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A B S T R A C T

Cable-Driven Parallel Robots (CDPRs) displace the end-effector (EE) by means of cables
configured in a parallel fashion. When a CDPR employs fewer cables than the degrees of freedom
(DoFs) of its EE, it is underactuated and underconstrained. As a result, only a limited subset
of the EE DoFs can be controlled assigning specific cable lengths, and determining the EE pose
through direct kinematics (DK) is unfeasible, since it also depends on mechanical equilibrium.
To estimate the EE pose, then, it may be convenient to acquire and combine redundant
measurements. This paper introduces a sensor fusion technique that aims at achieving the
optimal estimation of the pose of a generic UACDPR. Sensor fusion is achieved by an iterative
nonlinear weighted least-square algorithm, which is solved by a Gauss–Newton-like method.
A novel criterion for terminating iterations, which is physically sound and straightforward to
implement, is put forward. Different redundant measurements are experimentally compared, so
as to show the performance of the method with different sensors involved.

. Introduction

Cable-Driven Parallel Robots (CDPRs) are parallel manipulators that employ cables in place of rigid-body extensible legs to
ontrol the pose of their end-effector (EE) [1]. CDPRs can cover large workspaces [2] while being modular and easy to assemble
nd disassemble, thus potentially reconfigurable [3].

Underactuated CDPRs (UACDPRs) are equipped with a number 𝑛 of cables that is smaller than the EE degrees of freedoms (DoFs).
ccordingly, their workspace is more accessible, especially if the robot is assembled in a suspended configuration, which is usually

he case. The drawback is that 𝑛 actuated cables can control only 𝑛 EE DoFs, and, in a parallel robot, actuation deficiency usually
mplies constraint deficiency. As a result, the EE of UACDPRs preserves some DoFs even if all actuators are locked, and it is free to
scillate as a multi-DoF parallel pendulum [4]. UACDPRs may be employed in several applications where a limited controllability
s acceptable, such as production engineering, logistics, construction, motion simulation, entertainment, search and rescue [5], and
aintenance [6].

Model-based control is mostly used in the operation of CDPRs, and, if feedback control is to be used, it is necessary to determine
he EE poses in real time [7]. The direct kinematics (DK) of CDPRs, presents inherent challenges due to the nonlinearity of the
oop-closure equations with respect to the EE pose, and it admits multiple solutions [8,9]. If a unique solution has to be identified,
t is crucial to acknowledge that it is highly sensitive to measurement errors in the acquired data [10]. In order to determine a
nique DK solution, minimize solution errors caused by measurement inaccuracies, and speed up the computational processes, it
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Fig. 1. CDPR geometric model.

is possible to employ redundant measurements and sensor-fusion algorithms [11]. However, additional measurements needs to be
carefully managed, as it cannot be assumed that they automatically add value to a DK sensor-fusion algorithm. For instance, in [12],
it was experimentally demonstrated that relying on cable tension extra measurements to determine the end-effector pose is not a
viable option. In fact, tension measurements tend to be unreliable when their value is small, which is frequent in suspended CDPR
architectures. In this perspective, sensor fusion strategies [11,13,14] or Extended Kalman Filters [15–17] have been employed to
make the best possible use of the available data in order to achieve optimal results.

Obtaining a solution to the DK of UACDPRs appears to be even more complex, since in this case the loop-closure geometric
equations are fewer than the DoFs of the EE , thus resulting in an underdetermined system, so that it is impossible to solve a
conventional DK problem by only considering cable-length measurements. A possible approach consists of incorporating mechanical
equilibrium equations (statics [9] or dynamics [18]) into the direct problem. However, this approach requires precise knowledge
of the inertial parameters of the EE [19], which may not be readily available or may vary over time due to the task performed by
he robot. For UACDPRs, a suitable alternative is the integration of sensors capable of providing additional measurements [11,20].
his enables the introduction of supplementary geometric equations, ultimately leading to either a determined or overdetermined
ystem for computing the pose of the EE .

This article is an extension of the conference paper presented in [21], where a sensor fusion method capable of solving the DK of
planar UACDPR was proposed. With respect to [21], the current paper considers a generic spatial UACDPR. The method estimates

the EE pose by optimizing an overdetermined or fully determined set of geometric residual equations. The optimization process is
carried out through an iterative nonlinear weighted least-squares algorithm, which is solved using a Gauss–Newton-like method.
The algorithm in this paper differs from standard sensor-fusion DK algorithms in terms of the criteria and reasons for terminating
iterations. To the best of the authors’ knowledge, this paper introduces an original modification to one of the classical termination
conditions of the Gauss–Newton method, which consists in stopping the algorithm when the norm of the geometrical constraint
equations falls below a predefined scalar threshold. While this standard criterion is sound from a numerical point of view, it presents
several shortcomings in a robotic context: (i) geometric constraints have mixed measurement units, and their norm depends on the
specific choice of said units, (ii) there is no physical rationale for choosing the scalar threshold, as it only attains numerical meaning,
(iii) the computation time and accuracy of the solution strongly depends on this threshold, so that time consuming trial-and-error
procedures must be employed to find the best fit for a given robot, mainly if a real-time capable implementation of the algorithm
is sought. In this paper, the iterations are terminated when each geometric constraint equation individually reaches its specified
hreshold, which can be assigned with a sound physical reasoning, thus simplifying and streamlining the algorithm implementation.
he paper presents experimental results on a 4-cable robot involving different sensors to collect diverse datasets. Both theoretical
nd practical limitations of the algorithm are discussed depending on the use of different datasets.

The paper is structured as follows. Section 2 provides the geometric model of a generic UACDPR, Section 3 presents the DK and
he sensor-fusion method used to solve it. Section 4 reports the experimental results using several datasets. Finally, Section 5 draws
onclusions.

