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Highlights 

• Plant-associated bacteria interact with their environment through exchange of chemicals,

including volatile compounds. Innovative agricultural technologies may exploit the inherent 

advantages of bacterial airborne signals, including diffusibility, independence from water availability 

and physical connection, and absence of pesticide residuals.  

• Volatile compounds resulting from plant-pathogens interactions allow non-destructive

disease diagnosis on bulk samples of asymptomatic plant material. 

• Volatile compounds, expressing a direct biocidal activity, interfering with signalling, or

stimulating plant host defences, contribute to biological control of pests and pathogens. 

• Bacterial volatile compounds modulate plant hormones enhancing plant growth, stress

tolerance, crop quality, aroma and nutraceutical characteristics, and reduce post-harvest losses. 
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Abstract 13 

Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. 14 

Among these, volatile compounds allow broad-range effects at low doses and may therefore be 15 

exploited for applications in plant defence and agricultural production. Such applications are still in 16 

their early development. Here we review the latest technologies involving the use of bacterial 17 

volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and 18 

crop quality. We highlight a variety of effects with a potential applicative interest, based on either 19 

live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the 20 

interaction with hosts or competitors. Future agricultural technologies may benefit from the 21 

clarification of bacterial interactions with the environment, and the development of new analytical 22 

tools. 23 

 24 

 25 

Bacterial volatile compounds in plant ecological interactions 26 

Bacterial metabolic products characterised by low vapour pressure, high lipophylicity and a 27 

molecular weight below 300 Da are likely to be released as Volatile Organic Compounds (VOCs, see 28 

glossary). Considering the enormous metabolic diversity of bacteria, such compounds may derive 29 

from a large variety of chemical pathways, and are generally emitted as complex mixtures [1]. The 30 

composition of the bacterial volatilome (see glossary) is highly influenced by the growth conditions 31 

[2-5], including soil chemistry and structure, pH, availability of water and oxygen, presence of plant 32 
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exudates or other organic compounds, and light irradiation. Translating such considerations into 33 

horticultural crop management, agricultural (tillage, cover cropping, fertilisation, watering, and 34 

plant protection) or post-harvest (refrigeration, atmosphere control, and ethylene modulation) 35 

practices that modify such parameters can influence BVC emissions as well [6]. 36 

Along with the characterisation of a growing number of bacterial volatile compounds (BVCs, see 37 

glossary) [3,4,7], their roles in intra- or inter-specific signalling or competition are being discovered 38 

(Figure 1). It should also be noted that the most commonly adopted analytical techniques in studies 39 

concerning bacterial volatile compounds are unable to detect molecules with a low molecular 40 

weight, such as CO2, ethylene, nitrogen oxides, ethanol and H2S (Box 1). Thus, part of the biological 41 

effects mediated by bacterial airborne signals may still be eluding the researchers’ efforts. In 42 

comparison to water-soluble compounds, inherent advantages of VOCs in ecological interactions 43 

reside in their high diffusibility, enabling both above- and belowground action, the ability to diffuse 44 

through lipophilic barriers (such as cell membranes and plant cuticle), and the independence from 45 

water and physical connection among the VOC-producing organism and the signal recipient.  46 

Technological applications based on the release or the exchange of VOCs are most likely to succeed, 47 

when they take advantage of these characteristics. Volatility is possibly one of the key points, as it 48 

allows a relative uniformity of the gas phase even in cases of poor accessibility of the target (for 49 

instance, in the soil, in stored bulk samples, or in internal plant tissues). In addition, biogenic VOCs 50 

do not pose problems with residues and environmental accumulation. By contrast, one should 51 

consider possible drawbacks deriving from the generally low concentration, impermanence, low 52 

target specificity, and difficult handling of VOCs used for plant treatment.  53 

The above reasons may be responsible for the so-far limited enactment of VOC-based technologies. 54 

However, some work-arounds may be envisaged to reduce the weight of drawbacks. The use of 55 

microbes that form stable populations on plant hosts, exploiting naturally occurring resources and 56 

constantly delivering their bio-active function, or that survive harsh conditions (e.g. Bacillus spp. 57 

spores), may grant a durable effect of the treatment. In this light, the screening of bacterial species 58 

forming endophytic and/or specialised symbiosis offers a source of biological functions expressed 59 

in an efficient and highly focused way. Recent technological advancement in genomics, 60 

metagenomics and gnotobiotics (see glossary) has enabled breeding programs centered on the 61 

plant holobiont (see glossary), in which, in addition to plant genetic resources, microbial diversity 62 

(overlooked in traditional breeding, and even possibly lost during domestication or selection) is also 63 

explored [8-10]. Alternatively, when live bacteria cannot be used, their active principles could still 64 
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be considered for field application with encapsulation methods allowing a controlled release [11]. 65 

Caution should be taken for such treatments in dosing the active principle’s release rates (as plant 66 

stress may derive from its excess) and avoiding wastes due to volatilisation. 67 

 68 

VOC profiling for plant disease diagnosis 69 

Along with visual inspection, immunochemical and molecular methods represent the standard 70 

techniques for disease diagnosis, due to their reliability, sensitivity, specificity, and reasonable 71 

practicality in terms of costs and work effort [12,13]. However, these methods still pose a number 72 

of issues. Since all of them are destructive, the assessment of plant or fruit health status causes an 73 

economic loss and cannot be applied to unique samples. The development and production of 74 

specific antibodies, and the design and validation of PCR primers require a laborious set-up and are 75 

conditioned by the availability of sequence or protein data. Moreover, both PCR and 76 

immunochemical methods are targeted to single organisms, and the screening for multiple 77 

pathogens results consequently in a multiplication of work. Finally, representativity at the sampling 78 

stage is a major constraint, particularly when pathogen populations are relatively small, and the 79 

chance of false negatives must be minimised by increasing the sample size. 80 

As a consequence of the bacterial metabolism and the concurrent activation of plant defences, the 81 

VOC emission by pathogen-infected plants is, in principle, discernible from that of healthy ones [14]. 82 

Thus, the possibility of a VOC-assisted plant diagnosis has been put forward, and the recognition of 83 

bacterial diseases by volatile fingerprinting has been attempted in several species and/or crops 84 

(Table 1). VOC screening is non-destructive and can be applied to crops or live plants without 85 

compromising their economic value or viability. Unlike molecular and immunochemical methods, 86 

