promise to improve the efficiency of the 
latter and mitigate the significant drawbacks of current 
rule-based methodologies. To the best of our knowledge, 
what we described in this work is the first experiment with 
GAT models for AML/CFT anomaly detection in Bitcoin. 
The application of this type of neural network falls in 
line with the recent focus on deploying machine learning 
techniques that leverage the inherent structure of many 
real-world datasets that come in the form of graphs or 
networks. GCN and GAT models are informed by the idea 
of creating generalized learning models for these struc-
tured datasets, and indeed the one we analyzed consists of 
(real) Bitcoin transactions represented as a directed graph 
network.

To conclude, we provide three levels of considerations. 
From an operational standpoint, our results show that the 
mentioned graph-based methods perform better than the 
baseline approaches—e.g., GCN performs better than Ran-
dom Forests, with GAT being marginally worse than GCN. 
This encourages further experimentations with the use of 
GCN neural networks for AML/CFT purposes, while the 
novelty of our approach could spur further research into 
GAT-based anomaly detection techniques. From a related 
methodological perspective, we argue that a constant 
experimentation with various forensic methods, possibly 
leveraging the value added by transaction graphs, is cru-
cial to reap the full benefits of analytics in an ever-evolv-
ing context of application such as the Internet of Money. 
These explorations, however, must be backed by serious 
efforts to foster constructive public–private dialog regard-
ing the openness and the availability of labeled transaction 
datasets.

From a final conceptual viewpoint, we emphasize that a 
holistic interpretation of the interplay between AML/CFT 
measures and the Internet of Money—i.e., one that heeds 
in a comprehensive fashion socio-technical, operational, 
and regulatory dynamics when defining the object of the 
analysis—is crucial to devise effective and possibly efficient 
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RegTech solutions. Indeed, the efficiency of a specific algo-
rithm may not guarantee its effectiveness in an AML/CFT 
context, which depends on the extent to which the model 
responds to regulatory needs and generates relevant alerts. 
This relevance is influenced by regulatory, compliance, 
and supervisory needs, as affected by the evolution of the 
features of the Internet of Money. This holistic approach is 
especially valuable when it comes to transaction classifica-
tion and anomaly detection, where a main challenge is the 
need to balance interpretability and explainability with the 
goal to reduce the share of false positives and over-reporting.
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