. Geometric model

A generic UACDPR consists of a 6-DoF EE moved by 𝑛 < 6 actuated cables (Fig. 1). 𝑂𝑥𝑦𝑧 is an inertial frame, whereas 𝑃𝑥′𝑦′𝑧′
s a mobile frame attached to the EE . The pose of the EE is described by a position vector 𝐩, and a rotation matrix 𝐑(𝝐), where
= [𝜙, 𝜃, 𝜓]𝑇 is an array containing roll (𝜙), pitch (𝜃) and yaw (𝜓) parameters. The end-effector generalized coordinated are grouped

n 𝜻 =
[

𝐩𝑇 𝝐𝑇
]𝑇 .

Cables are spooled on servo-controlled winches and are modeled as massless and inextensible, hence cable lengths changes
roportionally to actuators displacement [2]. Cables are routed from the winches into the workspace by means of pulleys. The
erminal pulley in each transmission is free to rotate around a swivel axis 𝑧𝑖 tangent to its groove; its centre is denoted as 𝐶𝑖 and
ts radius is 𝑟 . The cable enters the pulley groove along direction 𝑧 at point 𝐷 , and exits tangentially to the pulley at point 𝐵 .
2
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Fig. 2. Swivel pulley geometric model.

he position vectors of 𝐷𝑖 and 𝐵𝑖 in 𝑂𝑥𝑦𝑧 are 𝐝𝑖 and 𝐛𝑖, respectively. While 𝐝𝑖 is constant, 𝐛𝑖 varies depending on the geometrical
odel of the pulley and the pose of the EE . Each cable is attached to the platform at point 𝐴𝑖: 𝑃 𝐚′𝑖 is the constant position vector

f 𝐴𝑖 in 𝑃𝑥′𝑦′𝑧′; the position vector of 𝐴𝑖 in 𝑂𝑥𝑦𝑧 is 𝐚𝑖 = 𝐩 + 𝐚′𝑖 = 𝐩 + 𝐑 𝑃 𝐚′𝑖 .
To describe the geometry of the pulley, it is convenient to define an additional fixed reference frame 𝐷𝑖𝑥𝑖𝑦𝑖𝑧𝑖. Assuming points

𝑖 and 𝐷𝑖 and the swivel axis 𝑧𝑖 to be co-planar, the pulley plane is defined by vector 𝝔𝑖 = 𝐚𝑖 − 𝐝𝑖 and 𝑧𝑖 (Fig. 2). The swivel angle
𝑖 ∈ [−𝜋, 𝜋] is the angle between the fixed plane 𝑥𝑖𝑧𝑖 and the pulley plane (Fig. 2(a)), and it can be computed as [20]:

𝜎𝑖 = atan2
(

𝜚𝑖,𝑥, 𝜚𝑖,𝑦
)

(1)

here 𝜚𝑖,𝑥 and 𝜚𝑖,𝑦 are the components of 𝝔𝑖 along the axes 𝑥 and 𝑦 of 𝑂𝑥𝑦𝑧.
The tangency angle 𝜓𝑖 ∈ [−𝜋, 𝜋] is the angle between the directions 𝐶𝑖−𝐷𝑖, described by the unit vector 𝐮𝑖, and 𝐵𝑖−𝐶𝑖 (Fig. 2(a)).

f the cable is clockwise wrapped onto the pulley, the tangency angle can be derived as:

𝜓𝑖 = 2 atan

⎡

⎢

⎢

⎢

⎣

𝜚𝑖,𝑧𝑖
𝜚𝑖,𝑢𝑖

+

√

√

√

√

√

(

𝜚𝑖,𝑧𝑖
𝜚𝑖,𝑢𝑖

)2

+ 1 −
2𝑟𝑖
𝜚𝑖,𝑢𝑖

⎤

⎥

⎥

⎥

⎦

(2)

where 𝜚𝑖,𝑧𝑖 and 𝜚𝑖,𝑢𝑖 are the components of 𝝔𝑖 along directions 𝑧𝑖 and 𝐮𝑖, respectively.
Finally, the cable vector 𝝆𝑖 = 𝐛𝑖 − 𝐚𝑖1 is:

𝑙𝑖 = Ú𝐷𝑖𝐵𝑖 +
√

𝝆𝑖 ⋅ 𝝆𝑖 (3)

where 𝑙𝑖 is the cable length, and the arc length Ú𝐷𝑖𝐵𝑖 = 𝑟𝑖(𝜋 − 𝜓𝑖) is the portion of cable wrapped onto the pulley.

3. Direct kinematics via sensor fusion

In this Section, a sensor fusion method for the solution of the DK of UACDPRs is introduced. The iterative approach proposed by
Garant in [11] for fully-constrained CDPRs is adapted to UACDPRs. The Iteration Termination Conditions (ITCs) are discussed and
a new ITC is proposed.

The sensor fusion approach requires a set of measures from different sensors to be available. If a 𝑛-cable UACDPR is considered,
the following sets of pose-dependent geometrical variables are considered to be measurable at any time instant [12]:

• cable lengths: 𝑙⋆1 … 𝑙⋆𝑛
• swivel angles: 𝜎⋆1 … 𝜎⋆𝑛
• EE orientation angles: 𝜙⋆, 𝜃⋆, 𝜓⋆

Cable lengths can be indirectly measured by measuring motor angular rotation through encoders; swivel angles can be directly
measured by mounting an encoder on the swivel axis; the EE orientation angles can be indirectly measured by IMUs equipped with

1 The use of 𝝆 and 𝝔 in defining position vectors 𝐛𝑖 − 𝐚𝑖 and 𝐝𝑖 − 𝐚𝑖 is intentional, as they are equivalent in case the pulley radius is zero, namely cables exit
3

the frame from eyelets [22].
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robust estimation algorithms, sometimes referred as AHRSs (attitude and heading reference systems) [23]. Pose-dependent variables
and measurements can be grouped into vectors 𝐡(𝜻) and 𝐳, respectively:

𝐡(𝜻) = [𝑙1(𝜻)… 𝑙𝑛(𝜻) 𝜎1(𝜻)… 𝜎𝑛(𝜻) 𝜙(𝜻) 𝜃(𝜻) 𝜓(𝜻)]𝑇 (4)

𝐳 = [𝑙⋆1 … 𝑙⋆𝑛 𝜎⋆1 … 𝜎⋆𝑛 𝜙⋆ 𝜃⋆ 𝜓⋆]𝑇 (5)

If only a subset of measurements is available, it is still included in vector 𝐳, and the corresponding subset of pose-dependent
variables is grouped in vector 𝐡. The residual associated with a certain measurement is defined as the difference between a modeled
pose-dependent variable and its measurement; for convenience, we define the vector of residuals as:

𝐫(𝜻) = 𝐡(𝜻) − 𝐳 (6)

The DK problem can be stated as the problem of finding the solution vector 𝜻 of the non-linear system of equations 𝐫(𝜻) = 0. For
a single solution to exist, we must have at least as many equations as unknowns, namely dim(𝐫) ≥ 6. In practice, the use of at least
6 residuals may not be sufficient for determining the correct pose, since the Jacobian matrix of the problem may lose its rank, thus
leading to indeterminacy, or the errors affecting some measurements may significantly affect the results.

If we consider a residual 𝐫(𝜻) ∈ R𝑤, with 𝑤 ≥ 6, the sensor-fusion DK problem can be formulated as

min
𝜻

𝑓 (𝜻) with 𝑓 (𝜻) = 1
2
𝐫𝑇 (𝜻)𝐐−1𝐫(𝜻) (7)

were 𝐐 is the covariance matrix of 𝐫(𝜻) so that the solution 𝜻 is the best linear unbiased estimator (BLUE) of the EE pose [11].
n the case at hand, we assume that the elements of the residual vector are uncorrelated and its covariance matrix 𝐐 is therefore
iagonal, with the elements on the diagonal being the variance of the error associated with each measurement in 𝐳. By doing so,
e directly account for the sensor noise in the solution process. The search for local minima2 of this nonlinear least-square problem

is equivalent to finding the zeros of the gradient of 𝑓 (𝜻) with respect to 𝜻 . Let this gradient be ∇𝑓 (𝜻) ∈ R6, and the Hessian of 𝑓 (𝜻)
be ∇2𝑓 (𝜻) ∈ R6×6. Given an initial approximation of the solution 𝜻0, Gauss–Newton’s iterative method may be used to find, at each
step, a new approximation 𝜻𝑘, with 𝑘 = 0, 1, 2,… [24,25]:

𝜻𝑘+1 = 𝜻𝑘 − [∇2𝑓 (𝜻𝑘)]−1∇𝑓 (𝜻𝑘) (8)

If 𝐀 ∈ R𝑞×𝑞 is a symmetric matrix independent of the EE pose, and 𝐜(𝜻) ∈ R𝑞 is vector that depends on the EE pose, 𝛼(𝜻) = 𝐜𝑇 (𝜻)𝐀𝐜(𝜻)
is a symmetric quadratic form, then the gradient of 𝛼(𝜻) with respect to 𝜻 can be expressed as follows3:

∇𝛼(𝜻) = 2
(

∇𝐜𝑇 (𝜻)
)

𝐀𝐜(𝜻) (9)

with ∇𝐜𝑇 (𝜻) ∈ R6×𝑞 . Accordingly, given that 𝐐−1 is diagonal and constant, and vector 𝐳 does not depend on 𝜻 , the gradient of 𝑓 (𝜻)
can be calculated as follows:

∇𝑓 (𝜻) =
(

∇𝐫𝑇 (𝜻)
)

𝐐−1𝐫(𝜻) =
(

∇𝐡𝑇 (𝜻)
)

𝐐−1𝐫(𝜻) = 𝐉𝑇𝐐−1𝐫 (10)

where ∇𝐫𝑇 (𝜻) = ∇𝐡𝑇 (𝜻) = 𝐉𝑇 ∈ R6×𝑤, and the explicit dependence from 𝜻 was dropped for the sake of brevity. The Gauss
approximation is used for the evaluation of the Hessian of 𝑓 (𝜻), and the term dependent from the second-order derivative of 𝐫(𝜻),
namely ∇𝐉𝑇𝐐−1𝐫, is neglected4:

∇2𝑓 (𝜻) = ∇𝐉𝑇𝐐−1𝐫 + 𝐉𝑇𝐐−1𝐉 ≃ 𝐉𝑇𝐐−1𝐉 (11)

Finally, if 𝐫𝑘 and 𝐉𝑘 denote 𝐫 and 𝐉 calculated in 𝜻𝑘, respectively, substituting Eqs. (10) and (11) in Eq. (8) yields:

𝜻𝑘+1 = 𝜻𝑘 − [𝐉𝑇𝑘𝐐
−1𝐉𝑘]−1𝐉𝑇𝑘𝐐

−1𝐫𝑘 (12)

The number of iterations to be performed depends on the algorithm stopping criteria. These criteria include several tolerances
assigned a priori, namely thresholds that, if met, stop the iterations. The most frequently assigned tolerances include:

1. 𝑇𝑘 is an upper threshold on the number of iterations. The algorithm is stopped if too many iterations have occurred, namely
if

𝑘 ≥ 𝑇𝑘 (13)

This condition is a safety measure against infinite executions; if met, the algorithm has usually failed.

2 In the context of nonlinear optimization problems, the likelihood of converging to a global minimum is significantly influenced by the initial starting point
elected for the algorithm. Initiating the algorithm in proximity to the global minimum can enhance the chances of successfully identifying it. [24]

3 For the sake of brevity, we omit the proof, which relies on fundamental matrix product and derivative properties. For similar calculations, please refer to
he appendix of [4].