VOC-assisted plant diagnosis, in principle, allows the screening for multiple pathogens in the same 87 

run [15,17,25,30,31]. Finally, bulk samples can be analysed as a whole with minimal risks of sampling 88 

errors. 89 

 90 

Analytical technologies and methods 91 

GC-MS, PTR-MS, SIFT-MS, E-NOSE and FAIMS (see glossary) are among the technologies available 92 

for VOC-based diagnosis (Table 2). A major distinction can be made between techniques allowing 93 

the analytical determination of the chemical components of the VOC blend (e.g. GC-MS), and 94 

techniques that only allow overall VOC profiling (e.g. most E-NOSE models), with in-between cases 95 

of techniques with analytical power restricted to certain conditions. Techniques of the first class 96 
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may be used to identify distinctive marker compounds for determinate pathogens [15,17,18,20-97 

22,29]. Alternatively, the recognition of infected samples may be done through multivariate 98 

statistical analysis or artificial neural networks. These recognition procedures may be applied to any 99 

technique, but they are an obligate choice for non-analytical methods. 100 

Based on the technology and the recognition method, several sampling systems are available. 101 

Portable instruments may allow the direct application to ambient air. In these cases, the 102 

instrumental sensitivty can be adjusted by regulating the input flow rate (i.e. the air volume 103 

screened). Ambient air analysis or headspace sampling in odourless gas bags or canisters are the 104 

simplest options, with the smallest chance of artifactual results. However, when such options are 105 

not practical (e.g. gas samples are too small, or marker compounds are in trace amounts), the use 106 

of VOC-sorbent materials may be envisaged to concentrate the VOC sample [14]. 107 

 108 

Sample recognition and applicative perspectives 109 

Besides pathogen infection, other irrelevant factors (such as plant genotype, secondary microbial 110 

colonisation, tissue age and environmental conditions during sampling) are predicted to influence 111 

VOC emissions with additional levels of complexity. Furthermore, diagnostic power is influenced by 112 

disease severity [15,32,33], thus latent infection stages or sporadic pathogen presence are harder 113 

to detect. Physico-chemical factors influencing volatilisation and relative composition of air samples 114 

(temperature, relative humidity, sorbent saturation or chemical affinity) also require to be 115 

accounted for. 116 

Thus, the main challenge for VOC-based diagnosis seems to be the development of feature 117 

extraction methods, to isolate disease-related information from background noise. For this reason, 118 

E-NOSE methods have not progressed beyond the proof-of-principle status so far. In fact, 119 

discrimination power is related to the independence among the components of data variability [35], 120 

while E-NOSE models tested for plant diagnosis include no more than 32 sensors with partially 121 

overlapping chemical sensitivity [14]. Recent developments in E-NOSE construction, such as 122 

coupling with chromatographic separation [36] and colorimetry [37] may overcome current 123 

discrimination power limits.   124 

With regard to techniques with high analytical power, methods based on unsupervised machine 125 

learning and bacteria-VOCs association database were studied for human diagnostic purposes [38]. 126 

The implementation of such methods in plant health monitoring could be integrated with existing 127 



5 
 

microbial VOC databases [3]. An effort is required to expand such databases, currently limited in the 128 

number of bacterial species covered.  129 

The current technology readiness of VOC-based diagnostic systems may support standard 130 

phytosanitary inspection by pre-screening plant material, to focus more in-depth, time- and 131 

resource-consuming analyses on dubious cases. Significant advances may come in the future with 132 

the development of more versatile instruments [36,37]. Whatever technology may become 133 

dominant, coordination among researchers, field operators and industry is a requisite for the setting 134 

of standards, databases and accepted practices. 135 

 136 

Bacterial volatile compounds in biological control 137 

Biological control has raised an interest over time, as a tool to achieve a stable level of disease 138 

control by environmentally sustainable means. Biocontrol agents (BCAs, see glossary) are organisms 139 

that reduce a pathogen’s population size, or its chance to cause disease, by directly killing the 140 

pathogen (with antibiotics, lytic enzymes and other toxic compounds), by interfering with its 141 

signalling or regulatory metabolism, or by direct competition (i.e. better exploitation of resources, 142 

determining the pathogen’s starvation). These interactions contribute to microbial antagonism 143 

(Figure 1).  In this scenario, several BVCs have drawn attention as possible mediators of long-range 144 

effects. While it may be expected that their gas-phase concentrations never reach biologically active 145 

levels as they diffuse in the atmosphere, the competition among microbes in the phyllosphere takes 146 

place in matrices (such as biofilms, mucilages, plant waxes) or sites (sub-stomatal chambers, soil 147 

pores) where local BVC may attain substantial concentrations [39]. In this light, the identification of 148 

BVC-releasing symbiotic endophytes may be desirable, as their beneficial effects would be delivered 149 

close to their target and in a concentrated form.  150 

Alternatively, BVCs can induce systemic plant defences (Box 2). Notably, such induction occurs at 151 

low BVC rates, acts systemically and persists after the removal of the emitter bacterium, whereas 152 

BVC-mediated microbial antagonism would require a local and continuous emission at higher rates. 153 

Low BVC rates prime, rather than activate plant defences, i.e. responses are more prompt and 154 

intense upon pathogen attack, but no phenotypic changes (including in yield and crop quality) are 155 

expressed otherwise. In addition, the same plant may release pre-alert signals to neighbouring ones 156 

[40]. Thus, even signals in low concentrations may lead to significant large-scale consequences. 157 

BVCs may also influence plant-pest interactions, insect behaviour and survival rate, and thus could 158 

be possibly used for pest control strategies (Box 3). 159 
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In spite of the potential applications, the use of BCAs presents some inherent difficulties, such as an 160 

inconstant effectiveness, depending on environmental, agricultural and ecological factors that may 161 

vary in different areas, plant species or growing seasons. In addition, the efficacy of BCAs depends 162 

on their population size, which usually decreases steeply after the release, and co-formulants are 163 

often required to extend the BCA’s field life. For these reasons, BVCs have not yet found specific 164 

applications in biological control. As a promising perspective, the development of synthetic bacterial 165 

communities may overcome some of these drawbacks, by achieving a better stability or resilience 166 

of the microbial biocoenosis, along with the integration of multiple mechanisms of action [41,42]. 167 

