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Static and stationary regular black holes are examined under a minimal set of requirements consisting of 
(i) the existence of a well defined event horizon and (ii) the weak energy condition for matter sourcing 
the geometry. We perform our analysis by means of the gravitational decoupling approach and find hairy 
solutions free of curvature singularities. We identify the matter source producing a deformation of the 
Minkowski vacuum such that the maximum deformation is the Schwarzschild solution for the static case, 
and the Kerr metric for the stationary case.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Possible conditions for circumventing the no-hair conjecture 
have been investigated for a long time and in different scenar-
ios [1–6]. An option is to fill the would-be static vacuum of Gen-
eral Relativity (GR) with a source, possibly of fundamental origin, 
which is often described using a scalar field [7]. One of the main 
reasons to do so is to eliminate the singularities which should 
form at the end of the gravitational collapse according to GR. Even 
though the Cosmic Censorship Conjecture (CCC) states that these 
singularities are always hidden inside an event horizon [8,9], their 
very prediction should be taken as a clear signal about the limita-
tions of the theory.

Regarding cancellation of singularities by hairy solutions, a 
plethora of new regular black holes (BHs) has been proposed in re-
cent years. There is a relatively simple way to interpret the matter 
source used to evade singularities in terms of nonlinear electrody-
namics [10,11] (see also Refs. [12–16]). Unfortunately, classically 
regular solutions usually contain a Cauchy horizon, a null hy-
persurface beyond which predictability breaks down [17,18], and 
which turn out to be quite problematic [19–22]. A first step in the 
direction of avoiding such issues could be to describe matter in 
the most general way possible, ensuring a flexible enough scenario 
with the least number of restrictions. This is precisely the scheme 
followed in this work, where the Schwarzschild vacuum is filled 
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with a generic static and spherically symmetric source θμν which 
we call a “tensor-vacuum”. This scheme is a direct consequence 
of the gravitational decoupling (GD) method [23,24], and has re-
sulted particularly useful to generate hairy BHs in both the spher-
ically symmetric [25,26] and axially symmetric case [27] (see also 
Ref. [28–39]). One of the most attractive features of this scheme, is 
that it allows to introduce a minimal set of requirements, without 
jeopardizing the static or stationary vacuum far from the source. 
In this respect, the goal of this work is to find regular BHs for the 
static and rotational cases, which are asymptotically flat and satisfy 
some of the energy conditions.

The paper is organised as follows: in Section 2, we briefly re-
view the GD scheme, showing the decoupling of two gravitational 
sources for the spherically symmetric case; in Section 3, we im-
plement the GD to produce regular hairy black holes satisfying the 
weak energy condition; in Section 4 we generate the axially sym-
metric version of the regular hairy BH; finally, we summarize our 
conclusions in Section 5.

2. Gravitational decoupling

In order to be as self-contained as possible, in this Section we 
briefly review the GD for spherically symmetric gravitational sys-
tems described in detail in Ref. [24]. For the axially symmetric 
case, see Ref. [27].

We start from the Einstein-Hilbert action

S =
∫ [

R

2κ
+LM +L�

]√−g d4x , (1)
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where R is the Ricci scalar, LM contains standard matter fields and 
L� is a second Lagrangian density which may describe matter or 
be related with a new gravitational sector beyond general relativ-
ity. For both sources, the energy-momentum tensors are defined as 
usual by

Tμν = − 2√−g

δ (
√−g LM)

δ gμν
= −2

δLM

δ gμν
+ gμνLM , (2)

θμν = − 2√−g

δ (
√−g L�)

δ gμν
= −2

δL�

δ gμν
+ gμνL� , (3)

so that the action in Eq. (1) yields the Einstein field equations1

Gμν ≡ Rμν − 1

2
R gμν = κ T̃μν , (4)

with a total energy-momentum tensor given by

T̃μν = Tμν + θμν , (5)

which must be covariantly conserved,

∇μ T̃ μν = 0 , (6)

as a consequence of the Bianchi identity.
For spherically symmetric and static systems, we can write the 

metric gμν as

ds2 = −eν(r) dt2 + eλ(r) dr2 + r2 d�2 , (7)

where ν = ν(r) and λ = λ(r) are functions of the areal radius r
only and d�2 = dθ2 + sin2 θ dφ2. The Einstein equations (4) then 
read