4 Computing the second-order derivative of a vector yields a 3-dimensional tensor; performing computations involving a 3-dimensional tensor, matrices, and
ectors is not straightforward: an example illustrating the procedure can be found in the appendix of [4]. However, in this application, the term is several
rders of magnitude smaller compared to the term to which it is added, consequently, it has been neglected. This simplifies the computation without affecting
4

he accuracy.



Mechanism and Machine Theory 199 (2024) 105690S. Gabaldo et al.

b

r

2. 𝑇
‖𝛥𝜻‖ is a lower threshold on the size of the step. The algorithm is stopped if

‖𝛥𝜻𝑘‖ = ‖[𝐉𝑇𝑘𝐐
−1𝐉𝑘]

−1𝐉𝑇𝑘𝐐
−1𝐫𝑘‖ ≤ 𝑇

‖𝛥𝜻‖ (14)

This condition regulates the step-size increment. When addressing a numerically singular problem (which can be visualized
in a one-dimensional context as a function with an almost vertical tangent near the solution), the function exhibits low
sensitivity to variations in the independent variable in the proximity of the solution; if the condition is met, the algorithm
has usually stalled and a solution may or may not be found in practice.

3. 𝑇
‖∇𝑓 (𝜻)‖ is a lower near-zero threshold on the first-order optimality measure. The algorithm is stopped if

‖∇𝑓 (𝜻𝑘)‖ ≤ 𝑇
‖∇𝑓 (𝜻)‖ (15)

If this condition is met, a local extremum of Eq. (7) is usually found, but this could be a local minimum for function 𝐟 , which
is in general non convex and may have several minima.

4. 𝑇
‖𝐫‖ is a lower near-zero threshold on the norm of the residual vector. The algorithm is stopped if

‖𝐫𝑘‖ ≤ 𝑇
‖𝐫‖ (16)

If this condition is satisfied, a global extrema for function 𝐟 , i.e. a solution to the DK problem, is usually found.

If the set tolerances are too loose, the results may be inaccurate. On the other hand, setting arbitrarily small tolerances may yield
accuracy but at the expense of a high computational time, which may not be viable in a hard-real-time computational context. Since
each element of 𝐫𝑘 may have different units and possibly different magnitudes, choosing a consistent value for the tolerance 𝑇

‖𝐫‖ is
not straightforward. We then propose to modify tolerance 4 with the following:

5. 𝐓𝐫 is a positive and near-zero vector of thresholds, whose components refer to the elements of the residual vector. The
algorithm is stopped if the absolute value of each element of 𝐫𝑘 is below its own threshold, namely if

𝑟𝑘,𝑖 ≤ 𝑇𝐫,𝑖 ∀𝑖 = 1,… , 𝑚 (17)

If a ground-truth instrumentation system is available (a laser tracker or a camera system to measure the EE pose accurately),
the value of 𝐓𝐫 can be estimated, for instance, after calibrating the robot. Through calibration, the probability distributions
of the errors affecting the acquired measures can be estimated, and 𝐓𝐫 can be set accordingly. In this manner, iterations are
terminated even when the residuals of highly noisy equations are high, thus ensuring that the method does not stall. Examples
will be provided in Section 4.

4. Experimental validation

The Gauss–Newton method presented in Section 3 was tested on the 4-cable 6-DoF UACDPR prototype of the University of
Bologna (Fig. 3). We chose a 4-cable system for its known complexity and challenges, as its motion stability is highly influenced by
how cables are kept taut and controlled [26]. The prototype was used to acquire the datasets necessary for running the sensor-fusion
pose-estimation method. Subsequently, the datasets underwent offline processing using MATLAB, where two distinct analyses were
performed:

• We compared the accuracy and computational efficiency of the method when iteration termination conditions (16) and (17)
where respectively employed. To this end, specific numerical values were assigned to the thresholds 𝑇

‖𝐫‖ and 𝐓𝐫 . The same
datasets and residuals were utilized in both scenarios to ensure a consistent comparison.

• We compared the accuracy and computational efficiency of the method with iteration termination condition (17) when using
different sensors, and corresponding datasets and residuals.

Geometrical and inertial properties of the prototype were deduced from the prototype CAD models, and are summarized in
Tables 1 and 2, where 𝐢, 𝐣, 𝐤 are the unit vectors directed along the axes of 𝑂𝑥𝑦𝑧, the coordinates of vectors 𝐝𝑖 and 𝑃 𝐚′𝑖 are given,
respectively, in 𝑂𝑥𝑦𝑧 and 𝑃𝑥′𝑦′𝑧′, 𝑚 is the mass of the EE , 𝐈 its inertia matrix expressed in 𝑃𝑥′𝑦′𝑧′ and 𝐫𝐺 the position vector of the
center of mass in 𝑃𝑥′𝑦′𝑧′. To ensure an unbiased evaluation of the performances of the method, we decided to acquire various sets
of measurements from different areas within the workspace. For simplicity, we assigned the EE a quasi-static workspace-scanning
trajectory, defined through a series of linear paths that connect the set-points5:

𝐩𝑖 =
⎡

⎢

⎢

⎣

(−1)⌊𝑖∕22⌋(0.5 − 0.1⌊𝑖∕2⌋) − 1.1⌊𝑖∕22⌋ + 4.4⌊𝑖∕44⌋
(−1)⌊(𝑖+3)∕2⌋0.5
0.25(1 + ⌊𝑖∕22⌋)

⎤

⎥

⎥

⎦

m ∀𝑖 = 0,… , 65 (18)

where ⌊𝑥⌋ represent the greatest integer less than or equal to 𝑥, known as the floor function. The paths are followed by the EE
reference point at a constant speed of 1 cm/s (by computing the cable lengths with the method proposed in [26]) and are illustrated
y red lines in Fig. 4.