 168 

Direct toxicity against pathogens 169 

In exerting direct toxicity against plant pathogens, BVCs are influenced by several factors. Along with 170 

the chemical nature of the compound, its release rate, the occurrence of the conditions for its 171 

production, and the gas phase dynamics that regulate its volatility and stability all contribute to its 172 

ecological role and the technological usefulness [39]. The best-studied bacteria, in relation to 173 

characterisation of BVC toxicity, include several actinomycetes, Pseudomonas, Bacillus, Serratia, 174 

Burkholderia, Xanthomonas and Erwinia species. 175 

Among the volatile compounds hindering the growth of competitors, ammonia, cyanide and sulfur-176 

containing metabolites are believed to play a major role [43]. However, bacterial strains not 177 

releasing such compounds can still display antimicrobial properties, indicating that other BVCs 178 

substantially contribute to inhibition of microbial growth, and that synergistic effects exist between 179 

different compounds. Antimicrobial effects were described for alkanes, alkenes, alcohols, 180 

aldehydes, ketones, esters, terpenoids, pyrazines, phenolics, amines, quinolones, chlorine and 181 

sulfur compounds (Table 3) [44-57]. The most common molecular targets of toxic BVCs include 182 

metal cofactors, sulfhydryl groups, and protein folding. 183 

Fungi and oomycetes often show a considerable sensitivity to BVCs, both for the elongation of 184 

mycelia and for spore germination [43,46-49]. In contrast, fewer cases are reported regarding BVC-185 

mediated control of bacterial pathogens, namely, Agrobacterium species [48,58], Clavibacter 186 

michiganensis [59,60], Xanthomonas oryzae pv. oryzae [61] and Ralstonia solanacearum [62]. 187 

Reasons for such difference in susceptibility may reside in differences between bacteria and 188 

eukaryotic organisms, for instance in plasma membrane composition or gene expression.  189 

The importance of BVC toxicity for interspecific competition in real conditions is debated [63], 190 

because of its dependence on BVC production rates and chances of accumulation. Thus, BVC-191 
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mediated suppression of pathogens was not considered as a trait for selection of new biocontrol 192 

agents until recently [49,64]. Nonetheless, this mechanism has been documented for several 193 

commercial biocontrol agents, and some of the BVCs involved, such as benzothiazole and dimethyl 194 

sulfides [49,64] have been adopted as active principles in exogenous biocide treatments. 195 

Biomimicry, i.e. the simulation of biological processes and interactions for applicative purposes, may 196 

be advisable in field conditions for a number of reasons, including the caution in introducing 197 

organisms into a new environment with potentially irreversible effects, and the higher control of 198 

chemical nature, dosage and timing of the treatments [65]. Conditions for exogenous VOC 199 

treatments, however, include the technological feasibility of gas application to the target (soil, 200 

canopy, stored crops) and the low toxicity at the treatment dosages for the operator and for non-201 

target organisms.  202 

 203 

Disruption of quorum sensing 204 

The complex of regulatory functions connecting the perception of intra- or inter-specific bacterial 205 

population density to the expression of ‘social’ phenotypes is termed Quorum Sensing (QS, see 206 

glossary). The typical QS signalling circuit consists of the production of a signal compound, along 207 

with the expression of specific receptors for the same signal(s). Among the traits governed by QS, 208 

bacterial motility, formation of biofilms, biosynthesis of secondary metabolites and virulence factors 209 

have been observed, implying their role in improving bacterial fitness in a crowded, diverse and 210 

competitive environment [66]. As a consequence, several species may form stable symbiotic 211 

consortia, based on the reciprocal exchange of nutrients and signals [67,68]. In the case of 212 

pathogenic bacteria, the full expression of virulence can require a stimulation by other microbial 213 

neighbours [69]. 214 

N-acyl-homoserine lactones (AHLs) are the best-studied example of QS signals, since they are 215 

employed by a wide array of Gram-negative bacteria, including plant pathogens such as 216 

Pseudomonas, Erwinia/Pectobacterium and Agrobacterium species. Other compounds mediating 217 

QS include peptide, aminoacid or fatty acid derivatives. While QS activity was only studied in 218 

aqueous solutions for most of these compounds, their semi-volatile nature presumably also allows 219 

airborne signalling.  220 

The disruption of QS systems (Quorum Quenching, QQ) may be pursued to reduce the population 221 

of pathogens and/or to control the incidence and severity of plant diseases [70]. Interference in QS 222 

has been demonstrated for some BVCs. Among these, DMDS reduces the production of AHLs in P. 223 
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chlororaphis [71]. Linear ketones (2-heptanone, 2-nonanone, 2-undecanone) and 2-amino-224 

acetophenone showed an activity on engineered AHL biosensors [72,73].  225 

Indole and its derivatives may act as QS signals, being produced by some bacterial species in a 226 

population-dependent manner and eliciting specific responses. Non-producing pathogenic bacteria 227 

may also perceive it, possibly by means of AHL receptors [74]. Although auxin (indole-3-acetic acid) 228 

and indole are structurally related, in Agrobacterium tumefaciens (specialised in auxin biosynthesis, 229 

but not releasing indole) only indole can induce bacterial motility, biofilm formation, antibiotic 230 

resistance and expression of virulence genes, while reducing bacterial growth in the 0.2-1 mM 231 

concentration range [75]. 232 

 233 

Biostimulation 234 

After the initial observation of plant growth promotion by 2,3-butanediol-emitting bacteria [76], it 235 

has become evident that BVC-mediated biostimulation is a widespread phenomenon involving 236 

numerous bacterial species and compounds [2,77], with potential applications still to be tested. The 237 

adaptive rationale of some biological effects promoted by plant-associated bacteria is, in many 238 

cases, evident. Symbiotic organisms, for instance, take benefit from increasing root growth and 239 

plant nutritional status. Conversely, pathogens can release BVCs to modify plant metabolism to their 240 

own advantage [78,79]. However, some methodological caveats should be pointed out in the study 241 

of influences of VOCs on complex plant traits. Several molecules of great importance for plant 242 

metabolism, but not easily detected in the most common experimental settings, for instance, may 243 

be neglected (Box 1). 244 

Plant growth is the result of several factors, such as hormonal signalling, nutrition, stress tolerance 245 

(Figure 1). Thus, the observation of a plant growth-promoting effect by a bacterial strain in 246 

laboratory conditions, in absence of nutritional or cultural constraints, is possibly not indicative of 247 

the applicability of the same strain in field. Secondly, plant growth may not correlate (or even 248 

inversely correlate) with crop yield, for which not only carbon fixation, but also reallocation of 249 

photosynthates is relevant. Thirdly, the effects of BVCs are generally pleiotropic, i.e. they interact 250 

with multiple signalling pathways, and are not specific to a definite target organism [43]. 251 