κ T̃ 0
0 = − 1

r2
+ e−λ

(
1

r2
− λ′

r

)
(8)

κ T̃ 1
1 = − 1

r2
+ e−λ

(
1

r2
+ ν ′

r

)
(9)

κ T̃ 2
2 = e−λ

4

(
2ν ′′ + ν ′2 − λ′ν ′ + 2

ν ′ − λ′

r

)
, (10)

where f ′ ≡ ∂r f and T̃ 3
3 = T̃ 2

2 due to the spherical symmetry. By 
simple inspection, we can identify in Eqs. (8)-(10) an effective en-
ergy density

ε̃ = −T 0
0 − θ 0

0 = ε + E , (11)

an effective radial pressure

p̃r = T 1
1 + θ 1

1 = pr +Pr , (12)

and an effective tangential pressure

p̃t = T 2
2 + θ 2

2 = pθ +Pθ , (13)

where we clearly have

T ν
μ = diag [−ε, pr, pθ , pθ ] , (14)

θ ν
μ = diag [−E, Pr, Pθ , Pθ ] . (15)

In general, � ≡ p̃θ − p̃r does not vanish and the system of 
Eqs. (8)-(10) describes an anisotropic fluid.

We next consider a solution to the Eqs. (4) for the seed source 
Tμν alone, which we write as

1 We use units with c = 1 and κ = 8 π GN, where GN is Newton’s constant, and 
signature (-,+,+,+).
2

ds2 = −eξ(r) dt2 + eμ(r) dr2 + r2 d�2 , (16)

where

e−μ(r) ≡ 1 + κ

r

r∫
0

x2 T 0
0 (x)dx = 1 − 2 m(r)

r
(17)

is the standard general relativity expression containing the Misner-
Sharp mass function m = m(r). Adding the source θμν results in 
the GD of the metric (16), namely

ξ → ν = ξ + α g (18)

e−μ → e−λ = e−μ + α f , (19)

where f and g are respectively the geometric deformations for 
the radial and temporal metric components parameterised by α.2

By means of Eqs. (18) and (19), the Einstein equations (8)-(10) are 
separated in two sets:

• One is given by the standard Einstein field equations for the 
metric (16) sourced by the energy-momentum tensor Tμν , 
that is

κ ε = 1

r2
− e−μ

(
1

r2
− μ′

r

)
, (20)

κ pr = − 1

r2
+ e−μ

(
1

r2
+ ξ ′

r

)
, (21)

κ pθ = e−μ

4

(
2ξ ′′ + ξ ′2 − μ′ξ ′ + 2

ξ ′ − μ′

r

)
. (22)

• The second set contains the source θμν and reads

κ E = −α f

r2 − α f ′

r
, (23)

κ Pr − α Z1 = α f

(
1

r2
+ ν ′

r

)
(24)

κ Pθ − α Z2 = α f

4

(
2ν ′′ + ν ′2 + 2

ν ′

r

)
α f ′

4

(
ν ′ + 2

r

)
, (25)

where

Z1 = e−μ g′

r
(26)

4 Z2 = e−μ

(
2g′′ + α g′2 + 2 g′

r
+ 2 g′ξ ′ − μ′g′

)
. (27)

Of course, the tensor θμν vanishes when the deformations 
vanish ( f = g = 0).

Finally, the conservation equation (6) yields

∇σ T σ
ν = −α g′

2
(ε + pr) δσ

ν = −∇σ θσ
ν , (28)

which explicitly shows the exchange of energy between the gravi-
tational systems described by (20)-(22) and (23)-(25), respectively. 
The interaction will be pure gravitational (no exchange of en-
ergy) when i) there is no temporal deformation (g = 0) and ii) 
for Kerr-Schild spacetimes with ε = −pr . This result is particularly 
remarkable since it is exact, without demanding any perturbative 
expansion in f or g [40].