5 For safety reasons, the method is experimentally tested while maintaining a sufficient distance from the boundaries of the workspace. Nevertheless, simulation
5

esults confirm that the method performs equally well across all regions of the workspace, see Appendix for a more detailed analysis.



Mechanism and Machine Theory 199 (2024) 105690S. Gabaldo et al.
Fig. 3. UACDPR prototype used for experiments.

Table 1
Actuators’ properties.
𝑖 1 2 3 4

𝐝𝑖 [m]
⎡

⎢

⎢

⎣

1.068
−1.155
1.839

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1.068
1.155
1.839

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−1.068
1.155
1.839

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−1.068
−1.155
1.839

⎤

⎥

⎥

⎦

𝑟𝑖 [m] 0.03 0.03 0.03 0.03

𝑃 𝐚′𝑖 [m]
⎡

⎢

⎢

⎣

0.075
−0.075
0.280

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0.075
0.075
0.280

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−0.075
0.075
0.280

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−0.075
−0.075
0.280

⎤

⎥

⎥

⎦

𝑥𝑖 −𝐤 −𝐤 −𝐤 −𝐤

𝑦𝑖 𝐣 𝐣 −𝐣 −𝐣

𝑧𝑖 𝐢 𝐢 −𝐢 −𝐢

Table 2
Inertial properties of the EE .

𝑚 = 12.966 kg 𝐈 =
⎡

⎢

⎢

⎣

0.18 0 0
0 0.12 0
0 0 0.19

⎤

⎥

⎥

⎦

kg∕m2 𝐫𝐺 =
⎡

⎢

⎢

⎣

0
0

0.173

⎤

⎥

⎥

⎦

m

During the motion, we acquire the datasets 𝐳𝑙, 𝐳𝜓 and 𝐳𝜃 , grouping the measurements relative to, respectively, cable lengths,
pulley swivel angles and EE orientation angles. The first set of measurements is acquired by the incremental encoders mounted on the
motor axes (with a resolution of roughly 0.1◦). These measurements, when combined with the kinematic model of the motors [18],
provide estimates of the actual cable lengths 𝑙⋆𝑖 , with 𝑖 = 1,… , 4. Simultaneously, incremental encoders (with a resolution of roughly
0.02◦) mounted on the axes of the swivel pulleys acquire measurements of swivel angles 𝜎⋆𝑖 , with 𝑖 = 1,… , 4. An inclinometer (XSens
MTi-630 AHRS), fixed to the EE , provides the last set of measurements, consisting in roll and pitch angles (with 0.5◦ accuracy)
and yaw angles (with 3◦ accuracy). The encoders and inclinometer acquisitions are sampled at 100 Hz. We obtain 𝑁 = 73891
measurement sets, denoted as 𝐳 = [𝑙⋆1 … 𝑙⋆4 𝜎⋆1 … 𝜎⋆4 𝜙⋆ 𝜃⋆ 𝜓⋆]𝑇 along the assigned trajectory.

Ground-truth pose measurements are obtained by recording the position of 9 EE-mounted reflective markers through a Vicon
photogrammetry system (the marker position accuracy is ±0.2 mm). To improve data quality, a zero-phase finite-impulse response
low-pass digital filter with a stop-band frequency of 4 Hz is applied to the marker coordinates. Given the nature of our model, which
do not predict any natural oscillation frequency exceeding 4 Hz [4], this filtering process effectively eliminates measurement noise
6
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Fig. 4. UACDPR prototype performing the assigned trajectory.

Fig. 5. Probability density function (Pdf) of the error distribution in swivel angle 𝜎1 measurements and its Gaussian distribution approximation.

Table 3
Standard deviation of the measurement errors.

Cable lengths 𝜎𝑙1 = 0.39 cm 𝜎𝑙2 = 0.26 cm 𝜎𝑙3 = 0.10 cm 𝜎𝑙4 = 0.15 cm
Pulley swivel angles 𝜎𝜎1 = 0.22◦ 𝜎𝜎2 = 0.62◦ 𝜎𝜎3 = 0.28◦ 𝜎𝜎4 = 0.38◦

Roll, pitch and yaw angles 𝜎𝜙 = 0.30◦ 𝜎𝜃 = 0.16◦ 𝜎𝜓 = 0.35◦

without affecting the recorded rigid-body motion. The position of the markers is then processed to infer the EE reference position,
and its roll, pitch, and yaw angular parameters.

The Vicon-measured platform poses allow to reconstruct, according to our model and the robot inverse kinematics (cfr. Eqs. (1)
and (3)), the actual values of the swivel angles and cable lengths along the trajectory. These values, along with the Vicon-measured
roll, pitch, and yaw trends, are considered to be the ground truth, and are then used to characterize the errors in the acquired
measurements. It has emerged that errors in the measured variables have probability distributions that are quite dissimilar to the
Gaussian distribution (Fig. 5 illustrates the error distribution in the first-pulley swivel-angle measure as an example). However,
analyzing the error distributions affecting the employed sensors goes beyond the scope of this paper and, for the sake of simplicity,
they have been approximated as Gaussian: the standard deviations of errors in length measurements, swivel angles, and roll, pitch,
and yaw angles are given in Table 3 and they are used to estimate the confidence intervals (see [27], Chapter 5, Section 1).

4.1. Comparing Gauss–Newton iteration termination conditions

Two Gauss–Newton Algorithms were implemented, whose only difference consisted in relying on a stopping criteria set including
iteration termination conditions (ITCs) 1–4 (stopping criteria set A), or stopping criteria set including ITCs 1–3 and 5 (stopping
7

criteria set B). The pseudocode for the algorithms is showed in 1 and 2, for stopping criteria set A and B, respectively, with the
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characteristic ITC of each algorithm highlighted in red. The objective of this section is to assess and compare the performance of
the two algorithms in terms of accuracy and computational running time, with the following assumptions:

• We analyze the behavior of the two algorithms by using all the available measurement sets at our disposal. These sets include
measurements of cable lengths, swivel angles, and EE orientation.