 252 

Plant growth promotion and nutrition 253 

Growth promotion by BVCs was shown on several cultivated species, including alfalfa, barley, basil, 254 

broccoli, lettuce, poplar, soybean, tobacco, tomato [43,77]. These effects have been related to 255 
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modulation of plant hormones, such as cytokinins [76], auxins, brassinosteroids [80], gibberellins, 256 

ethylene [81] and strigolactones [82].  257 

While hormonal effects may shape the allocation of resources within the plant and its phenological 258 

progression [79], plant growth promotion and biomass increase should come with a corresponding 259 

nutritional enhancement. The stimulation of auxin metabolism and/or signalling, for instance, leads 260 

to changes in plant root architecture, which contributes to the uptake of water and nutrients [83]. 261 

Ethylene participates in the activation of mineral uptake systems [84]. BVCs were implied in 262 

counteracting carbohydrate- and ABA-mediated inhibition of photosynthesis, thus enabling higher 263 

CO2 fixation rates [85], and stimulating iron uptake [86,87]. It should be noted that most research 264 

was conducted in laboratory or controlled conditions, where nutrients and water are generally not 265 

limiting.  266 

 267 

Abiotic stress tolerance 268 

Plant growth promotion by microbes can result from increased tolerance to environmental stresses. 269 

Although mechanisms are often far from being elucidated [88], such effects are generally induced 270 

by the release of volatile hormones by the microbes (notably ethylene, methyl-jasmonate and 271 

methyl-salicylate), or involve the signalling cascade of plant hormones [89]. 272 

Current knowledge on BVC-induced tolerance refers mainly to osmotic, salt and/or water stress (Box 273 

4). In addition, this research area may provide significant advancement to phytoremediation and to 274 

the adaptation of crops to stresses related to climate change [90]. The recovery of marginal soils, 275 

for instance, may be enhanced by the root branching stimulation, exerted by some symbiotic 276 

bacteria to increase the release of organic carbon into the rhizosphere. Among the BVCs implicated 277 

in this plant-microbe interaction, 1-butanol and the QS signal butyrolactone may play a role [91]. 278 

 279 

Crop quality 280 

A list of examples of bacterial interactions with crops, influencing crop quality, is shown in Table 4. 281 

In all the cases in which crop quality depends on secondary metabolites, such as essential oils and 282 

aromas, a close link between the elicitation of plant defences and an increased crop value is easily 283 

explained. In fact, essential oils form one of the first lines of plant defence and inter-plant 284 

communication, and their contents are raised by BVCs from several defence-inducing bacteria. Thus, 285 

an increased essential oil content was obtained by exposing aromatic plants, including peppermint 286 



10 
 

and basil [92,93], or medicinal plants such as Atractylodes lancea [94], to BVCs emitted by several 287 

Pseudomonas, Bacillus and Azospirillum spp.  288 

In the determination of the aromatic profiles of fruit, a remarkable role has been observed for the 289 

associated microflora. Methylobacterium spp. include endophytic species expressing alcohol 290 

dehydrogenase (ADH) activity, which converts plant-derived alcohols to the corresponding 291 

aldehydes or ketones [95,96]. The substrate-specificity of bacterial ADH is low, but distinct from that 292 

of plant ADH, thus explaining the diversity, along with the higher intensity, of VOC emissions from 293 

microbe-colonised plants.  294 

During post-harvest storage, crops may incur in spoilage by pathogens, with consequent loss of 295 

produce and/or contamination by mycotoxins. Because of the use of controlled atmosphere on a 296 

large variety of crops, VOC-based technologies may fit well in post-harvest disease control. In fact, 297 

on one hand, relatively high concentrations of bioactive volatiles can be obtained in a closed storage 298 

cell; on the other hand, in comparison to synthetic fungicides, the application of biogenic VOCs and 299 

BVC-emitting bacteria to products for human consumption poses lower concerns. Several Bacillus 300 

spp. strains releasing antifungal BVCs were identified and tested on citrus, mango, cherry, litchi and 301 

peach [97-102], while Streptomyces spp. were tested on strawberry, citrus, tomato and chili [103-302 

107]. Some compounds mediating antifungal effects, such as cedrol, 2-pentylfuran [102] and 303 

acetophenone [107], are commonly found among fruit aromas, and their efficacy was proved on a 304 

large spectrum of pathogens. Therefore, their technical use may encounter few restrictions by 305 

policy-makers, and possibly even higher appreciation by consumers. 306 

The microbial population living on grapevine berries (including Paenibacillus spp.) produces volatile 307 

compounds possibly improving the quality of wine [108]. Thus, while fruit technology has been so 308 

far oriented to the limitation of microbial populations on the crop, future work should address and 309 

exploit the contribution of the microflora to aromatic properties of fruit or derivate products. 310 

 311 

Concluding remarks 312 

Despite the great diversity of bacterial metabolites and of biological relations mediated by them, 313 

which form a huge reservoir of resources with a potential applicative interest, BVC applications have 314 

been explored so far only marginally, and their practical use is at its dawn especially for improving 315 

crop tolerance and quality [95]. The present overview was limited to volatile compounds emitted 316 

by bacteria, but other organisms (including fungi, moulds and, to some extent, plants) also release 317 

bioactive compounds. In addition, biogenic inorganic volatile compounds were only marginally 318 
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considered. Thus, future agricultural and environmental engineering applications may benefit from 319 

the study of a wider range of biological relations, or by the development of new analytical tools and 320 

protocols. 321 

In modern agricultural systems, there is a growing interest in finding environmentally sustainable, 322 

effective and inexpensive solutions for the problems encountered at each step of the production 323 

chain. The diffusion of biological control methods, and the programs for phytoremediation or 324 

recovery of marginal soils are examples of such dynamics. However, the novelty of these solutions 325 

also poses some legislation and registration issues [113,114]. In addition, live biostimulant or 326 

biocontrol agents may not adapt to all cultural conditions [90], and promising biological functions 327 

may come along with potential risks for human health or environmental equilibrium. 328 

Therefore, the mechanisms of interaction among different bacterial species and with their 329 

eukaryotic (plant, insect) hosts deserve in-depth investigation, to develop more efficient and flexible 330 

solutions for emerging problems. Volatile compounds may show inherent advantages related to 331 

their diffusibility, low dose of action and absence of toxic residues [89]. Extensive field testing is 332 

required as a key step to the commercial and industrial application of technologies based on BVCs 333 