2 We emphasize that Eqs. (18) and (19) do not represent a coordinate transfor-
mation.
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3. Hairy black holes

Our strategy to find hairy deformations of spherically symmet-
ric black holes in general relativity is now straightforward: we 
consider the Schwarzschild metric

eξ = e−μ = 1 − 2 M

r
, (29)

which solves Eqs. (20)-(22) for Tμν = 0 as our seed geometry. 
We then search for a matter Lagrangian L� corresponding to 
an energy-momentum tensor θμν which induces GD f and g in 
Eqs. (23)-(25) such that the singularity of the seed metric at r = 0
is removed. Note that we have a system of three equations and 
five unknowns, namely f , g , E , Pr and Pθ . We are therefore free 
to impose additional conditions.

3.1. Horizon structure

First of all, in order to have black holes with a well-defined 
horizon structure, we need eν(rh) = e−λ(rh) = 0, so that r = rh will 
be both a killing horizon (eν = 0) and a causal horizon (e−λ = 0). 
A sufficient condition for this feature is that

eν = e−λ . (30)

A direct consequence of the Einstein equations (8) and (9) with 
Eq (30) is that the source must satisfy the equation of state p̃r =
−ε̃ . For Tμν = 0, this yields

Pr = −E , (31)

and only a negative radial pressure is allowed (for positive energy 
density). The critical importance of the condition (30) is further 
emphasised by noticing that the conservation equation (28) with 
the equation of state (31) leads to

P ′
r = 2

r
(Pθ −Pr) . (32)

This is precisely the equation of hydrostatic equilibrium which pre-
vents the source θμν to collapse into the central singularity of the 
seed Schwarzschild metric.

Next, by using the condition (30) and the seed Schwarzschild 
solution (29) in Eqs. (18)-(19), we obtain

α f =
(

1 − 2 M

r

)[
eα g(r) − 1

]
. (33)

Hence the line element (7) becomes

ds2 = −
(

1 − 2 M

r

)
h(r)dt2 +

(
1 − 2 M

r

)−1 dr2

h(r)

+r2
(

dθ2 + sin 2θ dφ2
)

, (34)

with

h = eα g(r) , (35)

where g is yet to be determined.
We conclude this section by noting that it is also possible to en-

sure the existence of a well-defined horizon with a less restrictive 
condition than that in Eq. (30), namely

eν(r) = e�(r) e−λ(r) , (36)

where � is regular everywhere. However, with this more general 
condition, the equation (32) for hydrostatic equilibrium becomes
3

P ′
r = −1

2

(
�′ − λ′) (E +Pr) + 2

r
(Pθ −Pr) , (37)

which makes the analysis much more difficult. Indeed, the con-
dition (30) [corresponding to � = 0] ensures that the hairy so-
lution found below is still a spacetime of the Kerr-Schild class 
(gtt grr = −1) [41], like most of the known black holes. In this 
subclass of spacetimes, the field equations are linear, greatly sim-
plifying any further analysis.

3.2. Weak energy conditions

Even though we can expect that classical energy conditions are 
generically violated in extreme high-curvature environments, these 
conditions remain a good guide to build physically relevant solu-
tions [42]. In this work we require that the tensor vacuum θμν

satisfies the weak energy condition

E ≥ 0 (38)

E +Pr ≥ 0 (39)

E +Pθ ≥ 0 . (40)

Eq. (39) holds as a consequence of (31), while the conditions (38)
and (40) are respectively written as

κ r2 E = − (r − 2 M)h′ − h + 1 ≥ 0 (41)

2 (E +Pθ ) = −r E ′ ≥ 0 , (42)

where h = h(r) is defined in Eq. (35). Eq. (41) is a first-order linear 
differential inequality for h, whose saturation E = 0 consistently 
yields the seed Schwarzschild solution (29). On the other hand, any 
possible solution which is regular everywhere will satisfy the in-
equality (41) with strictly positive energy density E which further 
decreases monotonously from the origin r = 0 outwards in order 
to also satisfy Eq. (42), namely E ′ < 0. A simple case satisfying all 
of these conditions is given by

κ E = α

�2
e−r/� , (43)

where � is a constant with dimensions of a length. Notice that 
α is introduced in Eq. (43) in order to recover the seed vacuum 
solution (29) for α → 0.