• The initial guess for the algorithms in the first trajectory point, in both cases, is:

𝜻0 = [0.5037 − 0.5520 0.5155 − 0.1790 − 0.1758 0.0089]𝑇

For the remaining 𝑛𝑠 −1 poses in the trajectory, the initial guesses are the solutions computed at the previous trajectory point.
• The upper threshold on the number of solver iterations, the lower threshold on the step size and the lower near-zero threshold

on the first-order optimality measure are respectively set to: 𝑇𝑘 = 102, 𝑇
‖𝛥𝜻‖ = 10−4 and 𝑇

‖∇𝑓 (𝜻)‖ = 10−4.
• Matrix 𝐐 is the diagonal covariance matrix, with its diagonal elements being the squared standard deviations of the

measurement errors (reported in Table 3).

As for the other tolerances, assigning a suitable numerical value to the lower threshold of the norm of the residual vector,
namely 𝑇

‖𝐫‖ of Alg. 1, is not straightforward. The robot was experimentally characterized, and the error distributions of the acquired
measurements were approximated as Gaussian distributions, with their standard deviations detailed in Table 3. By considering the
vector of standard deviations

𝝈 = [𝜎𝑙1 𝜎𝑙2 𝜎𝑙3 𝜎𝑙4 𝜎𝜎1 𝜎𝜎2 𝜎𝜎3 𝜎𝜎4 𝜎𝜙 𝜎𝜃 𝜎𝜓 ]𝑇

one can attempt to assign a threshold in the form 𝑇
‖𝐫‖ = ‖𝝈‖. However, since the norm operator forces the addition of quantities

with different units, this strategy clearly lacks a physical ground. Moreover, the significance of the assigned tolerance varies based
on the selected measurement units.

Algorithm 1 Gauss-Newton algorithm. Stopping criteria set A.
Data: 𝜻0; 𝐳 = [𝑙⋆1 … 𝑙⋆4 𝜎⋆1 … 𝜎⋆4 𝜙⋆ 𝜃⋆ 𝜓⋆]𝑇 ; 𝐐;

𝑇𝑘; 𝑇
‖𝛥𝜻‖; 𝑇

‖∇𝑓‖; 𝑇
‖𝐫‖

𝑘 ← 0;
𝛥𝜻 ← 𝑇𝛥𝜻 ;
𝜻 ← 𝜻0;
𝐡 ← [𝑙1(𝜻)… 𝑙4(𝜻) 𝜎1(𝜻)… 𝜎4(𝜻) 𝜙(𝜻) 𝜃(𝜻) 𝜓(𝜻)]𝑇 ;
𝐫 ← 𝐡 − 𝐳;
𝑓 ← 1

2 𝐫
𝑇𝐐−1𝐫;

𝐉 ← ∇𝐫;
∇𝑓 ←

(

𝐉𝑇
)

𝐐−1𝐫;
while 𝑘 < 𝑇𝑘 ∧ ‖𝛥𝜻‖ ≥ 𝑇

‖𝛥𝜻‖ ∧ ‖∇𝑓‖ ≥ 𝑇
‖∇𝑓‖ ∧ ‖𝐫‖ ≥ 𝑇

‖𝐫‖ do
𝑘 ← 𝑘 + 1;
𝛥𝜻 ← −[𝐉𝑇𝐐−1𝐉]−1𝐉𝑇𝐐−1𝐫;
𝜻 ← 𝜻 + 𝛥𝜻 ;
𝐡 ← [𝑙1(𝜻)… 𝑙4(𝜻) 𝜎1(𝜻)… 𝜎4(𝜻) 𝜙(𝜻) 𝜃(𝜻) 𝜓(𝜻)]𝑇 ;
𝐫 ← 𝐡 − 𝐳;
𝑓 ← 1

2 𝐫
𝑇𝐐−1𝐫;

𝐉 ← ∇𝐫;
∇𝑓 ←

(

𝐉𝑇
)

𝐐−1𝐫;
nd

In our computation, we use meters to measure length and radians to measure angular measurements, so that the norm of the
ector of standard deviations is ‖𝝈‖ ≃ 0.017. If centimeters were used for lengths and degrees for angles, instead, the norm of
he standard deviation vector would be ‖𝝈‖ ≃ 1.07. This approach, besides being physically unacceptable, can also be numerically

ineffective: if some sensors are less accurate or their model is less realistic, the residuals associated with their measurements may
be disproportionately high compared to the residuals from more reliable sensors. In the case at hand, for instance, significant
measurement errors in the swivel-angle sensors could lead to an excessively permissive overall tolerance, which in turn would
lead to pose estimations that are unacceptably imprecise. In general, a high value of 𝑇

‖𝐫‖ disfavors accuracy for the benefit of
computational time, whereas a small value typically provides the opposite characteristics. To favor accuracy, we decided to set:

𝑇
‖𝐫‖ = 10−8 (19)

with lengths measured in meters and angles in radians.
On the other hand, assigning a numerical value to the single components of the residual vector, namely 𝐓𝐫 of Alg. 2, is

straightforward. Two different conditions are considered, with the lower threshold for each element of the residual vector being
8

assigned as:
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Algorithm 2 Gauss-Newton algorithm. Stopping criteria set B.
Data: 𝜻0; 𝐳 = [𝑙⋆1 … 𝑙⋆4 𝜎⋆1 … 𝜎⋆4 𝜙⋆ 𝜃⋆ 𝜓⋆]𝑇 ; 𝐐;