(see also the outstanding questions). 334 

 335 
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Box 1. Low molecular weight volatile compounds 697 

Some volatile compounds, characterised by a small and simple chemical structure, interact directly 698 

with plant metabolism or signalling cascades. However, these molecules have received, in 699 

explorative studies, only marginal attention, because of technical limits, including the impossibility 700 

of a correct identification by GC-MS (due to short retention times and/or scarcely indicative spectral 701 

profiles), or the occurrence of artifacts (such as accumulation effects in sealed cuvets, or 702 

interference with growing media) linked with the experimental setting.  703 

Carbon dioxide fuels photosynthesis and it is often the most important limiting factor of this process. 704 

CO2 regulates stomata opening and, consequently, photosynthesis and transpiration [115]. CO2 may 705 

contribute to the growth and resistance promoting effects observed in plants treated with bacterial 706 

VOCs [116]. CO2 produced by respiration of bacterial endophytic symbionts can reenter the 707 

photosynthetic pathway, not being limited by stomata opening, and has been estimated to be able 708 

to provide up to 57% of total CO2 photo-assimilated by the plant [117]. In this view, plants colonised 709 

by endosymbionts may have a better water use efficiency and a higher availability of 710 

photoassimilates for growth and defences. 711 

Ethylene is a gaseous plant hormone playing a central role in plant development and resistance 712 

response to abiotic and biotic stresses [118], also interacting with salicylic acid- and jasmonic acid-713 

dependent signalling pathways. Ethylene and its precursor 1-aminocyclopropane-1-carboxylate 714 

(ACC) are subjected to sophisticated co-regulation by plants and associated microbes, thus shaping 715 

the plant microbiome [119,120]. In fact, bacteria can actively produce ethylene, or reduce its 716 

biosynthesis in plants subtracting ACC by ACC-deaminase activity, thus lowering plant ethylene 717 

levels and promoting plant growth.  718 

Nitric oxide (NO) is a radical gas mediating a large variety of physiological responses in plants. Plant-719 

associated bacteria can produce NO, as a result of denitrification, by enzymatic conversion of L-720 

arginine or by release from siderophores [121,122]. One important effect of bacterial NO, observed 721 

e.g. in Azospirillum spp. [123], is the enhancement of root branching, promoting both plant 722 

nutritional status and bacterial colonisation. 723 

While commonly regarded as a toxic and/or defence compound, hydrogen sulfide (H2S) also has a 724 

regulative role in plants by interacting with NO and thiols [124,125]. Plant-associated bacteria 725 

synthesise H2S through cysteine desulfhydrylation or sulfite reduction.  726 
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Ethanol and methanol are common products of fermentation, originated by both plants and 727 

bacteria under anoxic conditions, and have been implied in the activation of plant stress responses 728 

[126]. 729 

 730 

Box 2. BVC-elicited induction of plant defences 731 

Since the discovery of induced systemic resistance (ISR, see glossary) by 2,3-butanediol [127], the 732 

potential application of BVCs for the elicitation of plant defences has drawn attention. Notably, 733 

induction of plant defences is one of the very few measures that can be adopted against viral 734 

diseases [128]. ISR is often stimulated as the result of a specific symbiotic interaction between the 735 

host plant and bacteria, which also promote plant nutrition and growth. Thus, the two aspects of 736 

defence and growth promotion coexist in the same symbiotic relation and are somewhat difficult to 737 

tell apart (e.g. activation of stress responses in Figure 1). However, relevant details for plant defence 738 

engineering, including mechanisms of signal perception and decoding (i.e., how relatively simple 739 

molecules drive specific responses), remain obscure [88]. 740 

2,3-butanediol biosynthesis, for instance, was observed both in defence-eliciting (Bacillus and 741 

Serratia spp., Pseudomonas chlororaphis) and pathogenic (Erwinia/Pectobacterium, Dickeya spp.) 742 

bacteria [127,129-131]. In different pathosystems, the action of 2,3-butanediol and related 743 

compounds (acetoin, 2,3-butanedione) has been connected to different combinations of salicylic 744 

acid, jasmonate and/or ethylene signal cascades [127,128,132]. According to the relative 745 

stimulation of these pathways, specific subsets of plant defensive responses may be activated. 746 

While 2,3-butanediol and related compounds are the best-studied example of defence-inducing 747 

BVCs, other molecules [43,133] were identified which could stimulate plant defences. In some cases, 748 

such as for DMDS and benzothiazole, direct antimicrobial and plant defence induction effects may 749 

coexist [134]. One advantage of these compounds is that, although acting through plant hormone 750 

signal cascades, they are less prone than hormones to cause drastic physiological reprogramming. 751 

For instance, ISR is expressed only after pathogen challenge, and is not generally associated to 752 

changes in plant phenotype or crop yield [40,135]. 753 

Synergism of BVCs in complex mixtures may also occur in natural conditions [88]. By modulating the 754 

simultaneous activation of several signal cascades (ethylene, jasmonate, salicylate, and other 755 

hormones), BVC mixtures could attain protection against a broader range of pathogens [135]. 756 

 757 

  758 
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Box 3. Pest management by BVCs 759 

Survival and replication rate of pests (including Drosophila suzukii and several nematodes) were 760 

reduced by means of bacterial volatile emissions [48,136]. However, the use of toxic BVCs seems 761 

impractical against most motile animal species, due to limitations in exposure time and 762 

concentration. Instead, microbial biocontrol agents releasing toxic compounds may act as effective 763 

biopesticides for soil-borne or sessile pests, with a significantly reduced environmental impact. 764 

Insects and nematodes use a variety of semiochemicals to coordinate their life functions, including 765 

feeding, mating, oviposing and alarm behaviour. Pest- or plant-associated bacteria contribute to the 766 

production of biologically active BVCs (Figure 1), and many cases of attraction to microbes 767 

associated to the host have been observed [137]. Fruit flies (Drosophila spp.), for instance, are 768 

attracted by BVCs from symbiotic Lactobacillus spp. acting as aggregation pheromones [138], and 769 

are repelled by the common BVCs, 1-octen-3-ol and geosmin [139]. Locusts use guaiacol derivatives, 770 

produced by Pantoea agglomerans residing in their intestines, as an aggregation pheromone [140]. 771 