3.3. Regular spacetime metric

Using the expression (43) in Eq. (41), we find

h = c1 + r

r − 2 M
+ α e−r/�

r − 2 M

(
2� + 2 r + r2

�

)
, (44)

where the constant c1 is also a length. From Eq. (44) we then ob-
tain the asymptotically flat metric functions

eν = e−λ = 1 + c1

r
+ α e−r/�

(
2 + 2�

r
+ r

�

)
. (45)

Notice that the seed mass M does not appear in the solution (45)
and the ADM mass is instead given by M = −c1/2. Moreover, for 
r ∼ 0, one has

eν = e−λ 
 1 + c1 + 2α �

r
− α r2

3�2
. (46)

Hence, the absence of central singularity requires c1 = −2 α �, 
which in turn leads to

α � = M , (47)
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Fig. 1. Metric functions for spherically symmetric solutions (left panel) and axially symmetric solutions (right panel). Each solution shows three cases, i.e., no horizon, extremal 
black hole and black hole with two horizons. The extremal cases are given respectively by α∗ 
 2.56 and α∗∗ 
 2.71. When α � α∗ we reproduce the Schwarzschild solution, 
in agreement with Eq. (48). Likewise, when α � α∗∗ we obtain the Kerr horizon, in agreement with Eqs. (57) and (49). All quantities are shown for M = 1.
so that the region around the centre is a de Sitter spacetime with 
an effective cosmological constant � = α/�2. Finally, we write the 
metric (45) in terms of the ADM mass (47) as

eν = e−λ = 1− 2M
r

+ e−α r/M

r M

(
α2r2 + 2Mα r + 2M2

)
. (48)

We can see from Eq. (45) that the Schwarzschild solution is recov-
ered for α → 0 (with c1 = −2 M). However, this changes radically 
after imposing the regularity condition in Eq. (47). Notice that we 
now obtain the Minkowski spacetime for α → 0, while we recover 
the Schwarzschild solution for α → ∞. In fact, the mass function 
now reads

m̃ = M− e−α r/M

2M

(
α2r2 + 2Mα r + 2M2

)
(49)

and we further notice that, for r → 0, it vanishes as

m̃ 
 α3 r3

6M2
. (50)

This shows that the GD deformation of the seed Schwarzschild 
metric (29) is a formal procedure that effectively helps to find new 
BH solutions with prescribed physical properties, but which cannot 
necessarily be obtained by physical deformations of the seed met-
ric.

Possible horizons are found from solutions rh = rh(M, α) of

e−λ(rh) = 0 . (51)

A standard analysis of Eq. (51) shows an extremal case for α = α∗ , 
with no zeros for α < α∗ and two zeros for α > α∗ . These two 
solutions are the Cauchy and event horizons, as displayed in Fig. 1
(left panel), where we see the metric for three different cases, i.e., 
without an event horizon, the extremal configuration, and a black 
hole.

The scalar curvature is given by

R = α3
(

4M− α r

M3

)
e−α r/M (52)

and Ricci squared reads

Rμν Rμν = α6
(

8M2 − 4α rM+ α2 r2

2M6

)
e−2αr/M , (53)

while the complete expression of the Kretschmann scalar
Rμνρσ Rμνρσ is too involved for displaying. For r → 0, it behaves 
as
4

Fig. 2. Source terms {ε̃, p̃r , p̃θ } × 10 in the spherically symmetric case for α = 3. 
The vertical line shows the event horizon rh ∼ 1.8. All quantities shown for M = 1.

Rμνρσ Rμνρσ 
 8α6

3M4
− 20α7 r

3M5 + 35α8 r2

4M6
, (54)

so we conclude that the solution has no curvature singularities.
Finally, the source generating the metric functions (48) has the 

effective density (43) and an effective tangential pressure

Pθ = α3
(

α r − 2M
2κ M3

)
e−α r/M . (55)

We further have

E +Pθ = α4 r

2κ M3
e−α r/M , (56)

and the WEC indeed holds for r ≥ 0, as displayed in Fig. 2, where 
we see that the vacuum is approached very quickly outside the 
event horizon r = rh. Also notice that, in agreement with Eq. (32), 
the fluid experiences a pull towards the centre from the radial 
pressure gradient P ′

r > 0, which is precisely cancelled by a grav-
itational repulsion caused by the pressure anisotropy � = Pθ −Pr .