𝑇𝑘; 𝑇
‖𝛥𝜻‖; 𝑇

‖∇𝑓‖; (𝑇𝑟𝑗 ∀𝑗 = 1,… , 11)
𝑘 ← 0;
𝛥𝜻 ← 𝑇𝛥𝜻 ;
𝜻 ← 𝜻0;
𝐡 ← [𝑙1(𝜻)… 𝑙4(𝜻) 𝜎1(𝜻)… 𝜎4(𝜻) 𝜙(𝜻) 𝜃(𝜻) 𝜓(𝜻)]𝑇 ;
𝐫 ← 𝐡 − 𝐳;
𝑓 ← 1

2 𝐫
𝑇𝐐−1𝐫;

𝐉 ← ∇𝐫;
∇𝑓 ←

(

𝐉𝑇
)

𝐐−1𝐫;
while 𝑘 < 𝑇𝑘 ∧ ‖𝛥𝜻‖ ≥ 𝑇

‖𝛥𝜻‖ ∧ ‖∇𝑓‖ ≥ 𝑇
‖∇𝑓‖ ∧ (𝑟𝑗 ≥ 𝑇𝑟𝑗 ∀𝑗 = 1,… , 11) do

𝑘 ← 𝑘 + 1;
𝛥𝜻 ← −[𝐉𝑇𝐐−1𝐉]−1𝐉𝑇𝐐−1𝐫;
𝜻 ← 𝜻 + 𝛥𝜻 ;
𝐡 ← [𝑙1(𝜻)… 𝑙4(𝜻) 𝜎1(𝜻)… 𝜎4(𝜻) 𝜙(𝜻) 𝜃(𝜻) 𝜓(𝜻)]𝑇 ;
𝐫 ← 𝐡 − 𝐳;
𝑓 ← 1

2 𝐫
𝑇𝐐−1𝐫;

𝐉 ← ∇𝐫;
∇𝑓 ←

(

𝐉𝑇
)

𝐐−1𝐫;
nd

Table 4
Average and maximum errors in pose components computation using algorithms 1 and 2.
Average error: Alg. 1 Alg. 2 (𝜎) Alg. 2 (3𝜎)

Position [cm] 0.159 0.163 0.215
Orientation [◦] 0.216 0.217 0.229

Maximum error: Alg. 1 Alg. 2 (𝜎) Alg. 2 (3𝜎)

Position [cm] 0.883 0.884 1.21
Orientation [◦] 0.924 0.921 1.19

• the standard deviation of the measurement corresponding to each element, ensuring that 68.3% of the measurements deviate
from the Vicon-reconstructed value of the variable by less than the assigned tolerance;

• three times the standard deviation of the measurement corresponding to each element, ensuring that 99.7% of the measure-
ments deviate from the Vicon-reconstructed value of the variable by less than the assigned tolerance.

The maximum and average errors on EE position and orientation6 computed with Algorithm 1 and tolerance equal to 10−8,
Algorithm 2 with tolerances equal to the standard deviations (denoted as (𝜎)) and Algorithm 2 with tolerances equal to three
imes the standard deviations (denoted as (3𝜎)) are reported in Table 4. The accuracies of algorithms 1 and 2 (𝜎) are comparable,
hile algorithm 2 (3𝜎) is, on average, 35% less accurate than algorithm 2 (𝜎) in determining the position and 6% less accurate in
etermining the orientation.

Regarding computational time, algorithm 1 and algorithm 2 (𝜎) respectively take an average of 6.30 ms and 5.20 ms to find a
ingle pose, namely a single DK solution, whereas algorithm 2 (3𝜎) takes an average of 2.10 ms to perform the same operation.

In conclusion, algorithms 1 and 2 (𝜎) yield comparable results, both in terms of accuracy and computational time. Compared to
hese, algorithm 2 (3𝜎) significantly speeds up the process, but a slightly lower accuracy is achieved. Algorithm 2, regardless of the
umerical values assigned to the termination conditions (𝜎 or (3𝜎)), has the advantage of providing a clear methodology for iteration
ermination. This methodology is physically meaningful, independent of measurement units, and does not require estimation through
rial-and-error.

.2. Comparing different sensor sets

In this subsection, different sensor sets are considered in order to investigate the relative influence of each sensor type in obtaining
fast and accurate solution. Given the underactuated nature of the 4-cable UACDPR used for experiments, it is necessary to consider

6 The norm of the array of position errors represent the radius of the sphere (centered in the point 𝑃 computed by the algorithm), within which the actual
point 𝑃 lies. The norm of the array of orientation errors indicates the overall rotation required to align the calculated end-effector orientation with the actual
orientation. This rotation can be viewed as a single rotation around a fixed axis, equivalent to the cumulative effect of three sequential rotations corresponding
9

to roll, pitch, and yaw errors. This simplification arises from employing the Rodriguez rotation formula, approximated for small angles of roll, pitch, and yaw.
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Table 5
Average and maximum errors in pose components computation using algorithm B applied to different sensor sets.
Average error: sli li sl si

Position [cm] 0.215 0.208 0.839 NaN
Orientation [◦] 0.229 0.235 3.158 NaN

Maximum error: sli li sl si

Position [cm] 1.21 1.16 3.62 NaN
Orientation [◦] 1.19 1.17 11.1 NaN

Table 6
Average and maximum computational running time for determining a single DK solution.
Average time: sli li sl si

[ms] 2.06 0.966 0.973 0.879

Maximum time: sli li sl si

[ms] 26.8 5.36 9.72 11.5

at least two sensor sets for obtaining a solution to the DK problem. Furthermore, although utilizing a minimum of two sensor sets
is a prerequisite for establishing a DK algorithm, it may not be sufficient for accurate pose determination, due to measurement
errors, noise, or residual equations being limitedly affected by EE pose variations [10]. For simplicity sake, we define the following
cronyms to refer to different combinations of sensor sets:

• sli, which stands for swivel angles, cable lengths and inclinometer, represents the sensor set composed of incremental encoders
mounted on the axes of the swivel pulleys, incremental encoders mounted on the motor axes and the inclinometer mounted
on the EE ;

• sl, which stands for swivel angles and cable lengths, represents the sensor set composed of incremental encoders mounted on
the axes of the swivel pulleys and incremental encoders mounted on the motor axes;

• li, which stands for cable lengths and inclinometer, represents the sensor set composed of incremental encoders mounted on
the motor axes and the inclinometer mounted on the EE ;

• si, which stands for swivel angles and inclinometer, represents the sensor set composed of incremental encoders mounted on
the axes of the swivel pulleys and the inclinometer mounted on the EE .