Finally, the association with certain bacteria may determine the insect’s preference for BVCs 772 

emitted by those microbes, by effect of conditioning or learning [141]. Parasitoid recruitment can 773 

be mediated by BVCs, either by direct attraction to microbes indicating a food source [142], or 774 

indirectly by eliciting a more intense release of plant VOCs [143]. Concerning nematodes, 775 

experiments on the model organism Caenorhabditis elegans showed that attractive BVCs produced 776 

by Bacillus nematocida, such as benzyl benzoate, benzaldehyde, 2-heptanone, and acetophenone, 777 

stimulate bacterial swallowing by the host. Thus, the bacterium colonises the worm’s intestines, 778 

leading to its death [144]. 779 

BVCs may, therefore, find an application in pest management. VOC-based technologies, employing 780 

attractants, deterrents and pheromone-like compounds have been applied to lure-and-kill, push-781 

pull and sexual confusion control strategies. However, information concerning semiochemicals for 782 

such technologies is currently restricted to a relatively small number of species (mostly Lepidoptera, 783 

Diptera and Coleoptera). New impulse, in this sense, may derive from metagenomic analyses 784 

performed either on the insect or on its hosts [145]. With the exception of specialised symbiotic 785 

relations, insect guts have often been demonstrated to host relatively simple microbiota, dominated 786 

by Enterobacteriaceae (notably Enterobacter/Pantoea and Klebsiella spp.), to be highly influenced 787 

by the diet, and possibly transmitted by parents [141,146,147]. This body of knowledge may provide 788 

useful information for the selection of effective and persistent biocontrol agents interacting with 789 

insects. 790 
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Box 4. Examples of abiotic stress tolerance induced by BVCs 791 

Abiotic stresses elicit NO and ethylene production in plants, which exert several and multifaceted 792 

physiological effects. Plant-associated bacteria may indirectly influence plant NO and ethylene 793 

emission or produce these bioactive compounds (Box 1). 794 

Water deficiency, osmotic stress and salt toxicity are partially interconnected and overlapping both 795 

in causes and in the induction of plant responses. 2,3-butanediol, or total BVCs from 2,3-butanediol-796 

emitting bacteria Bacillus subtilis GB03 and Pseudomonas chlororaphis O6, increased Arabidopsis 797 

tolerance to water deficiency and osmotic stress. Abscisic acid, salicylic acid, ethylene, and jasmonic 798 

acid signaling pathways were implicated in P. chlororaphis O6- and 2,3-butanediol-induced stomata 799 

closure, increasing tolerance to drought [148]. B. subtilis GB03 stimulates the biosynthesis of 800 

osmoprotectants (choline, glycine-betaine) in the plant, enhancing its growth under water 801 

withholding and osmotic treatment [149].  802 

Several cases of improved plant tolerance to salt stress have been observed after interaction with 803 

BVC-releasing bacteria. B. subtilis GB03 and its main volatile, acetoin, enhance peppermint 804 

tolerance to salt stress by stimulating SA biosynthesis and reducing ABA [150]. Another mechanism 805 

of induction of Na+ stress tolerance in Arabidopsis consists of the tissue-specific modulation of HKT 806 

ion transporters [151]. Such transporters are downregulated in roots to reduce Na+ uptake and 807 

upregulated in shoots to promote internal recirculation. NO, produced by salt-stressed plants, was 808 

also implicated in the enhanced colonisation of the rhizosphere by Pseudomonas simiae strain AU, 809 

which in turn elicits antioxidant defences, osmoprotection and expression of ion transporters in 810 

soybean [152]. Other salt tolerance-inducing BVCs (namely, 2-undecanone, 1-heptanol and 3-811 

methyl-butanol) were identified from Parabulkholderia phytofirmans [153]. 812 

Drought stress and high temperature promote isoprene emission by plants [154]. Isoprene is the 813 

most abundantly produced biogenic VOC on Earth, with an estimated emission of more than 2% of 814 

all photoassimilates. Isoprene has a likely a role in protection from reactive oxygen and nitrogen 815 

species formed under diverse stress conditions [155]. Many Proteobacteria, Actinobacteria and 816 

Firmicutes produce isoprene. Bacillus and related genera are among the terrestrial bacteria 817 

accounting for the highest production of isoprene. Interestingly, isoprene emission by Bacillus 818 

subtilis is enhanced by supra-optimal temperature and salinity [156], suggesting that also plant-819 

associated B. subitlis may mediate the plant reactions to these stresses. Soil and phyllosphere 820 

bacteria may also directly influence the host isoprene metabolism by using plant-derived isoprene 821 

as carbon source [155]. 822 
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Table 1. Applications of VOC-based recognition of bacterial pathogens in different plant species 823 
and organs, indicating the diagnostic techniques and the VOCs marker/s 824 

Crop species and 
conditions 

Bacterial pathogen/contaminant Methods Distinctive features and remarks Reference 

Apple, dormant plants Erwinia amylovora 
Pseudomonas syringae pv. 
syringae 

GC-MS 
E-NOSE 
PTR-MS 

Multiple pathogen discrimination 
Dilution effects 
Markers: acetoin, 2,3-butanediol, 2-hexenal, 
phenylethanol (E. amylovora) 

[15] 

Bell pepper-derived 
medium 

Leuconostoc gelidum ssp. 
gasicomitatum and Lactococcus 
piscium 

GC-MS 
SIFT-MS 

Control of spoilage off-odours by controlled 
atmosphere 

[16] 

Carrot, roots Pectobacterium carotovorum GC-MS Multiple pathogen discrimination 
Markers: 3-methyl-butan-1-ol, 1-propanol, 2,3-
butanedione 

[17] 

Citrus sinensis, 
asymptomatic plant 

C. liberibacter GS-MS 
FAIMS 

Correct identification of PCR-false negatives 
Severity-dependent markers: methyl-salicylate 
(severe), geranyl acetone, linalool (mild) 
 

[18] 

Ficus benjamina and 
Spathiphyllum wallisii, in 
vitro cultures 

Escherichia coli contamination SIFT-MS  [19] 

Grapefruit, leaves Xanthomonas axonopodis pv. citri GC-MS Marker: phenylacetaldehyde O-methyloxime [20] 

Grapevine, rootstock cuts Agrobacterium vitis GC-MS 
E-NOSE 

Marker: styrene [21] 

Kiwifruit, in vitro explants Pseudomonas syringae pv. 
actinidiae 

GC-MS 
E-NOSE 
PTR-MS 

Marker: 1-undecene [22] 

Lettuce Resident microflora (mainly 
Pseudomonas spp.) 