4. Axially symmetric case

In order to build the rotating version of the metric in Eq. (48), 
we follow the strategy described in Ref. [27] (see also Refs. [43–
48]). This simply amounts to consider the general Kerr-Schild met-
ric in Boyer-Lindquist coordinates, namely, the Gurses-Gursey met-
ric [49]
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ds2 = −
[

1 − 2 r m̃(r)

ρ2

]
dt2 − 4 a r m̃(r) sin2 θ

ρ2
dt dφ

+ρ2

�
dr2 + ρ2 dθ2 + � sin2 θ

ρ2
dφ2 , (57)

with

ρ2 = r2 + a2 cos2 θ (58)

� = r2 − 2 r m̃(r) + a2 (59)

� =
(

r2 + a2
)2 − �a2 sin2 θ (60)

a = J/M , (61)

where m̃ is the mass function of our reference spherically sym-
metric metric (48) given in Eq. (49), J is the angular momentum 
and M = m̃(r → ∞) the total mass of the system. Clearly, Eq. (57)
reduces to the Kerr solution when m̃ = M and, as remarked in 
Ref. [27], it is not necessary to resort to the Newman-Janis algo-
rithm.

The line-element (57) contains two potential singularities, 
namely, when ρ = 0 or � = 0. The case ρ = 0 is the ring sin-
gularity of the Kerr solution, and it is a physical singularity which 
occurs at θ = π/2 and r = 0. The curvature scalar of the line ele-
ment (57) reads

R = 2 (2 m̃′ + r m̃′′)
ρ2

, (62)

which, for the mass function (49), yields

R = α3 r2 e−α r/M

ρ2 M3 (4M− α r) . (63)

We see that the expression in Eq. (63) is regular for r = 0 and 
θ = π/2. The Ricci squared Rμν Rμν |θ=π/2 has the same regular 
form displayed in Eq. (53), while the Kretschmann scalar for r ∼ 0
and θ = π/2 reads as in (54). We can conclude that our rotating 
solution is free of physical singularities.

As usual, the region � = 0 represents a coordinate singularity 
that indicates the existence of horizons, defined by

�(rh) = r2
h − 2 rh m̃(rh) + a2 = 0 . (64)

The expression in Eq. (64) reveals an extremal case for α = α∗∗ , 
with no zeros for α < α∗∗ and always two zeros for α > α∗∗ . These 
two solutions are the Cauchy and event horizons, as displayed in 
Fig. 1 (right panel), where we again observe the same three cases.

Finally, the energy-momentum tensor θμν generating the met-
ric (57) is given by

θμν = ε̃ uμ uν + p̃r lμ lν + p̃θ nμ nν + p̃φ mμ mν , (65)

where the orthonormal tetrad reads [49]3

uμ = (r2 + a2)δ
μ
0 + a δ

μ
3√±�ρ2

, lμ =
√

±�

ρ2
δ
μ
1

nμ = 1√
ρ2

δ
μ
2 , mμ = −a sin2 θ δ

μ
0 + δ

μ
3√

ρ2 sin θ
, (66)

and the energy density ε̃ and pressures p̃r , p̃θ and p̃φ are given 
by

3 Note that +� refers to the regions outside the event horizon and inside the 
Cauchy horizon, while −� refers to the region between the two horizons.
5

κ ε̃ = −κ p̃r = 2 r2

ρ4
m̃′ , (67)

κ p̃θ = κ p̃φ = − r

ρ2
m̃′′ + 2

(
r2 − ρ2

)
ρ4

m̃′ . (68)

5. Conclusions

The appearance of singularities as the final result of the grav-
itational collapse is a well-known prediction in the framework 
of GR. One way to avoid such singularities is to introduce non-
collapsing matter. This has been our strategy, introducing what we 
generically call tensor vacuum and is explicitly described by the 
expression (32). This allows us to construct both static and station-
ary regular hairy BHs, whose hair is parametrised by a parameter 
α with a clear physical interpretation, as we can read from solu-
tions (48) and (57), that is

• α → 0 ⇒ Minkowski
• α → ∞ ⇒ Schwarzschild (static case)
• α → ∞ ⇒ Kerr (stationary case)

We can therefore interpret the BH hair as the source which de-
formas the Minkowski vacuum (total absence of matter and grav-
ity) with a maximum deformation corresponding precisely to the 
Schwarzschild solution for the static case, and the Kerr solution for 
the stationary case. The formation of BHs occurs beyond the criti-
cal values α∗ and α∗∗ , respectively, as we show in Fig. 1.