The Algorithm 2 with tolerances equal to three times the standard deviations are applied to these four cases. We chose to test
his algorithm as it is more than twice faster than Alg. 2 with tolerances equal to the standard deviations, and this is crucial in
he context of real-time applications. The average and maximum error in determining pose variables, and the computation running
ime, are reported in Tables 5 and 6, respectively.

Table 5 clearly shows that the accuracies of the results obtained by sensor sets sli and li are comparable, whereas the results
btained by sensor set sl are, on average, 290% less accurate than the ones obtained with sensor set sli in position estimation and

1280% less accurate in determining the orientation. The lower accuracies of the algorithm employing swivel angle measurements
result from the unreliability of said sensors, which is significantly influenced by cable tensions: the lower the tension, the more
difficult is to overcome friction in the swiveling joints, and move the pulley as per the model. The sensor set si leads to some form
of numerical singularity, causing the algorithm to fail to converge to a solution: this fact may be justified by the orientation of the
swivel axes, which motivates us to investigate in the future how to optimally orient them for pose-estimation purposes. Table 6
shows that computational times are more than halved when applying subsets of the complete combination of sensor sets sli.

In conclusion, (i) the sensor set si is not suitable for estimating the pose of the EE of a 4-cables UACDPR, (ii) the sensor set sl is
ot the optimal choice as it does not provide a good accuracy, (iii) both the sli and li sensor sets enable accurate results but (iv) the

i sensor set is the optimal choice, as it delivers results in less than half the time compared to sli, while also requiring fewer sensors,
hich is an advantage in terms of reducing costs and complexity.

. Conclusions

In this paper, a sensor fusion method designed to obtain the most accurate pose estimation for a general UACDPR was presented.
his study introduced a novel and physically sound criterion for terminating iterations, which is not only straightforward to

mplement, but also demonstrated to be effective in limiting computational times by without sacrificing accuracy. This research
ncluded an experimental comparison of various redundant measurement configurations to illustrate the method performance with
ifferent sensor combinations. It was revealed that measuring the pulley swivel angles offers no apparent benefit, as this approach
ot only fails to improve accuracy, but also extends the computational time required for solution convergence.

In the future, we intend to investigate how to account for non-Gaussian error probability distributions affecting the sensor
easurement, in order to reduce computational time while at the same time maintaining a high accuracy. Additionally, we intend

o explore how our sensor-fusion algorithm would impact the trajectory planning of UACDPRs, as an uncarefully planned trajectory
ay result in the method poor convergence due to kinematic singularities or inappropriate initial guesses.
10
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Table A.7
Average and maximum errors in determining the set of poses showed in Fig. A.6(a) when using Alg. 2 (𝜎) and
sensor set li.

Average error: Maximum error:

Position [cm] 3.84 25.21
Orientation [◦] 1.66 3.38
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Appendix. Convergence ability of the algorithm throughout the workspace

When solving a direct kinematic problem, singularities may occur at the boundaries of the workspace, and incorporating
additional sensors is often an effective strategy to mitigate them [13]. To this aim, we conducted a thorough evaluation of the
performance of our pose estimation method across the reachable workspace of the 4-cable prototype described in Section 4.

The reachable workspace of the robot was determined using the method presented in [26], where lower and upper bounds on
ach cable tension were set to 10 𝑁 and 200 𝑁 respectively (Fig. A.6(a)). Given a set of 𝑁 = 85262 reachable poses, we tested Alg.
(𝜎) leveraging cable length and platform orientation measurements (sensor set li) for reconstructing the platform pose within the
orkspace. In particular:

1. the cable lengths corresponding to each pose were calculated through inverse kinematics;
2. uniformly distributed random errors were assigned to cable lengths (𝜇 = 4 cm), platform roll and pitch angles (𝜇 = 1◦), and

platform yaw angle (𝜇 = 3◦) to mimic the inaccuracies and noise of real measurements;
3. the ‘‘inaccurate and noisy’’ cable lengths and orientation angles determined in the previous step were used to determine the

EE pose with Alg. 2 (𝜎); the initial guess of the algorithm was set with position and orientation differing from the real ones,
on average, by 10 cm and 20◦;

4. the computed poses were compared with the exact ones.

Simulation results show that the algorithm always converges to a solution. The average and maximum errors in determining the
latform position and orientation are reported in Table A.7. The average error aligns with our expectations: with thresholds set at
cm for cable lengths and 1◦/3◦ for platform orientation, the algorithm halts iterations when the elements of the residual vector,
ependent on the computed pose, fall within the specified thresholds.

Fig. A.6(b) shows the errors in determining the platform position in various points within the reachable workspace. This
raphically shows that the error in computing the pose does not depend on the proximity to the boundaries of the workspace, except
or a very limited number of points in the upper part of the workspace, where the error in determining the platform position can
each up to 25 cm. This is reasonable, as cables become more and more co-planar, thus approaching a well-known direct singularity.
11
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Fig. A.6. IRMA L@B 4-cable UACDPR reachable workspace.
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