GC-MS 
SIFT-MS 

Control of spoilage off-odours by packaging [23] 

Onion, bulbs Burkholderia cepacia  GC-MS 
E-NOSE 

Markers: 2-nonanone, 2-octyl-5-methyl-3(2H)-
furanone 

[24] 

Onion, bulbs Pectobacterium carotovorum GC-MS Multiple pathogen interaction 
Marker: 3-bromo-furan 

[25] 

Onion, bulbs Burkholderia cepacia FAIMS  [26,27] 

Poplar, wood Bacterial wetwood (non-
determined species) 

E-NOSE  [28] 

Potato, tubers Clavibacter michiganensis ssp. 
sepedonicus 

GC-MS 
PTR-MS 

Marker: 2-propanol [29] 

Potato, tubers Pectobacterium carotovorum 
Bacillus polymyxa 
Arthrobacter sp. 

GC-MS Markers: 2-propenal, DMDS, 1-alkenes, branched 
alkanes, octanal, naphtalene, butanoic acid (P. 
carotovorum); N,N-dimethylformamide, 1-
pentadecene (B. polymyxa); 2,3-dihydrofuran 
(Arthrobacter sp.) 

[30] 

Potato, tubers Pectobacterium carotovorum GC Multiple pathogen discrimination [31] 

Potato, tubers Ralstonia solanacearum, 
Clavibacter michiganensis ssp. 
sepedonicus 

E-NOSE Lab- to real scale 
Threshold of disease severity for recognition 

[32] 

Potato, tubers Pectobacterium carotovorum E-NOSE Pre-symptomatic recognition [33] 

Potato, tubers Pectobacterium carotovorum FAIMS Early detection (1 d post inoculation) [34] 

Potato, tubers Pectobacterium carotovorum FAIMS  [26] 

 825 

  826 
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Table 2. Overview of analytical techniques employed for VOC-based plant diagnosis, with working 827 
principles and potential advantages and drawbacks 828 

Analytical technique Working principle Operative features Diagnostic principle 
GC-MS Differential retention time and 

fragmentation profile of VOCs 
+ High analytical power (identification of 
single compounds) 
+ May use sample concentration on sorbents 
(e.g. SPME) 

Recognition of markers 
Multivariate statistical analysis 

PTR-MS 
SIFT-MS 

Fragmentation profile of VOCs + Partial analytical power 
+ Quick response 

Partial recognition of markers 
Multivariate statistical analysis 

Electronic nose Electric properties of the overall VOC 
mixture 

+ Simple operation, portability 
+ Quick response 
+ May adjust sensitivity by regulating flow 
- Interference by water 
- No analytical power 
- Instrumental drift 

Multivariate statistical analysis 
Neural network machine learning 

FAIMS Differential mobility of ion fragments in 
electric field 

+ Partial analytical power 
+ Portability 

Partial recognition of markers 
Multivariate statistical analysis 

 829 

Table 3. Volatile organic compounds exerting direct toxicity against plant pathogens 830 

Compound(s) Emitting species Target organism(s) Reference 

Hydrogen cyanide 
Ammonia 
1-Undecene 

Pseudomonas spp. 
Bacillus spp. 
others 

Phytophthora infestans 
Rhizoctonia solani 
Helminthosporium solani 
Fusarium oxysporum 
Dickeya dianthicola 

[49] 

2-(2’-heptyl)-3-methyl-4-quinolone Burkholderia cepacia Aspergillus niger and other fungi [44] 

Alkylated benzene derivatives 
Phenol derivatives 
Naphthalene derivatives 
Benzothiazole 
2-Ethyl-1-hexanol 
2-Undecanol 
2-Nonanone 
2-Decanone 
2-Undecanone 
Nonanal 
Decanal 

Bacillus amyloliquefaciens NJN-6 Fusarium oxysporum f. sp. cubense [45] 

N,N-dimethyl- hexadecanamine Arthrobacter agilis UMCV2 Botrytis cinerea 
Phytophthora cinnammomi 

[46] 

2-methyl-isoborneol Streptomyces alboflavus TD-1 Fusarium moniliforme [47] 

1-Undecene 
2-Nonanone 
2-Undecanone 

Pseudomonas chlororaphis Agrobacterium tumefaciens 
Synechococcus spp. 
Rhizoctonia solani 

[48] 

Dimethyl disulfide 
2-Heptanone 

Serratia proteamaculans Agrobacterium tumefaciens 
Synechococcus spp. 
Rhizoctonia solani 

[48] 

3-hexanone 
1-dodecene 
isovaleric acid 
S-methyl-butanethioate 
S-methyl-methanethiosulfonate 
furfuryl alcohol 
acetophenone 
phenylpropanedione 
2- acetylthiazole 
nitropentane 

Pseudomonas spp. Phytophthora infestans [49] 
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2-(2-Methylpropyl)-3-(1-methylethyl) 
pyrazine 
2- Isopropylpyrazine 
2- methyl-1-butanol 
Hexadecanal 
Isoamyl acetate 

Paenibacillus polymyxa Sb3-1 Verticillium longisporum [51] 

Phenylethyl alcohol 
Methyl salicylate 
Ethyl phenylacetate 
Methyl anthranilate 
α-Copaene 
Caryophyllene 
4-Ethylphenol 
Humulene 

Streptomyces fimicarius BWL-H1 Peronophythora litchii [52] 

2,3,5-Trimethylpyrazine 
2-Nonanone 
2-Decanone 
2-Dodecanone 
Dimethyl disulfide 
Dimethyl trisulfide 

Bacillus spp. 
Pseudomonas spp. 