In the present work, we do not make any attempt at postulating 
the action from which to derive the solution (48). However, we 
remark that, by means of the P -dual formalism [10,11], it is always 
possible to find a Lagrangian L associated with a theory which 
results in a given energy-momentum θμν producing the geometric 
deformation f and g , with mass function

m̃(r) = κ

2

r∫
0

x2 θ 0
0 (x)dx . (69)

In this approach, the total action reads

SG =
∫ [

R

2κ
+L(F )

]√−g d4 x , (70)

where L(F ) can be obtained by means of the P -dual formalism 
and reads (see Appendix A)

L(P ) = α3

2κ M3 [ξ(P ) − 2M] e−ξ(P )/M , (71)

with

ξ(P ) = α

(−2α2

κ2 P

)1/4

. (72)

We conclude by mentioning that some aspects of the presented 
solutions should be analyzed more in depth, like their stability, ob-
servational consequences, time-dependent formation and evapora-
tion. As for the feasibility of removing the Cauchy horizon without 
risking the regularity of the solution, it is likely that one should 
resort to quantum physics [50,51].
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Appendix A. Additional Lagrangian

In order to specify the theory encoded by L(F ) in Eq. (70), we 
identify

θμν = −LF Fμα F α
ν −L(F ) gμν , (A.1)

where

F = 1

4
Fμν F μν and LF = dL

dF
(A.2)

is a non-linear Maxwell representation of the theory. At this stage 
we emphasize that this theory is not necessarily a nonlinear elec-
trodynamics, in the sense that the charge, or primary hair gener-
ating it, is not necessarily an electric charge.

In the static spherically symmetric case, we have

Fμν = E(r)
(
δ0
μ δ1

ν − δ1
μ δ0

ν

)
, (A.3)

where E is the “electric field”. Using Eqs. (30) and (A.1)-(A.3) in 
the Einstein equations (8) and (9), we obtain

− 2

r2

dm̃

dr
= κ

[
L(F ) + E2 LF

]
(A.4)

−1

r

d2m̃

dr2
= κ L(F ) , (A.5)

where m̃ is the Misner-Sharp mass function given in Eq. (49). The 
corresponding conservation equation (6) reads ∇μ(LF F μν) = 0
and leads to

E LF = − 2α

κ r2
. (A.6)

Notice that in Eq. (A.6) we use the parameter α as the charge gen-
erating the field. On subtracting (A.4) from Eq. (A.5), we obtain

r
d

dr

(
1

r2

dm̃

dr

)
= κ E2 LF . (A.7)

Finally, combining Eqs. (A.6) and (A.7) we obtain

E = − r3

2α

d

dr

(
1

r2

dm̃

dr

)
. (A.8)

Hence, the explicit form of the field (A.8) generating the black hole 
solution described by the metric (48) reads

E = α3

4M3
r3 e−α r/M . (A.9)

Notice that by using Eqs. (A.4)-(A.6) we cannot obtain the explicit 
form L =L(F ). In order to find the Lagrangian L of the underlying 
theory, we will use the P -dual formalism [10,11], which is based 
on the Legendre transformation

H = 2 F LF −L , (A.10)
6

where H represents the Hamiltonian in the dual formulation. Now, 
defining Pμν = L F Lμν , it is straightforward to see that H is a 
function of P = Pμν Pμν/4 so that we can write (for all the de-
tails, see Ref. [10])

L = 2 P H P − H , (A.11)

where H P denotes the derivative of H with respect to its argument 
P . In terms of H the energy–momentum tensor reads

θμν = −H P Pμα Pα
ν − gμν (2 P H P − H) . (A.12)

Since we are interested in a static and spherically symmetric case, 
we take Pμν = (δ0

μ δ1
ν − δ1

μ δ0
ν)D(r), where D is the dual field and 

H is given by

H = 2

κ r2

dm̃

dr
. (A.13)

Since P =L2
F F = −L2

F E2/2, we obtain

P = − 2α2

κ2 r4
. (A.14)

Finally, by using Eqs. (49), (A.13) and (A.14) in Eq. (A.11), we obtain 
the Lagrangian in Eq. (71).
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