Fusarium spp. 
Colletotrichum gloeosporioides 

[53] 

Hexanedioic acid, bis(2-ethylhexyl) ester 
Octadecane 
1-Hexadecanol 
Docosane 
Chloroacetic acid, tetradecyl ester 

Bacillus atrophaeus HAB-5 Colletotrichum gloeosporioides [54] 

2-methyl-1-butanol 
ethyl hexanoate 
3-methyl-1-butanol 
ethyl octanoate 
phenylethyl acetate 
phenylethyl alcohol 

Pseudomonas chlororaphis subsp. aureofaciens 
SPS-41 

Ceratocystis fimbriata [55] 

2-methylbutyrate 
2-phenylethanol 

Streptomyces yanglinensis 3-10 Aspergillus flavus 
A. parasiticus 

[56] 

Isooctanol 
Linalool 
3-Octanone 
2-Naphthalene methanol 
3-Undecanone 
2-Tridecanone 

Corrallococcus sp. EGB Fusarium oxysporum f. sp. cucumerinum 
Penicillium digitatum 

[57] 

Dimethyl disulfide Pseudomonas fluorescens B-4117 
P. fluorescens Q8r1-96 
Serratia plymuthica IC1270 
 

Agrobacterium tumefaciens 
A. vitis 

[58] 

2,4-diacetylphloroglucinol Hydrogen 
cyanide 

Pseudomonas sp. LBUM300 Clavibacter michiganensis ssp. 
michiganensis 

[59] 

Benzaldehyde 
Nonanal 
Benzothiazole 
Acetophenone 

Bacillus subtilis FA26 Clavibacter michiganensis ssp. 
sepedonicus 

[60] 

3,5,5-trimethylhexanol 
Decyl alcohol 

Bacillus cereus D13 Xanthomonas oryzae pv. oryzae [61] 

Toluene 
Ethyl benzene  
m-xylene  
Benzothiazole  
2-decanol  
2-tridecanol  
1-undecanol  
Dimethyl disulfide 
Benzaldehyde  
1-Methyl naphthalene  

Pseudomonas fluorescens WR-1 Ralstonia solanacearum [62] 
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Table 4. Examples of bacterial interactions with crops influencing quality parameters 833 

Crop plant Bacterial species Quality parameter(s) Mechanism of 
interaction 

Reference 

Sweet basil Bacillus subtilis GB03 Increased production of 
essential oils 

 [92] 

Peppermint Pseudomonas fluorescens WCS417r, 
Bacillus subtilis GB03, Azospirillum 
brasilense SP7 

Increased production of 
essential oils 

 [93] 

Atractylodes lancea Pseudomonas fluorescens ALEB7B Increased production of 
essential oils 

Benzaldehyde 
mediates the effect 

[94] 

Strawberry Methylobacter spp. Production of aromatic 
compounds (furanones) 

Bacterial alcohol 
dehydrogenase 

[95,96] 

Raspberry Methylobacter spp., Bacillus spp. Production of aromatic 
compounds (frambinone) 

 [109,110] 

Strawberry Bacillus megaterium Production of aromatic 
compounds (2,3-
dialkylacroleins) 

Conversion of linear 
aldehydes 

[111] 

Basmati rice Acinetobacter spp. Production of aromatic 
compounds (2-acetyl-1-
pyrroline) 

 [112] 

Citrus, mango, cherry, litchi, 
peach 

Bacillus spp. Protection from spoliage Antifungal action of 
cedrol and 2-
pentylfuran 

[97-102] 

Strawberry, citrus, tomato, 
chili 

Streptomyces spp. Protection from spoliage Antifungal action of 
acetophenone 

[103-107] 

Grapevine Paenibacillus spp. Production of aromatic 
compounds in wine production 

 [108] 
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Figure 1. Summary of VOC-mediated biological functions of plant-associated bacteria.  835 

Biological effects of plant-associated bacteria and their mechanisms of interaction with the host 836 

plant and the environment can be exploited in the agricultural practice. The resident bacteria may 837 

increase the availability of certain mineral nutrients, or stimulate plant growth and stress responses 838 

by means of hormones or other signalling compounds. As a result, a better nutritional status and a 839 

better ability to cope with stresses is achieved in the host plant. In their interaction with pests and 840 

pathogens, plant-associated bacteria may act as direct competitors and/or predators with a biocidal 841 

action, or exert a disturbance in long-range signalling, possibly influencing the pest’s behaviour, its 842 

recognition by natural enemies, and the expression of «social» phenotypes related to virulence in 843 

pathogens. 844 

 845 

Glossary 846 

BCA: Biological Control Agent, an organism exerting directly (e.g. by killing or predating) or indirectly 847 

(by competition for resources, or through the action of other organisms) a limiting effect on the 848 

population of a pest or pathogen. 849 

BVCs: Bacterial Volatile Compounds, including organic (i.e. carbon-containing) and inorganic (e.g. 850 

H2S, nitrogen oxides) compounds. 851 

E-NOSE: Electronic nose, a device including an array of electric sensors with differential affinity for 852 

different chemical classes, and variating their electric conductance upon interaction with the 853 

components of a gas blend. Used to compare gas samples, has good portability and ease of 854 

operation, allows real-time analysis, but not chemical identification. 855 

FAIMS: Field Asymmetric Ion Mobility Spectrometry, analytical method based on the separation of 856 

ions in an oscillating electric field. Allows real-time analysis of gas profiles with good portability, and 857 

can be coupled to GC-MS for chemical identification. 858 

GC-MS: Gas Chromatography-Mass Spectrometry, analytical technique based on separation of 859 

molecules in a gas mixture according to affinity to a chromatographic column, followed by their 860 

fragmentation to yield a typical spectrum. Most used technique for identification of volatile 861 

compounds. 862 

Gnotobiotics: study of test organisms, in which the resident microbial community is artificial, 863 

controlled and/or completely characterised. 864 

Holobiont: the complex formed by a host organism and its associated microflora. 865 
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ISR: Induced Systemic Resistance, condition of increased and generalised plant resistance to 866 

potential pathogens and pests, activated after interactions with microbes (including beneficial 867 

symbionts). 868 

Metagenomics: study of the complex of genomes associated in one super-organism, such as a plant 869 

with its associated microflora. 870 

PTR-MS: Proton Transfer Reaction-Mass Spectrometry, analytical technique based on 871 

fragmentation of gas compounds in an electric field. Allows highly sensitive real-time detection and 872 

tentative identification of compounds. 873 

QS: Quorum Sensing, bacterial communication system allowing the coordination of ‘social’ 874 

phenotypes (motility, biofilm formation, etc.) according to population density. 875 

SIFT-MS: Selected Ion Flow Tube-Mass Spectrometry, analytical technique based on fragmentation 876 

of gas compounds in an air flow. Allows real-time detection and tentative identification of 877 

compounds. 878 

VOCs: Volatile organic compounds, organic molecules characterised by low vapour pressure, high 879 

lipophylicity and low molecular weight, normally found in the gas phase in standard conditions. 880 

Volatilome: the complete set of volatile compounds originating from an organism or biological 881 

system. 882 






